NB3W800LMNGEVB_USERS_MANUAL.pdf - 1062 KB

NB3W800LMNGEVB
Evaluation Board Manual
Contents
Introduction .......................................................................................................................................................................................................... 2
Board Features ................................................................................................................................................................................................... 3
Board Layout ....................................................................................................................................................................................................... 3
Power Supplies ................................................................................................................................................................................................... 4
Control Pins......................................................................................................................................................................................................... 4
Differential Clock Inputs and Outputs .............................................................................................................................................................. 5
USB & I2C / SMBus Interface ........................................................................................................................................................................... 6
Pre Power Up...................................................................................................................................................................................................... 6
Power Up Sequence .......................................................................................................................................................................................... 6
Board Schematic ................................................................................................................................................................................................ 7
Bill Of Materials ................................................................................................................................................................................................... 9
1
NB3W800LMNGEVB
Evaluation Board Manual
Introduction
The NB3W800LMNGEVB evaluation board was developed for the NB3W800L (HCSL-Compatible low power
NMOS push pull Output). This evaluation board was designed to provide a flexible and convenient platform to quickly
evaluate, characterize and verify the operation of the NB3W800L devices.
This evaluation board manual contains:
 Information on the NB3W800L Evaluation Board
 Assembly Instructions
 Test and Measurement Setup Procedures
 Board Schematic and Bill of Materials
This manual should be used in conjunction with the device datasheet which contains full technical details on the device specifications
and operation.
Top View
Bottom View
2
Board Features
One Board Design/Layout:
● Accommodates the electrical characterization of the NB3W800L (Low power NMOS Push pull outputs)
● Accommodates a custom QFN-48 pogo-pin socket for lab evaluation, or a soldered down QFN-48 package.
● Incorporates on board SDI I2C/SMBus interface circuitry; powered from a USB connection, minimizing cabling.
● Convenient and compact board layout
● 3.3V power supply device operation
● Differential inputs and output signals are accessed via SMA connectors or high impedance probes
The evaluation board is with 10” output traces, with 85-Ω differential trace impedance.
All Inputs & Outputs have signal access via side-launch SMA connectors, installed, except SDA and SCL.
- SDA and SCL can be externally accessed by means of jumper headers & “test-point” anvils (for use with minigrabber cables)
Each control pin can be managed directly through an SMA connector or manually with a H/L jumper header; H = VCC, L = DUTGND.
Other Board Features
There are no vias on the differential I/O metal traces so as to eliminate via impedance and stub effects on the high-speed I/Os.
This board accommodates a custom QFN-48 socket for lab evaluation, so there is a socket keep-out area.
Stand-offs are installed.
Board Layout
The NB3W800L QFN-48 Evaluation Board provides a high bandwidth, 43-Ω controlled impedance environment and is
implemented in four layers.
All layers are constructed with FR4 dielectric material.
The first layer is the primary signal layer, including all of the differential inputs and outputs.
The second layer is the ground plane. It is dedicated for the SMA connector ground plane and for DUT ground.
The third layer is dedicated as the power plane. A portion of this 3rd layer is designated for the device VDD and VDDIO power planes.
The fourth layer contains control lines, power supply banana jacks and device power pin bypass capacitors.
Layer Stack
L1 (top) Signal (FR4)
L2 DUTGND (device ground) and SMA Ground, SMAGND
L3 VDD, VDDIO (separate device power supplies)
L4 (bottom), power supply by-pass capacitors, control pin traces and banana jacks
3
Power Supplies
Each VDD, VDDIO and GND power supply have a separate side-launch banana jack
Board Layer #2 = SMAGND = DUTGND = 0V.
GND Banana Jack = negative power supply for DUTGND and SMAGND.
Exposed Pad (EP): The exposed pad footprint on the board is mechanically connected (soldered) to the exposed pad of the
QFN-48 package, and is electrically connected to DUTGND power supply, the negative supply of the device.
