5.0 kV rms Quad Digital Isolators Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E FUNCTIONAL BLOCK DIAGRAMS APPLICATIONS VDD1 1 ADuM240D/ADuM240E 2 GND1 16 VDD2 15 GND2 VIA 3 ENCODE DECODE 14 VOA VIB 4 ENCODE DECODE 13 VOB VIC 5 ENCODE DECODE 12 VOC VID 6 ENCODE DECODE 11 VOD DISABLE1/NIC 7 10 NIC/VE2 GND1 8 9 GND2 NOTES 1. NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING. 2. PIN 7 IS DISABLE1 AND PIN 10 IS NIC FOR THE ADuM240D, AND PIN 7 IS NIC AND PIN 10 IS VE2 FOR THE ADuM240E. Figure 1. ADuM240D/ADuM240E Functional Block Diagram VDD1 1 GND1 ADuM241D/ADuM241E 2 16 VDD2 15 GND 2 VIA 3 ENCODE DECODE 14 V OA 4 ENCODE DECODE 13 V OB VIC 5 ENCODE DECODE 12 VOC VOD 6 DECODE ENCODE 11 VID VIB 10 DISABLE2/VE2 DISABLE1/VE1 7 GND1 8 9 GND2 NOTES 1. PIN 7 IS DISABLE1 AND PIN 10 IS DISABLE 2 FOR THE ADuM241D, AND PIN 7 IS VE1 AND PIN 10 IS VE2 FOR THE ADuM241E. 13576-102 High common-mode transient immunity: 100 kV/μs High robustness to radiated and conducted noise Low propagation delay 13 ns maximum for 5 V operation 15 ns maximum for 1.8 V operation 150 Mbps maximum guaranteed data rate Safety and regulatory approvals (pending) UL recognition: 5000 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A VDE certificate of conformity DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM = 849 V peak 8000 V peak reinforced surge isolation voltage CQC certification per GB4943.1-2011 Backward compatibility ADuM240E1/ADuM241E1/ADuM242E1 pin compatible with ADuM2400/ADuM2401/ADuM2402 Low dynamic power consumption 1.8 V to 5 V level translation High temperature operation: 125°C Fail-safe high or low options 16-lead, RoHS compliant, SOIC package Qualified for automotive applications 13576-101 FEATURES Figure 2. ADuM241D/ADuM241E Functional Block Diagram General-purpose multichannel isolation Serial peripheral interface (SPI)/data converter isolation Industrial field bus isolation VDD1 1 ADuM242D/ADuM242E GND1 2 GENERAL DESCRIPTION 16 VDD2 15 GND 2 VIA 3 ENCODE DECODE 14 V OA VIB 4 ENCODE DECODE 13 VOB VOC 5 DECODE ENCODE 12 VIC VOD 6 DECODE ENCODE 11 VID The ADuM240D/ADuM240E/ADuM241D/ADuM241E/ ADuM242D/ADuM242E1 are quad-channel digital isolators based on Analog Devices, Inc., iCoupler® technology. Combining high speed, complementary metal-oxide semiconductor (CMOS) and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated couplers. The maximum propagation delay is 13 ns with a pulse width distortion of less than 3 ns at 5 V operation. Channel matching is tight at 3.0 ns maximum. systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM240D/ADuM240E/ADuM241D/ADuM241E/ ADuM242D/ADuM242E data channels are independent and are available in a variety of configurations with a withstand voltage rating of 5.0 kV rms (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 1.8 V to 5 V, providing compatibility with lower voltage Unlike other optocoupler alternatives, dc correctness is ensured in the absence of input logic transitions. Two different fail-safe options are available by which the outputs transition to a predetermined state when the input power supply is not applied or the inputs are disabled. The ADuM240E1/ADuM241E1/ ADuM242E1 are pin compatible with the ADuM2400/ ADuM2401/ADuM2402. 1 GND1 8 10 DISABLE2/VE2 9 GND2 NOTES 1. PIN 7 IS DISABLE1 AND PIN 10 IS DISABLE 2 FOR THE ADuM242D, AND PIN 7 IS VE1 AND PIN 10 IS VE2 FOR THE ADuM242E. 13576-103 DISABLE1/VE1 7 Figure 3. ADuM242D/ADuM242E Functional Block Diagram Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Recommended Operating Conditions .................................... 13 Applications ....................................................................................... 1 Absolute Maximum Ratings ......................................................... 14 General Description ......................................................................... 1 ESD Caution................................................................................ 14 Functional Block Diagrams ............................................................. 1 Pin Configurations and Function Descriptions ......................... 16 Revision History ............................................................................... 2 Typical Performance Characteristics ........................................... 19 Specifications..................................................................................... 3 Theory of Operations..................................................................... 21 Electrical Characteristics—5 V Operation................................ 3 Applications Information .............................................................. 22 Electrical Characteristics—3.3 V Operation ............................ 5 PCB Layout ................................................................................. 22 Electrical Characteristics—2.5 V Operation ............................ 7 Propagation Delay Related Parameters ................................... 22 Electrical Characteristics—1.8 V Operation ............................ 9 Jitter Measurement ..................................................................... 22 Insulation and Safety Related Specifications .......................... 11 Insulation Lifetime ..................................................................... 22 Package Characteristics ............................................................. 11 Outline Dimensions ....................................................................... 24 Regulatory Information ............................................................. 12 Ordering Guide .......................................................................... 24 DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics ............................................................................ 13 Automotive Products ................................................................. 26 REVISION HISTORY 4/16—Rev. 0 to Rev. A Added RI-16-2 .................................................................... Universal Changes to Features Section............................................................ 1 Changes to Table 1 ............................................................................ 3 Changes to Table 3 ............................................................................ 