LT1215/LT1216 - 23MHz, 50V/µs, Single Supply Dual and QuadPrecision Op Amps

LT1215/LT1216
23MHz, 50V/µs, Single Supply
Dual and Quad
Precision Op Amps
U
DESCRIPTIO
FEATURES
■
■
■
■
■
■
■
■
■
■
■
■
Slew Rate: 50V/µs Typ
Gain-Bandwidth Product: 23MHz Typ
Fast Settling to 0.01%
2V Step to 200µV: 250ns Typ
10V Step to 1mV: 480ns Typ
Excellent DC Precision in All Packages
Input Offset Voltage: 450µV Max
Input Offset Voltage Drift: 10µV/°C Max
Input Offset Current: 120nA Max
Input Bias Current: 600nA Max
Open-Loop Gain: 1000V/mV Min
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground While Sinking Current
Low Input Noise Voltage: 12.5nV/√Hz Typ
Low Input Noise Current: 0.5pA/√Hz Typ
Specified on 3.3V, 5V and ±15V
Large Output Drive Current: 30mA Min
Low Supply Current per Amplifier: 6.6mA Max
Dual in 8-Pin DIP and SO-8
Quad in 14-Pin DIP and NARROW SO-16
Note: For applications requiring less slew rate, see the LT1211/LT1212 and
LT1213/LT1214 data sheets.
The LT®1215 is a dual, single supply precision op amp with
a 23MHz gain-bandwidth product and a 50V/µs slew rate.
The LT1216 is a quad version of the same amplifier. The
DC precision of the LT1215/LT1216 eliminates trims in
most systems while providing high frequency performance not usually found in single supply amplifiers.
The LT1215/LT1216 will operate on any supply greater
than 2.5V and less than 36V total. These amplifiers are
specified on single 3.3V, single 5V and ±15V supplies, and
only require 5mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without
damage or phase reversal of the output. The minimum
output drive is 30mA, ideal for driving low impedance loads.
U
APPLICATIO S
■
■
■
■
■
■
2.5V Full-Scale 12-Bit Systems: VOS ≤ 0.75 LSB
10V Full-Scale 16-Bit Systems: VOS ≤ 3 LSB
Active Filters
Photo Diode Amplifiers
DAC Current to Voltage Amplifiers
Battery-Powered Systems
, LTC and LT are registered trademarks of Linear Technology Corporation.
U
TYPICAL APPLICATIO
Single Supply Instrumentation Amplifier
5V
Frequency Response
30
0.1µF
20
+
1/2
LT1215
–
113Ω
1020Ω
NOTE:
0.1% RESISTORS GIVE CMRR ≥ 68dB.
GAIN IS 10.0V/V.
COMMON MODE INPUT RANGE
IS FROM 0.3V TO 3.0V.
BANDWIDTH IS 2.8MHz.
113Ω
1020Ω
DIFFERENTIAL INPUT
10
0
GAIN (dB)
VIN–
–10
–20
–30
–40
COMMON MODE INPUT
–50
–
VIN+
1/2
LT1215
–60
VOUT
+
1215/16 TA01
–70
1k
10k
100k
1M
FREQUENCY (Hz)
10M
1215/16 TA02
1
LT1215/LT1216
W W
W
AXI U
U
ABSOLUTE
RATI GS (Note 1)
Total Supply Voltage (V + to V –) ............................. 36V
Input Current ..................................................... ±15mA
Output Short-Circuit Duration (Note 2) ........ Continuous
Operating Temperature Range
LT1215C/LT1216C (Note 3) .............. – 40°C to 85°C
LT1215M (OBSOLETE) ............... – 55°C to 125°C
Specified Temperature Range
LT1215C/LT1216C (Note 4) .............. – 40°C to 85°C
LT1215M (OBSOLETE) ............... – 55°C to 125°C
Storage Temperature Range ................ – 65°C to 150°C
Junction Temperature (Note 5) ............................. 150°C
Plastic Package (CN8, CS8, CN, CS)................ 150°C
Ceramic Package (MJ8) (OBSOLETE) .......... 175°C
Lead Temperature (Soldering, 10 sec)................. 300°C
U
W
U
PACKAGE/ORDER I FOR ATIO
TOP VIEW
OUT A 1
–IN A 2
8
V+
7 OUT B
A
+IN A 3
6 –IN B
B
V– 4
5 +IN B
ORDER PART
NUMBER
TOP VIEW
LT1215CN8
LT1215ACN8
N8 PACKAGE
8-LEAD PDIP
8 V+
OUT A 1
–IN A 2
+IN A 3
TJMAX = 150°C, θJA = 100°C/W
LT1215MJ8
LT1215AMJ8
LT1215CS8
7 OUT B
A
6 –IN B
B
V– 4
J8 PACKAGE 8-LEAD CERDIP
TJMAX = 175°C, θJA = 100°C/W
ORDER PART
NUMBER
5 +IN B
S8 PACKAGE
8-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 150°C/W
S8 PART MARKING
1215
OBSOLETE PACKAGE
Consider the N8 Package for Alternate Source
ORDER PART
NUMBER
TOP VIEW
OUT A 1
14 OUT D
–IN A 2
+IN A 3
V+
A
D
4
+IN B 5
13 –IN D
B
C
V–
10 +IN C
–IN B 6
9
–IN C
OUT B 7
8
OUT C
N PACKAGE
14-LEAD PDIP
TJMAX = 150°C, θJA = 70°C/W
Consult LTC Marketing for parts specified with wider operating temperature ranges.