Board Layer #3 = VDDx Power Supplies
VDD = positive power supply for VDDA (pins #3, 44)
VDDIO = positive power supply for VDDIO (pins #10, 15, 19, 27, 34, 38, 42)
VDD & VDDIO have the power supply filtering per datasheet, and the bypass caps are located on top, by the banana jacks.
All VDD/VDDA /VDDIO device pins have 0.1uF bypass caps installed on bottom side of package pins.
Board is capable of measuring device IDD & IDDIO.
Control Pins
Each control pin can be managed directly through an SMA connector or manually with a H/L jumper header;
Tri-Level Input Pins - HBW_BYP_LBW#
On the 85ohm, 10inch output trace boards, the tri level input pin, HBW, has a 4.7kohm pull up to VDD and a 4.7kohm pull down to
GND resistors; defaults to midlevel. Need to jumper for a High or jumper for a Low.
HBW - At J31 header, there is a 4.7kΩ pull-up to VDDIO and a 4.7kΩ pull-down to GND for manual control.
OE# Pins (Output Enable/Disable Function)
There are eight OE# pins available to control differential outputs
DIF0/0# to DIF7/7#. All of the OE#s can be controlled individually:
1) externally via the SMA connector for evaluation purposes, no jumper installed on OE#.
2) automatically by GUI control when jumper is installed on OE# in middle header.
3) manually with the convenient High/Low OE# jumper headers.
100M_133M# - Frequency Selection
The 100M_133M# frequency selection pin can be controlled manually with the High/Low header jumper (J34) at the SMA or
externally with a control signal through the SMA connector; H = 100MHz, L = 133MHz.
PWRGD/PWRDN
The PWRGD/PWRDN pin can be controlled manually with the High/Low header jumper (J54) at the SMA connector or externally with
a control signal through the SMA connector; H = PWRGD, L = PWRDN.
4
Differential Clock Inputs and Outputs
Differential Inputs - CLK_IN & CLK_IN#
The differential Clock input traces, CLK_IN/CLK_IN#, are routed from the SMA connectors on the right side directly to the DUT;
there are no vias on metal traces.
CLK_IN & CLK_IN# have resistor pads (R40 & R41) to GND just outside the keep-out area of the socket to terminate a signal
generator, if used. 50-ohm resistors are installed. Remove these resistors if CLK_IN & CLK_IN# are driven by another IC device.
Differential Outputs - DIFx and DIFx#
All eight differential output metal traces are designed to have equal length from the device under test (DUT) pins to the SMA
connectors. These outputs have 43-ohm trace impedance (FR4), 85-ohm line-to-line.
All of the outputs have SMA connectors installed; there are no vias on the metal traces.
Each DIFx output has a provision for CLoad at the SMA; 2pF capacitors are installed on all outputs.
Rs & Rp – Located close to DUT, just outside socket area.
43-ohm board - Installed with Rs = 27-Ω and Rp = not installed.
HCSL outputs are typically terminated with 50-Ω to ground. This can be easily accomplished by connecting the HCSL outputs to the
50-Ω internal impedance in the oscilloscope.
Series R provision at SMA
A 0-ohm series resistor is installed between the end of the transmission line and the SMA connector:
–
–
For measuring HCSL outputs with a Hi-Z probe.
For measuring HCSL outputs with a 50-Ω scope head.
Hi-Z Probe Use
1) Single-ended Hi-Z probes or,
2) Differential Hi-Z probe; (see layout below)
A “solder gap” is employed at each output SMA connector.
Short the gap with a solder blob or 0-Ω resistor to enable use of a Hi-Z probe. This solder
gap is shorted with a 0-ohm resistor.
Holes for headers to connect to Hi-Z probes are available, but the header pins are not installed.
An optional component can be installed on each output. Additional capacitance loading can be accomplished with this board feature.