5 Changes to Table 5 ............................................................................ 7 Changes to Table 7 ............................................................................ 9 Added Table 10; Renumbered Sequentially ................................ 11 Added Table 13 ............................................................................... 12 Added Table 18 ............................................................................... 14 Updated Outline Dimensions ....................................................... 23 Added Figure 26.............................................................................. 24 Changes to Ordering Guide .......................................................... 24 Added Automotive Products Section .......................................... 26 9/15—Revision 0: Initial Version Rev. A | Page 2 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E SPECIFICATIONS ELECTRICAL CHARACTERISTICS—5 V OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 1. Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate1 Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter DC SPECIFICATIONS Input Threshold Voltage Logic High Logic Low Output Voltage Logic High Logic Low Input Current per Channel VE2 Enable Input Pull-Up Current DISABLE1 Input Pull-Down Current Tristate Output Current per Channel Quiescent Supply Current ADuM240D/ADuM240E Symbol Min PW 6.6 150 4.8 tPHL, tPLH PWD Typ 7.2 0.5 1.5 tPSK Max Unit Test Conditions/Comments 13 3 ns Mbps ns ns ps/°C ns Within pulse width distortion (PWD) limit Within PWD limit 50% input to 50% output |tPLH − tPHL| 6.1 tPSKCD tPSKOD 0.5 0.5 490 70 VIH VIL 0.7 × VDDx VOH VDDx − 0.1 VDDx − 0.4 3.0 3.0 0.3 × VDDx ns ns ps p-p ps rms Between any two units at the same temperature, voltage, and load See the Jitter Measurement section See the Jitter Measurement section V V 15 +10 V V V V μA μA μA μA IOx2 = −20 μA, VIx = VIxH3 IOx2 = −4 mA, VIx = VIxH3 IOx2 = 20 μA, VIx = VIxL4 IOx2 = 4 mA, VIx = VIxL4 0 V ≤ VIx ≤ VDDx VE2 = 0 V DISABLE1 = VDDx 0 V ≤ VOx ≤ VDDx 1.2 2.0 12.0 2.0 2.2 2.72 20.0 2.92 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.6 1.9 10.0 6.0 2.46 2.62 17.0 10.0 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0(E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.6 1.6 7.0 7.0 2.46 2.46 11.5 11.5 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDDI (D) IDDO (D) 0.01 0.02 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle VDDx VDDx − 0.2 0.0 0.2 +0.01 −3 9 +0.01 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) VOL II IPU IPD IOZ −10 −10 −10 0.1 0.4 +10 ADuM241D/ADuM241E ADuM242D/ADuM242E Dynamic Supply Current Dynamic Input Dynamic Output Rev. A | Page 3 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Parameter Undervoltage Lockout Positive VDDx Threshold Negative VDDx Threshold VDDx Hysteresis AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity7 Symbol UVLO VDDxUV+ VDDxUV− VDDxUVH Min Typ Max Unit 1.6 1.5 0.1 V V V tR/tF |CMH| 75 2.5 100 ns kV/μs |CML| 75 100 kV/μs Data Sheet Test Conditions/Comments 10% to 90% VIx = VDDx, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V 1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible. IOx is the Channel x output current, where x = A, B, C, or D. 3 VIxH is the input side logic high. 4 VIxL is the input side logic low. 5 VI is the voltage input. 6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section. 7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. 2 Table 2. Total Supply Current vs. Data Throughput Parameter SUPPLY CURRENT ADuM240D/ADuM240E Supply Current Side 1 Supply Current Side 2 ADuM241D/ADuM241E Supply Current Side 1 Supply Current Side 2 ADuM242D/ADuM242E Supply Current Side 1 Supply Current Side 2 Symbol Min 1 Mbps Typ Max Min 25 Mbps Typ Max Min 100 Mbps Typ Max Unit IDD1 IDD2 6.8 2.1 10 3.7 7.8 3.9 12 5.7 11.8 9.2 17.4 13 mA mA IDD1 IDD2 5.8 4.0 10.3 6.85 7.0 5.5 10.9 8.5 11.4 10.3 15.9 14.0 mA mA IDD1 IDD2 4.3 5.3 7.7 8.7 6.0 6.7 9.3 10.1 10.3 11.0 14.2 14.9 mA mA Rev. A | Page 4 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E ELECTRICAL CHARACTERISTICS—3.3 V OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 3. Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate1 Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter DC SPECIFICATIONS Input Threshold Voltage Logic High Logic Low Output Voltage Logic High Logic Low Input Current per Channel VE2 Enable Input Pull-Up Current DISABLE1 Input Pull-Down Current Tristate Output Current per Channel Quiescent Supply Current ADuM240D/ADuM240E Symbol Min PW 6.6 150 4.8 tPHL, tPLH PWD Typ 6.8 0.7 1.5 tPSK Max Unit Test Conditions/Comments 14 3 ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| 7.5 tPSKCD tPSKOD 0.7 0.7 580 120 VIH VIL 0.7 × VDDx VOH VDDx − 0.1 VDDx − 0.4 3.0 3.0 0.3 × VDDx ns ns ps p-p ps rms Between any two units at the same temperature, voltage, and load See the Jitter Measurement section See the Jitter Measurement section V V 15 +10 V V V V μA μA μA μA IOx2 = −20 μA, VIx = VIxH3 IOx2 = −2 mA, VIx = VIxH3 IOx2 = 20 μA, VIx = VIxL4 IOx2 = 2 mA, VIx = VIxL4 0 V ≤ VIx ≤ VDDx VE2 = 0 V DISABLE1 = VDDx 0 V ≤ VOx ≤ VDDx 1.2 2.0 12.0 2.0 2.12 2.68 19.6 2.8 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.5 1.8 9.8 5.7 2.36 2.52 16.7 9.7 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.6 1.6 7.0 7.0 2.4 2.4 11.2 11.2 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle VDDx VDDx − 0.2 0.0 0.2 +0.01 −3 9 +0.01 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) VOL II IPU IPD IOZ −10 −10 −10 0.1 0.4 +10 ADuM241D/ADuM241E ADuM242D/ADuM242E Dynamic Supply Current Dynamic Input Dynamic Output Rev. A | Page 5 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Parameter Undervoltage Lockout Positive VDDx Threshold Negative VDDx Threshold VDDx Hysteresis AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity7 Symbol UVLO VDDxUV+ VDDxUV− VDDxUVH Min Typ Max Unit 1.6 1.5 0.1 V V V tR/tF |CMH| 75 2.5 100 ns kV/μs |CML| 75 100 kV/μs Data Sheet Test Conditions/Comments 10% to 90% VIx = VDDx, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V 1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible. IOx is the Channel x output current, where x = A, B, C, or D. 3 VIxH is the input side logic high. 4 VIxL is the input side logic low. 5 VI is the voltage input. 