PDF Data Sheet Rev. A

5.0 kV rms Quad Digital Isolators
Data Sheet ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
FUNCTIONAL BLOCK DIAGRAMS
APPLICATIONS
VDD1 1
ADuM240D/ADuM240E
2
GND1
16
VDD2
15
GND2
VIA 3
ENCODE
DECODE
14
VOA
VIB 4
ENCODE
DECODE
13
VOB
VIC 5
ENCODE
DECODE
12
VOC
VID 6
ENCODE
DECODE
11
VOD
DISABLE1/NIC 7
10
NIC/VE2
GND1 8
9
GND2
NOTES
1. NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.
2. PIN 7 IS DISABLE1 AND PIN 10 IS NIC FOR THE ADuM240D, AND
PIN 7 IS NIC AND PIN 10 IS VE2 FOR THE ADuM240E.
Figure 1. ADuM240D/ADuM240E Functional Block Diagram
VDD1 1
GND1
ADuM241D/ADuM241E
2
16 VDD2
15 GND
2
VIA 3
ENCODE
DECODE
14 V
OA
4
ENCODE
DECODE
13 V
OB
VIC 5
ENCODE
DECODE
12 VOC
VOD 6
DECODE
ENCODE
11 VID
VIB
10 DISABLE2/VE2
DISABLE1/VE1 7
GND1 8
9 GND2
NOTES
1. PIN 7 IS DISABLE1 AND PIN 10 IS DISABLE 2 FOR THE ADuM241D,
AND PIN 7 IS VE1 AND PIN 10 IS VE2 FOR THE ADuM241E.
13576-102
High common-mode transient immunity: 100 kV/μs
High robustness to radiated and conducted noise
Low propagation delay
13 ns maximum for 5 V operation
15 ns maximum for 1.8 V operation
150 Mbps maximum guaranteed data rate
Safety and regulatory approvals (pending)
UL recognition: 5000 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
VIORM = 849 V peak
8000 V peak reinforced surge isolation voltage
CQC certification per GB4943.1-2011
Backward compatibility
ADuM240E1/ADuM241E1/ADuM242E1 pin compatible
with ADuM2400/ADuM2401/ADuM2402
Low dynamic power consumption
1.8 V to 5 V level translation
High temperature operation: 125°C
Fail-safe high or low options
16-lead, RoHS compliant, SOIC package
Qualified for automotive applications
13576-101
FEATURES
Figure 2. ADuM241D/ADuM241E Functional Block Diagram
General-purpose multichannel isolation
Serial peripheral interface (SPI)/data converter isolation
Industrial field bus isolation
VDD1 1
ADuM242D/ADuM242E
GND1 2
GENERAL DESCRIPTION
16 VDD2
15 GND
2
VIA 3
ENCODE
DECODE
14 V
OA
VIB 4
ENCODE
DECODE
13 VOB
VOC 5
DECODE
ENCODE
12 VIC
VOD 6
DECODE
ENCODE
11 VID
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E1 are quad-channel digital isolators
based on Analog Devices, Inc., iCoupler® technology. Combining
high speed, complementary metal-oxide semiconductor (CMOS)
and monolithic air core transformer technology, these isolation
components provide outstanding performance characteristics
superior to alternatives such as optocoupler devices and other
integrated couplers. The maximum propagation delay is 13 ns
with a pulse width distortion of less than 3 ns at 5 V operation.
Channel matching is tight at 3.0 ns maximum.
systems as well as enabling voltage translation functionality
across the isolation barrier.
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E data channels are independent and
are available in a variety of configurations with a withstand
voltage rating of 5.0 kV rms (see the Ordering Guide). The
devices operate with the supply voltage on either side ranging
from 1.8 V to 5 V, providing compatibility with lower voltage
Unlike other optocoupler alternatives, dc correctness is ensured in
the absence of input logic transitions. Two different fail-safe options
are available by which the outputs transition to a predetermined
state when the input power supply is not applied or the inputs are
disabled. The ADuM240E1/ADuM241E1/ ADuM242E1 are pin
compatible with the ADuM2400/ ADuM2401/ADuM2402.
1
GND1 8
10 DISABLE2/VE2
9 GND2
NOTES
1. PIN 7 IS DISABLE1 AND PIN 10 IS DISABLE 2 FOR THE ADuM242D,
AND PIN 7 IS VE1 AND PIN 10 IS VE2 FOR THE ADuM242E.
13576-103
DISABLE1/VE1 7
Figure 3. ADuM242D/ADuM242E Functional Block Diagram
Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.
Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1 Recommended Operating Conditions .................................... 13 Applications ....................................................................................... 1 Absolute Maximum Ratings ......................................................... 14 General Description ......................................................................... 1 ESD Caution................................................................................ 14 Functional Block Diagrams ............................................................. 1 Pin Configurations and Function Descriptions ......................... 16 Revision History ............................................................................... 2 Typical Performance Characteristics ........................................... 19 Specifications..................................................................................... 3 Theory of Operations..................................................................... 21 Electrical Characteristics—5 V Operation................................ 3 Applications Information .............................................................. 22 Electrical Characteristics—3.3 V Operation ............................ 5 PCB Layout ................................................................................. 22 Electrical Characteristics—2.5 V Operation ............................ 7 Propagation Delay Related Parameters ................................... 22 Electrical Characteristics—1.8 V Operation ............................ 9 Jitter Measurement ..................................................................... 22 Insulation and Safety Related Specifications .......................... 11 Insulation Lifetime ..................................................................... 22 Package Characteristics ............................................................. 11 Outline Dimensions ....................................................................... 24 Regulatory Information ............................................................. 12 Ordering Guide .......................................................................... 24 DIN V VDE V 0884-10 (VDE V 0884-10) Insulation
Characteristics ............................................................................ 13 Automotive Products ................................................................. 26 REVISION HISTORY
4/16—Rev. 0 to Rev. A
Added RI-16-2 .................................................................... Universal
Changes to Features Section............................................................ 1
Changes to Table 1 ............................................................................ 3
Changes to Table 3 ............................................................................ 5
Changes to Table 5 ............................................................................ 7
Changes to Table 7 ............................................................................ 9
Added Table 10; Renumbered Sequentially ................................ 11
Added Table 13 ............................................................................... 12
Added Table 18 ............................................................................... 14
Updated Outline Dimensions ....................................................... 23
Added Figure 26.............................................................................. 24
Changes to Ordering Guide .......................................................... 24
Added Automotive Products Section .......................................... 26
9/15—Revision 0: Initial Version
Rev. A | Page 2 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS—5 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 1.