2
16 OUT D
OUT A 1
–IN A 2
LT1216CN
12 +IN D
11
TOP VIEW
+IN A 3
A
D
V+ 4
+IN B 5
15 –IN D
14 +IN D
13 V –
B
C
12 +IN C
–IN B 6
11 –IN C
OUT B 7
10 OUT C
NC 8
ORDER PART
NUMBER
9
NC
S PACKAGE
16-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 100°C/W
LT1216CS
LT1215/LT1216
U
AVAILABLE OPTIO S
NUMBER OF
OP AMPS
Two (Dual)
TA RANGE
– 40°C to 85°C
– 55°C to 125°C
Four (Quad)
– 40°C to 85°C
MAX VOS (25°C)
300µV
450µV
450µV
300µV
450µV
450µV
PACKAGE
MAX TC VOS
(∆VOS /∆T)
2.5µV/°C
5µV/°C
10µV/°C
2.5µV/°C
5µV/°C
10µV/°C
CERAMIC (J)
OBSOLETE
PLASTIC DIP
(N)
LT1215ACN8
LT1215CN8
SURFACE MOUNT
(S)
LT1215CS8
LT1215AMJ8
LT1215MJ8
LT1216CN
LT1216CS
5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆Time
IOS
IB
en
PARAMETER
Input Offset Voltage
Long-Term Input Offset
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
in
Input Noise Current Density
Input Resistance (Note 6)
Input Capacitance
Input Voltage Range
CMRR
PSRR
AVOL
IO
SR
GBW
IS
tr, tf
OS
tPD
tS
THD
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 7)
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current Per Amplifier
Minimum Supply Voltage
Full Power Bandwidth
Rise Time, Fall Time
Overshoot
Propagation Delay
Settling Time
Open-Loop Output Resistance
Total Harmonic Distortion
CONDITIONS
0.1Hz to 10Hz
fO = 10Hz
fO = 1000Hz
fO = 10Hz
fO = 1000Hz
Differential Mode
Common Mode
f = 1MHz
VCM = 0V to 3V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 30mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 30mA
(Note 11)
AV = – 2
f = 100kHz
LT1215AC
LT1215AM
MIN
TYP
MAX
125
300
0.8
LT1215C/LT1215M
LT1216C
MIN
TYP
MAX
150
450
1.0
35
420
400
15.0
12.5
7.0
0.5
40
200
10
3.2
– 0.2
108
115
600
4.39
4.30
3.75
0.005
0.030
0.630
±50
30
23
4.75
2.2
2.6
16
25
13
250
40
0.001
35
420
400
15.0
12.5
7.0
0.5
40
200
10
3.2
– 0.2
108
115
600
4.39
4.30
3.75
0.005
0.030
0.630
±50
30
23
4.75
2.2
2.6
16
25
13
250
40
0.001
10
3.0
0
90
96
150
4.30
4.20
3.60
±30
3.6
Single Supply
AV = 1, VO = 2.5VP-P
AV = 1, 10% to 90%, VO = 100mV
AV = 1, VO = 100mV
AV = 1, VO = 100mV
0.01%, AV = 1, ∆VO = 2V
IO = 0mA, f = 10MHz
AV = 1, VO = 1VRMS, 20Hz to 20kHz
80
500
10
3.0
0
86
93
150
4.30
4.20
3.60
0.008
0.050
1.000
±30
6.6
2.5
3.6
120
600
0.008
0.050
1.000
6.6
2.5
UNITS
µV
µV/Mo
nA
nA
nVP-P
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
MΩ
MΩ
pF
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
V/µs
MHz
mA
V
MHz
ns
%
ns
ns
Ω
%
3
LT1215/LT1216
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 7)
VCM = 0.1V to 2.9V
VS = 2.6V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
MIN
8-Pin DIP Package
14-Pin DIP, SO Package
Supply Current Per Amplifier
2.9
0.1
89
95
100
4.20
4.10
3.70
3.3
LT1215AC
TYP
MAX
200
350
1
2.5
35
450
3.1
– 0.1
108
114
600
4.33
4.24
3.89
0.006
0.035
0.500
5.2
100
530
0.009
0.055
0.725
7.5
LT1215C/LT1216C
MIN
TYP
MAX
250
550
2
5
3
10
35
170
450
830
2.9
3.1
0.1
– 0.1
85
108
92
114
100
600
4.20
4.33
4.10
4.24
3.70
3.89
0.006 0.009
0.035 0.055
0.500 0.725
3.3
5.2
7.5
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
LT1215C/LT1216C
MIN
TYP
MAX
250
600
2
5
3
10
35
190
450
850
2.8
3.0
0.2
0
84
108
91
114
100
600
4.10
4.30
4.00
4.16
3.60
3.82
0.006 0.010
0.035 0.060
0.500 0.750
2.9
5.3
7.6
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 4)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
4
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 7)
VCM = 0.2V to 2.8V
VS = 2.7V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
Supply Current Per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SO Package
2.8
0.2
88
94
100
4.10
4.00
3.60
2.9
LT1215AC
TYP
MAX
200
400
1
2.5
35
450
3.0
0
108
114
600
4.30
4.16
3.82
0.006
0.035
0.500
5.3
110
550
0.010
0.060
0.750
7.6
LT1215/LT1216
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 7)
VCM = 0.4V to 2.8V
VS = 2.7V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
Supply Current Per Amplifier
MIN
2.8
0.4
87
93
50
4.00
3.90
3.50
2.3
LT1215AM
TYP
MAX
250
450
1
2.5
35
450
3.0
0.2
108
114
100
4.20
4.10
3.80
0.007
0.040
0.700
5.5
MIN
150
600
0.012
0.070
1.000
8.4
LT1215C/LT1215M
LT1216C
MIN
TYP
MAX
250
650
30
110
360
550
13.0
13.2
–15.0 – 15.2
86
108
93
110
1000 3500
13.5 13.75
–14
–14.4
±30
± 50
40
50
15
23
3.6
5.7
8
128
140
±1.7
±2
750
480
UNITS
µV
nA
nA
V
V
dB
dB
V/mV
V
V
mA
V/µs
MHz
mA
dB
V
kHz
ns
2.3
35
450
3.0
0.2
108
114
100
4.20
4.10
3.80
0.007
0.040
0.700
5.5
200
700
UNITS
µV
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
mV
mV
mV
mA
2.8
0.4
82
90
50
4.00
3.90
3.50
0.012
0.070
1.000
8.4
LT1215M
TYP
MAX
350
750
2
5
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