6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section. 7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. 2 Table 4. Total Supply Current vs. Data Throughput Parameter SUPPLY CURRENT ADuM240D/ADuM240E Supply Current Side 1 Supply Current Side 2 ADuM241D/ADuM241E Supply Current Side 1 Supply Current Side 2 ADuM242D/ADuM242E Supply Current Side 1 Supply Current Side 2 Symbol Min 1 Mbps Typ Max Min 25 Mbps Typ Max Min 100 Mbps Typ Max Unit IDD1 IDD2 6.6 2.0 9.8 3.7 7.4 3.5 11.2 5.5 10.7 8.2 15.9 11.6 mA mA IDD1 IDD2 5.65 3.9 10.1 6.65 6.65 5.2 10.5 8.0 10.4 9.4 14.9 12.8 mA mA IDD1 IDD2 4.3 5.0 7.7 8.4 5.6 6.2 9.0 9.6 9.1 9.8 13 13.7 mA mA Rev. A | Page 6 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E ELECTRICAL CHARACTERISTICS—2.5 V OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 5. Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate1 Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter DC SPECIFICATIONS Input Threshold Voltage Logic High Logic Low Output Voltage Logic High Logic Low Input Current per Channel VE2 Enable Input Pull-Up Current DISABLE1 Input Pull-Down Current Tristate Output Current per Channel Quiescent Supply Current ADuM240D/ADuM240E Symbol Min PW 6.6 150 5.0 tPHL, tPLH PWD Typ 7.0 0.7 1.5 tPSK Max Unit Test Conditions/Comments 14 3 ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| 6.8 tPSKCD tPSKOD 0.7 0.7 800 190 VIH VIL 0.7 × VDDx VOH VDDx − 0.1 VDDx − 0.4 3.0 3.0 0.3 × VDDx ns ns ps p-p ps rms Between any two units at the same temperature, voltage, and load See the Jitter Measurement section See the Jitter Measurement section V V 15 +10 V V V V μA μA μA μA IOx2 = −20 μA, VIx = VIxH3 IOx2 = −2 mA, VIx = VIxH3 IOx2 = 20 μA, VIx = VIxL4 IOx2 = 2 mA, VIx = VIxL4 0 V ≤ VIx ≤ VDDx VE2 = 0 V DISABLE1 = VDDx 0 V ≤ VOx ≤ VDDx 1.2 2.0 1.2 2.0 2.0 2.64 19.6 2.76 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.46 1.75 9.7 5.67 2.32 2.47 16.6 9.67 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.6 1.6 7.0 7.0 2.32 2.32 11.2 11.2 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle VDDx VDDx − 0.2 0.0 0.2 +0.01 −3 9 +0.01 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) VOL II IPU IPD IOZ −10 −10 −10 0.1 0.4 +10 ADuM241D/ADuM241E ADuM242D/ADuM242E Dynamic Supply Current Dynamic Input Dynamic Output Rev. A | Page 7 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Parameter Undervoltage Lockout Positive VDDx Threshold Negative VDDx Threshold VDDx Hysteresis AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity7 Symbol Min VDDxUV+ VDDxUV− VDDxUVH Typ Max Unit 1.6 1.5 0.1 V V V tR/tF |CMH| 75 2.5 100 ns kV/μs |CML| 75 100 kV/μs Data Sheet Test Conditions/Comments 10% to 90% VIx = VDDx, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V 1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible. IOx is the Channel x output current, where x = A, B, C, or D. 3 VIxH is the input side logic high. 4 VIxL is the input side logic low. 5 VI is the voltage input. 6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section. 7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. 2 Table 6. Total Supply Current vs. Data Throughput Parameter SUPPLY CURRENT ADuM240D/ADuM240E Supply Current Side 1 Supply Current Side 2 ADuM241D/ADuM241E Supply Current Side 1 Supply Current Side 2 ADuM242D/ADuM242E Supply Current Side 1 Supply Current Side 2 Symbol Min 1 Mbps Typ Max Min 25 Mbps Typ Max Min 100 Mbps Typ Max Unit IDD1 IDD2 6.5 2.0 9.8 3.6 7.3 3.3 11.1 5.2 10.4 7.3 15.5 10.2 mA mA IDD1 IDD2 5.6 3.8 10.0 6.55 6.4 4.8 10.4 7.7 9.7 8.3 14.5 11.5 mA mA IDD1 IDD2 4.3 5.0 7.7 8.4 5.4 6.1 8.8 9.5 8.8 9.5 12.7 13.4 mA mA Rev. A | Page 8 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E ELECTRICAL CHARACTERISTICS—1.8 V OPERATION All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals. Table 7. Parameter SWITCHING SPECIFICATIONS Pulse Width Data Rate1 Propagation Delay Pulse Width Distortion Change vs. Temperature Propagation Delay Skew Channel Matching Codirectional Opposing Direction Jitter DC SPECIFICATIONS Input Threshold Voltage Logic High Logic Low Output Voltage Logic High Logic Low Input Current per Channel VE2 Enable Input Pull-Up Current DISABLE1 Input Pull-Down Current Tristate Output Current per Channel Quiescent Supply Current ADuM240D/ADuM240E Symbol Min PW 6.6 150 5.8 tPHL, tPLH PWD Typ 8.7 0.7 1.5 tPSK Max Unit Test Conditions/Comments 15 3 ns Mbps ns ns ps/°C ns Within PWD limit Within PWD limit 50% input to 50% output |tPLH − tPHL| 7.0 tPSKCD tPSKOD 0.7 0.7 470 70 VIH VIL 0.7 × VDDx VOH VDDx − 0.1 VDDx − 0.4 3.0 3.0 0.3 × VDDx ns ns ps p-p ps rms Between any two units at the same temperature, voltage, and load See the Jitter Measurement section See the Jitter Measurement section V V 15 +10 V V V V μA μA μA μA IOx2 = −20 μA, VIx = VIxH3 IOx2 = −2 mA, VIx = VIxH3 IOx2 = 20 μA, VIx = VIxL4 IOx2 = 2 mA, VIx = VIxL4 0 V ≤ VIx ≤ VDDx VE2 = 0 V DISABLE1 = VDDx 0 V ≤ VOx ≤ VDDx 1.2 2.0 12.0 2.0 1.92 2.64 19.6 2.76 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.4 1.73 9.6 5.6 2.28 2.45 16.5 9.6 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) 1.6 1.6 7.0 7.0 2.28 2.28 11.2 11.2 mA mA mA mA VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 0 (E0, D0), 1 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 VI5 = 1 (E0, D0), 0 (E1, D1)6 IDDI (D) IDDO (D) 0.01 0.01 mA/Mbps mA/Mbps Inputs switching, 50% duty cycle Inputs switching, 50% duty cycle VDDx VDDx − 0.2 0.0 0.2 +0.01 −3 9 +0.01 IDD1 (Q) IDD2 (Q) IDD1 (Q) IDD2 (Q) VOL II IPU IPD IOZ −10 −10 −10 0.1 0.4 +10 ADuM241D/ADuM241E ADuM242D/ADuM242E Dynamic Supply Current Dynamic Input Dynamic Output Rev. A | Page 9 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Parameter Undervoltage Lockout Positive VDDx Threshold Negative VDDx Threshold VDDx Hysteresis AC SPECIFICATIONS Output Rise/Fall Time Common-Mode Transient Immunity7 Symbol UVLO VDDxUV+ VDDxUV− VDDxUVH Min Typ Max Unit 1.6 1.5 0.1 V V V tR/tF |CMH| 75 2.5 100 ns kV/μs |CML| 75 100 kV/μs Data Sheet Test Conditions/Comments 10% to 90% VIx = VDDx, VCM = 1000 V, transient magnitude = 800 V VIx = 0 V, VCM = 1000 V, transient magnitude = 800 V 1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible. IOx is the Channel x output current, where x = A, B, C, or D. 3 VIxH is the input side logic high. 4 VIxL is the input side logic low. 5 VI is the voltage input. 