Parameter
SWITCHING SPECIFICATIONS
Pulse Width
Data Rate1
Propagation Delay
Pulse Width Distortion
Change vs. Temperature
Propagation Delay Skew
Channel Matching
Codirectional
Opposing Direction
Jitter
DC SPECIFICATIONS
Input Threshold Voltage
Logic High
Logic Low
Output Voltage
Logic High
Logic Low
Input Current per Channel
VE2 Enable Input Pull-Up Current
DISABLE1 Input Pull-Down Current
Tristate Output Current per Channel
Quiescent Supply Current
ADuM240D/ADuM240E
Symbol
Min
PW
6.6
150
4.8
tPHL, tPLH
PWD
Typ
7.2
0.5
1.5
tPSK
Max
Unit
Test Conditions/Comments
13
3
ns
Mbps
ns
ns
ps/°C
ns
Within pulse width distortion (PWD) limit
Within PWD limit
50% input to 50% output
|tPLH − tPHL|
6.1
tPSKCD
tPSKOD
0.5
0.5
490
70
VIH
VIL
0.7 × VDDx
VOH
VDDx − 0.1
VDDx − 0.4
3.0
3.0
0.3 × VDDx
ns
ns
ps p-p
ps rms
Between any two units at the
same temperature, voltage, and load
See the Jitter Measurement section
See the Jitter Measurement section
V
V
15
+10
V
V
V
V
μA
μA
μA
μA
IOx2 = −20 μA, VIx = VIxH3
IOx2 = −4 mA, VIx = VIxH3
IOx2 = 20 μA, VIx = VIxL4
IOx2 = 4 mA, VIx = VIxL4
0 V ≤ VIx ≤ VDDx
VE2 = 0 V
DISABLE1 = VDDx
0 V ≤ VOx ≤ VDDx
1.2
2.0
12.0
2.0
2.2
2.72
20.0
2.92
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.6
1.9
10.0
6.0
2.46
2.62
17.0
10.0
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0(E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.6
1.6
7.0
7.0
2.46
2.46
11.5
11.5
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDDI (D)
IDDO (D)
0.01
0.02
mA/Mbps
mA/Mbps
Inputs switching, 50% duty cycle
Inputs switching, 50% duty cycle
VDDx
VDDx − 0.2
0.0
0.2
+0.01
−3
9
+0.01
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
VOL
II
IPU
IPD
IOZ
−10
−10
−10
0.1
0.4
+10
ADuM241D/ADuM241E
ADuM242D/ADuM242E
Dynamic Supply Current
Dynamic Input
Dynamic Output
Rev. A | Page 3 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Parameter
Undervoltage Lockout
Positive VDDx Threshold
Negative VDDx Threshold
VDDx Hysteresis
AC SPECIFICATIONS
Output Rise/Fall Time
Common-Mode Transient
Immunity7
Symbol
UVLO
VDDxUV+
VDDxUV−
VDDxUVH
Min
Typ
Max
Unit
1.6
1.5
0.1
V
V
V
tR/tF
|CMH|
75
2.5
100
ns
kV/μs
|CML|
75
100
kV/μs
Data Sheet
Test Conditions/Comments
10% to 90%
VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1
150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
IOx is the Channel x output current, where x = A, B, C, or D.
3
VIxH is the input side logic high.
4
VIxL is the input side logic low.
5
VI is the voltage input.
6
E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7
|CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
2
Table 2. Total Supply Current vs. Data Throughput
Parameter
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1
Supply Current Side 2
ADuM241D/ADuM241E
Supply Current Side 1
Supply Current Side 2
ADuM242D/ADuM242E
Supply Current Side 1
Supply Current Side 2
Symbol
Min
1 Mbps
Typ
Max
Min
25 Mbps
Typ
Max
Min
100 Mbps
Typ
Max
Unit
IDD1
IDD2
6.8
2.1
10
3.7
7.8
3.9
12
5.7
11.8
9.2
17.4
13
mA
mA
IDD1
IDD2
5.8
4.0
10.3
6.85
7.0
5.5
10.9
8.5
11.4
10.3
15.9
14.0
mA
mA
IDD1
IDD2
4.3
5.3
7.7
8.7
6.0
6.7
9.3
10.1
10.3
11.0
14.2
14.9
mA
mA
Rev. A | Page 4 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 3.
Parameter
SWITCHING SPECIFICATIONS
Pulse Width
Data Rate1
Propagation Delay
Pulse Width Distortion
Change vs. Temperature
Propagation Delay Skew
Channel Matching
Codirectional
Opposing Direction
Jitter
DC SPECIFICATIONS
Input Threshold Voltage
Logic High
Logic Low
Output Voltage
Logic High
Logic Low
Input Current per Channel
VE2 Enable Input Pull-Up Current
DISABLE1 Input Pull-Down Current
Tristate Output Current per Channel
Quiescent Supply Current
ADuM240D/ADuM240E
Symbol
Min
PW
6.6
150
4.8
tPHL, tPLH
PWD
Typ
6.8
0.7
1.5
tPSK
Max
Unit
Test Conditions/Comments
14
3
ns
Mbps
ns
ns
ps/°C
ns
Within PWD limit
Within PWD limit
50% input to 50% output
|tPLH − tPHL|
7.5
tPSKCD
tPSKOD
0.7
0.7
580
120
VIH
VIL
0.7 × VDDx
VOH
VDDx − 0.1
VDDx − 0.4
3.0
3.0
0.3 × VDDx
ns
ns
ps p-p
ps rms
Between any two units at the same
temperature, voltage, and load
See the Jitter Measurement section
See the Jitter Measurement section
V
V
15
+10
V
V
V
V
μA
μA
μA
μA
IOx2 = −20 μA, VIx = VIxH3
IOx2 = −2 mA, VIx = VIxH3
IOx2 = 20 μA, VIx = VIxL4
IOx2 = 2 mA, VIx = VIxL4
0 V ≤ VIx ≤ VDDx
VE2 = 0 V
DISABLE1 = VDDx
0 V ≤ VOx ≤ VDDx
1.2
2.0
12.0
2.0
2.12
2.68
19.6
2.8
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.5
1.8
9.8
5.7
2.36
2.52
16.7
9.7
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.6
1.6
7.0
7.0
2.4
2.4
11.2
11.2
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDDI (D)
IDDO (D)
0.01
0.01
mA/Mbps
mA/Mbps
Inputs switching, 50% duty cycle
Inputs switching, 50% duty cycle
VDDx
VDDx − 0.2
0.0
0.2
+0.01
−3
9
+0.01
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
VOL
II
IPU
IPD
IOZ
−10
−10
−10
0.1
0.4
+10
ADuM241D/ADuM241E
ADuM242D/ADuM242E
Dynamic Supply Current
Dynamic Input
Dynamic Output
Rev. A | Page 5 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Parameter
Undervoltage Lockout
Positive VDDx Threshold
Negative VDDx Threshold
VDDx Hysteresis
AC SPECIFICATIONS
Output Rise/Fall Time
Common-Mode Transient Immunity7
Symbol
UVLO
VDDxUV+
VDDxUV−
VDDxUVH
Min
Typ
Max
Unit
1.6
1.5
0.1
V
V
V
tR/tF
|CMH|
75
2.5
100
ns
kV/μs
|CML|
75
100
kV/μs
Data Sheet
Test Conditions/Comments
10% to 90%
VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1
150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
IOx is the Channel x output current, where x = A, B, C, or D.
3
VIxH is the input side logic high.
4
VIxL is the input side logic low.
5
VI is the voltage input.
6
E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7
|CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
2
Table 4. Total Supply Current vs. Data Throughput
Parameter
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1
Supply Current Side 2
ADuM241D/ADuM241E
Supply Current Side 1
Supply Current Side 2
ADuM242D/ADuM242E
Supply Current Side 1
Supply Current Side 2
Symbol
Min
1 Mbps
Typ
Max
Min
25 Mbps
Typ
Max
Min
100 Mbps
Typ
Max
Unit
IDD1
IDD2
6.6
2.0
9.8
3.7
7.4
3.5
11.2
5.5
10.7
8.2
15.9
11.6
mA
mA
IDD1
IDD2
5.65
3.9
10.1
6.65
6.65
5.2
10.5
8.0
10.4
9.4
14.9
12.8
mA
mA
IDD1
IDD2
4.3
5.0
7.7
8.4
5.6
6.2
9.0
9.6
9.1
9.8
13
13.7
mA
mA
Rev. A | Page 6 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 5.