IO
SR
GBW
IS
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current Per Amplifier
Channel Separation
Minimum Supply Voltage
Full-Power Bandwidth
Settling Time
VCM = –15V to 13V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 30mA
Output Low, ISINK = 30mA
(Note 11)
AV = – 2 (Note 8)
f = 100kHz
VO = ±10V, RL = 2k
Equal Split Supplies
AV = 1, VO = 20VP-P
0.01%, AV = 1, ∆VO = 10V
LT1215AC
LT1215AM
MIN
TYP
225
30
360
13.0
13.2
–15.0 – 15.2
90
108
96
110
1000 3500
13.5 13.75
–14 –14.4
±30
±50
40
50
15
23
3.6
5.7
128
140
±1.7
750
480
MAX
500
80
500
8
±2
5
LT1215/LT1216
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = –14.9V to 12.9V
VS = ±2.1V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 20mA
Output Low, ISINK = 20mA
IS
Supply Current Per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SO Package
12.9
–14.9
89
95
800
13.7
– 14.2
3.3
LT1215AC
TYP
MAX
325
550
1
2.5
30
360
13.1
–15.1
108
110
3000
13.9
– 14.5
6.3
100
530
9.2
LT1215C/LT1216C
MIN
TYP
MAX
400
750
2
5
3
10
30
160
360
800
12.9
13.1
–14.9 –15.1
85
108
92
110
800
3000
13.7
13.9
– 14.2 – 14.5
3.3
6.3
9.2
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1215C/LT1216C
MIN
TYP
MAX
400
800
2
5
3
10
30
180
360
820
12.8
13.0
–14.8 –15.0
84
108
91
110
800
2500
13.6
13.8
– 14.1 – 14.5
2.9
6.5
9.5
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1215M
TYP
MAX
500
950
2
5
UNITS
µV
µV/°C
VS = ±15V, VCM = 0V, VOUT = 0V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 4)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.8V to 12.8V
VS = ±2.2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 20mA
Output Low, ISINK = 20mA
IS
Supply Current Per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SO Package
12.8
–14.8
88
94
800
13.6
– 14.1
2.9
LT1215AC
TYP
MAX
325
600
1
2.5
30
360
13.0
–15.0
108
110
2500
13.8
– 14.5
6.5
110
550
9.5
VS = ±15V, VCM = 0V, VOUT = 0V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 6)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.6V to 12.8V
VS = ±2.2V to ±15V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 20mA
Output Low, ISINK = 20mA
IS
Supply Current Per Amplifier
6
MIN
12.8
–14.6
87
93
500
13.4
–14
2.3
LT1215AM
TYP
MAX
350
650
1
2.5
30
360
13.0
–14.8
108
110
2000
13.8
–14.5
7
MIN
150
600
10.3
12.8
–14.6
82
90
500
13.4
–14
2.3
30
360
13.0
–14.8
108
110
2000
13.8
–14.5
7
200
700
10.3
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1215/LT1216
3.3V ELECTRICAL CHARACTERISTICS
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 8)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 10)
IO
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 30mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 30mA
Maximum Output Current
MIN
1.3
0
2.60
2.50
1.90
±30
LT1215AC
LT1215AM
TYP
MAX
125
300
1.5
– 0.2
2.69
2.60
2.05
0.005 0.008
0.035 0.050
0.700 1.000
±50
LT1215C/LT1215M
LT1216C
MIN
TYP
MAX
150
450
1.3
1.5
0
– 0.2
2.60
2.69
2.50
2.60
1.90
2.05
0.005 0.008
0.035 0.050
0.700 1.000
±30
±50
UNITS
µV
V
V
V
V
V
V
V
V
mA
LT1215C/LT1216C
MIN
TYP
MAX
250
550
1.2
1.4
0.1
– 0.1
2.50
2.63
2.40
2.54
2.00
2.19
0.006 0.009
0.035 0.055
0.500 0.725
UNITS
µV
V
V
V
V
V
V
V
V
LT1215C/LT1216C
MIN
TYP
MAX
250
600
1.1
1.3
0.2
0
2.40
2.50
2.30
2.46
1.90
2.12
0.006 0.010
0.035 0.060
0.500 0.750
UNITS
µV
V
V
V
V
V
V
V
V
LT1215M
TYP
350
1.3
0.2
2.50
2.40
2.10
0.007
0.040
0.700
UNITS
µV
V
V
V
V
V
V
V
V
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. (Note 9)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 10)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
MIN
1.2
0.1
2.50
2.40
2.00
LT1215AC
TYP
200
1.4
– 0.1
2.63
2.54
2.19
0.006
0.035
0.500
MAX
350
0.009
0.055
0.725
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Notes 4, 9)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 10)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
MIN
1.1
0.2
2.40
2.30
1.90
LT1215AC
TYP
200
1.3
0
2.50
2.46
2.12
0.006
0.035
0.500
MAX
400
0.010
0.060
0.750
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. (Note 9)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 10)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
MIN
1.1
0.4
2.30
2.20
1.80
LT1215AM
TYP
MAX
250
450
1.3
0.2
2.50
2.40
2.10
0.007 0.012
0.040 0.070
0.700 1.000
MIN
1.1
0.4
2.30
2.20
1.80
MAX
750
0.012
0.070
1.000
7
LT1215/LT1216
ELECTRICAL CHARACTERISTICS
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 3: The LT1215C/LT1216C are guaranteed functional over the
operating temperature range of – 40°C to 85°C. The LT1215M is
guaranteed functional over the operating temperature range of
– 55°C to 125°C.
