HYB18RL25632AC HYB18RL25616AC Graphics & Speciality DRAMs 256 Mbit DDR Reduced Latency DRAM Version 1.60 July 2003 HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Edition Jun. 2002 This edition was realized using the software system FrameMaker. Published by Infineon Technologies, Marketing-Kommunikation, Balanstraße 73, 81541 München © Infineon Technologies 6/30/2002. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of Infineon Technologies, may only be used in life-support devices or systems2 with the express written approval of Infineon Technologies. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that lifesupport device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. HYB18RL25616/32AC Revision History: Current Version 1.60 Subjects (major changes since last revision) Previous Version: 1.42 29,30 29,30 Reversed scan reg order to match device Previous Version: 1.43 29,30 29,30 31 31 Renumbered scan registers starting with 0 to n-1 Added numbers to the scan chain portion of Figure 27 Previous Version: 1.44 36 36 added preliminary current values to the table. 23 23 Suppressed note 4 for tQSQ, restored to min and max value instead of absolute 16 16 Remove MRS only after power up restriction. Previous Version: 1.50 15 Version 1.60 15 Suppressed note that 2k NOPs not needed in HSTL mode, 2k NOPs are needed. 23 23 changed tCKDQS from 2.7...3.7 to 2.9...3.9 ns. 23 23 Increased tQSQ from +/-0.3ns to +/-0.35 ns 34 34 VDDQ nominal changed to 1.85V, +/- 100mV Page 2 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 1.2 1.3 1.3.1 1.4 1.5 1.5.1 1.5.2 2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.2.1 2.5.2.2 2.5.3 2.5.3.1 2.5.3.2 2.5.4 2.5.4.1 2.5.4.2 2.6 2.6.1 2.6.2 2.6.2.1 2.6.2.2 2.6.3 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Ball Configuration Package and Ballout . . . . . . . . . . . . . . . . . . . . . . .6 Ball Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Command Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Clocks, Commands and Addresses . . . . . . . . . . . . . . . . . . . . . . . . .15 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Mode Register Set Command (MRS) . . . . . . . . . . . . . . . . . . . . . . . .17 Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Writes (WR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Write - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Write - Cyclic Bank Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Write Data Mask Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Write followed by Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Reads (RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Read - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Read - Cyclic Bank Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Burst Length (BL) = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Burst Length (BL) = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Read followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 IEEE 1149.1 Serial Boundary Scan (JTAG) . . . . . . . . . . . . . . 29 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.4 3.4.1 3.4.2 3.5 3.6 3.7 3.8 3.9 3.10 3.11 Version 1.60 Test Access Port (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Test Clock (TCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Test Mode Select (TMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Test Data-In (TDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Test Data-Out (TDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 TAP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Identification (ID) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 TAP Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Boundary Scan Exit Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 x16 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 x32 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 TAP Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 JTAG TAP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 JTAG TAP Controller State Diagram . . . . . . . . . . . . . . . . . . . . . . . . .34 JTAG DC Operating Conditons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 JTAG AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 JTAG AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .35 JTAG Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Page 3 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 4.2 4.3 4.4 4.5 4.6 Version 1.60 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Recommended Power & DC Operation Ratings . . . . . . . . . . . . . . . .37 AC Operation Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Output Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Page 4 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1 Overview 1.1 Features z z z z z z z z z z z z z z z z 256 Megabit (256M) 0.17µm process technology Cyclic bank addressing for maximum data out bandwidth Organization 8M x 32, 16M x 16 in 8 banks Non-multiplexed addresses Non-interruptible sequential bursts of 2 (2-bit prefetch) and 4 (4-bit prefetch), DDR Up to 600Mb/sec/pin data rate Programmable Read Latency (RL) of 5..6 Data valid signal (DVLD) activated as Read Data is available Data Mask signals (DM0 / DM1) to mask first and second part of write data burst IEEE 1149.1 compliant JTAG Boundary Scan Pseudo-HSTL 1.8V IO Supply Internal autoprecharge Refresh requirements: 32ms at 100°C junction temperature (8k refresh for each bank, 64k refresh commands must be issued in total each 32ms) Package T-FBGA 144 2.5V VEXT, 1.8V VDD, 1.8V VDDQ Table 1 Key timing parameters (Configuration Example x32, x16 device) Speed Sort -3.3 -4.0 -5.0 Units Frequency 300 250 200 MHz 26.7 28.0 25.0 ns 8 7 5 cycles 6 5 5 cyles tRC Read latency Version 1.60 Page 5 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1.2 General Description The Infineon 256M Reduced Latency DRAM (RLDRAM) contains 8 banks x 32 Mb of memory accessible with 32bit or 16bit I/O’s in a double data rate (DDR) format where the data is provided and synchronized with a differential echo clock signal. RLDRAM does not require row/column address multiplexing and is optimized for fast random access and high data bandwidth. RLDRAM is designed for communication data storages like transmit or receive buffers in telecommunication systems as well as data or instruction cache applications requiring large amounts of memory. 