Parameter
SWITCHING SPECIFICATIONS
Pulse Width
Data Rate1
Propagation Delay
Pulse Width Distortion
Change vs. Temperature
Propagation Delay Skew
Channel Matching
Codirectional
Opposing Direction
Jitter
DC SPECIFICATIONS
Input Threshold Voltage
Logic High
Logic Low
Output Voltage
Logic High
Logic Low
Input Current per Channel
VE2 Enable Input Pull-Up Current
DISABLE1 Input Pull-Down Current
Tristate Output Current per Channel
Quiescent Supply Current
ADuM240D/ADuM240E
Symbol
Min
PW
6.6
150
5.0
tPHL, tPLH
PWD
Typ
7.0
0.7
1.5
tPSK
Max
Unit
Test Conditions/Comments
14
3
ns
Mbps
ns
ns
ps/°C
ns
Within PWD limit
Within PWD limit
50% input to 50% output
|tPLH − tPHL|
6.8
tPSKCD
tPSKOD
0.7
0.7
800
190
VIH
VIL
0.7 × VDDx
VOH
VDDx − 0.1
VDDx − 0.4
3.0
3.0
0.3 × VDDx
ns
ns
ps p-p
ps rms
Between any two units at the same
temperature, voltage, and load
See the Jitter Measurement section
See the Jitter Measurement section
V
V
15
+10
V
V
V
V
μA
μA
μA
μA
IOx2 = −20 μA, VIx = VIxH3
IOx2 = −2 mA, VIx = VIxH3
IOx2 = 20 μA, VIx = VIxL4
IOx2 = 2 mA, VIx = VIxL4
0 V ≤ VIx ≤ VDDx
VE2 = 0 V
DISABLE1 = VDDx
0 V ≤ VOx ≤ VDDx
1.2
2.0
1.2
2.0
2.0
2.64
19.6
2.76
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.46
1.75
9.7
5.67
2.32
2.47
16.6
9.67
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.6
1.6
7.0
7.0
2.32
2.32
11.2
11.2
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDDI (D)
IDDO (D)
0.01
0.01
mA/Mbps
mA/Mbps
Inputs switching, 50% duty cycle
Inputs switching, 50% duty cycle
VDDx
VDDx − 0.2
0.0
0.2
+0.01
−3
9
+0.01
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
VOL
II
IPU
IPD
IOZ
−10
−10
−10
0.1
0.4
+10
ADuM241D/ADuM241E
ADuM242D/ADuM242E
Dynamic Supply Current
Dynamic Input
Dynamic Output
Rev. A | Page 7 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Parameter
Undervoltage Lockout
Positive VDDx Threshold
Negative VDDx Threshold
VDDx Hysteresis
AC SPECIFICATIONS
Output Rise/Fall Time
Common-Mode Transient Immunity7
Symbol
Min
VDDxUV+
VDDxUV−
VDDxUVH
Typ
Max
Unit
1.6
1.5
0.1
V
V
V
tR/tF
|CMH|
75
2.5
100
ns
kV/μs
|CML|
75
100
kV/μs
Data Sheet
Test Conditions/Comments
10% to 90%
VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1
150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
IOx is the Channel x output current, where x = A, B, C, or D.
3
VIxH is the input side logic high.
4
VIxL is the input side logic low.
5
VI is the voltage input.
6
E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7
|CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
2
Table 6. Total Supply Current vs. Data Throughput
Parameter
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1
Supply Current Side 2
ADuM241D/ADuM241E
Supply Current Side 1
Supply Current Side 2
ADuM242D/ADuM242E
Supply Current Side 1
Supply Current Side 2
Symbol
Min
1 Mbps
Typ
Max
Min
25 Mbps
Typ
Max
Min
100 Mbps
Typ
Max
Unit
IDD1
IDD2
6.5
2.0
9.8
3.6
7.3
3.3
11.1
5.2
10.4
7.3
15.5
10.2
mA
mA
IDD1
IDD2
5.6
3.8
10.0
6.55
6.4
4.8
10.4
7.7
9.7
8.3
14.5
11.5
mA
mA
IDD1
IDD2
4.3
5.0
7.7
8.4
5.4
6.1
8.8
9.5
8.8
9.5
12.7
13.4
mA
mA
Rev. A | Page 8 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.
Table 7.
Parameter
SWITCHING SPECIFICATIONS
Pulse Width
Data Rate1
Propagation Delay
Pulse Width Distortion
Change vs. Temperature
Propagation Delay Skew
Channel Matching
Codirectional
Opposing Direction
Jitter
DC SPECIFICATIONS
Input Threshold Voltage
Logic High
Logic Low
Output Voltage
Logic High
Logic Low
Input Current per Channel
VE2 Enable Input Pull-Up Current
DISABLE1 Input Pull-Down Current
Tristate Output Current per Channel
Quiescent Supply Current
ADuM240D/ADuM240E
Symbol
Min
PW
6.6
150
5.8
tPHL, tPLH
PWD
Typ
8.7
0.7
1.5
tPSK
Max
Unit
Test Conditions/Comments
15
3
ns
Mbps
ns
ns
ps/°C
ns
Within PWD limit
Within PWD limit
50% input to 50% output
|tPLH − tPHL|
7.0
tPSKCD
tPSKOD
0.7
0.7
470
70
VIH
VIL
0.7 × VDDx
VOH
VDDx − 0.1
VDDx − 0.4
3.0
3.0
0.3 × VDDx
ns
ns
ps p-p
ps rms
Between any two units at the same
temperature, voltage, and load
See the Jitter Measurement section
See the Jitter Measurement section
V
V
15
+10
V
V
V
V
μA
μA
μA
μA
IOx2 = −20 μA, VIx = VIxH3
IOx2 = −2 mA, VIx = VIxH3
IOx2 = 20 μA, VIx = VIxL4
IOx2 = 2 mA, VIx = VIxL4
0 V ≤ VIx ≤ VDDx
VE2 = 0 V
DISABLE1 = VDDx
0 V ≤ VOx ≤ VDDx
1.2
2.0
12.0
2.0
1.92
2.64
19.6
2.76
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.4
1.73
9.6
5.6
2.28
2.45
16.5
9.6
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
1.6
1.6
7.0
7.0
2.28
2.28
11.2
11.2
mA
mA
mA
mA
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 0 (E0, D0), 1 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
VI5 = 1 (E0, D0), 0 (E1, D1)6
IDDI (D)
IDDO (D)
0.01
0.01
mA/Mbps
mA/Mbps
Inputs switching, 50% duty cycle
Inputs switching, 50% duty cycle
VDDx
VDDx − 0.2
0.0
0.2
+0.01
−3
9
+0.01
IDD1 (Q)
IDD2 (Q)
IDD1 (Q)
IDD2 (Q)
VOL
II
IPU
IPD
IOZ
−10
−10
−10
0.1
0.4
+10
ADuM241D/ADuM241E
ADuM242D/ADuM242E
Dynamic Supply Current
Dynamic Input
Dynamic Output
Rev. A | Page 9 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Parameter
Undervoltage Lockout
Positive VDDx Threshold
Negative VDDx Threshold
VDDx Hysteresis
AC SPECIFICATIONS
Output Rise/Fall Time
Common-Mode Transient Immunity7
Symbol
UVLO
VDDxUV+
VDDxUV−
VDDxUVH
Min
Typ
Max
Unit
1.6
1.5
0.1
V
V
V
tR/tF
|CMH|
75
2.5
100
ns
kV/μs
|CML|
75
100
kV/μs
Data Sheet
Test Conditions/Comments
10% to 90%
VIx = VDDx, VCM = 1000 V,
transient magnitude = 800 V
VIx = 0 V, VCM = 1000 V,
transient magnitude = 800 V
1
150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.
IOx is the Channel x output current, where x = A, B, C, or D.