The NB3W800L EVB was designed with the flexibility to configure the board to measure the differential HCSL or low power
NMOS Push Pull outputs with a 50-ohm scope head or High impedance FET probe.
The following figure describes the board’s output features:
Optional component to Ground, if
needed, when shorted to output
trace.
Ground
CLoad (2pF) installed
Series R = 0-ohms installed
Hi-Z probe
Short for use with Hi-Z
probe; 0-ohms installed
5
FB_OUT & FB_OUT# - External Feedback Termination
Since the FB_OUT & FB_OUT# pins do not drive transmission lines, the board layout has these pins loaded/terminated per
datasheet;
These pins have series R pads, R82 & R83, to GND located close to the DUT, just outside the socket area.
USB & I2C / SMBus Interface
The NB3W800L EVB has an on-board I2C/SMBus interface circuitry located in the lower left section of the board.
This circuitry will interface with the program and the device via the SDA and SCL input pins, and can control the OE# pins, PLL
Mode and Frequency Select directly from the GUI.
SCL & SDA - The SMBus Clock (SCL) and Data (SDA) pins are exercised through the on-board I2C interface.
In order to enable the I2C control of the DUT, header jumpers J52 & J53 must be shorted.
The I2C / SMBus interface circuitry is powered separately from the USB type-B connection and is isolated from device VDD and
VDDIO. The USB GND is connected to DUTGND.
“Test-point anvils” TP7 & TP8 are available for external control of the device’s SCL and SDA pins by another off-board programmer,
allowing other SMBus emulators to be used to program the DUT. If used, remove both jumpers J52 & J53.
NB3W800L Evaluation Board
Quick Start Lab Set-Up User’s Guide
Pre Power Up
1) Connect power supply cables to VDD, VDDIO and DUTGND banana jacks; (do not turn power on, yet)
2) Connect a signal generator to the SMA connectors for the CLK_IN & CLK_IN# inputs, pins 4 and 5. 50‐ohm termination
resistors are installed for a signal generator on the board. Set‐up appropriate input signal levels according to the device data
sheet.
3) Ensure the PWRGD/PWRDN# pin (Pin #1) is in the Low state before power up (PWRDN#). There is a jumper (J37) on pin 1
to easily select between High and Low.
4) The 100M_133M# and HBW_BYP_LBW pins need to be hardware selected with jumpers J36 and J33 respectively.
Power Up Sequence
1) Turn on power supply, 3.3V (VDD & VDDIO)
2) Move PWRGD/PWRDN# jumper to logic High, PWRGD
3) Turn on the Differential Clock Signal for the CLK_IN inputs (HCSL input, VIL = 0V, VIH = 700mV, Frequency based on
J36 selection to 100 MHz or 133MHz)
4) Monitor DIF_x/DIF_x# outputs on oscilloscope
6
Value = DNI
Value2 = DNI
Board Schematic
OE_IO[0..7]
Value = 27
Value2 = 33
J2
OE0#
J4
OE1#
J7
OE2#
J10
OE3#
1. Trace lenght and the impedance of the nets CLKINR,
CLKINR#, CLKIN, and CLKINR# must be same as the
outputs.
2. CLKINR and CLKINR# origin should be as close to pin
as possible.
3. CLKINR and CLKINR# should be exactly same as any of
the output traces w.r.t. load.