6 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section. 7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. 2 Table 8. Total Supply Current vs. Data Throughput Parameter SUPPLY CURRENT ADuM240D/ADuM240E Supply Current Side 1 Supply Current Side 2 ADuM241D/ADuM240E Supply Current Side 1 Supply Current Side 2 ADuM242D/ADuM242E Supply Current Side 1 Supply Current Side 2 Symbol Min 1 Mbps Typ Max Min 25 Mbps Typ Max Min 100 Mbps Typ Max Unit IDD1 IDD2 6.4 1.9 9.8 3.5 7.2 3.1 11 5.0 10.2 6.8 15.2 10 mA mA IDD1 IDD2 5.5 3.72 9.1 6.45 6.3 4.8 10.0 7.5 9.6 8.4 14.0 11.2 mA mA IDD1 IDD2 4.3 4.9 7.7 8.3 5.3 6.0 8.7 9.4 8.6 9.3 12.6 13.3 mA mA Rev. A | Page 10 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E INSULATION AND SAFETY RELATED SPECIFICATIONS For additional information, see www.analog.com/icouplersafety. Table 9. RW-16 Wide Body [SOIC_W] Package Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Symbol L (I01) Value 5000 7.8 Unit V rms mm min Minimum External Tracking (Creepage) L (I02) 7.8 mm min Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance) L (PCB) 8.1 mm min CTI 25.5 >400 II μm min V Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Material Group Test Conditions/Comments 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) Table 10. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package Parameter Rated Dielectric Insulation Voltage Minimum External Air Gap (Clearance) Symbol L (I01) Value 5000 8.3 Unit V rms mm min Minimum External Tracking (Creepage) L (I02) 8.3 mm min Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance) L (PCB) 8.3 mm min CTI 25.5 >400 II μm min V Minimum Internal Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) Material Group Test Conditions/Comments 1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) PACKAGE CHARACTERISTICS Table 11. Parameter Resistance (Input to Output)1 Capacitance (Input to Output)1 Input Capacitance2 IC Junction to Ambient Thermal Resistance 1 2 Symbol RI-O CI-O CI θJA Min Typ 1013 2.2 4.0 45 Max Unit Ω pF pF °C/W Test Conditions/Comments f = 1 MHz Thermocouple located at center of package underside The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together. Input capacitance is from any input data pin to ground. Rev. A | Page 11 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet REGULATORY INFORMATION See Table 17, Table 18, and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels. Table 12. RW-16 Wide Body [SOIC_W] Package UL (Pending) Recognized Under UL 1577 Component Recognition Program1 Single Protection, 5000 V rms Isolation Voltage Double Protection, 5000 V rms Isolation Voltage File E214100 1 2 CSA (Pending) Approved under CSA Component Acceptance Notice 5A VDE (Pending) Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: Basic insulation at 780 V rms (1103 V peak) Reinforced insulation, VIORM = 849 peak, VIOSM = 8000 V peak Basic insulation, VIORM = 849 V peak, VIOSM = 12 kV peak Reinforced insulation at 390 V rms (552 V peak) IEC 60601-1 Edition 3.1: Basic insulation (1 means of patient protection (1 MOPP)), 490 V rms (686 V peak) Reinforced insulation (2 MOPP), 238 V rms (325 V peak) CSA 61010-1-12 and IEC 61010-1 third edition: Basic insulation at 300 V rms mains, 780 V secondary (1103 V peak) Reinforced insulation at 300 V rms mains, 390 V secondary (552 V peak) File 205078 File 2471900-4880-0001 CQC (Pending) Certified by CQC11-471543-2012, GB4943.1-2011: Basic insulation at 780 V rms (1103 V peak) Reinforced insulation at 389 V rms (552 V peak), tropical climate, altitude ≤5000 meters File (pending) In accordance with UL 1577, each product is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec. In accordance with DIN V VDE V 0884-10, each product is proof tested by applying an insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval. Table 13. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package UL (Pending) Recognized Under 1577 Component Recognition Program1 Single Protection, 5000 V rms Isolation Voltage Double Protection, 5000 V rms Isolation Voltage File E214100 1 2 CSA (Pending) Approved under CSA Component Acceptance Notice 5A VDE (Pending) Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-122 CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2: Basic insulation at 830 V rms (1174 V peak) Reinforced insulation at 415 V rms (587 V peak) IEC 60601-1 Edition 3.1: Basic insulation (1 means of patient protection (1 MOPP)), 519 V rms (734 V peak) Reinforced insulation (2 MOPP), 261 V rms (369 V peak) CSA 61010-1-12 and IEC 61010-1 third edition: Basic insulation at 300 V rms mains, 830 V secondary (1174 V peak) Reinforced insulation at 300 V rms Mains, 390 V secondary (587 V peak) File 205078 Reinforced insulation, VIORM = 849 peak, VIOSM = 8000 V peak Basic insulation, VIORM = 849 V peak, VIOSM = 12 kV peak File 2471900-4880-0001 CQC (Pending) Certified by CQC11-471543-2012, GB4943.1-2011 Basic insulation at 830 V rms (1174 V peak) Reinforced insulation at 415 V rms (587 V peak), tropical climate, altitude ≤5000 meters File (pending) In accordance with UL 1577, each ADuM230D/ADuM230E/ADuM231D/ADuM231E is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec. In accordance with DIN V VDE V 0884-10, each ADuM230D/ADuM230E/ADuM231D/ADuM231E is proof tested by applying an insulation test voltage ≥ 1018 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval. Rev. A | Page 12 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval. Table 14. Description Installation Classification per DIN VDE 0110 For Rated Mains Voltage ≤ 150 V rms For Rated Mains Voltage ≤ 300 V rms For Rated Mains Voltage ≤ 600 V rms Climatic Classification Pollution Degree per DIN VDE 0110, Table 1 Maximum Working Insulation Voltage Input to Output Test Voltage, Method B1 Test Conditions/Comments VIORM × 1.875 = Vpd (m), 100% production test, tini = tm = 1 sec, partial discharge < 5 pC Input to Output Test Voltage, Method A After Environmental Tests Subgroup 1 Characteristic Unit VIORM Vpd (m) I to IV I to IV I to III 40/125/21 2 849 1592 V peak V peak 1274 V peak 1019 V peak VIOTM VIOSM 7000 12000 V peak V peak VIOSM 8000 V peak TS PS RS 150 2.78 >109 °C W Ω Vpd (m) VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec, partial discharge < 5 pC After Input and/or Safety Test Subgroup 2 