1.3 Ball Configuration Package and Ballout Figure 1 T-FBGA 144 package 256 Mbit DDR Reduced Latency DRAM SIDE VIEW BOTTOM VIEW 1.20 max 12 11 10 9 8 7 6 5 4 3 2 1 A 1 D E Ø 0.51 typ B C F G J 17 18.5 H K L M N P R T U V 4 0.8 8.8 11 Note: All dimensions in mm Version 1.60 Page 6 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Figure 2 Version 1.60 Ballout of 256 Mbit Reduced Latency DRAM (x32 configuration) 1 2 3 4 A VSS VEXT VREF B VSS DQ8 C VSS D 5 6 9 10 11 12 VSS VSS VEXT TMS TCK DQ9 VSSQ VSSQ DQ1 DQ0 VSS DQ10 DQ11 VDDQ VDDQ DQ3 DQ2 VSS VSS DQS1 DQS1# VSSQ VSSQ DQS0# DQS0 VSS E VSS DQ12 DQ13 VDDQ VDDQ DQ5 DQ4 VSS F DM0 DQ14 DQ15 VSSQ VSSQ DQ7 DQ6 DVLD G A5 A6 A7 VDD VDD A2 A1 A0 H A8 A9 VSS VSS VSS VSS A4 A3 J AS# BA2 VDD VDD VDD VDD BA0 CK K WE# REF# VDD VDD VDD VDD BA1 CK# L A18 CS# VSS VSS VSS VSS A14 A13 M A15 A16 A17 VDD VDD A12 A11 A10 N DM1 DQ22 DQ23 VSSQ VSSQ DQ31 DQ30 NC P VSS DQ20 DQ21 VDDQ VDD VDDQ DQ29 DQ28 VSS R VSS DQS2 DQS2# VSSQ VSSQ DQS3# DQS3 VSS T VSS DQ18 DQ19 VDDQ VDDQ DQ27 DQ26 VSS U VSS DQ16 DQ17 VSSQ VSSQ DQ25 DQ24 VSS V VSS VEXT VREF VSS VSS VEXT TDO TDI Page 7 7 8 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Figure 3 Version 1.60 Ballout of 256Mbit Reduced Latency DRAM (x16 configuration) 1 2 3 4 A VSS VEXT VREF B VSS NC C VSS D 5 6 9 10 11 12 VSS VSS VEXT TMS TCK NC VSSQ VSSQ DQ1 DQ0 VSS NC NC VDDQ VDDQ DQ3 DQ2 VSS VSS NC NC VSSQ VSSQ DQS0# DQS0 VSS E VSS NC NC VDDQ VDDQ DQ5 DQ4 VSS F DM0 NC NC VSSQ VSSQ DQ7 DQ6 DVLD G A5 A6 A7 VDD VDD A2 A1 A0 H A8 A9 VSS VSS VSS VSS A4 A3 J AS# BA2 VDD VDD VDD VDD BA0 CK K WE# REF# VDD VDD VDD VDD BA1 CK# L A19 CS# VSS VSS VSS VSS A14 A13 M A15 A16 A17 VDD VDD A12 A11 A10 N DM1 NC NC VSSQ VSSQ DQ15 DQ14 A18 P VSS NC NC VDDQ VDD VDDQ DQ13 DQ12 VSS R VSS NC NC VSSQ VSSQ DQS1# DQS1 VSS T VSS NC NC VDDQ VDDQ DQ11 DQ10 VSS U VSS NC NC VSSQ VSSQ DQ9 DQ8 VSS V VSS VEXT VREF VSS VSS VEXT TDO TDI Page 8 7 8 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Note: NC : No Connect : These signals are internally connected and have parasitic characterisitcs of an IO. They may optionally be connected to ground for improved heat dissipation. 1.3.1 Ball Description Table 2 Ball description Ball Type Detailed Function CK, CK# Input Input Clock: CK and CK# are differential clock inputs. Addresses and commands are latched on the rising edge of CK, input data is latched on the both edges of CK. CK# is ideally 180 degrees out of phase with CK. CS# Input Chip Select: CS# enables the command decoder when low and disables it when high. When the command decoder is disabled new commands are ignored, but internal operations continue. AS#, WE#, REF# Input Command Inputs: Sampled at the positive edge of CK. AS#, WE# and REF# define (together with CS#) the command to be executed. A[19:0] Input Address Inputs: A[19:0] define the row and column addresses for READ and WRITE operations. During an MODE REGISTER SET the address inputs A[17:0] define the register settings. The addresses are sampled at the rising edge of CK. In the x32 configuration, A[19] is not used. In the x16 configuration with BL2, A[19] is used. BA[0:2] Input Bank select: Select to which internal bank a command is being applied. DQ[31:0] Data Input / Output: The DQ signals form the 32 bit data bus. During READ commands the Input/ data is referenced to both edges of DQS/DQS#. During WRITE commands the data is Output sampled at both edges of CK. DQSx, DQSx# Data read strobes : DQSx and DQSx# are the differential data read strobes. During READs, they are transmitted by the RLDRAM and edge-aligned with data. DQSx is ideally Output 180 degrees out of phase with DQSx#. DQS0, DQS0# are aligned with DQ0-DQ7. DQS1, DQS1# are aligned with DQ8-DQ15. DQS2, DQS2# are aligned with DQ16-DQ23. DQS3, DQS3# are aligned with DQ24-DQ31. DVLD Output Data Valid: The DVLD indicates valid output data. DVLD is edge-aligned with DQSx, DQSx#. DM0, DM1 Input Data Mask: DM0 and DM1 are the input masks for WRITE data. The first half of the Input data burst is masked when DM0 is sampled HIGH along with the WRITE command. The second half of the input data burst is masked when DM1 is sampled HIGH along with the WRITE command. TCK Input IEEE 1149.1 Clock Input: JEDEC standard 1.8V IO levels. These pin must be tied to VSS if the JTAG function is not used in the circuit. TMS, TDI Input IEEE 1149.1 Test Inputs: JEDEC standard 1.8V IO levels. These pins may be left not connected if the JTAG function is not used in the circuit. TDO Output IEEE 1149.1 Test Output: JEDEC standard 1.8V IO level tracking VDDQ. VREF Supply Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers. VEXT Supply Power Supply: 2.5V nominal. See DC Electrical Characteristics and Operating Conditions for range. VDD Supply Power Supply: 1.8V nominal. See DC Electrical Characteristics and Operating Conditions for range. VDDQ Supply Power Supply: Isolated Output Buffer Supply. 