CLKINR#
J19
PR4
SG13
2
1
SMA Jack, End Launch
0 R25
2
1
SMA Jack, End Launch
0 R30
J29
2.0pF_DNP
1
J20
CLKIN#
2
C13
2.0pF_DNP
1
J24
R32 OE7#
R31
C11 2.0pF_DNP
2
1
SG21
1
3
5
J1
OE_N1
SMA Jack, End Launch
OE_IO1
J5
OE_N2
SMA Jack, End Launch
OE_IO2
0_DNP
1 1
1
should be close to SMA
VDDIO
1
3
5
2
4
6
VDDIO
1
3
5
2
4
6
VDDIO
1
3
5
2
4
6
VDDIO
1
3
5
2
4
6
VDDIO
1
3
5
2
4
6
VDDIO
2
1
49.9
R41
2
1
R48
17
1
DIF1#
27
OE4#
DIF2
21
1
DIF2
27
OE5#
DIF2#
22
1
DIF2#
27
OE6#
DIF3
25
1
DIF3
27
OE7#
DIF3#
26
1
DIF3#
27
CLK_IN
DIF4
28
1
DIF4
27
CLK_IN#
DIF4#
29
1
DIF4#
27
HBW_BY P_LBW#
DIF5
32
1
DIF5
27
100M_133M#
DIF5#
33
1
DIF5#
27
VDDIO
PWRGD_PWRDN#
DIF6
35
1
DIF6
1
7
SCL
DIF6#
36
1
DIF6#
SDA
27
DIF7
39
1
DIF7
27
DIF7#
40
1
DIF7#
+
2
1
R75
2.2
600
VDDA_3
2
1
R76
2.2
1
J44
2
1
1
C26
10uF
10V
1
C22
1uF
10V
TP3
C23
1
VDDA_44
100nF
1
2
2
1
C24
1uF
10V
1
R8
2
R11
2
1
SG5
1
R12
OUT1
4
1
2
2
R15
1
R19
2.0pF
2
1
2
C4
2
SG7
1
2.0pF
1
R16
2
SG9
1
2
1
R20
2
SG11
2.0pF
1
R24
2
SG12
2
1
2
SG15
2
SG14
2.0pF
1
R29
2
1
2
C10
SG17
2.0pF
1
R36
2
1
SG22
1
R43
2
2
1
2
C14
2
SG23
2.0pF
1
1
R50
2
SG24
2
SG26
2
C15
SG25
1
R54
2.0pF
1
2
C16
2
J15
DIF1#
SMA Jack, End Launch
0
DIF2
SMA Jack, End Launch
2
J17
0
DIF2#
SMA Jack, End Launch
2
J22
DIF3
SMA Jack, End Launch
0
2
J25
0
DIF3#
SMA Jack, End Launch
0
2
J28
DIF4
SMA Jack, End Launch
2
J30
0
DIF4#
SMA Jack, End Launch
2
J32
DIF5
SMA Jack, End Launch
R52
SG27
2.0pF
1
R58
2
1
1
2
SG29
1
R62
2
0
2
J35
1
0
2
J39
DIF6
SMA Jack, End Launch
R60
SG30
DIF5#
SMA Jack, End Launch
R56
SG28
DNI 42.2
OUT6
2
PR9
DNI
C17
2.0pF
DNI 42.2
2
OUT_N6
2
1
DNI
2
C18
SG31
2.0pF
1
R66
2
1
DNI 42.2
2
SG33
1
R70
2
0
2
J40
2
J41
1
0
DIF7
SMA Jack, End Launch
R68
SG34
DIF6#
SMA Jack, End Launch
R64
OUT7
2
1
SG32
2
PR10
DNI
C19
2.0pF
DNI 42.2
2
OUT_N7
R73
1
DNI 42.2
2
1
0
R46
OUT_N5
2
DNI
R69
1
DNI 42.2
2
1
J11
PR8
DNI
R65
2
R39
OUT5
1
1
SG20
DNI 42.2
2
R61
0
PR7
2.0pF
OUT_N4
1
DIF1
SMA Jack, End Launch
R34
DNI 42.2
2
C12
DNI
R57
1
SG18
2
1
J8
R27
OUT4
2
DNI
R53
1
DNI 42.2
2
1
2
PR5