3
VIxH is the input side logic high.
4
VIxL is the input side logic low.
5
VI is the voltage input.
6
E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, E1 is the ADuM240E1/ADuM241E1/ADuM242E1
models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
7
|CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum commonmode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode
voltage edges.
2
Table 8. Total Supply Current vs. Data Throughput
Parameter
SUPPLY CURRENT
ADuM240D/ADuM240E
Supply Current Side 1
Supply Current Side 2
ADuM241D/ADuM240E
Supply Current Side 1
Supply Current Side 2
ADuM242D/ADuM242E
Supply Current Side 1
Supply Current Side 2
Symbol
Min
1 Mbps
Typ
Max
Min
25 Mbps
Typ
Max
Min
100 Mbps
Typ
Max
Unit
IDD1
IDD2
6.4
1.9
9.8
3.5
7.2
3.1
11
5.0
10.2
6.8
15.2
10
mA
mA
IDD1
IDD2
5.5
3.72
9.1
6.45
6.3
4.8
10.0
7.5
9.6
8.4
14.0
11.2
mA
mA
IDD1
IDD2
4.3
4.9
7.7
8.3
5.3
6.0
8.7
9.4
8.6
9.3
12.6
13.3
mA
mA
Rev. A | Page 10 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
INSULATION AND SAFETY RELATED SPECIFICATIONS
For additional information, see www.analog.com/icouplersafety.
Table 9. RW-16 Wide Body [SOIC_W] Package
Parameter
Rated Dielectric Insulation Voltage
Minimum External Air Gap (Clearance)
Symbol
L (I01)
Value
5000
7.8
Unit
V rms
mm min
Minimum External Tracking (Creepage)
L (I02)
7.8
mm min
Minimum Clearance in the Plane of the Printed
Circuit Board (PCB Clearance)
L (PCB)
8.1
mm min
CTI
25.5
>400
II
μm min
V
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking Index)
Material Group
Test Conditions/Comments
1-minute duration
Measured from input terminals to output terminals,
shortest distance through air
Measured from input terminals to output terminals,
shortest distance path along body
Measured from input terminals to output terminals,
shortest distance through air, line of sight, in the PCB
mounting plane
Insulation distance through insulation
DIN IEC 112/VDE 0303 Part 1
Material Group (DIN VDE 0110, 1/89, Table 1)
Table 10. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package
Parameter
Rated Dielectric Insulation Voltage
Minimum External Air Gap (Clearance)
Symbol
L (I01)
Value
5000
8.3
Unit
V rms
mm min
Minimum External Tracking (Creepage)
L (I02)
8.3
mm min
Minimum Clearance in the Plane of the Printed
Circuit Board (PCB Clearance)
L (PCB)
8.3
mm min
CTI
25.5
>400
II
μm min
V
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking Index)
Material Group
Test Conditions/Comments
1-minute duration
Measured from input terminals to output terminals,
shortest distance through air
Measured from input terminals to output terminals,
shortest distance path along body
Measured from input terminals to output terminals,
shortest distance through air, line of sight, in the PCB
mounting plane
Insulation distance through insulation
DIN IEC 112/VDE 0303 Part 1
Material Group (DIN VDE 0110, 1/89, Table 1)
PACKAGE CHARACTERISTICS
Table 11.
Parameter
Resistance (Input to Output)1
Capacitance (Input to Output)1
Input Capacitance2
IC Junction to Ambient Thermal Resistance
1
2
Symbol
RI-O
CI-O
CI
θJA
Min
Typ
1013
2.2
4.0
45
Max
Unit
Ω
pF
pF
°C/W
Test Conditions/Comments
f = 1 MHz
Thermocouple located at center of package underside
The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
Input capacitance is from any input data pin to ground.
Rev. A | Page 11 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
REGULATORY INFORMATION
See Table 17, Table 18, and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific
cross-isolation waveforms and insulation levels.
Table 12. RW-16 Wide Body [SOIC_W] Package
UL (Pending)
Recognized Under UL 1577
Component Recognition
Program1
Single Protection, 5000 V rms
Isolation Voltage
Double Protection, 5000 V rms
Isolation Voltage
File E214100
1
2
CSA (Pending)
Approved under CSA Component Acceptance
Notice 5A
VDE (Pending)
Certified according to DIN V VDE V
0884-10 (VDE V 0884-10):2006-122
CSA 60950-1-07+A1+A2 and IEC 60950-1,
second edition, +A1+A2:
Basic insulation at 780 V rms (1103 V peak)
Reinforced insulation, VIORM =
849 peak, VIOSM = 8000 V peak
Basic insulation, VIORM = 849 V peak,
VIOSM = 12 kV peak
Reinforced insulation at 390 V rms
(552 V peak)
IEC 60601-1 Edition 3.1:
Basic insulation (1 means of patient protection
(1 MOPP)), 490 V rms (686 V peak)
Reinforced insulation (2 MOPP), 238 V rms
(325 V peak)
CSA 61010-1-12 and IEC 61010-1 third edition:
Basic insulation at 300 V rms mains, 780 V
secondary (1103 V peak)
Reinforced insulation at 300 V rms mains,
390 V secondary (552 V peak)
File 205078
File 2471900-4880-0001
CQC (Pending)
Certified by
CQC11-471543-2012,
GB4943.1-2011:
Basic insulation at
780 V rms (1103 V peak)
Reinforced insulation at
389 V rms (552 V peak),
tropical climate, altitude
≤5000 meters
File (pending)
In accordance with UL 1577, each product is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.
In accordance with DIN V VDE V 0884-10, each product is proof tested by applying an insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit =
5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.
Table 13. RI-16 -2 Wide Body Increased Creepage [SOIC_IC] Package
UL (Pending)
Recognized Under 1577
Component Recognition
Program1
Single Protection, 5000 V rms
Isolation Voltage
Double Protection, 5000 V rms
Isolation Voltage
File E214100
1
2
CSA (Pending)
Approved under CSA Component Acceptance
Notice 5A
VDE (Pending)
Certified according to DIN V VDE V
0884-10 (VDE V 0884-10):2006-122
CSA 60950-1-07+A1+A2 and IEC 60950-1,
second edition, +A1+A2:
Basic insulation at 830 V rms (1174 V peak)
Reinforced insulation at 415 V rms (587 V peak)
IEC 60601-1 Edition 3.1:
Basic insulation (1 means of patient protection
(1 MOPP)), 519 V rms (734 V peak)
Reinforced insulation (2 MOPP), 261 V rms
(369 V peak)
CSA 61010-1-12 and IEC 61010-1 third edition:
Basic insulation at 300 V rms mains, 830 V
secondary (1174 V peak)
Reinforced insulation at 300 V rms Mains,
390 V secondary (587 V peak)
File 205078
Reinforced insulation, VIORM =
849 peak, VIOSM = 8000 V peak
Basic insulation, VIORM = 849 V peak,
VIOSM = 12 kV peak
File 2471900-4880-0001
CQC (Pending)
Certified by
CQC11-471543-2012,
GB4943.1-2011
Basic insulation at
830 V rms (1174 V peak)
Reinforced insulation at
415 V rms (587 V peak),
tropical climate, altitude
≤5000 meters
File (pending)
In accordance with UL 1577, each ADuM230D/ADuM230E/ADuM231D/ADuM231E is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.
In accordance with DIN V VDE V 0884-10, each ADuM230D/ADuM230E/ADuM231D/ADuM231E is proof tested by applying an insulation test voltage ≥ 1018 V peak for
1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.
Rev. A | Page 12 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance
of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.
Table 14.