1.8V nominal. See DC Electrical Characteristics and Operating Conditions for range. VSS VSSQ Version 1.60 Supply Power Supply: GND Supply Power Supply: Isolated Output Buffer Supply. GND Page 9 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Table 2 Ball description Ball Type NC - Version 1.60 Detailed Function No Connect : These pins may be connected to ground to improve heat dissipation. Page 10 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1.4 Functional Block Diagram Figure 4 Functional Block Diagram 8M x 32 Configuration A0-A18, B0, B1, B2 Note: Column Address Buffer Row Address Buffer Refresh Counter Memory Array Memory Array Bank 1 Column Decoder Memory Array Bank 0 Bank 2 Sense Amp and Data Bus Memory Array Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Bank 3 Memory Array Memory Array Memory Array VREF DM1 DM0 REF# DQ0-DQ31 Bank 7 Control Logic and Timing Generators CS# DQS[3:0], DQS#[3:0] Output Buffers WE# DVLD Input Buffers AS# Data read strobe Bank 6 CK Output Data Valid Bank 5 CK# Bank 4 Column Decoder Memory Array Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Column Decoder Sense Amp and Data Bus Column Decoder Sense Amp and Data Bus Column Address Counter When the BL4 setting is used, A18 is a "Don’t Care" Version 1.60 Page 11 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Figure 5 Functional Block Diagram 16M x 16 Configuration A0-A19, B0, B1, B2 Column Address Buffer Row Address Buffer Refresh Counter Memory Array Memory Array Bank 1 Column Decoder Memory Array Bank 0 Bank 2 Sense Amp and Data Bus Memory Array Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Bank 3 Memory Array Memory Array Memory Array VREF DM1 DM0 REF# DQ0-DQ15 Bank 7 Control Logic and Timing Generators CS# DQS[1:0], DQS#[1:0] Output Buffers WE# DVLD Input Buffers AS# Data read strobe Bank 6 CK Output Data Valid Bank 5 CK# Bank 4 Column Decoder Memory Array Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Row Decoder Column Decoder Row Decoder Sense Amp and Data Bus Column Decoder Column Decoder Sense Amp and Data Bus Sense Amp and Data Bus Column Address Counter Note: 1 When the BL4 setting is used, A19 is a "Don’t Care". Note: 2 In the 16Mx16 configuration, only DQS[1:0] & DQS#[1:0] are used Version 1.60 Page 12 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1.5 Commands 1.5.1 Command Table According to the functional signal description the following command sequences are possible. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK. Table 3 Truth table Operation Device State No Operation Any Deselect4) Any Mode Register Set2) Idle Code NOP MRS CS# AS# WE# REF# A[19:0]1)3) BA]2:0] DM]1:0] L H H H X X X H X X X X X X L L L L Valid X X Read Any READ L L H H Valid Valid X Write Any WRITE L L L H Valid Valid Valid Auto Refresh Idle L H H L X Valid X Note: 1: X = “Don’t Care” ; H = Logic HIGH; L = Logic LOW Note: 2: Only A[17:0] are used for the MRS command. Note: 3: See Table 4 Table 4 Address Width table Data Width 32 16 BL 2 A[18:0] A[19:0] BL 4 A[17:0] A[18:0] Burst Length Note: 1: The x32 and x16 configurations have different ballouts (see Fig. 2 & Fig. 3) Version 1.60 Page 13 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 1.5.2 Description of Commands Table 5 Description of Commands Command Description DESEL / NOP The NOP command is used to perform a no operation to the RLDRAM; this is equal to deselecting the chip. Use NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history. MRS The Mode Register is set via the address inputs A[17:0]. See the mode register description in the register description section. The MRS command can only be issued when all banks are idle and no bursts are in progress. READ The READ command is used to initiate a burst read access to a bank. The value on the BA[2:0] inputs selects the bank, and the address provided on inputs A[19:0] selects the data location within the bank. WRITE The WR command is used to initiate a burst write access to a bank. The value on the BA[2:0] inputs selects the bank, and the address provided on inputs A[19:0] selects the data location within the bank. Input data appearing on the DQs is written to the memory array subject to the DMx input logic levels appearing coincident with the WRITE command. If DM0 is registered LOW, the first half of the burst Write data will be written to the memory array, if registerd HIGH this data will be ignored i.e, this part of the data word will not be written. If DM1 is registered LOW the second half of the burst Write data will be written to the memory array, if registerd HIGH this data will be ignored i.e, this part of the data word will not be written. AREF The AREF is used during normal operation of the RLDRAM to refresh the memory content of a bank. The value on the BA[2:0] inputs selects the bank. The refresh address is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AREF command. The RLDRAM requires 64k AREF cycles at an average periodic interval of 0.49 µs1) (maximum). To improve efficiency a burst of eight AREF commands (One AREF for each bank) can be posted to the RLDRAM at an average periodic interval of 3.9µs2). Note: 1: Actual refresh is 32ms/8K/8 = 0.488µs Note: 2: Actual refresh is 32ms/8K = 3.90µs Version 1.60 Page 14 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2 Functional Description 2.1 Clocks, Commands and Addresses Figure 6 Clock Command/Address Timings tCKH tCK tCKL CK# CK CMD, ADDR Vaild Vaild Vaild tAS, tCS tAH, tCH Don't Care Table 6 General Timing Parameters for -2.5, -3.3 and -5.0 ns speed sorts -3.3 Parameter Symbol -4.0 -5.0 Units min max min max min max tCK 3.3 - 4.0 - 5.0 - ns Clock high level width tCKH 0.45 0.55 0.45 0.55 0.45 0.55 tCK Clock low level width tCKL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 1.0 – 1.0 – 1.0 – ns 1.0 – 1.0 – 1.0 – ns Clock Clock Cycle Time Setup Times Address/Command input setup time tAS, tCS Hold Times Address/Command input hold time tAH, tCH Note: 1. All timings are measured relatively to the crossing point of CK/CK# and to the crossing point with VREF of the Command and Address signals. Note: 2. The signal imput slew rate must be ≥ 1V/ns. Note: 3. CK/CK# input slew rate must be ≥ 1V/ns ( ≥ 2V/ns if measured differentially). Version 1.60 Page 14 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.2 Initialization The RLDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation or permanent damage to the device. The following sequence is used for Power-Up: 1. Apply power (VEXT, VDD, VDDQ, VREF) and start clock as soon as the supply voltages are stable. Apply VDD and VEXT before or at the same time as VDDQ, apply VDDQ before or at the same time as VREF. There is no timing relation between VEXT and VDD, the chip starts the power up sequence only when both voltages are at their nominal level. However, the pad supply must not be applied before the core supplies. Maintain all pins in NOP conditions. 