Note 4: The LT1215C/LT1216C are guaranteed to meet specified
performance from 0°C to 70°C. The LT1215C/LT1216C are designed,
characterized and expected to meet specified performance from – 40°C to
85°C but are not tested or QA sampled at these temperatures. For
guaranteed I-grade parts consult the factory. The LT1215M is guaranteed
to meet specified performance from – 55°C to 125°C.
Note 5: TJ is calculated from the ambient temperature TA and power
dissipation PD according to the following formulas:
LT1215MJ8, LT1215AMJ8: TJ = TA + (PD • 100°C/W)
LT1215CN8, LT1215ACN8: TJ = TA + (PD • 100°C/W)
LT1215CS8:
TJ = TA + (PD • 150°C/W)
LT1216CN:
TJ = TA + (PD • 70°C/W)
LT1216CS:
TJ = TA + (PD • 100°C/W)
Note 6: This parameter is not 100% tested.
Note 7: Guaranteed by correlation to 3.3V and ±15V tests.
Note 8: Slew rate is measured between ±8.5V on an output swing of ±10V
on ±15V supplies.
Note 9: Most LT1215/LT1216 electrical characteristics change very little
with supply voltage. See the 5V tables for characteristics not listed in the
3.3V table.
Note 10: Guaranteed by correlation to 5V and ±15V tests.
Note 11: Guaranteed by correlation to 3.3V tests.
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Distribution of Offset Voltage Drift
with Temperature
Distribution of Input Offset Voltage
50
VS = 5V
VS = 5V
LT1215 N8 PACKAGE
LT1215 J8 PACKAGE
VS = ±15V
LT1215 N8 PACKAGE
LT1215 J8 PACKAGE
25
40
PERCENT OF UNITS (%)
40
PERCENT OF UNITS (%)
30
35
30
25
20
15
PERCENT OF UNITS (%)
45
Distribution of Input Offset Voltage
50
30
20
10
10
LT1215 N8 PACKAGE
LT1215 J8 PACKAGE
20
15
10
5
5
0
225 375
–525 –375 –225 –75 75
INPUT OFFSET VOLTAGE (µV)
0
1215/16 G04
Distribution of Input Offset
Voltage
30
50
VS = 5V
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
40
35
30
25
20
15
10
VS = ±15V
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
25
PERCENT OF UNITS (%)
VS = 5V
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
40
1215/16 G06
Distribution of Offset Voltage Drift
with Temperature
50
750
–450
–150
150
450
INPUT OFFSET VOLTAGE (µV)
1215/16 G05
Distribution of Input Offset Voltage
45
0
–750
1 2
3 4 5
–5 –4 –3 –2 –1 0
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
525
30
20
10
LT1215 S8 PACKAGE
LT1216 N PACKAGE
LT1216 S PACKAGE
20
15
10
5
5
0
225 375
–525 –375 –225 –75 75
INPUT OFFSET VOLTAGE (µV)
525
1215/16 G07
8
0
2 4
6 8 10
–10 –8 –6 –4 –2 0
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
1215/16 G08
0
–750
–450
–150
150
450
INPUT OFFSET VOLTAGE (µV)
750
1215/16 G09
LT1215/LT1216
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Voltage Gain, Phase vs
Frequency
CL = 20pF
RL = 2k
120
PHASE
VS = ±15V
60
VS = ±15V
40
20
GAIN
40
20
0
–20
0
CL = 20pF
RL = 2k
VS = 5V
–20
1
10
100
10k 100k 1M 10M 100M
FREQUENCY (Hz)
1k
–20
100k
–40
20
18
TA = 25°C, 125°C
17
50
20
10
3
5 7 10
20
TOTAL SUPPLY VOLTAGE (V)
1
1215/16 G12
Capacitive Load Handling
AV = –2
RL = 10k
TA = 125°C
60
TA = 25°C
45
35
VS = 5V
70
OVERSHOOT (%)
SLEW RATE (V/µs)
VS = 5V
TA = –55°C
25
50
40
AV = 1
30
AV = 5
20
20
15
10
–50 –25
25
0
50
75
TEMPERATURE (°C)
100
10
0
4
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
1215/16 G13
AV = –1
26
OUTPUT SWING (VP-P)
OUTPUT SWING (VP-P)
TOTAL HARMONIC DISTORTION AND NOISE (%)
28
4
3
2
AV = 1
24
22
20
18
16
14
1
12
10
0
10k
100k
FREQUENCY (Hz)
1M
1215/16 G16
VS = ±15V
1k
10k
100k
FREQUENCY (Hz)
1000
Total Harmonic Distortion and
Noise vs Frequency
30
VS = 5V
AV = 1
100
CAPACITIVE LOAD (pF)
1216/ G15
Undistorted Output Swing
vs Frequency, VS = ±15V
5
1k
10
36
1215/16 G14
Undistorted Output Swing
vs Frequency, VS = 5V
AV = –1
AV = 10
0
5
125
0
30 40
80
55
40
40
30
Slew Rate vs Supply Voltage
VS = ±15V
60
TA = –55°C
65
30
TA = 125°C
19
–60
100M
1M
10M
FREQUENCY (Hz)
Slew Rate vs Temperature
50
TA = 25°C
1215/16 G11
60
TA = 25°C
AV = –2