and Subgroup 3 Highest Allowable Overvoltage Surge Isolation Voltage Basic VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs, 50% fall time VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs, 50% fall time Maximum value allowed in the event of a failure (see Figure 4) Surge Isolation Voltage Reinforced Safety Limiting Values Maximum Junction Temperature Total Power Dissipation at 25°C Insulation Resistance at TS SAFE LIMITING POWER (W) Symbol VIO = 500 V 3.0 RECOMMENDED OPERATING CONDITIONS 2.5 Table 15. Parameter Operating Temperature Supply Voltages Input Signal Rise and Fall Times 2.0 1.5 1.0 0 0 50 100 150 AMBIENT TEMPERATURE (°C) 200 13576-003 0.5 Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per DIN V VDE V 0884-10 Rev. A | Page 13 of 26 Symbol TA VDD1, VDD2 Rating −40°C to +125°C 1.7 V to 5.5 V 1.0 ms ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 18. Maximum Continuous Working Voltage1 RI-16-2 Wide Body Increased Creepage [SOIC_IC] Package Table 16. Parameter Storage Temperature (TST) Range Ambient Operating Temperature (TA) Range Supply Voltages (VDD1, VDD2) Input Voltages (VIA, VIB, VIC, VID, VE1, VE2, DISABLE1, DISABLE2)1 Output Voltages (VOA, VOB, VOC, VOD)2 Average Output Current per Pin3 Side 1 Output Current (IO1) Side 2 Output Current (IO2) Common-Mode Transients4 Rating −65°C to +150°C −40°C to +125°C Parameter AC Voltage Bipolar Waveform Basic Insulation −0.5 V to +7.0 V −0.5 V to VDDI + 0.5 V Reinforced Insulation Rating Constraint 849 V peak 50-year minimum insulation lifetime Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 819 V peak −0.5 V to VDDO + 0.5 V Unipolar Waveform Basic Insulation −10 mA to +10 mA −10 mA to +10 mA −150 kV/μs to +150 kV/μs Reinforced Insulation 1698 V peak 943 V peak 1 VDDI is the input side supply voltage. VDDO is the output side supply voltage. See Figure 4 for the maximum rated current values for various ambient temperatures. 4 Refers to the common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage. 2 3 Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. DC Voltage Basic Insulation Reinforced Insulation 1 Reinforced Insulation Unipolar Waveform Basic Insulation Reinforced Insulation DC Voltage Basic Insulation Reinforced Insulation 1 Rating Constraint 849 V peak 50-year minimum insulation lifetime Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 768 V peak 1698 V peak 885 V peak 1092 V peak 543 V peak 579 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details. ESD CAUTION Table 17. Maximum Continuous Working Voltage1 RW-16 Wide Body [SOIC_W] Package Parameter AC Voltage Bipolar Waveform Basic Insulation 1157 V peak 50-year minimum insulation lifetime Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 50-year minimum insulation lifetime Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details. Rev. A | Page 14 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Truth Tables Table 19. ADuM240D/ADuM241D/ADuM242D Truth Table (Positive Logic) VIx Input1, 2 L H X VDISABLEx Input1, 2 L or NC L or NC H VDDI State2 Powered Powered Powered VDDO State2 Powered Powered Powered Default Low (D0), VOx Output1, 2, 3 L H L Default High (D1), VOx Output1, 2, 3 L H H X4 X4 X4 X4 Unpowered Powered Powered Unpowered L Indeterminate H Indeterminate Test Conditions/ Comments Normal operation Normal operation Inputs disabled, fail-safe output Fail-safe output 1 L means low, H means high, X means don’t care, and NC means not connected. VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VDISABLEx refers to the input disable signal on the same side as the VIx inputs. VDDI and VDDO refer to the supply voltages on the input and output sides of the given channel, respectively. 3 D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section. 4 Input pins (VIx, DISABLEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry. 2 Table 20. ADuM240E/ADuM241E/ADuM242E Truth Table (Positive Logic) VIx Input1, 2 L H X L X4 X4 VEx Input1, 2 H or NC H or NC L H or NC L4 X4 VDDI State2 Powered Powered Powered Unpowered Unpowered Powered VDDO State2 Powered Powered Powered Powered Powered Unpowered Default Low (E0), VOx Output1, 2, 3 L H Z L Z Indeterminate 1 Default High (E1), VOx Output1, 2, 3 L H Z H Z Indeterminate Test Conditions/ Comments Normal operation Normal operation Outputs disabled Fail-safe output Outputs disabled L means low, H means high, X means don’t care, NC means not connected, and Z means high impedance. VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and VDDO refer to the supply voltages on the input and output sides of the given channel, respectively. 3 E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, and E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models. See the Ordering Guide section. 4 Input pins (VIx, VEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry. 2 Rev. A | Page 15 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet VDD1 1 16 VDD2 VDD1 1 16 VDD2 GND1 2 15 GND2 GND1 2 15 GND2 14 VOA VIA 3 14 VOA 13 VOB VIB 4 13 VOB 12 VOC VID 6 11 VOD NIC 7 10 VE2 GND1 8 9 GND2 VIB 4 ADuM240D VID 6 TOP VIEW (Not to Scale) 12 VOC 11 VOD DISABLE1 7 10 NIC VIC 5 GND1 8 9 VIC 5 GND2 NOTES 1. NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING. ADuM240E TOP VIEW (Not to Scale) NOTES 1. NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING. 13576-004 VIA 3 13576-005 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 6. ADuM240E Pin Configuration Figure 5. ADuM240D Pin Configuration Table 21. Pin Function Descriptions Pin No.1 ADuM240D ADuM240E 1 1 2, 8 2, 8 3 3 4 4 5 5 6 6 7 Not applicable Mnemonic VDD1 GND1 VIA VIB VIC VID DISABLE1 9, 15 10 Not applicable 9, 15 7 10 GND2 NIC VE2 11 12 13 14 16 11 12 13 14 16 VOD VOC VOB VOA VDD2 1 Description Supply Voltage for Isolator Side 1. Ground Reference for Isolator Side 1. Logic Input A. Logic Input B. Logic Input C. Logic Input D. Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state determined by the fail-safe option shown in the Ordering Guide. Ground Reference for Isolator Side 2. No Internal Connection. Leave this pin floating. Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB, VOC, and VOD outputs are enabled. When VE2 is low, the VOA, VOB, VOC, and VOD outputs are disabled to the high-Z state. Logic Output D. Logic Output C. Logic Output B. Logic Output A. Supply Voltage for Isolator Side 2. Reference the AN-1109 Application Note for specific layout guidelines. Rev. A | Page 16 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E VDD1 1 16 VDD2 VDD1 1 16 VDD2 GND1 2 15 GND2 GND1 2 15 GND2 VIA 3 VIC 5 VOD 6 ADuM241D VIA 3 13 VOB VIB 4 TOP VIEW (Not to Scale) 12 VOC 11 VID DISABLE1 7 GND1 8 10 DISABLE2 9 GND2 VIC 5 VOD 6 VE1 7 13576-104 VIB 4 14 VOA GND1 8 Figure 7. ADuM241D Pin Configuration 14 VOA ADuM241E 13 VOB TOP VIEW (Not to Scale) 12 VOC 11 VID 10 VE2 9 GND2 13576-105 Data Sheet Figure 8. ADuM241E Pin Configuration Table 22. Pin Function Descriptions Pin No.1 ADuM241D ADuM241E 1 1 2, 8 2, 8 3 3 4 4 5 5 6 6 7 Not applicable Mnemonic VDD1 GND1 VIA VIB VIC VOD DISABLE1 Not applicable 7 VE1 9, 15 10 9, 15 Not applicable GND2 DISABLE2 Not applicable 10 VE2 11 12 13 14 16 11 12 13 14 16 VID VOC VOB VOA VDD2 1 Description Supply Voltage for Isolator Side 1. Ground Reference for Isolator Side 1. Logic Input A. Logic Input B. Logic Input C. Logic Output D. Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state determined by the fail-safe option shown in the Ordering Guide. Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOD output is enabled. When VE1 is low, the VOD output is disabled to the high-Z state. Ground Reference for Isolator Side 2. Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state determined by the fail-safe option shown in the Ordering Guide. Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB, and VOC outputs are enabled. When VE2 is low, the VOA, VOB, and VOC outputs are disabled to the high-Z state. Logic Input D. Logic Output C. Logic Output B. Logic Output A. Supply Voltage for Isolator Side 2. Reference the AN-1109 Application Note for specific layout guidelines. Rev. A | Page 17 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet VDD1 1 16 VDD2 VDD1 1 16 VDD2 GND1 2 15 GND2 GND1 2 15 GND2 VOC 5 VOD 6 ADuM242D VIA 3 13 VOB VIB 4 TOP VIEW (Not to Scale) 12 VIC 11 VID DISABLE1 7 GND1 8 10 DISABLE2 9 GND2 VOC 5 VOD 6 VE1 7 13576-106 VIB 4 14 VOA GND1 8 Figure 9. ADuM242D Pin Configuration 14 VOA ADuM242E 13 VOB TOP VIEW (Not to Scale) 12 VIC 11 VID 10 VE2 9 GND2 13576-107 VIA 3 Figure 10. ADuM242E Pin Configuration Table 23. Pin Function Descriptions Pin No.1 ADuM242D ADuM242E 1 1 2, 8 2, 8 3 3 4 4 5 5 6 6 7 Not applicable Mnemonic VDD1 GND1 VIA VIB VOC VOD DISABLE1 Not applicable 7 VE1 9, 15 10 9, 15 Not applicable GND2 DISABLE2 Not applicable 10 VE2 11 12 13 14 16 11 12 13 14 16 VID VIC VOB VOA VDD2 1 Description Supply Voltage for Isolator Side 1. Ground Reference for Isolator Side 1. Logic Input A. Logic Input B. Logic Output C. Logic Output D. Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state determined by the fail-safe option shown in the Ordering Guide. Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOC and VOD outputs are enabled. When VE1 is low, the VOC and VOD outputs are disabled to the high-Z state. Ground Reference for Isolator Side 2. Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state determined by the fail-safe option shown in the Ordering Guide. Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA and VOB outputs are enabled. When VE2 is low, the VOA and VOB outputs are disabled to the high-Z state. Logic Input D. Logic Input C. Logic Output B. Logic Output A. Supply Voltage for Isolator Side 2. Reference the AN-1109 Application Note for specific layout guidelines. Rev. A | Page 18 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E TYPICAL PERFORMANCE CHARACTERISTICS 16 VDD1 VDD1 VDD1 VDD1 16 = 5V = 3.3V = 2.5V = 1.8V 12 10 8 6 4 40 60 80 100 120 140 160 Figure 11. ADuM240D/ADuM240E IDD1 Supply Current vs. Data Rate at Various Voltages 16 VDD1 VDD1 VDD1 VDD1 10 8 6 4 = VDD2 = VDD2 = VDD2 = VDD2 0 16 VDD1 VDD1 VDD1 VDD1 14 10 8 6 4 40 60 80 100 120 140 160 Figure 14. ADuM241D/ADuM241E IDD2 Supply Current vs. Data Rate at Various Voltages = 5V = 3.3V = 2.5V = 1.8V 12 20 DATA RATE (Mbps) = VDD2 = VDD2 = VDD2 = VDD2 = 5V = 3.3V = 2.5V = 1.8V 12 10 8 6 4 20 40 60 80 100 120 140 160 DATA RATE (Mbps) 0 13576-007 0 Figure 12. ADuM240D/ADuM240E IDD2 Supply Current vs. Data Rate at Various Voltages 0 = 5V = 3.3V = 2.5V = 1.8V VDD1 VDD1 VDD1 VDD1 14 IDD2 SUPPLY CURRENT (mA) 14 12 10 8 6 4 60 80 100 120 140 160 Figure 15. ADuM242D/ADuM242E IDD1 Supply Current vs. Data Rate at Various Voltages 16 = VDD2 = VDD2 = VDD2 = VDD2 40 DATA RATE (Mbps) 16 VDD1 VDD1 VDD1 VDD1 20 13576-115 2 2 = VDD2 = VDD2 = VDD2 = VDD2 = 5V = 3.3V = 2.5V = 1.8V 12 10 8 6 4 2 2 20 40 60 80 100 DATA RATE (Mbps) 120 140 160 0 13576-113 0 Figure 13. ADuM241D/ADuM241E IDD1 Supply Current vs. Data Rate at Various Voltages 0 20 40 60 80 100 DATA RATE (Mbps) 120 140 160 13576-116 IDD1 SUPPLY CURRENT (mA) 12 0 IDD1 SUPPLY CURRENT (mA) IDD2 SUPPLY CURRENT (mA) 14 0 = 5V = 3.3V = 2.5V = 1.8V 13576-114 20 13576-006 0 DATA RATE (Mbps) 0 = VDD2 = VDD2 = VDD2 = VDD2 2 2 0 VDD1 VDD1 VDD1 VDD1 14 IDD2 SUPPLY CURRENT (mA) IDD1 SUPPLY CURRENT (mA) 14 = VDD2 = VDD2 = VDD2 = VDD2 Figure 16. ADuM242D/ADuM242E IDD2 Supply Current vs. Data Rate at Various Voltages Rev. A | Page 19 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E = VDD2 = VDD2 = VDD2 = VDD2 14 = 5V = 3.3V = 2.5V = 1.8V 12 10 8 6 4 2 = VDD2 = VDD2 = VDD2 = VDD2 = 5V = 3.3V = 2.5V = 1.8V 10 8 6 4 2 –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 0 –40 13576-008 0 –40 VDD1 VDD1 VDD1 VDD1 Figure 17. Propagation Delay, tPLH vs. Temperature at Various Voltages –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 13576-009 PROPAGATION DELAY, tPHL (ns) 12 VDD1 VDD1 VDD1 VDD1 PROPAGATION DELAY, tPHL (ns) 14 Data Sheet Figure 18. Propagation Delay, tPHL vs. Temperature at Various Voltages Rev. A | Page 20 of 26 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E THEORY OF OPERATIONS The ADuM240D/ADuM240E/ADuM241D/ADuM241E/ ADuM242D/ADuM242E use a high frequency carrier to transmit data across the isolation barrier using iCoupler chip scale transformer coils separated by layers of polyimide isolation. Using an on/off keying (OOK) technique and the differential architecture shown in Figure 19 and Figure 20, the ADuM240D/ ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E have very low propagation delay and high speed. Internal regulators and input/output design techniques allow logic and supply voltages