Description
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 150 V rms
For Rated Mains Voltage ≤ 300 V rms
For Rated Mains Voltage ≤ 600 V rms
Climatic Classification
Pollution Degree per DIN VDE 0110, Table 1
Maximum Working Insulation Voltage
Input to Output Test Voltage, Method B1
Test Conditions/Comments
VIORM × 1.875 = Vpd (m), 100% production test,
tini = tm = 1 sec, partial discharge < 5 pC
Input to Output Test Voltage, Method A
After Environmental Tests Subgroup 1
Characteristic
Unit
VIORM
Vpd (m)
I to IV
I to IV
I to III
40/125/21
2
849
1592
V peak
V peak
1274
V peak
1019
V peak
VIOTM
VIOSM
7000
12000
V peak
V peak
VIOSM
8000
V peak
TS
PS
RS
150
2.78
>109
°C
W
Ω
Vpd (m)
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,
partial discharge < 5 pC
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,
partial discharge < 5 pC
After Input and/or Safety Test Subgroup 2
and Subgroup 3
Highest Allowable Overvoltage
Surge Isolation Voltage Basic
VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs,
50% fall time
VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs,
50% fall time
Maximum value allowed in the event of a
failure (see Figure 4)
Surge Isolation Voltage Reinforced
Safety Limiting Values
Maximum Junction Temperature
Total Power Dissipation at 25°C
Insulation Resistance at TS
SAFE LIMITING POWER (W)
Symbol
VIO = 500 V
3.0
RECOMMENDED OPERATING CONDITIONS
2.5
Table 15.
Parameter
Operating Temperature
Supply Voltages
Input Signal Rise and Fall Times
2.0
1.5
1.0
0
0
50
100
150
AMBIENT TEMPERATURE (°C)
200
13576-003
0.5
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values
with Ambient Temperature per DIN V VDE V 0884-10
Rev. A | Page 13 of 26
Symbol
TA
VDD1, VDD2
Rating
−40°C to +125°C
1.7 V to 5.5 V
1.0 ms
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 18. Maximum Continuous Working Voltage1 RI-16-2
Wide Body Increased Creepage [SOIC_IC] Package
Table 16.
Parameter
Storage Temperature (TST) Range
Ambient Operating Temperature
(TA) Range
Supply Voltages (VDD1, VDD2)
Input Voltages (VIA, VIB, VIC, VID, VE1, VE2,
DISABLE1, DISABLE2)1
Output Voltages (VOA, VOB, VOC, VOD)2
Average Output Current per Pin3
Side 1 Output Current (IO1)
Side 2 Output Current (IO2)
Common-Mode Transients4
Rating
−65°C to +150°C
−40°C to +125°C
Parameter
AC Voltage
Bipolar Waveform
Basic Insulation
−0.5 V to +7.0 V
−0.5 V to VDDI + 0.5 V
Reinforced
Insulation
Rating
Constraint
849 V peak
50-year minimum insulation
lifetime
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
819 V peak
−0.5 V to VDDO + 0.5 V
Unipolar Waveform
Basic Insulation
−10 mA to +10 mA
−10 mA to +10 mA
−150 kV/μs to +150 kV/μs
Reinforced
Insulation
1698 V peak
943 V peak
1
VDDI is the input side supply voltage.
VDDO is the output side supply voltage.
See Figure 4 for the maximum rated current values for various ambient
temperatures.
4
Refers to the common-mode transients across the insulation barrier.
Common-mode transients exceeding the absolute maximum ratings may
cause latch-up or permanent damage.
2
3
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
DC Voltage
Basic Insulation
Reinforced
Insulation
1
Reinforced
Insulation
Unipolar Waveform
Basic Insulation
Reinforced
Insulation
DC Voltage
Basic Insulation
Reinforced
Insulation
1
Rating
Constraint
849 V peak
50-year minimum insulation
lifetime
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
768 V peak
1698 V peak
885 V peak
1092 V peak
543 V peak
579 V peak
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Refers to the continuous voltage magnitude imposed across the isolation
barrier. See the Insulation Lifetime section for more details.
ESD CAUTION
Table 17. Maximum Continuous Working Voltage1 RW-16
Wide Body [SOIC_W] Package
Parameter
AC Voltage
Bipolar Waveform
Basic Insulation
1157 V peak
50-year minimum insulation
lifetime
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
50-year minimum insulation
lifetime
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Lifetime limited by package
creepage maximum approved
working voltage per IEC 60950-1
Refers to the continuous voltage magnitude imposed across the isolation
barrier. See the Insulation Lifetime section for more details.
Rev. A | Page 14 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Truth Tables
Table 19. ADuM240D/ADuM241D/ADuM242D Truth Table (Positive Logic)
VIx Input1, 2
L
H
X
VDISABLEx Input1, 2
L or NC
L or NC
H
VDDI State2
Powered
Powered
Powered
VDDO State2
Powered
Powered
Powered
Default Low (D0),
VOx Output1, 2, 3
L
H
L
Default High (D1),
VOx Output1, 2, 3
L
H
H
X4
X4
X4
X4
Unpowered
Powered
Powered
Unpowered
L
Indeterminate
H
Indeterminate
Test Conditions/
Comments
Normal operation
Normal operation
Inputs disabled,
fail-safe output
Fail-safe output
1
L means low, H means high, X means don’t care, and NC means not connected.
VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VDISABLEx refers to the input disable signal on the same side as the VIx inputs. VDDI and
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.
3
D0 is the ADuM240D0/ADuM241D0/ADuM242D0 models, and D1 is the ADuM240D1/ADuM241D1/ADuM242D1 models. See the Ordering Guide section.
4
Input pins (VIx, DISABLEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.
2
Table 20. ADuM240E/ADuM241E/ADuM242E Truth Table (Positive Logic)
VIx Input1, 2
L
H
X
L
X4
X4
VEx Input1, 2
H or NC
H or NC
L
H or NC
L4
X4
VDDI State2
Powered
Powered
Powered
Unpowered
Unpowered
Powered
VDDO State2
Powered
Powered
Powered
Powered
Powered
Unpowered
Default Low (E0),
VOx Output1, 2, 3
L
H
Z
L
Z
Indeterminate
1
Default High (E1),
VOx Output1, 2, 3
L
H
Z
H
Z
Indeterminate
Test Conditions/
Comments
Normal operation
Normal operation
Outputs disabled
Fail-safe output
Outputs disabled
L means low, H means high, X means don’t care, NC means not connected, and Z means high impedance.
VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.
3
E0 is the ADuM240E0/ADuM241E0/ADuM242E0 models, and E1 is the ADuM240E1/ADuM241E1/ADuM242E1 models. See the Ordering Guide section.
4
Input pins (VIx, VEx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.
2
Rev. A | Page 15 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
VDD1 1
16 VDD2
VDD1 1
16
VDD2
GND1 2
15 GND2
GND1 2
15
GND2
14 VOA
VIA 3
14
VOA
13 VOB
VIB 4
13
VOB
12
VOC
VID 6
11
VOD
NIC 7
10
VE2
GND1 8
9
GND2
VIB 4
ADuM240D
VID 6
TOP VIEW
(Not to Scale) 12 VOC
11 VOD
DISABLE1 7
10 NIC
VIC 5
GND1 8
9
VIC 5
GND2
NOTES
1. NIC = NO INTERNAL CONNECTION.
LEAVE THIS PIN FLOATING.
ADuM240E
TOP VIEW
(Not to Scale)
NOTES
1. NIC = NO INTERNAL CONNECTION.
LEAVE THIS PIN FLOATING.