2. Maintain stable conditions for 200 µs minimum. 3. Issue three Mode Register Set commands - 2 dummies plus 1 valid MRS (Figure 7). 4. After tMRSC issue 8 Auto Refresh commands, one on each bank and separated by 2048 cycles. 5. After tRC the chip is ready for normal operation. Figure 7 Power Up Sequence VEXT VDD VDDQ VREF CK# CK Com. MRS MRS MRS Add tMRSC min. 200 µs RF RF RF BA0 BA1 BA7 min. 2048 6 x 2048 cycles cycles MRS: RF: A.C.: A.C. tRC MRS command REFRESH Any command Don't Care Version 1.60 Page 15 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.3 Mode Register Set Command (MRS) The mode register stores the data for controlling the operating modes of the memory. It programs the RLDRAM configuration, burst length, test mode and IO options. During a Mode Register Set command the address inputs A<17:0> are sampled and stored in the mode register. tMRSC must be met before any command can be issued to the RLDRAM. The mode register may be set anytime as long as all command are completed, and the RLDRAM is in an idle state (no persistent commands). Figure 8 Mode Register Set CK# CK CS# AS# Figure 9 Mode Register Set Timing WE# CK# CK Command REF# MRS NOP NOP A.C. COD A[17:0] tMRSC A[19:18] MRS: command MRS A.C.: Any command BA<2:0> Don't Care COD: Code to be loaded into the register Table 7 Timing Parameters MRS Don't Care -3.3 Parameter Symbol Mode Register Set cycle time -4.0 -5.0 min max min max min max 4 tMRSC – 4 – 4 – Units Notes tCK Figure 10 Mode Register Bitmap A2 A<17:7> A6 A5 A4 A3 Reserved2 Test Mode Driver Strength Matched Mode Burst Length A1 A0 RLDRAM Configuration A5 Driver Strength1 A3 Burst Length A2 A1 A0 RLDRAM configuration 0 8mA (default) 0 2 (default) 0 0 0 3 (default) 1 Do not use 1 4 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 Do not use A6 Test Mode A4 Matched Mode 0 (default) 0 inactive (default) 1 0 1 1 test mode 1 active3 1 1 0 Do not use 1 1 1 Do not use Note: 1 HSTL compliant current specification Note: 2 Bits A<17:6> must be set to zero Note: 3 Automatic IO impedance calibration is activated in Matched Mode Version 1.60 Page 16 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.4 Configuration Table The following table shows, for different operating frequencies, the different RLDRAM configurations that can be programmed into the Mode Register. The Read Latency (tRL) and the Write Latency (tWL) used by the RLDRAM for the two Burst Lengths (BL) are also indicated. Finally the minimum row cycle time (tRC) in clock cycles and in ns are shown as well. The shaded areas correspond to configurations that are not allowed. Table 8 RLDRAM configuration table Configuration Frequency 300 MHz (-3.3) 250 MHz (-4.0) 200 MHz (-5.0) Unit 1 2 3 4 tRC cycles 5 6 7 8 tRL cycles 5 5 5 6 tWL (BL2) cycles 2 2 2 3 tWL (BL4) cycles 1 1 1 tRC ns 26.7 tRL ns 20 tWL (BL2) ns 10 tWL (BL4) ns tRC ns 28.0 32.0 tRL ns 20.0 24.0 tWL (BL2) ns 8.0 12.0 tWL (BL4) ns 4.0 8.0 tRC ns 25.0 30.0 35.0 40.0 tRL ns 25.0 25.0 25.0 30.0 tWL (BL2) ns 10.0 10.0 10.0 15.0 tWL (BL4) ns 5.0 5.0 5.0 10.0 2 6.7 Note: 1: The speed sort -3.3 provides parts functional up to 300MHz in the configuration 4 only. The functionality of the configurations 1,2 and 3 is not guaranteed for speed sort -3.3. Note: 2: The speed sort -4.0 provides parts functional up to 250MHz in the configurations 3 and 4 only. The functionality of the configurations 1 and 2 is not guaranteed for speed sort -4.0. Note: 3: The speed sort -5.0 provides parts functional in all configurations. Version 1.60 Page 17 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.5 Writes (WR) 2.5.1 Write - Basic Information Figure 11 Write command CK# Write accesses are initiated with a WRITE command, as shown in Figure 11. Row and bank addresses are provided together with the WRITE command. CK CS# During WRITE commands, data will be registered at both edges of CK according to the programmed burst length BL. The first valid data is registered with the first rising CK edge WL (Write Latency) cycles after the WRITE command has been issued. AS# Any WRITE burst may be followed by a subsequent READ command. Figure 17 and Figure 18 illustrate the timing requirements for a WRITE followed by a READ for a burst of 2 and 4 respectively. WE# REF# Setup and hold time for incoming DQs relative to the CK edges are specified as tDS and tDH. The first or the second part of the incoming data burst is masked if the corresponding DMx signal is sampled HIGH along with the WRITE command. Setup and hold time for DM is the same as for addresses and commands. DM[1:0] DM A[19:0] A BA[2:0] BA A: BA: DM: Address Bank Address Data Mask Don't Care Figure 12 Basic Write Burst Timing CK# CK Write Latency tDS DQ tDH tDS D0 D1 D2 tDH D3 Don't Care Table 9 WRITE Timing Parameters -3.3 Parameter Symbol -4.0 -5.0 min max min max min max Units Data-in to CK Setup Time tDS 0.5 – 0.5 – 0.5 – ns Data-in to CK Hold Time tDH 0.5 – 0.5 – 0.5 – ns Notes Note: 1. All timings are measured relatively to the crossing point of CK/CK# and to the crossing point with VREF of the Command and Address signals. Note: 2. The signal imput slew rate must be ≥ 1V/ns. Note: 3. CK/CK# input slew rate must be ≥ 1V/ns ( ≥ 2V/ns if measured differentially). Version 1.60 Page 18 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.5.2 Write - Cyclic Bank Access 2.5.2.1 Burst Length (BL) = 2 Figure 13 Write Burst Basic Sequence, BL = 2, WL = 3 0 1 2 3 4 5 6 7 8 Com WR WR WR WR WR WR WR WR WR Add A BA0 A BA1 A BA2 A BA3 A BA4 A BA5 A BA6 A BA7 A BA0 CK# CK WL = 3 D0a DQ D0b D1a D0d D1b D2a D2b D3a D3b A/BAx: WR: Dxy: WL: D4a D4b D5a address A of bank x WRITE Data part y to bank x Write Latency Don't Care 2.5.2.2 Burst Length (BL) = 4 Figure 14 Write Burst Basic Sequence, BL = 4, WL = 2 0 1 2 3 4 5 6 7 