RL = 10k
TA = –55°C
21
VS = 5V
1215/16 G10
SLEW RATE (V/µs)
20
VS = 5V
VS = ±15V
0
60
PHASE SHIFT (DEG)
VOLTAGE GAIN (dB)
40
80
22
80
PHASE MARGIN (DEG)
100
23
100
60
140
VOLTAGE GAIN (dB)
Gain-Bandwidth Product,
Phase Margin vs Supply Voltage
GAIN-BANDWIDTH PRODUCT (MHz)
Voltage Gain vs Frequency
1M
1215/16 G17
0.1
VS = 5V
VO = 3VP-P
RL = 1k
0.01
AV = 10
0.001
0.0001
10
AV = 1
100
1k
10k
FREQUENCY (Hz)
100k
1215/16 G18
9
LT1215/LT1216
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Open-Loop Voltage Gain
vs Supply Voltage
Positive Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = 5V
7k
6k
INPUT, 5µV/DIV
OPEN-LOOP VOLTAGE GAIN (V/mV)
RL = 2k
TA = –55°C
5k
TA = 25°C
4k
3k
2k
RL =
500Ω
TA = 125°C
0
1k
1
2
3
OUTPUT (V)
4
1215/16 G20
SATURATION VOLTAGE, V + – VOUT (V)
1.6
RL = 2k
0
4
0
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
VS = 5V
1.4
ISOURCE = 30mA
1.2
1.0
ISOURCE = 10mA
0.8
ISOURCE = 1mA
0.6
ISOURCE = 10µA
0.4
–50 –25
36
50
25
75
0
TEMPERATURE (°C)
1215/16 G19
Negative Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = ±15V
10k
INPUT, 5µV/DIV
1k
VS = 5V
VS = ±15V
RL = 2k
RL =
500Ω
100
–10
0
OUTPUT (V)
10
1215/16 G23
SATURATION VOLTAGE, VOUT – V – (mV)
1000
TA = 25°C
OPEN-LOOP VOLTAGE GAIN (V/mV)
125
1215/16 G21
Voltage Gain vs Load Resistance
10
10
100
1k
LOAD RESISTANCE (Ω)
ISINK = 30mA
ISINK = 10mA
100
ISINK = 1mA
ISINK = 10µA
10
VS = 5V
1
–50 –25
10k
0
25
50
75
TEMPERATURE (°C)
Output Short-Circuit Current
vs Temperature
Channel Separation vs Frequency
140
110
100
90
80
70
60
50
40
30
10k
1M
100k
FREQUENCY (Hz)
10M
1215/16 G25
10
1000
VS = ±15V
VS = 5V
SOURCING
60
OUTPUT IMPEDANCE (Ω)
120
OUTPUT SHORT-CIRCUIT CURRENT (mA)
VS = ±15V
TA = 25°C
125
Output Impedance vs Frequency
70
130
100
1215/16 G24
1215/16 G22
CHANNEL SEPARATION (dB)
100
50
40
VS = ±15V
SINKING OR
SOURCING
100
10
AV = 100
1
AV = 10
AV = 1
0.1
30
–50 –25
50
100
25
75
0
CASE TEMPERATURE (°C)
125
1215/16 G26
0.01
10k
100k
1M
FREQUENCY (Hz)
10M
1215/16 G27
LT1215/LT1216
U W
TYPICAL PERFOR A CE CHARACTERISTICS
5V Large-Signal Response
5V Large-Signal Response
5V Small-Signal Response
3V
0V
0V
20mV/DIV
3V
50ns/DIV
VS = 5V
AV = 1
200ns/DIV
VS = 5V
AV = 1
1215/16 G34
±15V Large-Signal Response
20mV/DIV
±15V Small-Signal Response
VS = ±15V
AV = 1
100ns/DIV
VS = 5V
AV = –1
RF = RG = 1k
CF = 20pF
1215/16 G28
±15V Large-Signal Response
10V
10V
0V
0V
–10V
–10V
50ns/DIV
VS = ±15V
AV = 1
1215/16 G34
200ns/DIV
VS = ±15V
AV = –1
RF = RG = 1k
1215/16 G29
200ns/DIV
1215/16 G32
Settling Time to 0.01%
vs Output Step
±15V Settling
5V Settling
1215/16 G31
10
8
VS = ±15V
1215/16 G30
2V/DIV
500mV/DIV
VS = 5V
AV = 1
1mV/DIV
250µV/DIV
50ns/DIV
VS = ±15V
AV = –1
OUTPUT STEP (V)
6
4
2
0
NONINVERTING
INVERTING
–2
–4
–6
100ns/DIV
–8
1215/16 G33
–10
200
400
300
SETTLING TIME (ns)
500
1215/16 G36
11
LT1215/LT1216
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Supply Voltage
Supply Current vs Temperature
TA = 125°C
5.5
5.0
TA = 25°C
4.5
4.0
TA = –55°C
3.5
3.0
2.5
1
0
2
3
4
SUPPLY VOLTAGE (V)
20
7
6
VS = ±15V
5
VS = 5V
4
3
2
–50 –25
5
25
0
50
75
TEMPERATURE (°C)
400
340
IOS
–IB
280
100
–200
–300
TA = 125°C
TA = 25°C
–400
125
V + –1
V + –2
V – +1
V–
TA = –55°C
V – –1
–1
0
2
3
1
COMMON-MODE VOLTAGE (V)
4
–50 –25
20
120
VOLTAGE NOISE
12
10
8
6
4
2
CURRENT NOISE
10
100
1k
10k
FREQUENCY (Hz)
100k
1215/16 G40
12
VS = 5V
POWER SUPPLY REJECTION RATIO (dB)
COMMON-MODE REJECTION RATIO (dB)
14
90
80
70
60
50
40
30
20
10
10k
125
Input Referred Power Supply
Rejection Ratio vs Frequency
110
100
100
1215/16 G39
Common Mode Rejection Ratio
vs Frequency
VS = ±15V
TA = 25°C
RS = 0Ω
50
25
75
0
TEMPERATURE (°C)
1215/16 G38
Input Noise Current, Noise
Voltage Density vs Frequency
16
20 40 60 80 100 120 140 160 180 200
TIME AFTER POWER-UP (SEC)
Common Mode Range
vs Temperature
–100
1215/16 G37
18
VS = ±2.5V