13576-004
VIA 3
13576-005
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
Figure 6. ADuM240E Pin Configuration
Figure 5. ADuM240D Pin Configuration
Table 21. Pin Function Descriptions
Pin No.1
ADuM240D
ADuM240E
1
1
2, 8
2, 8
3
3
4
4
5
5
6
6
7
Not applicable
Mnemonic
VDD1
GND1
VIA
VIB
VIC
VID
DISABLE1
9, 15
10
Not applicable
9, 15
7
10
GND2
NIC
VE2
11
12
13
14
16
11
12
13
14
16
VOD
VOC
VOB
VOA
VDD2
1
Description
Supply Voltage for Isolator Side 1.
Ground Reference for Isolator Side 1.
Logic Input A.
Logic Input B.
Logic Input C.
Logic Input D.
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Ground Reference for Isolator Side 2.
No Internal Connection. Leave this pin floating.
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA,
VOB, VOC, and VOD outputs are enabled. When VE2 is low, the VOA, VOB, VOC, and VOD
outputs are disabled to the high-Z state.
Logic Output D.
Logic Output C.
Logic Output B.
Logic Output A.
Supply Voltage for Isolator Side 2.
Reference the AN-1109 Application Note for specific layout guidelines.
Rev. A | Page 16 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
VDD1 1
16 VDD2
VDD1 1
16 VDD2
GND1 2
15 GND2
GND1 2
15 GND2
VIA 3
VIC 5
VOD 6
ADuM241D
VIA 3
13 VOB
VIB 4
TOP VIEW
(Not to Scale) 12 VOC
11 VID
DISABLE1 7
GND1 8
10 DISABLE2
9
GND2
VIC 5
VOD 6
VE1 7
13576-104
VIB 4
14 VOA
GND1 8
Figure 7. ADuM241D Pin Configuration
14 VOA
ADuM241E
13 VOB
TOP VIEW
(Not to Scale) 12 VOC
11 VID
10 VE2
9
GND2
13576-105
Data Sheet
Figure 8. ADuM241E Pin Configuration
Table 22. Pin Function Descriptions
Pin No.1
ADuM241D
ADuM241E
1
1
2, 8
2, 8
3
3
4
4
5
5
6
6
7
Not applicable
Mnemonic
VDD1
GND1
VIA
VIB
VIC
VOD
DISABLE1
Not applicable
7
VE1
9, 15
10
9, 15
Not applicable
GND2
DISABLE2
Not applicable
10
VE2
11
12
13
14
16
11
12
13
14
16
VID
VOC
VOB
VOA
VDD2
1
Description
Supply Voltage for Isolator Side 1.
Ground Reference for Isolator Side 1.
Logic Input A.
Logic Input B.
Logic Input C.
Logic Output D.
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOD
output is enabled. When VE1 is low, the VOD output is disabled to the high-Z state.
Ground Reference for Isolator Side 2.
Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB,
and VOC outputs are enabled. When VE2 is low, the VOA, VOB, and VOC outputs are disabled
to the high-Z state.
Logic Input D.
Logic Output C.
Logic Output B.
Logic Output A.
Supply Voltage for Isolator Side 2.
Reference the AN-1109 Application Note for specific layout guidelines.
Rev. A | Page 17 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
VDD1 1
16 VDD2
VDD1 1
16 VDD2
GND1 2
15 GND2
GND1 2
15 GND2
VOC 5
VOD 6
ADuM242D
VIA 3
13 VOB
VIB 4
TOP VIEW
(Not to Scale) 12 VIC
11 VID
DISABLE1 7
GND1 8
10 DISABLE2
9
GND2
VOC 5
VOD 6
VE1 7
13576-106
VIB 4
14 VOA
GND1 8
Figure 9. ADuM242D Pin Configuration
14 VOA
ADuM242E
13 VOB
TOP VIEW
(Not to Scale) 12 VIC
11 VID
10 VE2
9
GND2
13576-107
VIA 3
Figure 10. ADuM242E Pin Configuration
Table 23. Pin Function Descriptions
Pin No.1
ADuM242D
ADuM242E
1
1
2, 8
2, 8
3
3
4
4
5
5
6
6
7
Not applicable
Mnemonic
VDD1
GND1
VIA
VIB
VOC
VOD
DISABLE1
Not applicable
7
VE1
9, 15
10
9, 15
Not applicable
GND2
DISABLE2
Not applicable
10
VE2
11
12
13
14
16
11
12
13
14
16
VID
VIC
VOB
VOA
VDD2
1
Description
Supply Voltage for Isolator Side 1.
Ground Reference for Isolator Side 1.
Logic Input A.
Logic Input B.
Logic Output C.
Logic Output D.
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOC and VOD
outputs are enabled. When VE1 is low, the VOC and VOD outputs are disabled to the high-Z
state.
Ground Reference for Isolator Side 2.
Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state
determined by the fail-safe option shown in the Ordering Guide.
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA and
VOB outputs are enabled. When VE2 is low, the VOA and VOB outputs are disabled to the
high-Z state.
Logic Input D.
Logic Input C.
Logic Output B.
Logic Output A.
Supply Voltage for Isolator Side 2.
Reference the AN-1109 Application Note for specific layout guidelines.
Rev. A | Page 18 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
TYPICAL PERFORMANCE CHARACTERISTICS
16
VDD1
VDD1
VDD1
VDD1
16
= 5V
= 3.3V
= 2.5V
= 1.8V
12
10
8
6
4
40
60
80
100
120
140
160
Figure 11. ADuM240D/ADuM240E IDD1 Supply Current vs. Data Rate at
Various Voltages
16
VDD1
VDD1
VDD1
VDD1
10
8
6
4
= VDD2
= VDD2
= VDD2
= VDD2
0
16
VDD1
VDD1
VDD1
VDD1
14
10
8
6
4
40
60
80
100
120
140
160
Figure 14. ADuM241D/ADuM241E IDD2 Supply Current vs. Data Rate at
Various Voltages
= 5V
= 3.3V
= 2.5V
= 1.8V
12
20
DATA RATE (Mbps)
= VDD2
= VDD2
= VDD2
= VDD2
= 5V
= 3.3V
= 2.5V
= 1.8V
12
10
8
6
4
20
40
60
80
100
120
140
160
DATA RATE (Mbps)
0
13576-007
0
Figure 12. ADuM240D/ADuM240E IDD2 Supply Current vs. Data Rate at
Various Voltages
0
= 5V
= 3.3V
= 2.5V
= 1.8V
VDD1
VDD1
VDD1
VDD1
14
IDD2 SUPPLY CURRENT (mA)
14
12
10
8
6
4
60
80
100
120
140
160
Figure 15. ADuM242D/ADuM242E IDD1 Supply Current vs. Data Rate at
Various Voltages
16
= VDD2
= VDD2
= VDD2
= VDD2
40
DATA RATE (Mbps)
16
VDD1
VDD1
VDD1
VDD1
20
13576-115
2
2
= VDD2
= VDD2
= VDD2
= VDD2
= 5V
= 3.3V
= 2.5V
= 1.8V
12
10
8
6
4
2
2
20
40
60
80
100
DATA RATE (Mbps)
120
140
160
0
13576-113
0
Figure 13. ADuM241D/ADuM241E IDD1 Supply Current vs. Data Rate at
Various Voltages
0
20
40
60
80
100
DATA RATE (Mbps)
120
140
160
13576-116
IDD1 SUPPLY CURRENT (mA)
12
0
IDD1 SUPPLY CURRENT (mA)
IDD2 SUPPLY CURRENT (mA)
14
0
= 5V
= 3.3V
= 2.5V
= 1.8V
13576-114
20
13576-006
0
DATA RATE (Mbps)
0
= VDD2
= VDD2
= VDD2
= VDD2
2
2
0
VDD1
VDD1
VDD1
VDD1
14
IDD2 SUPPLY CURRENT (mA)
IDD1 SUPPLY CURRENT (mA)
14
= VDD2
= VDD2
= VDD2
= VDD2
Figure 16. ADuM242D/ADuM242E IDD2 Supply Current vs. Data Rate at
Various Voltages
Rev. A | Page 19 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
= VDD2
= VDD2
= VDD2
= VDD2
14
= 5V
= 3.3V
= 2.5V
= 1.8V
12
10
8
6
4
2
= VDD2
= VDD2
= VDD2
= VDD2
= 5V
= 3.3V
= 2.5V
= 1.8V
10
8
6
4
2
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
0
–40
13576-008
0
–40
VDD1
VDD1
VDD1
VDD1
Figure 17. Propagation Delay, tPLH vs. Temperature at Various Voltages
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
13576-009
PROPAGATION DELAY, tPHL (ns)
12
VDD1
VDD1
VDD1
VDD1
PROPAGATION DELAY, tPHL (ns)
14
Data Sheet
Figure 18. Propagation Delay, tPHL vs. Temperature at Various Voltages
Rev. A | Page 20 of 26
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
THEORY OF OPERATIONS
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E use a high frequency carrier to
transmit data across the isolation barrier using iCoupler chip
scale transformer coils separated by layers of polyimide isolation.