C8
DNI
R49
DIF0#
SMA Jack, End Launch
R22
OUT_N3
1
1
DNI 42.2
2
R42
0
DIF0
SMA Jack, End Launch
R18
SG10
OUT3
1
1
DNI 42.2
2
C6
DNI
R35
J6
PR3
2.0pF
2
1
2
R14
OUT_N2
R28
1
SG8
DNI 42.2
2
C5
DNI
1
0
R10
SG6
DNI 42.2
2
R23
J3
PR2
C3
DNI
1
2
R6
SG4
DNI 42.2
2
OUT_N0
3
1
2
1
2
C20
SG35
2.0pF
1
R74
2
SG36
1
0
R72
2
J42
DIF7#
SMA Jack, End Launch
DNI 42.2
600
2
C27
10uF
10V
VDDA1
C25
44
100nF
10
15
19
27
34
38
42
100nF cap on each VDD and VDDA pin,
as close to the DUT as possible
1
C28
1
100nF
2
1
C29
100nF
2
C30
1
100nF
2
C31
1
100nF
2
C32
1
100nF
2
VDDA2
2
VDDIO
2
1
+
SG3
PR1
VDDA_44
1
TP4
FB2
3
VDDA_3
1
2
2
VDDIO
2
0
R2
1
DNI 42.2
2.0pF
1
SG2
TP2
2
1
C21
10uF
10V
2
OUT2
VDD
VDD
1
C2
DNI
1
FB1
1
2.0pF
R4
2
TP1
J43
2
DNI
R71
VDD
1
OUT_N1
1
R67
27
SG1
2
R63
6
SDA
R7
DNI
R59
SCL
2
2
R55
27
1
DNI
R51
1
J37
1
R45
VDDIO
1
2
3
SMA Jack, End Launch
DIF1#
2
J54
PWR
OE3#
2
C1
R38
47
1
2
3
J36
1
DIF1
2
VDDIO
SMA Jack, End Launch
16
27
R3
2
R33
J34
100M_133M#
27
R26
48
J33
DIF1
4.7K
1
2
3
SMA Jack, End Launch
OE2#
49.9
4.7K
J31
HBW_BYP_LBW#
DIF0#
1
DIF0#
R21
5
R47
1
VDDIO
OE1#
14
R17
CLKIN
PR6
OUT0
1
R13
4
R40
2
R9
41
J26
R37(49.9) and R38(49.9)
connector.
2
4
6
37
J21
OE_N7
SMA Jack, End Launch
OE_IO7
1
3
5
DIF0
1
DIF0
R5
31
J18
OE_N6
SMA Jack, End Launch
OE_IO6
VDDIO
30
J14
OE_N5
SMA Jack, End Launch
OE_IO5
2
4
6
24
J12
OE_N4
SMA Jack, End Launch
OE_IO4
1
3
5
OE0#
13
R1
23
J9
OE_N3
SMA Jack, End Launch
OE_IO3
VDDIO
2
4
6
18
2 2
CLKINR
SG19
2
1
SMA Jack, End Launch
0 R37
2
1
SMA Jack, End Launch
0 R44
OE5#
2.0pF_DNP
1
0_DNP
J27
J16
OE6#
C9
2
CLKIN#
CLKIN
OE4#
CLKINR#
SG16
CLKINR
J23
C7
2
J13
11
OE_N0
SMA Jack, End Launch
OE_IO0
C33
VDDIO
1
100nF
2
VDD7
VDD1
VDD2
VDD3
VDD4
VDD5
VDD6
C34
100nF
NC/IREF
NC1
NC2
2
J46
GND
46
1
2
2
NC3
GNDA
NC4
FB3
600
49
45
43
1
20
1
12
1
0 R78
0 R79
0 R80
0 R81
R77
2
Value = DNI
Value2 = DNI
2
2
J45
1
2
3
VDD
J47
1
2
3
VDD
J48
1
2
3
VDD
J49
1
2
3
VDD
2
2
TP5
EP
FBOUT#/NC#
Place the FB5 ferrite bead where GNDA and GND islands1
of copper meet in layout.