RL = ∞
4 TYPICAL AMPLIFIERS
–15
1215/16 G03
–500
50
25
75
0
TEMPERATURE (°C)
–10
V+
260
240
–50 –25
–5
0
COMMON-MODE RANGE (V)
INPUT BIAS CURRENT (nA)
INPUT BIAS CURRENT (nA)
+IB
300
0
VS = 5V
380
320
5
–20
125
0
VS = 5V
360
10
Input Bias Current vs
Common Mode Voltage
Input Bias Current vs Temperature
INPUT NOISE CURRENT DENSITY (pA/√Hz)
INPUT NOISE VOLTAGE DENSITY (nV/√Hz)
100
15
1215/16 G02
1215/16 G01
0
CHANGE IN OFFSET VOLTAGE (µV)
SUPPLY CURRENT PER AMPLIFIER (mA)
SUPPLY CURRENT PER AMPLIFIER (mA)
6.0
2.0
Warm-Up Drift vs Time
8
6.5
100
90
10M
1215/16 G41
POSITIVE SUPPLY
80
70
60
50
NEGATIVE SUPPLY
40
30
20
100k
1M
FREQUENCY (Hz)
VS = ±15V
AV = 100
110
1k
10k
100k
1M
FREQUENCY (Hz)
10M
1215/16 G42
LT1215/LT1216
U
W
U
UO
APPLICATI
S I FOR ATIO
Supply Voltage
The LT1215/LT1216 op amps are fully functional and all
internal bias circuits are in regulation with 2.2V of supply.
The amplifiers will continue to function with as little as
1.5V, although the input common mode range and the
phase margin are about gone. The minimum operating
supply voltage is guaranteed by the PSRR tests which are
done with the input common mode equal to 500mV and a
minimum supply voltage of 2.5V. The LT1215/LT1216 are
guaranteed over the full – 55°C to 125°C range with a
minimum supply voltage of 2.7V.
The positive supply pin of the LT1215/LT1216 should be
bypassed with a small capacitor (about 0.01µF) within an
inch of the pin. When driving heavy loads and for good
settling time, an additional 4.7µF capacitor should be
used. When using split supplies, the same is true for the
negative supply pin.
Power Dissipation
The LT1215/LT1216 amplifiers combine high speed and
large output current drive into very small packages. Because these amplifiers work over a very wide supply range,
it is possible to exceed the maximum junction temperature
under certain conditions. To insure that the LT1215/
LT1216 are used properly, calculate the worst case power
dissipation, define the maximum ambient temperature,
select the appropriate package and then calculate the
maximum junction temperature.
The worst case amplifier power dissipation is the total of
the quiescent current times the total power supply voltage
plus the power in the IC due to the load. The quiescent
supply current of the LT1215/LT1216 has a positive temperature coefficient. The maximum supply current of each
amplifier at 125°C is given by the following formula:
ISMAX = 8.4 + 0.076 • (VS – 5) in mA
VS is the total supply voltage.
The power in the IC due to the load is a function of the
output voltage, the supply voltage and load resistance. The
worst case occurs when the output voltage is at half
supply, if it can go that far, or its maximum value if it
cannot reach half supply.
For example, calculate the worst case power dissipation
while operating on ±15V supplies and driving a 500Ω load.
ISMAX = 8.4 + 0.076 • (30 – 5) = 10.3mA
PDMAX = 2 • VS • ISMAX + (VS – VOMAX) • VOMAX/RL
PDMAX = 2 • 15V • 10.3mA + (15V – 7.5V) • 7.5V/500
= 0.309 + 0.113 = 0.422 Watt per Amp
If this is the dual LT1215, the total power in the package is
twice that, or 0.844W. Now calculate how much the die
temperature will rise above the ambient. The total power
dissipation times the thermal resistance of the package
gives the amount of temperature rise. For this example, in
the SO-8 surface mount package, the thermal resistance is
150°C/W junction-to-ambient in still air.
Temperature Rise = PDMAX • θJA = 0.844W • 150°C/W
= 126.6°C
The maximum junction temperature allowed in the plastic
package is 150°C. Therefore the maximum ambient allowed is the maximum junction temperature less the
temperature rise.
Maximum Ambient = 150°C – 126.6°C = 23.4°C
That means the SO-8 dual can only be operated at or below
room temperature on ±15V supplies with a 500Ω load.