over a wide range from 1.7 V to 5.5 V, offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. Radiated emissions are minimized with a spread spectrum OOK carrier and other techniques. Figure 19 illustrates the waveforms for models of the ADuM240D/ ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E that have the condition of the fail-safe output state equal to low, where the carrier waveform is off when the input state is low. If the input side is off or not operating, the low fail-safe output state (ADuM240D0/ADuM240E0/ADuM241D0/ADuM241E0/ ADuM242D0/ADuM242E0) sets the output to low. For the ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ ADuM242E that have a high fail-safe output state, Figure 20 illustrates the conditions where the carrier waveform is off when the input state is high. When the input side is off or not operating, the high fail-safe output state (ADuM240D1/ ADuM240E1/ADuM241D1/ADuM241E1/ADuM242D1/ ADuM242E1) sets the output to high. See the Ordering Guide for the model numbers that have the fail-safe output state of low or the fail-safe output state of high. REGULATOR REGULATOR TRANSMITTER RECEIVER VIN GND1 13576-014 VOUT GND2 Figure 19. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State REGULATOR REGULATOR TRANSMITTER RECEIVER VIN GND1 GND2 Figure 20. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State Rev. A | Page 21 of 26 13576-015 VOUT ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet APPLICATIONS INFORMATION PCB LAYOUT JITTER MEASUREMENT The ADuM240D/ADuM240E/ADuM241D/ADuM241E/ ADuM242D/ADuM242E digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 21). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16 for VDD2. The recommended bypass capacitor value is between 0.01 μF and 0.1 μF. The total lead length between both ends of the capacitor and the input power supply pin must not exceed 10 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 must also be considered, unless the ground pair on each package side is connected close to the package. Figure 23 shows the eye diagram for the ADuM240D/ADuM240E/ ADuM241D/ADuM241E/ADuM242D/ADuM242E. The measurement was taken using an Agilent 81110A pulse pattern generator at 150 Mbps with pseudorandom bit sequences (PRBS) 2(n − 1), n = 14, for 5 V supplies. Jitter was measured with the Tektronix Model 5104B oscilloscope, 1 GHz, 10 GSPS with the DPOJET jitter and eye diagram analysis tools. The result shows a typical measurement on the ADuM240D/ADuM240E/ ADuM241D/ADuM241E/ADuM242D/ADuM242E with 490 ps p-p jitter. VDD2 GND2 VOA VOB VIC/VOC VID/VOD DISABLE2/VE2/NIC GND2 5 VOLTAGE (V) 4 13576-010 VDD1 GND1 VIA VIB VIC/VOC VID/VOD DISABLE1/VE1/NIC GND1 3 2 Figure 21. Recommended Printed Circuit Board Layout 1 0 –10 –5 0 TIME (ns) 5 10 13576-012 In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device, thereby leading to latch-up or permanent damage. Figure 23. ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ ADuM242E Eye Diagram See the AN-1109 Application Note for board layout guidelines. INSULATION LIFETIME PROPAGATION DELAY RELATED PARAMETERS All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation as well as on the materials and material interfaces. Propagation delay is a parameter that describes the time required for a logic signal to propagate through a component. The propagation delay to a Logic 0 output may differ from the propagation delay to a Logic 1 output. INPUT (VIx) 50% OUTPUT (VOx) tPHL 13576-011 tPLH 50% Figure 22. Propagation Delay Parameters Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved. Channel matching is the maximum amount the propagation delay differs between channels within a single ADuM240D/ ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E component. Propagation delay skew is the maximum amount the propagation delay differs between multiple ADuM240D/ADuM240E/ ADuM241D/ADuM241E/ADuM242D/ADuM242E components operating under the same conditions The two types of insulation degradation of primary interest are breakdown along surfaces exposed to the air and insulation wear out. Surface breakdown is the phenomenon of surface tracking, and the primary determinant of surface creepage requirements in system level standards. Insulation wear out is the phenomenon where charge injection or displacement currents inside the insulation material cause long-term insulation degradation. Surface Tracking Surface tracking is addressed in electrical safety standards by setting a minimum surface creepage based on the working voltage, the environmental conditions, and the properties of the insulation material. Safety agencies perform characterization testing on the surface insulation of components that allows the components to be categorized in different material groups. Lower material group ratings are more resistant to surface tracking and, therefore, can provide adequate lifetime with smaller creepage. The minimum creepage for a given working voltage and material group is in each Rev. A | Page 22 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Insulation Wear Out The lifetime of insulation caused by wear out is determined by its thickness, material properties, and the voltage stress applied. It is important to verify that the product lifetime is adequate at the application working voltage. The working voltage supported by an isolator for wear out may not be the same as the working voltage supported for tracking. The working voltage applicable to tracking is specified in most standards. Testing and modeling have shown that the primary driver of longterm degradation is displacement current in the polyimide insulation causing incremental damage. The stress on the insulation can be broken down into broad categories, such as dc stress, which causes very little wear out because there is no displacement current, and an ac component time varying voltage stress, which causes wear out. The ratings in certification documents are usually based on 60 Hz sinusoidal stress because this reflects isolation from line voltage. However, many practical applications have combinations of 60 Hz ac and dc across the barrier as shown in Equation 1. Because only the ac portion of the stress causes wear out, the equation can be rearranged to solve for the ac rms voltage, as is shown in Equation 2. For insulation wear out with the