Using an on/off keying (OOK) technique and the differential
architecture shown in Figure 19 and Figure 20, the ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
have very low propagation delay and high speed. Internal regulators
and input/output design techniques allow logic and supply
voltages over a wide range from 1.7 V to 5.5 V, offering voltage
translation of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture
is designed for high common-mode transient immunity and
high immunity to electrical noise and magnetic interference.
Radiated emissions are minimized with a spread spectrum
OOK carrier and other techniques.
Figure 19 illustrates the waveforms for models of the ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
that have the condition of the fail-safe output state equal to low,
where the carrier waveform is off when the input state is low.
If the input side is off or not operating, the low fail-safe output
state (ADuM240D0/ADuM240E0/ADuM241D0/ADuM241E0/
ADuM242D0/ADuM242E0) sets the output to low. For the
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/
ADuM242E that have a high fail-safe output state, Figure 20
illustrates the conditions where the carrier waveform is off
when the input state is high. When the input side is off or not
operating, the high fail-safe output state (ADuM240D1/
ADuM240E1/ADuM241D1/ADuM241E1/ADuM242D1/
ADuM242E1) sets the output to high. See the Ordering Guide
for the model numbers that have the fail-safe output state of low
or the fail-safe output state of high.
REGULATOR
REGULATOR
TRANSMITTER
RECEIVER
VIN
GND1
13576-014
VOUT
GND2
Figure 19. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State
REGULATOR
REGULATOR
TRANSMITTER
RECEIVER
VIN
GND1
GND2
Figure 20. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State
Rev. A | Page 21 of 26
13576-015
VOUT
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
APPLICATIONS INFORMATION
PCB LAYOUT
JITTER MEASUREMENT
The ADuM240D/ADuM240E/ADuM241D/ADuM241E/
ADuM242D/ADuM242E digital isolators require no external
interface circuitry for the logic interfaces. Power supply bypassing
is strongly recommended at the input and output supply pins
(see Figure 21). Bypass capacitors are most conveniently connected
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16
for VDD2. The recommended bypass capacitor value is between
0.01 μF and 0.1 μF. The total lead length between both ends of
the capacitor and the input power supply pin must not exceed
10 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9
and Pin 16 must also be considered, unless the ground pair on
each package side is connected close to the package.
Figure 23 shows the eye diagram for the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E. The
measurement was taken using an Agilent 81110A pulse pattern
generator at 150 Mbps with pseudorandom bit sequences (PRBS)
2(n − 1), n = 14, for 5 V supplies. Jitter was measured with the
Tektronix Model 5104B oscilloscope, 1 GHz, 10 GSPS with the
DPOJET jitter and eye diagram analysis tools. The result shows a
typical measurement on the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E with
490 ps p-p jitter.
VDD2
GND2
VOA
VOB
VIC/VOC
VID/VOD
DISABLE2/VE2/NIC
GND2
5
VOLTAGE (V)
4
13576-010
VDD1
GND1
VIA
VIB
VIC/VOC
VID/VOD
DISABLE1/VE1/NIC
GND1
3
2
Figure 21. Recommended Printed Circuit Board Layout
1
0
–10
–5
0
TIME (ns)
5
10
13576-012
In applications involving high common-mode transients, ensure
that board coupling across the isolation barrier is minimized.
Furthermore, design the board layout such that any coupling
that does occur equally affects all pins on a given component
side. Failure to ensure this can cause voltage differentials between
pins exceeding the Absolute Maximum Ratings of the device,
thereby leading to latch-up or permanent damage.
Figure 23. ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/
ADuM242E Eye Diagram
See the AN-1109 Application Note for board layout guidelines.
INSULATION LIFETIME
PROPAGATION DELAY RELATED PARAMETERS
All insulation structures eventually break down when subjected
to voltage stress over a sufficiently long period. The rate of
insulation degradation is dependent on the characteristics of the
voltage waveform applied across the insulation as well as on the
materials and material interfaces.
Propagation delay is a parameter that describes the time
required for a logic signal to propagate through a component. The
propagation delay to a Logic 0 output may differ from the
propagation delay to a Logic 1 output.
INPUT (VIx)
50%
OUTPUT (VOx)
tPHL
13576-011
tPLH
50%
Figure 22. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these
two propagation delay values and is an indication of how
accurately the timing of the input signal is preserved.
Channel matching is the maximum amount the propagation
delay differs between channels within a single ADuM240D/
ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
component.
Propagation delay skew is the maximum amount the propagation
delay differs between multiple ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E components
operating under the same conditions
The two types of insulation degradation of primary interest are
breakdown along surfaces exposed to the air and insulation
wear out. Surface breakdown is the phenomenon of surface
tracking, and the primary determinant of surface creepage
requirements in system level standards. Insulation wear out is the
phenomenon where charge injection or displacement currents
inside the insulation material cause long-term insulation
degradation.
Surface Tracking
Surface tracking is addressed in electrical safety standards by
setting a minimum surface creepage based on the working voltage,
the environmental conditions, and the properties of the insulation
material. Safety agencies perform characterization testing on the
surface insulation of components that allows the components to be
categorized in different material groups. Lower material group
ratings are more resistant to surface tracking and, therefore, can
provide adequate lifetime with smaller creepage. The minimum
creepage for a given working voltage and material group is in each
Rev. A | Page 22 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Insulation Wear Out
The lifetime of insulation caused by wear out is determined by
its thickness, material properties, and the voltage stress applied.
It is important to verify that the product lifetime is adequate at
the application working voltage. The working voltage supported
by an isolator for wear out may not be the same as the working
voltage supported for tracking. The working voltage applicable
to tracking is specified in most standards.
Testing and modeling have shown that the primary driver of longterm degradation is displacement current in the polyimide
insulation causing incremental damage. The stress on the insulation can be broken down into broad categories, such as dc
stress, which causes very little wear out because there is no
displacement current, and an ac component time varying
voltage stress, which causes wear out.
The ratings in certification documents are usually based on
60 Hz sinusoidal stress because this reflects isolation from line
voltage. However, many practical applications have combinations
of 60 Hz ac and dc across the barrier as shown in Equation 1.