1
FBOUT#
8
1
1
1
TP6
FBOUT/NC
R83
2
FBOUT
Value = DNI
1
Value2 = DNI
Keep Pin 8 and Pin 9 test points as close to the DUT
as possible. Under the keep-out area of the socket.
0_DNP
1
2
9
R84
R82
2
Value = DNI
Value2 = DNI
FBOUT#
1
0
2
J50
FBOUT#
SMA Jack, End Launch
R85
SG37
PR11
1
U1
DNI NB3W800L
0_DNP
2
R91(0 ohm) and R92(0 ohm) R86
should be placed suchSG38
a way
so that their uninstallment can completely disconnect the
trace with zero stud.
FBOUT
1
0
R87
2
J51
FBOUT
SMA Jack, End Launch
7
3V3
1
1
R88
10K
1
TP7
SCL
2
SCL
J52
2
R89
10K
2
U2
FT2232H
16
1
17
2
SDA
1
J53
18
1
19
TP8
SDA
21
OE_IO0
22
OE_IO1
23
OE_IO2
24
OE_IO3
26
OE_IO4
27
OE_IO5
28
OE_IO6
29
OE_IO7
30
32
33
34
TCK
TDI
3V3
VCCIO1
VCCIO2
VCCIO3
VCCIO4
TDO
VREGIN
TMS
VREGOUT
GPIOL0
GPIOL1
VCORE1
VCORE2
VCORE4
1
1
R92
10K
U3
93LC46B
3V3
8
7
1
2
C49
100nF
10V
6
5
2
VCC
CS
NC2
CLK
NC1
DIN
GND
DOUT
1
R93
10K
2
R94
10K
2
63
1
62
2
61
3
4
1
R96
2.2K
2
1
5
11
15
25
35
47
51
10
2
1
C36
100nF
1
C37
100nF
2
C38
100nF
2
2
49
12
37
64
1
1
C39
4.7uF
6.3V
1
C40
100nF
1
C41
100nF
2
C42
100nF
2
2
GPIOL3
GPIOH0
3V3
GPIOH1
VPLL
GPIOH2
VPHY
9
1
FB4
2
4
1
600
GPIOH3
1
1
GPIOH4
GPIOH5
1
C44
100nF
C43
4.7uF
6.3V
2
2
2
FB5
2
1
600
C46
100nF
C45
4.7uF
6.3V
2
GPIOH6
BDBUS0
BDBUS1
BDBUS2
BDBUS3
BDBUS4
BDBUS5
BDBUS6
BDBUS7
BCBUS0
BCBUS1
BCBUS2
BCBUS3
BCBUS4
BCBUS5
BCBUS6
BCBUS7
7
USB_DM
8
USB_DP
RESET#
14
USB_RST#
REF
6
1
R91
1
C48
D1
2
PACDN004
3
OSCI
EEDATA
OSCO
EPAD
SUSPEND#
PWREN#
TEST
Y1
12 MHz
10pF
1
5
C
R95
2
1
470
2
1
2
LED1
TP9
USB 5V
3V3
3
3
65
1
C50
C
4
1
2
36
60
6
USB
2
1
2
USB
1
C47
10nF
16V
2
12K
1%
2
J62
3
10K
2
EECLK
AGND
R90
1
1
3V3
2
4
4
EECS
GND1
GND2
GND3
GND4
GND5
GND6
GND7
GND8
1
USB_5V
GPIOH7
DP
48
52
53
54
55
57
58
59
50
1
C35
100nF
2
DM
3V3
1
GPIOL2
OE_IO[0..7]
38
39
40
41
43
44
45
46
20
31
42
56
3
10pF
1
13
2
1
1
1
1
1
C52
1uF
10V
C53
100nF
2
1
U4
NCP4586, 3.3V
5
IN
OUT
3V3
1
EN
GND
TP10
NC
4
2
C51
1uF
10V
2
TP11
GND
TP12
GND
TP13
GND
TP14
GND
8
Bill Of Materials
NB3W800L 85 Ohms, 10" trace board
Item
Quantity
Part Number
1
2
3
20
2
4
C1005C0G1H020C
TR3A106K010C2000
GRM155R61A105ME15D