polyimide materials used in these products, the ac rms voltage determines the product lifetime. VRMS VAC RMS2 VDC 2 polyimide. To establish the critical voltages in determining the creepage, clearance, and lifetime of a device, see Figure 24 and the following equations. VPEAK VRMS VDC TIME Figure 24. Critical Voltage Example The working voltage across the barrier from Equation 1 is VRMS VAC RMS2 VDC2 VRMS 2402 4002 VRMS = 466 V This VRMS value is the working voltage used together with the material group and pollution degree when looking up the creepage required by a system standard. To determine if the lifetime is adequate, obtain the time varying portion of the working voltage. To obtain the ac rms voltage, use Equation 2. VACRMS VRMS2 VDC2 (1) VAC RMS 4662 4002 or VACRMS VRMS2 VDC2 VAC RMS 13576-013 system level standard and is based on the total rms voltage across the isolation, pollution degree, and material group. The material group and creepage for the ADuM240D/ADuM240E/ ADuM241D/ADuM241E/ADuM242D/ADuM242E isolators are presented in Table 9. ISOLATION VOLTAGE Data Sheet VAC RMS = 240 V rms (2) where: VRMS is the total rms working voltage. VAC RMS is the time varying portion of the working voltage. VDC is the dc offset of the working voltage. Calculation and Use of Parameters Example The following example frequently arises in power conversion applications. Assume that the line voltage on one side of the isolation is 240 V ac rms and a 400 V dc bus voltage is present on the other side of the isolation barrier. The isolator material is In this case, the ac rms voltage is simply the line voltage of 240 V rms. This calculation is more relevant when the waveform is not sinusoidal. The value is compared to the limits for working voltage in Table 17 for the expected lifetime, less than a 60 Hz sine wave, and it is well within the limit for a 50-year service life. Note that the dc working voltage limit in Table 17 is set by the creepage of the package as specified in IEC 60664-1. This value can differ for specific system level standards. Rev. A | Page 23 of 26 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet OUTLINE DIMENSIONS 10.50 (0.4134) 10.10 (0.3976) 9 16 7.60 (0.2992) 7.40 (0.2913) 1 10.65 (0.4193) 10.00 (0.3937) 8 1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 0.75 (0.0295) 45° 0.25 (0.0098) 2.65 (0.1043) 2.35 (0.0925) SEATING PLANE 0.51 (0.0201) 0.31 (0.0122) 8° 0° 1.27 (0.0500) 0.40 (0.0157) 0.33 (0.0130) 0.20 (0.0079) 03-27-2007-B COMPLIANT TO JEDEC STANDARDS MS-013-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 25. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) 12.85 12.75 12.65 1.93 REF 16 9 7.60 7.50 7.40 1 10.51 10.31 10.11 8 PIN 1 MARK 2.64 2.54 2.44 2.44 2.24 45° 0.32 0.23 SEATING PLANE 1.27 BSC 8° 0° 1.01 0.76 0.51 0.46 0.36 11-15-2011-A 0.30 0.20 0.10 COPLANARITY 0.1 0.71 0.50 0.31 0.25 BSC GAGE PLANE COMPLIANT TO JEDEC STANDARDS MS-013-AC Figure 26. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC] Wide Body (RI-16-2) Dimensions shown in millimeters ORDERING GUIDE Model1, 2 ADuM240D1BRWZ ADuM240D1BRWZ-RL ADuM240D0BRWZ ADuM240D0BRWZ-RL ADuM240E1BRWZ ADuM240E1BRWZ-RL ADuM240E0BRWZ ADuM240E0BRWZ-RL Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C No. of Inputs, VDD1 Side 4 4 4 4 4 4 4 4 No. of Inputs, VDD2 Side 0 0 0 0 0 0 0 0 Withstand Voltage Rating (kV rms) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Fail-Safe Output State High High Low Low High High Low Low Rev. A | Page 24 of 26 Input Disable Yes Yes Yes Yes No No No No Output Enable No No No No Yes Yes Yes Yes Package Description 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W Package Option RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Temperature Model1, 2 Range ADuM240D1BRIZ −40°C to +125°C ADuM240D1BRIZ-RL −40°C to +125°C ADuM240D0BRIZ −40°C to +125°C ADuM240D0BRIZ-RL −40°C to +125°C ADuM240E1BRIZ −40°C to +125°C ADuM240E1BRIZ-RL −40°C to +125°C ADuM240E0BRIZ −40°C to +125°C ADuM240E0BRIZ-RL −40°C to +125°C ADuM241D1BRWZ −40°C to +125°C ADuM241D1BRWZ-RL −40°C to +125°C ADuM241D0BRWZ −40°C to +125°C ADuM241D0BRWZ-RL −40°C to +125°C ADuM241E1BRWZ −40°C to +125°C ADuM241E1BRWZ-RL −40°C to +125°C ADuM241E1WBRWZ −40°C to +125°C ADuM241E1WBRWZ-RL −40°C to +125°C ADuM241E0BRWZ −40°C to +125°C ADuM241E0BRWZ-RL −40°C to +125°C ADuM241D1BRIZ −40°C to +125°C ADuM241D1BRIZ-RL −40°C to +125°C ADuM241D0BRIZ −40°C to +125°C ADuM241D0BRIZ-RL −40°C to +125°C ADuM241E1BRIZ −40°C to +125°C ADuM241E1BRIZ-RL −40°C to +125°C ADuM241E0BRIZ −40°C to +125°C ADuM241E0BRIZ-RL −40°C to +125°C ADuM242D1BRWZ −40°C to +125°C ADuM242D1BRWZ-RL −40°C to +125°C ADuM242D0BRWZ −40°C to +125°C ADuM242D0BRWZ-RL −40°C to +125°C ADuM242E1BRWZ −40°C to +125°C ADuM242E1BRWZ-RL −40°C to +125°C ADuM242E0BRWZ −40°C to +125°C ADuM242E0BRWZ-RL −40°C to +125°C ADuM242D1BRIZ −40°C to +125°C ADuM242D1BRIZ-RL −40°C to +125°C ADuM242D0BRIZ −40°C to +125°C ADuM242D0BRIZ-RL −40°C to +125°C ADuM242E1BRIZ −40°C to +125°C ADuM242E1BRIZ-RL −40°C to +125°C ADuM242E0BRIZ −40°C to +125°C ADuM242E0BRIZ-RL −40°C to +125°C 1 2 No. of Inputs, VDD1 Side 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 No. of Inputs, VDD2 Side 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Withstand Voltage Rating (kV rms) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Fail-Safe Output State High High Low Low High High Low Low High High Low Low High High High High Low Low High High Low Low High High Low Low High High Low Low High High Low Low High High Low Low High High Low Low Z = RoHS Compliant Part. The ADuM241E1WBRWZ and ADuM241E1WBRWZ-RL are qualified for automotive applications. Rev. A | Page 25 of 26 Input Disable Yes Yes Yes Yes No No No No Yes Yes Yes Yes No No No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes No No No No Output Enable No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Package Description 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC 16-Lead SOIC_IC Package Option RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RW-16 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 RI-16-2 ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E Data Sheet AUTOMOTIVE PRODUCTS The ADuM241E1W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. ©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13576-0-4/16(A) Rev. A | Page 26 of 26