Because only the ac portion of the stress causes wear out, the
equation can be rearranged to solve for the ac rms voltage, as is
shown in Equation 2. For insulation wear out with the
polyimide materials used in these products, the ac rms voltage
determines the product lifetime.
VRMS 
VAC RMS2
 VDC
2
polyimide. To establish the critical voltages in determining the
creepage, clearance, and lifetime of a device, see Figure 24 and
the following equations.
VPEAK
VRMS
VDC
TIME
Figure 24. Critical Voltage Example
The working voltage across the barrier from Equation 1 is
VRMS  VAC RMS2  VDC2
VRMS  2402  4002
VRMS = 466 V
This VRMS value is the working voltage used together with the
material group and pollution degree when looking up the
creepage required by a system standard.
To determine if the lifetime is adequate, obtain the time varying
portion of the working voltage. To obtain the ac rms voltage,
use Equation 2.
VACRMS  VRMS2 VDC2
(1)
VAC RMS  4662  4002
or
VACRMS  VRMS2 VDC2
VAC RMS
13576-013
system level standard and is based on the total rms voltage
across the isolation, pollution degree, and material group. The
material group and creepage for the ADuM240D/ADuM240E/
ADuM241D/ADuM241E/ADuM242D/ADuM242E isolators
are presented in Table 9.
ISOLATION VOLTAGE
Data Sheet
VAC RMS = 240 V rms
(2)
where:
VRMS is the total rms working voltage.
VAC RMS is the time varying portion of the working voltage.
VDC is the dc offset of the working voltage.
Calculation and Use of Parameters Example
The following example frequently arises in power conversion
applications. Assume that the line voltage on one side of the
isolation is 240 V ac rms and a 400 V dc bus voltage is present
on the other side of the isolation barrier. The isolator material is
In this case, the ac rms voltage is simply the line voltage of
240 V rms. This calculation is more relevant when the waveform is
not sinusoidal. The value is compared to the limits for working
voltage in Table 17 for the expected lifetime, less than a 60 Hz
sine wave, and it is well within the limit for a 50-year service life.
Note that the dc working voltage limit in Table 17 is set by the
creepage of the package as specified in IEC 60664-1. This value
can differ for specific system level standards.
Rev. A | Page 23 of 26
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
OUTLINE DIMENSIONS
10.50 (0.4134)
10.10 (0.3976)
9
16
7.60 (0.2992)
7.40 (0.2913)
1
10.65 (0.4193)
10.00 (0.3937)
8
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
0.75 (0.0295)
45°
0.25 (0.0098)
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
0.51 (0.0201)
0.31 (0.0122)
8°
0°
1.27 (0.0500)
0.40 (0.0157)
0.33 (0.0130)
0.20 (0.0079)
03-27-2007-B
COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 25. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-16)
Dimensions shown in millimeters and (inches)
12.85
12.75
12.65
1.93 REF
16
9
7.60
7.50
7.40
1
10.51
10.31
10.11
8
PIN 1
MARK
2.64
2.54
2.44
2.44
2.24
45°
0.32
0.23
SEATING
PLANE
1.27 BSC
8°
0°
1.01
0.76
0.51
0.46
0.36
11-15-2011-A
0.30
0.20
0.10
COPLANARITY
0.1
0.71
0.50
0.31
0.25 BSC
GAGE
PLANE
COMPLIANT TO JEDEC STANDARDS MS-013-AC
Figure 26. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]
Wide Body
(RI-16-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1, 2
ADuM240D1BRWZ
ADuM240D1BRWZ-RL
ADuM240D0BRWZ
ADuM240D0BRWZ-RL
ADuM240E1BRWZ
ADuM240E1BRWZ-RL
ADuM240E0BRWZ
ADuM240E0BRWZ-RL
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
No. of
Inputs,
VDD1
Side
4
4
4
4
4
4
4
4
No. of
Inputs,
VDD2
Side
0
0
0
0
0
0
0
0
Withstand
Voltage
Rating
(kV rms)
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Fail-Safe
Output
State
High
High
Low
Low
High
High
Low
Low
Rev. A | Page 24 of 26
Input
Disable
Yes
Yes
Yes
Yes
No
No
No
No
Output
Enable
No
No
No
No
Yes
Yes
Yes
Yes
Package
Description
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
Package
Option
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
Data Sheet
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Temperature
Model1, 2
Range
ADuM240D1BRIZ
−40°C to +125°C
ADuM240D1BRIZ-RL
−40°C to +125°C
ADuM240D0BRIZ
−40°C to +125°C
ADuM240D0BRIZ-RL
−40°C to +125°C
ADuM240E1BRIZ
−40°C to +125°C
ADuM240E1BRIZ-RL
−40°C to +125°C
ADuM240E0BRIZ
−40°C to +125°C
ADuM240E0BRIZ-RL
−40°C to +125°C
ADuM241D1BRWZ
−40°C to +125°C
ADuM241D1BRWZ-RL −40°C to +125°C
ADuM241D0BRWZ
−40°C to +125°C
ADuM241D0BRWZ-RL −40°C to +125°C
ADuM241E1BRWZ
−40°C to +125°C
ADuM241E1BRWZ-RL −40°C to +125°C
ADuM241E1WBRWZ
−40°C to +125°C
ADuM241E1WBRWZ-RL −40°C to +125°C
ADuM241E0BRWZ
−40°C to +125°C
ADuM241E0BRWZ-RL −40°C to +125°C
ADuM241D1BRIZ
−40°C to +125°C
ADuM241D1BRIZ-RL
−40°C to +125°C
ADuM241D0BRIZ
−40°C to +125°C
ADuM241D0BRIZ-RL
−40°C to +125°C
ADuM241E1BRIZ
−40°C to +125°C
ADuM241E1BRIZ-RL
−40°C to +125°C
ADuM241E0BRIZ
−40°C to +125°C
ADuM241E0BRIZ-RL
−40°C to +125°C
ADuM242D1BRWZ
−40°C to +125°C
ADuM242D1BRWZ-RL −40°C to +125°C
ADuM242D0BRWZ
−40°C to +125°C
ADuM242D0BRWZ-RL −40°C to +125°C
ADuM242E1BRWZ
−40°C to +125°C
ADuM242E1BRWZ-RL −40°C to +125°C
ADuM242E0BRWZ
−40°C to +125°C
ADuM242E0BRWZ-RL −40°C to +125°C
ADuM242D1BRIZ
−40°C to +125°C
ADuM242D1BRIZ-RL
−40°C to +125°C
ADuM242D0BRIZ
−40°C to +125°C
ADuM242D0BRIZ-RL
−40°C to +125°C
ADuM242E1BRIZ
−40°C to +125°C
ADuM242E1BRIZ-RL
−40°C to +125°C
ADuM242E0BRIZ
−40°C to +125°C
ADuM242E0BRIZ-RL
−40°C to +125°C
1
2
No. of
Inputs,
VDD1
Side
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
No. of
Inputs,
VDD2
Side
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Withstand
Voltage
Rating
(kV rms)
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
Fail-Safe
Output
State
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
High
High
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
High
High
Low
Low
Z = RoHS Compliant Part.
The ADuM241E1WBRWZ and ADuM241E1WBRWZ-RL are qualified for automotive applications.
Rev. A | Page 25 of 26
Input
Disable
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Output
Enable
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
Yes
Package
Description
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
16-Lead SOIC_IC
Package
Option
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RW-16
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
RI-16-2
ADuM240D/ADuM240E/ADuM241D/ADuM241E/ADuM242D/ADuM242E
Data Sheet
AUTOMOTIVE PRODUCTS
The ADuM241E1W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13576-0-4/16(A)
Rev. A | Page 26 of 26