8 Com WR NOP WR NOP WR NOP WR NOP WR Addr A BA0 CK# CK A BA1 A BA2 A BA3 A BA0 WL = 2 DQ D0a D0b D0c D0d D1a D1b D1c D1d D2a D2b D2c D2d D3a A / BAx: WR: address A of bank x WRITE Dxy: WL: Data part y to bank x Write Latency Don't Care Version 1.60 Page 19 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.5.3 Write Data Mask Timing 2.5.3.3 Burst Length (BL) = 2 Figure 15 Write Data Mask Timing, BL = 2, WL = 2 0 1 2 3 4 5 6 7 8 Com WR WR WR WR WR WR WR WR WR Add A BA0 A BA1 A BA2 A BA3 A BA4 A BA5 A BA6 A BA7 A BA0 CK# CK DM0 DM1 WL = 2 D0a DQ D0b D1b D0d D2a D4a D4b D5a A/BAx: WR: Dxy: WL: Data not written into the memory D5b D6a address A of bank x WRITE Data part y to bank x Write Latency Don't Care 2.5.3.4 Burst Length (BL) = 4 Figure 16 Write Data Mask Timing, BL=4, WL = 1 0 1 2 3 4 5 6 7 8 Com WR NOP WR NOP WR NOP WR NOP WR Addr A BA0 CK# CK A BA1 A BA2 A BA3 A BA0 DM0 WL = 1 DM1 DQ D0a D0b D0c D0d D1c D1d D2a D2b Data not written into the memory A / BAx: WR: Dxy: WL: address A of bank x WRITE Data part y to bank x Write Latency Don't Care Version 1.60 Page 20 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.5.4 Write followed by Read 2.5.4.5 Burst Length (BL) = 2 Figure 17 Write followed by Read BL = 2, RL = 5, WL = 2 0 1 2 3 4 5 6 7 8 9 Com WR RD RD NOP NOP NOP NOP NOP NOP NOP Addr A BA0 A BA1 A BA2 CK# CK WL = 2 RL = 5 tCKDQS D0a DQ D0b Q1a Q1b Q2a Q2b DQS DQS# A/BAx: WR: Dxy: WL: RD: Qxy: RL: address A of bank x WRITE Data part y to bank x Write Latency READ Data part y of bank x Read Latency Don't Care 2.5.4.6 Burst Length (BL) = 4 Figure 18 Write followed by Read BL = 4, RL = 5, WL = 1 0 1 2 3 4 5 6 7 8 9 Com WR RD NOP RD NOP NOP NOP NOP NOP NOP Addr A BA0 A BA1 CK# CK A BA1 WL = 1 RL = 5 tCKDQS DQ D0a D0b D0c D0d Q1a Q1b Q1c Q1d Q2a Q2b Q2c DQS DQS# A/BAx: WR: Dxy: WL: Version 1.60 Page 21 address A of bank x WRITE Data part y to bank x Write Latency RD: Qxy: RL: READ Data part y of bank x Read Latency Don't Care Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.6 Reads (RD) 2.6.1 Read - Basic Information Figure 19 READ command CK# Read accesses are initiated with a READ command, as shown in Figure 19. Row and bank addresses are provided with the READ command. CK CS# During READ bursts the memory device drives the read data edge aligned with the DQS signal. After a programmable read latency, data is available at the outputs. The data valid signal indicates that valid read data will be present on the bus after 0.5clock cycles. AS# The skew between DQS and CK is specified as tCKDQS. WE# tQSQ is the skew between DQS edge and the last valid data edge. tQSQ is derived at each DQS clock edge and is not cumulative over time. REF# After completion of a burst, assuming no other commands have been initiated, output data will go High-Z. Back to back READ commands are possible, producing a continuous flow of output data. A<19:0> A The data valid window is derived for each DQS transition and is defined as: min(tDQSH, tDQSL) - 2* tQSQmax. BA<2:0> BA Any READ burst may be followed by a subsequent WRITE command. Figure 23 shows the corresponding timing requirements for a READ followed by a WRITE. A READ to WRITE delay has to be buit in in order to prevent bus contention. Some systems having long line lengths or severe skews may need additional idle cycles inserted. A: BA: Address Bank Address Don't Care Figure 20 Basic Read Burst Timing tCKH tCKL tCK CK# CK tDQSL tCKDQS tDQSH DQS DQS# tQSVLD tQSVLD DVLD DQ D0 tQSQ D1 D2 D3 tQSQ data valid window Version 1.60 Page 22 Don't Care Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Table 10 READ Timing Parameters for -2.5, -3-3 and -5.0 speed sorts Parameter -3.3 Symbol min -4.0 max min Units Notes -5.0 max min max Read Cycle Timing Parameters for Data and Data Strobe DQS / DQS# high pulse width tDQSH 0.4 0.6 0.4 0.6 0.4 0.6 tCK DQS / DQS# low pulse width tDQSL 0.4 0.6 0.4 0.6 0.4 0.6 tCK DQS edge to Clock edge skew tCKDQS 2.9 3.9 2.9 3.9 2.9 3.9 ns DQS edge to output data edge tQSQ -0.35 0.35 -0.35 0.35 -0.35 0.35 ns 0.4 ns 0.4 ns DQS edge to Data Out HiZ tQSQHZ DQS edge to DVLD edge tQSVLD 0.4 -0.4 0.4 0.4 -0.4 0.4 -0.4 4 Note: 1 All timings are measured relatively to the crossing point of CK/CK# (DQSx/DQSx#), and to the crossing point with VREF of the Command and Address signals. Note: 2. The signal imput slew rate must be ≥ 1V/ns. Note: 3. CK/CK# input slew rate must be ≥ 1V/ns ( ≥ 2V/ns if measured differentially). Note: 4. tDQSQ and tQSQHZ are absolute values. Version 1.60 Page 23 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.6.2 Read - Cyclic Bank Access 2.6.2.1 Burst Length (BL) = 2 Figure 21 Read Burst, BL = 2, RL = 5 0 1 2 3 4 5 6 7 8 Com. RD RD RD RD RD RD RD RD RD Addr. A BA0 A BA1 A BA2 A BA3 A BA4 A BA5 A BA6 A BA7 A BA0 CK# CK tCKDQS RL = 5 DQS DQS# DQ Q0a Q0b Q1a Q1b Q2a Q2b A / BAx: address A of bank x RD: Qxy: RL: READ Data part y from bank x Read Latency Q3a Don't Care 2.6.2.2 Burst Length (BL) = 4 Figure 22 Read Burst, BL = 4, RL = 5 0 1 2 3 4 5 6 7 8 Com. RD NOP RD NOP RD NOP RD NOP RD Addr. A BA0 CK# CK A BA1 A BA2 A BA3 A BA0 tCKDQS RL = 5 DQS DQS# DQ Q0a Q0b Q0c A / BAx: RD: Qxy: RL: Q0d Q1a Q1b Q1c address A of bank x READ Data part y from bank x Read Latency Don't Care Version 1.60 Page 24 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 2.6.3 Read followed by Write Figure 23 Read followed by Write, BL=2, RL = 5, WL = 2 0 1 2 3 4 5 6 7 8 Com. RD NOP NOP NOP NOP WR WR NOP NOP Addr. A BA0 A BA1 A BA2 CK# CK WL = 2 RL = 5 tCKDQS DQ Q0a Q0b D1a D1b D2a D2b DQS DQS# A/BAx: WR: Dxy: WL: RD: Qxy: RL: address A of bank x WRITE Data part y to bank x Write Latency READ Data part y from bank x Read Latency Don't Care Figure 24 Read followed by Write, Write data on bus prior Read data, BL=2, RL=5, WL=2 0 1 2 3 4 5 6 7 8 Com. RD WR NOP NOP NOP NOP NOP NOP NOP Addr. A BA0 A BA1 CK# CK WL = 2 RL = 5 tCKDQS DQ D1a D1b Q0a Q0b DQS DQS# A/BAx: WR: Dxy: WL: Version 1.60 Page 25 address A of bank x WRITE Data part y to bank x Write