4
5
6
7
8
9
10
11
20
1
3
1
2
1
3
2
0402ZD104KAT2A
C1608X5R1A106M
C1005X5R0J475M
0402YC103KAT2A
GRM1555C1H100JZ01D
PACDN004SR
BLM18KG601SN1D
BLM15AG601SN1D
12
8
67996-206HLF
13
33
142-0701-801
14
15
16
17
18
19
20
7
1
1
1
2
1
1
961103-6404-AR
571-0500
571-0700
571-0100
961102-6404-AR
USB-B1SMHSW6
LTST-C190KGKT
21
11
No Part
22
16
ERJ-2GEJ270X
23
27
CRCW04020000Z0ED
24
25
19
16
ERJ-2RKF42R2X
ERJ-2RKF42R2X
Reference
C1,C2,C3,C4,C5,C6,C7,C8,
C9,C10,C11,C12,C13,C14,
C15,C16,C17,C18,C19,C20
C21,C26
C22,C24,C51,C52
C23,C25,C28,C29,C30,C31,
C32,C33,C34,C35,C36,C37,
C38,C40,C41,C42,C44,C46,
C49,C53
C27
C39,C43,C45
C47
C48,C50
D1
FB1,FB2,FB3
FB4,FB5
J1,J5,J9,J12,J14,J18,J21,
J26
J2,J3,J4,J6,J7,J8,J10,
J11,J13,J15,J16,J17,J19,
J20,J22,J23,J24,J25,J27,
J28,J29,J30,J31,J32,J34,
J35,J39,J40,J41,J42,J50,
J51,J54
J33,J36,J37,J45,J47,J48,
J49
J43
J44
J46
J52,J53
J62
LED1
PR1,PR2,PR3,PR4,PR5,PR6,
PR7,PR8,PR9,PR10,PR11
R1,R5,R9,R13,R17,R21,R26,
R33,R38,R45,R51,R55,R59,
R63,R67,R71
R2,R6,R10,R14,R18,R22,
R25,R27,R30,R34,R37,R39,
R44,R46,R56,R60,R64,R68,
R72,R78,R79,R80,R81,R84,
R85,R86,R87
R3,R7,R11,R15,R19,R23,
R28,R35,R42,R49,R53,R57,
R61,R65,R69,R73,R77,R82,
R83
R4,R8,R12,R16,R20,R24,
Part
PCB Footprint
Vendor
Vendor PN
Mfr
2.0pF
10uF
1uF
c0402
c1206
c0402
DigiKey
DigiKey
DigiKey
445-4863-1-ND
718-1300-1-ND
490-5409-1-ND
TDK
Vishay
Murata
100nF
10uF
4.7uF
10nF
10pF
PACDN004
600
600
c0402
c0603
C0402
C0402
C0402
sot_143
L0603
L0402
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
Mouser
DigiKey
DigiKey
478-1129-1-ND
445-6853-1-ND
445-7395-1-ND
478-1114-1-ND
490-1278-1-ND
748-PACDN004SR
490-5258-1-ND
490-1006-1-ND
AVX
TDK
TDK
AVX
Murata
ON Semi
Murata
Murata
Header 2x3 Thru-Hole
berg_2x3_2p54
SMA Jack, End Launch
sma_jack_end_launch
DigiKey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
609-3210-ND
J502-ND
J502-ND
J502-ND
J502-ND
J502-ND
J502-ND
FCI
Johnson Components
Johnson Components
Johnson Components
Johnson Components
Johnson Components
Johnson Components
Header 3-pin
Banana Jack, Thru-Hole, Red
Banana Jack, Thru-Hole, Yellow