Obviously this is not recommended. Lowering the supply
voltage is recommended, or use the DIP packaged part.
As a guideline to help in the selection of the LT1215/
LT1216, the following table describes the maximum supply voltage that can be used with each part based on the
following assumptions:
1. The maximum ambient is 70°C or 125°C depending
on the part rating.
2. The load is 500Ω, includes the feedback resistors.
3. The output can be anywhere between the supplies.
PART
MAX SUPPLIES
LT1215MJ8
LT1215CN8
LT1215CS8
LT1216CN
LT1216CS
15.0V or ±10.3V
20.3V or ±14.5V
15.7V or ±10.8V
16.4V or ±11.4V
13.0V or ±8.7V
MAX POWER AT MAX TA
500mW
800mW
533mW
1143mW
800mW
13
LT1215/LT1216
U
W
U
UO
APPLICATI
S I FOR ATIO
Inputs
Typically at room temperature, the inputs of the LT1215/
LT1216 can common mode 400mV below ground (V –)
and to within 1.5V of the positive supply with the amplifier
still functional. However the input bias current and offset
voltage will shift as shown in the characteristic curves. For
full precision performance, the common mode range
should be limited between ground (V –) and 2V below the
positive supply.
When either of the inputs is taken below ground (V –) by
more than about 700mV, that input current will increase
dramatically. The current is limited by internal 100Ω
resistors between the input pins and diodes to each
supply. The output will remain low (no phase reversal) for
inputs 1.3V below ground (V –). If the output does not have
to sink current, such as in a single supply system with a 1k
load to ground, there is no phase reversal for inputs up to
8V below ground.
There are no clamps across the inputs of the LT1215/
LT1216 and therefore each input can be forced to any
voltage between the supplies. The input current will remain constant at about 360nA over most of this range.
When an input gets closer than 2V to the positive supply,
that input current will gradually decrease to zero until the
input goes above the supply, then it will increase due to the
previously mentioned diodes. If the inverting input is held
more positive than the noninverting input by 200mV or
more, while at the same time the noninverting input is
within 300mV of ground (V –), then the supply current will
increase by 5mA and the noninverting input current will
increase to about 100µA. This should be kept in mind in
comparator applications where the inverting input stays
above ground (V –) and the noninverting input does not.
Output
The output of the LT1215/LT1216 will swing to within
0.61V of the positive supply with no load. The open-loop
output resistance, when the output is driven hard into the
14
positive rail, is about 100Ω as the output starts to source
current; this resistance drops to about 20Ω as the current
increases. Therefore when the output sources 1mA, the
output will swing to within 0.7V of the positive supply.
While sourcing 30mA, it is within 1.25V of the positive
supply.
The output of the LT1215/LT1216 will swing to within 5mV
of the negative supply while sinking zero current. Thus, in
a typical single supply application with the load going to
ground, the output will go to within 5mV of ground. The
open-loop output resistance when the output is driven
hard into the negative rail is about 25Ω at low currents and
reduces to about 21Ω at high currents. Therefore when the
output sinks 1mA, the output is about 30mV above the
negative supply and while sinking 30mA, it is about
630mV above it.
The output of the LT1215/LT1216 has reverse-biased
diodes to each supply. If the output is forced beyond either
supply, unlimited currents will flow. If the current is
transient and limited to several hundred mA, no damage
will occur.
Feedback Components
Because the input currents of the LT1215/LT1216 are less
than 600nA, it is possible to use high value feedback
resistors to set the gain. However, care must be taken to
insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the
stability of the amplifier. For example, if a single supply,
noninverting gain of two is set with two 10k resistors, the
LT1215/LT1216 will probably oscillate. This is because
the amplifier goes open-loop at 7MHz (6dB of gain) and
has 50° of phase margin. The feedback resistors and the
10pF input capacitance generate a pole at 3MHz that
introduces 67° of phase shift at 7MHz! The solution is
simple, lower the values of the resistors or add a feedback
capacitor of 10pF or more.
LT1215/LT1216
W
U
U
UO
APPLICATI
S I FOR ATIO
Comparator Applications
following photos. These amplifiers are unity-gain stable
op amps and not fast comparators, therefore, the logic
being driven may oscillate due to the long transition time.
The output can be speeded up by adding 20mV or more of
hysteresis (positive feedback), but the offset is then a
function of the input direction.
Sometimes it is desirable to use an op amp as a comparator. When operating the LT1215/LT1216 on a single 3.3V
or 5V supply, the output interfaces directly with most TTL
and CMOS logic.