Latency RD: Qxy: RL: READ Data part y from bank x Read Latency Don't Care Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM Figure 25 Read followed by Write, BL=4, RL = 5, WL = 1 0 1 2 3 4 5 6 7 8 9 10 Com. RD NOP NOP NOP NOP NOP NOP WR NOP NOP Addr. A BA0 D1a D1b D1c CK# CK NOP A BA1 WL = 1 RL = 5 tCKDQS DQ Q0a Q0c Q0b Q0d D1d DQS DQS# A/BAx: WR: Dxy: WL: address A of bank x WRITE Data part y to bank x Write Latency RD: Qxy: RL: READ Data part y from bank x Read Latency Don't Care Figure 26 Read followed by Write, write data on system bus prior read data, BL=4, RL=5, WL=1 0 1 2 3 4 5 6 7 8 Com. RD WR NOP NOP NOP NOP NOP NOP NOP Addr. A BA0 A BA1 CK# CK WL = 1 RL = 5 tCKDQS DQ D1a D1b D1c D1d Q0a Q0b Q0c Q0d DQS DQS# A/BAx: WR: Dxy: WL: Version 1.60 Page 26 address A of bank x WRITE Data part y to bank x Write Latency RD: Qxy: RL: READ Data part y from bank x Read Latency Don't Care Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3 IEEE 1149.1 Serial Boundary Scan (JTAG) The RLDRAM incorporates a serial boundary scan Test Access Port (TAP). This port operates fully complient with IEEE Standard 1149.1-1990. It contains a TAP controller, instruction register, boundary scan register, bypass register, and ID code register. It is possible to operate the RLDRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied low while TDI, TMS and TDO may be left unconnected. Upon power-up, the TAP will come up in a reset state which will not interfere with the normal operation of the device. 3.1 Test Access Port (TAP) 3.1.1 Test Clock (TCK) The test clock is used only with the TAP controller. The pin must be tied low if the TAP is not used. 3.1.2 Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left unconnected if the TAP is not used. 3.1.3 Test Data-In (TDI) The TDI pin is used to serially input information into the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is connected to the most significant bit (MSB) of any register (see Figure 27). This pin may be left unconnected if the TAP is not used. 3.1.4 Test Data-Out (TDO) The TDO output pin is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine (see Figure 28). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register (see Figure 27). This pin may be left unconnected if the TAP is not used. 3.2 TAP Registers Registers are connected between the TDI and TDO pins and allow data to be scanned into and shifted out of the RLDRAM test circuitry (see Figure 27). Only one register is selected at a time through the instruction register. Data is serially loaded into the TDI pin on the rising edge of TCK. Data is output on the TDO pin on the falling edge of TCK. 3.2.1 Instruction Register Eight-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins as shown in Figure 27. Upon power-up, the instruction register is internally preloaded with the IDCODE instruction. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01" pattern to allow for fault isolation of the board-level serial test data path. 3.2.2 Bypass Register The bypass register is a single-bit register that can be placed between the TDI and TDO pins. This allows data to be shifted through the RLDRAM with minimal delay. The bypass register is set LOW during the Capture-DR state when the BYPASS instruction is loaded in the instruction register. Version 1.60 Page 27 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.2.3 Boundary Scan Register The boundary scan register is connected to all the IO pins on the RLDRAM. It allows to observe and control the data flowing into and out of the device, depending on the instruction being loaded in the instruction register. The boundary scan register is 104 bits long. The register is the same for the x16 and x32 configurations of the RLDRAM. Pins not used in the x16 configurations read a HIGH into the boundary scan register in the Capture-DR controller state. Differential inputs (CK/CK#) and outputs (DQSx/DQSx#) are equipped with two boundary scan cells each. Thus, the differential nature of these pins is not visible to the test circuitry. However, it is recommended that during testing differential signals are always applied to these pin pairs. 3.2.4 Identification (ID) Register The ID register is loaded with a hardwired, vendor-specific, 32-bit code during the Capture-DR state when the IDCODE instruction is loaded in the instruction register. The code can be shifted out when the TAP controller is in the Shift-DR state. Two different codes are implemented for the x16 and x32 configurations of the RLDRAM (see Table 11). . Table 11 ID Register Definition Revision Number Part Number Infineon JEDEC Code L S B Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x16 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 x32 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 3.3 TAP Instructions The TAP implements the 6 instructions BYPASS, EXTEST, SAMPLE/PRELOAD and IDCODE for user access (see Table 12). The implementation of these instructions fully complies with the IEEE standard. All other instructions are reserved and should not be used. Table 12 JTAG Instruction Register Instruction Register Code Instruction Description EXTEST Selects the boundary scan register to be connected between TDI and TDO. Data received at input pins are sampled and loaded into the boundary scan register. Data driven by output pins are determined from values contained in the boundary scan register. Hex x7 .. x0 00 0000 0000 05 0000 0101 21 0010 0001 IDCODE Selects the ID code register to be connected to TDI and TDO. Instructin does not interfere with the normal operation of the device. FF 1111 1111 BYPASS Selects the bypass register to be connected between TDI and TDO. Instruction does not interfere with the normal operation of the device. Version 1.60 SAMPLE / PRELOAD Selects the boundary scan register to be connected between TDI and TDO. Data receivedat input pins are sampled and loaded int the boundary scan register. initial ouput data are shifted into the boundary scan register