Banana Jack, Thru-Hole, Black
Header 2-pin
Conn, USB-B, SMT
LED, Green
hdr_1x3_2p54
con_571-0500
con_571-0500
con_571-0500
hdr_1x2_2p54
con_usb_b_ra
led_0603
DigiKey
Mouser
Mouser
Mouser
DigikEY
DigiKey
DigiKey
3M9448-ND
164-6219
164-7170
164-6218
3M9447-ND
ED2994-ND
160-1435-1-ND
3M
Deltron
Deltron
Deltron
3M
On Shore Technology
Lite-On
4 Round Pads, .060 with .040 Hole
berg_2x2_2p54
27
r0402
DigiKey
P27JCT-ND
Panasonic
0
r0402
DigiKey
541-0.0JCT-ND
Vishay
DNI
DNI 42.2
r0402
r0402
DigiKey
DigiKey
P42.2LCT-ND
P42.2LCT-ND
Panasonic
Panasonic
Remarks
DNP C7, C9, C11,
C13
DNP R78, R79, R80,
R81, R84, R86
9
26
27
28
29
30
31
32
33
34
2
2
2
1
2
6
1
1
1
CRCW06030000Z0EA
ERJ-3EKF49R9V
ERJ-3GEYJ472V
CRCW04020000Z0ED
ERJ-3GEYJ2R2V
ERJ-2GEJ103X
ERJ-2RKF1202X
ERJ-2GEJ471X
ERJ-2GEJ222X
35
38
No Part
36
37
38
39
40
8
2
4
1
1
5015
No Part
No Part
DNI NB3W800L
FT2232HQ-REEL
R29,R36,R43,R50,R54,R58,
R62,R66,R70,R74
R31,R32
R40,R41
R47,R48
R52
R75,R76
R88,R89,R90,R92,R93,R94
R91
R95
R96
SG1,SG2,SG3,SG4,SG5,SG6,
SG7,SG8,SG9,SG10,SG11,
SG12,SG13,SG14,SG15,SG16,
SG17,SG18,SG19,SG20,SG21,
SG22,SG23,SG24,SG25,SG26,
SG27,SG28,SG29,SG30,SG31,
SG32,SG33,SG34,SG35,SG36,
SG37,SG38
TP1,TP2,TP3,TP4,TP5,TP6,
TP7,TP8
TP9,TP10
TP11,TP12,TP13,TP14
U1
U2
41
1
93LC46BT-I/ST
42
43
1
1
NCP4586DSN33T1G
ABM8G-12.000MHZ-4Y-T3
0
49.9
4.7K
0
2.2
10K
12K
470
2.2K
r0603
r0603
r0603
r0402
r0603
r0402
r0402
r0402
r0402
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
DigiKey
541-0.0JCT-ND
P49.9HCT-ND
P4.7KGCT-ND
541-0.0JCT-ND
P2.2GCT-ND
P10KJCT-ND
P12.0KLCT-ND
P470JCT-ND
P2.2KJCT-ND
Vishay
Panasonic
Panasonic
Vishay
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Solder Gap
r0201
Test Point, SMT
Test Pad 30 x 60 mil
Test Pad 50 x 100 mil
DNI NB3W800L
FT2232H
tp_70_135
tp_30_60
tp_50_100
MODULE_48QFN_0P40
qfn_64_0p5
DigiKey
5015KCT-ND
Keystone
On Semi
DigiKey
ON Semi
FTDI
93LC46B
tssop_8_4p4w_0p65
NCP4586, 3.3V
12 MHz
sot23_5p
CRY-4P-SMD1
DigiKey
ON
Semi
DigiKey
768-1025-1-ND
93LC46BT-I/STCTND
U3
U4
Y1
NCP4586DSN33T1G
535-10901-1-ND
ON Semi
Abracon Corp
DNP R31, R32
Microchip
10