prior to an EXTEST intruction. Instruction does not interfere with the normal operation of the device. Page 28 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.4 Boundary Scan Exit Order 3.4.1 x16 Configuration Note: Note: Note: Note: Pin Descr . Pin Name Ball # Ball # Pin Name Pin Descr . Reg Content Scan Reg # I/O DQ1 B10 B3 DQ9 I/O Enb Data 78 79 I/O DQ0 B11 B2 DQ8 I/O I/O DQ3 C10 C3 DQ11 I/O Enb Data Enb Data Enb Data 80 81 82 83 84 85 Data Data Enb Data Enb Data 86 87 88 89 90 91 Enb Data Enb Data Data Data Data Data Data Data Data Data 92 93 94 95 96 97 98 99 100 101 102 103 Data Data Data Data Data Data Data Data Enb Data Enb Data Enb Data Enb Data Data Data 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Enb Data Enb Data Enb Data 18 19 20 21 22 23 Enb Data 24 25 Scan Reg# Reg Content 77 76 75 74 Data Enb Data Enb 73 72 71 70 69 Data Enb Data Enb Data 68 67 66 65 64 63 62 Data Data Enb Data Enb Data Enb 61 60 Data Enb I/O 59 58 57 56 55 54 53 52 Data Data Data Data Data Data Data Data O I I I I I I I 51 50 49 48 47 46 45 44 43 42 41 40 Data Data Data Data Data Data Data Data Data Enb Data Enb I I I I I I I I 39 38 37 36 35 34 33 32 Data Enb Data Enb Data Data Data Enb 31 30 29 28 27 26 Data Enb Data Enb Data Enb I/O DQ2 C11 C2 DQ10 I/O O DQS0# D10 O DQS0 D11 D3 D2 DQS1# DQS1 O O I/O DQ4 E11 E2 DQ12 I/O I/O DQ5 E10 E3 DQ13 I/O I/O DQ6 F11 F2 DQ14 I/O DQ7 F10 F3 DQ15 I/O DVLD A1 A2 A0 A3 A4 B0 CK F12 G11 G10 G12 H12 H11 J11 J12 F1 G2 G3 G1 H1 H2 J2 J1 DM0 A6 A7 A5 A8 A9 B2 AS# I I I I I I I I CK# B1 A14 A13 A10 A12 A11 A18 K12 K11 L11 L12 M12 M10 M11 N12 K1 K2 L2 L1 M1 M3 M2 N1 WE# REF# CS# A19 A15 A17 A16 DM1 I I I I I I I I I/O DQ31 N10 N3 DQ23 I/O I/O DQ30 N11 N2 DQ22 I/O I/O DQ29 P10 P3 DQ21 I/O I/O DQ28 P11 P2 DQ20 I/O O O DQS3 DQS3# R11 R10 R2 R3 DQS2 DQS2# O O I/O DQ26 T11 T2 DQ18 I/O I/O DQ27 T10 T3 DQ19 I/O I/O DQ24 U11 U2 DQ16 I/O I/O DQ25 U10 U3 DQ17 I/O 1: Input pins are connected to Observe-Only Boundary Scan Register Cells. 2: Output pins are connected to Force-Only Boundary Scan Register Cells. 3: IO pins are connected to Control-and-Observe Boundary Scan Register Cells. 4: For BL 4 the content of the register 101 will be set to 0 if A19 is not connected. Otherwise, the register content will be equal to the logical value applied to pin A19. Version 1.60 Page 29 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.4.2 Note: Note: Note: Note: x32 Configuration Scan Reg# Reg Content 77 76 75 74 73 72 71 70 Data Enb Data Enb Data Enb Data Enb 69 68 67 66 Data Data Data Enb 65 64 63 62 Data Enb Data Enb 61 60 59 Data Enb Data 58 57 56 55 54 53 52 Pin Descr . Pin Name Ball # Ball # Pin Name Pin Descr . I/O DQ1 B10 B3 DQ9 I/O I/O DQ0 B11 B2 DQ8 I/O I/O DQ3 C10 C3 DQ11 I/O I/O DQ2 C11 C2 DQ10 I/O O O DQS0# DQS0 D10 D11 D3 D2 DQS1# DQS1 O O I/O DQ4 E11 E2 DQ12 I/O I/O DQ5 E10 E3 DQ13 I/O I/O DQ6 F11 F2 DQ14 I/O Reg Content Scan Reg # Enb Data Enb Data Enb Data 78 79 80 81 82 83 Enb Data Data Data 84 85 86 87 Enb Data Enb Data 88 89 90 91 Enb Data Enb Data 92 93 94 95 I/O DQ7 F10 F3 DQ15 I/O O DVLD F12 Data Data Data Data Data Data Data I I I I I I I A1 A2 A0 A3 A4 B0 CK G11 G10 G12 H12 H11 J11 J12 F1 G2 G3 G1 H1 H2 J2 J1 DM0 A6 A7 A5 A8 A9 B2 AS# I I I I I I I I Data Data Data Data Data Data Data Data 96 97 98 99 100 101 102 103 51 50 49 48 47 46 45 44 43 42 Data Data Data Data Data Data Data Data Data Enb I I I I I I I I CK# B1 A14 A13 A10 A12 A11 A18 K12 K11 L11 L12 M12 M10 M11 N12 K1 K2 L2 L1 M1 M3 M2 N1 WE# REF# CS# A19 A15 A17 A16 DM1 I I I I I I I I I/O DQ31 N10 N3 DQ23 I/O 41 40 39 38 37 36 Data Enb Data Enb Data Enb I/O DQ30 N11 N2 DQ22 I/O I/O DQ29 P10 P3 DQ21 I/O I/O DQ28 P11 P2 DQ20 I/O 35 34 33 32 31 30 29 28 Data Data Data Enb Data Enb Data Enb O O DQS3 DQS3# R11 R10 R2 R3 DQS2 DQS2# O O I/O DQ26 T11 T2 DQ18 I/O I/O DQ27 T10 T3 DQ19 I/O Data Data Data Data Data Data Data Data Enb Data Enb Data Enb Data Enb Data Data Data Enb Data Enb Data 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 I/O DQ24 U11 U2 DQ16 I/O 27 26 Data Enb I/O DQ25 U10 U3 DQ17 I/O Enb Data Enb Data 22 23 24 25 1: Input pins are connected to Observe-Only Boundary Scan Register Cells. 2: Output pins are connected to Force-Only Boundary Scan Register Cells. 3: IO pins are connected to Control-and-Observe Boundary Scan Register Cells. 4: For BL 4 the content of the register 101 will be set to 0 if A18 is not connected. Otherwise, the register content will be equal to the logical value applied to pin A18. Version 1.60 Page 30 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.5 TAP Operation The user must be aware that the TAP controller clock can only operate at a frequency up to 50 MHz, while the RLDRAM clock operates much faster. As a consequence, it is possible that an input or output will undergo a transition right at the moment when the TAP takes the snapshot in the Capture-DR state of the SAMPLE/PRELOAD instruction. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. To guarantee that the boundary scan register will capture the correct value of a signal, the signal must meet the TAP's setup and hold time ( tCS plus tCH) around the rising edge of TCK. 3.6 JTAG TAP Block Diagram Figure 27 TAP Block Diagram TMS TCK Test Access Port (TAP) Controller 0 Bypass Register TDI 7 6 5 4 3 2 1 TDO 0 Instruction Register 31 30 1 0 ID Code Register Version 1.60 103 0 102 1 Page 31 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.7 JTAG TAP Controller State Diagram Figure 28 TAP Controller State Diagram TM S TCK T e s t A c c e s s P o r t (T A P ) C o n tr o lle r 0 B y p a s s R e g is te r TDI 7 6 5 4 3 2 1 TDO 0 In s tr u c tio n R e g is te r 31 30 1 0 ID C o d e R e g is te r 3.8 103 0 102 1 JTAG DC Operating Conditons Parameter Symbol Limit Values Unit Notes min. typ. max. Input logic high voltage, VTIH DC VREF + 0.15 - VDDQ + 0.3 V Input logic low voltage, DC VSSQ -0.3 - VREF - 0.15 V Output logic high VTOH voltage (IOH = -tbd mA) VREF + tbd - - V Output logic low voltage VTOL (IOL = tbd mA) - - VREF - tbd V Version 1.60 VTIL Page 32 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 3.9 JTAG AC Operating Conditions Parameter Input logic high voltage, AC Input logic low voltage, AC Input Slew Rate Input and Output Timing Reference Level 3.10 min. typ. max. Unit VTIH VTIL VREF+0.3 VSSQ-0.3 - V - VDDQ+0.3 VREF-0.3 V TTSL VREF 1.0 - - V/ns VDDQ/2 Notes V JTAG AC Electrical Characteristics Parameter Symbol min. max. Unit TCK Cycle Time TCK High Pulse Width TTCK TTCKH 20 - ns 10 - ns TCK Low Pulse Width TTCKL 10 - ns TCK Low to TDO Valid TTCKDO - 10 ns TDI Set Up Time TTDIS TTMSS 5 - ns 5 - ns TTDIH TTMSH 5 - ns 5 - ns TMS Set Up Time TDI Hold Time TMS Hold Time 3.11 Symbol Notes JTAG Timing Diagram TTCK TTCKH TTCKL TCK TTMSH TTMSS TTDIH TTDIS TMS TDI TTCKDO TDO Version 1.60 Page 33 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 4 Electrical Characteristics 4.1 Absolute Maximum Ratings z z z z z z z Storage temperature range............................................– 55 to + 150 ° C Input/output pins voltage........................................– 0.3 to VDDQ + 0.3V Inputs and VREF voltage.......................................– 0.3 to VDDQ + 0.3V Power supply voltage VDD ............................................... – 0.3 to + 2.1V Power supply voltage VEXT ................................ ........... – 0.3 to + 2.8V Power supply voltage VDDQ ............................................ – 0.3 to + 2.1V Junction Temperature......................................................... 0°C to 100°C Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage of the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 4.2 Recommended Power & DC Operation Ratings All values are recommended operating conditions unless otherwise noted. Table 13 Power & DC Operating Conditions Parameter Symbol min. typ. max. Unit Notes VEXT 2.38 2.5 2.63 V VDD 1.75 1.8 1.85 V Power Supply Voltage for I/O VDDQ 1.75 1.85 1.95 V Reference Voltage Vref 0.9 IIL IILC 0.51* VDDQ +5 V Input leakage current 0.49* VDDQ -5 µA -5 +5 µA -5 +5 µA -5 +5 µA Power Supply Voltages CLK Input leakage current Output leakage current VREF Current IOL IREF 1,2,3 Matched Impedance 1.8V Input logic high voltage, DC VIH Vref + 0.15 – VDDQ + 0.3 V Input logic low voltage, DC VIL VSSQ - 0.3 – Vref - 0.15 V Output high voltage VOH VDDQ - - V Output low voltage VOL - - 0 V Input logic high voltage, DC VIH Vref + 0.1 – Input logic low voltage, DC VIL VSSQ - 0.3 – Output high voltage VOH VDDQ-0.4 - - V Output low voltage VOL - - 0.4 V HSTL strong Note: Note: Note: Note: VDDQ + 0.3 V Vref - 0.1 V 1. Typically the value of Vref is expected to be 0.5 * VDDQ of the transmitting device. Vref is expected to track variations in VDDQ 2. Peak to peak AC noise on Vref may not exceed 2% Vref (DC) 3. Vtt of the transmitting device must track Vref of the receiving device. 4. Recommanded on board decouping capacitors : VDDQ: 2 x 0.1µF / device, VDD: 2 x 0.1µF / device, VREF : 0.1µF / device, VEXT: 0.1µF / device. Version 1.60 Page 34 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 4.3 AC Operation Ratings Table 14 AC Operation Conditions for Matched Impedance mode Parameter Symbol min. typ. max. Unit Input logic high voltage, AC DDR VIH Vref + 0.3 – V Input logic low voltage, AC DDR VIL VSSQ - 0.3 – VDDQ + 0.3 Vref - 0.3 V Clock Differential Input Voltage (CLK/ CLK#) VID 0.6 – VDDQ + 0.6 V Clock Input Crossing Point (CLK/ CLK#) VIX Vref - 0.15 Vref Vref + 0.15 V I/O Reference Voltage Vref 0.49*VDDQ 0.51*VDDQ V Input logic high voltage, AC DDR VIH Vref + 0.3 – V Input logic low voltage, AC DDR VIL VSSQ - 0.3 – VDDQ + 0.3 Vref - 0.3 V Clock Differential Input Voltage (CLK/ CLK#) VID 0.6 – VDDQ + 0.6 V Clock Input Crossing Point (CLK/ CLK#) VIX Vref Vref - 0.15 Vref 0.49*VDDQ Notes Matched Impedance 1.8V HSTL strong I/O Reference Voltage 4.4 Vref + 0.15 V 0.51*VDDQ V Output Test Conditions Figure 29 Output Test Circuits + Vtt = 0.5 x V DDQ 50 Ohm Test point DQ Test point DQ 10 pF 20 pF HSTL Matched Impedance Mode Note: VDDQ=1.8V ±0.1V, TJ = 0 ° C to 100 ° C 4.5 Pin Capacitances Table 15 Pin Capacitances Pin A<19:0>, BA<2:0>, CS#, AREF#, WE# Min 2.0 Typ. 3.0 Max 4.0 Unit pF CLK, CLK# 2.0 3.0 4.0 pF DQ<31:0>, DQS0, DQS0#, DQS1, DQS1#, DVLD, DM 2.0 3.0 4.0 pF Version 1.60 Page 35 Infineon Technologies This specification is preliminary and subject to change without notice HYB18RL25616/32AC 256 Mbit DDR Reduced Latency DRAM 4.6 Operating Currents Table 16 IDD Specifications and Conditions (these values are preliminary and will change) Parameter IDD1 (*) Operating Current (Average Power Supply Current) IDD4R (*) Operating Current (Average Power Supply Current) IDD8 (*) Operating Current (Average Power Supply Current) Version 1.60 x16 x32 Unit Notes Burst Length = 2 tCK=min, tRC=min, 1 bank active, Address change one time during min tRC, Read/Write command cycling1.) Burst Length = 4 tCK=min, tRC=min, 4 banks interleave, address change with each bank activation, continuous read operation 1.) Burst Length = 2 tCK=min, tRC=min, 8banks interleave, address change with each bank activation, continuous read operation 1.) 300MHz VDD VEXT tbd tbd tbd tbd mA mA 250MHz VDD VEXT 205 tbd tbd tbd mA mA 200MHz VDD VEXT 200 85 230 85 mA mA 300MHz VDD VEXT tbd tbd tbd tbd mA mA 250MHz VDD VEXT 500 75 tbd tbd mA mA 200MHz VDD VEXT 415 115 480 115 mA mA 300MHz VDD VEXT tbd tbd tbd tbd mA mA 250MHz VDD VEXT 435 135 tbd tbd mA mA 200MHz VDD VEXT 375 115 480 115 mA mA 300MHz VDD VEXT tbd tbd tbd tbd mA mA 250MHz VDD VEXT 150 75 tbd tbd mA mA 200MHz VDD VEXT 120 75 135 80 mA mA 300MHz VDD VEXT tbd tbd tbd tbd mA mA 250MHz VDD VEXT 155 135 tbd tbd mA mA 200MHz VDD VEXT 125 120 135 tbd mA mA Standby Current Auto Refresh Current Limit Values Symbol/ Freq Page 36 tCK=min All banks idle, CS=1 address/data toggling one time/4 clk clock inputs tCK=min All banks idle, CS=1 64k refresh commands/ 32ms Infineon Technologies This specification is preliminary and subject to change without notice