The response time of the LT1215/LT1216 is a strong
function of the amount of input overdrive as shown in the
LT1215 Comparator Response (+)
20mV, 10mV, 5mV, 2mV Overdrives
LT1215 Comparator Response (–)
20mV, 10mV, 5mV, 2mV Overdrives
4
OUTPUT (V)
OUTPUT (V)
4
2
2
0
INPUT (mV)
INPUT (mV)
0
100
0
100
0
5µs/DIV
5µs/DIV
VS = 5V
RL = ∞
VS = 5V
RL = ∞
1215/16 AI01
1215/16 AI02
W
W
SI PLIFIED SCHE ATIC
V+
I1
I4
I3
I2
I6
I5
Q3
Q13
BIAS
CM
Q14
Q4
–IN
Q15
+IN
Q1
Q11
Q2
OUT
RF
Q7
Q12
CF
Q10
Q8
Q5
Q9
Q6
Q16
I7
CO
I8
CI
V–
1215/16 SS
15
LT1215/LT1216
U
TYPICAL APPLICATIO
Single Supply, AC Coupled Input, RMS Calibrated, Average Detector
AC TO DC BIASED
DIFFERENTIAL SIGNAL
DIFFERENTIAL INPUT,
ABSOLUTE VALUE CIRCUIT
5V
DC OUTPUT VOLTAGE vs AC INPUT VOLTAGE
1000
22pF
VS = 5V
20k
10k
A
LT1216
VB
2 × R2
20k
R1
10k
–
B
LT1216
R1
10k
–
11.3k
+
10µF
+
VIN
1k
–
f = 1kHz
f = 100kHz
R2
10k
R1
10k
D
LT1216
100
2 × R2
20k
22pF
+
DC OUT (mV)
+
VA
R1
10k
10
1
+
C
LT1216
–
R2
•
R1 VA – VB
10
AC IN (mVRMS)
100k
+
DC OUT
1µF
R2
10k
11.3k
22pF
22pF
16
1215/16 TA05
100
1215/16 GA06
LT1215/LT1216
U
PACKAGE DESCRIPTIO
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.005
(0.127)
MIN
0.405
(10.287)
MAX
8
7
6
5
0.025
(0.635)
RAD TYP
0.220 – 0.310
(5.588 – 7.874)
1
2
0.300 BSC
(0.762 BSC)
3
4
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
0° – 15°
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.045 – 0.065
(1.143 – 1.651)
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
0.125
3.175
MIN
J8 1298
OBSOLETE PACKAGE
17
LT1215/LT1216
U
PACKAGE DESCRIPTIO
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
0.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
0.255 ± 0.015*
(6.477 ± 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.065
(1.651)
TYP
0.009 – 0.015
(0.229 – 0.381)
(
+0.035
0.325 –0.015
8.255
+0.889
–0.381
0.130 ± 0.005
(3.302 ± 0.127)
0.045 – 0.065
(1.143 – 1.651)
)
0.125
(3.175) 0.020
MIN (0.508)
MIN
0.018 ± 0.003
0.100
(2.54)
BSC
(0.457 ± 0.076)
N8 1098
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
0.770*
(19.558)
MAX
14
13
12
11
10
9
8
1
2
3
4
5
6
7
0.255 ± 0.015*
(6.477 ± 0.381)
0.130 ± 0.005
(3.302 ± 0.127)
0.300 – 0.325
(7.620 – 8.255)
0.045 – 0.065
(1.143 – 1.651)
0.020
(0.508)
MIN
0.065
(1.651)
TYP
0.009 – 0.015
(0.229 – 0.381)
+0.035
0.325 –0.015
0.005
(0.125)
MIN 0.100
(2.54)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
BSC
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
(
+0.889
8.255
–0.381
18
)
0.125
(3.175)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
N14 1098
LT1215/LT1216
U
PACKAGE DESCRIPTIO
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.189 – 0.197*
(4.801 – 5.004)
7
8
5
6
0.150 – 0.157**
(3.810 – 3.988)
0.228 – 0.244
(5.791 – 6.197)
1
0.010 – 0.020
× 45°
(0.254 – 0.508)
0.008 – 0.010
(0.203 – 0.254)
3
2
4
0.053 – 0.069
(1.346 – 1.752)
0.004 – 0.010
(0.101 – 0.254)
0°– 8° TYP
0.016 – 0.050
(0.406 – 1.270)
0.050
(1.270)
BSC
0.014 – 0.019
(0.355 – 0.483)
TYP
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
SO8 1298
S Package
16-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
0.386 – 0.394*
(9.804 – 10.008)
16
15
14
13
12
11
10
9
0.150 – 0.157**
(3.810 – 3.988)
0.228 – 0.244
(5.791 – 6.197)
1
0.010 – 0.020
× 45°
(0.254 – 0.508)
2
3
4
5
6
0.053 – 0.069
(1.346 – 1.752)
0.008 – 0.010
(0.203 – 0.254)
0.014 – 0.019
(0.355 – 0.483)
TYP
8
0.004 – 0.010
(0.101 – 0.254)
0° – 8° TYP
0.016 – 0.050
(0.406 – 1.270)
7
0.050
(1.270)
BSC
S16 1098
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
19
LT1215/LT1216
U
TYPICAL APPLICATIO
LT1216 Photo Diode Amplifier
TRANSIENT RESPONSE
5V
+
2V
1/4
LT1216
VOUT
–
5.1k
8pF
1215/16 TA03
I TO V BANDWIDTH = 7MHz
1215/16 TA05
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LT1211/LT1212
Dual/Quad 14MHz, 7V/µs Single Supply Precision Op Amps
Input Common Mode Includes Ground, 275µV VOS (Max),
6µV/°C Max Drift, 1.8mA Max Supply Current per Amplifier
LT1213/LT1214
Dual/Quad 28MHz, 12V/µs Single Supply Precision Op Amps
Input Common Mode Includes Ground, 275µV VOS (Max),
6µV/°C Max Drift, 3.5mA Max Supply Current per Amplifier
LT1498/LT1499
10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and
Output Precision C-LoadTM Op Amps
475µV VOS (Max), 2.2mA Max Supply Current per Amplifier,
2.5µV/°C Max Drift, Stable with Capacitive Loads to 10,000pF
LT1124/LT1125
12.5MHz, 4.5V/µs, Dual/Quad Low Noise,
High Speed Precision Op Amps
70µV VOS (Max), 2.75mA Max Supply Current per Amplifier,
1µV/°C Max Drift
LT1355/LT1356
Dual and Quad 12MHz, 400V/µs Op Amps
1.25mA Max Supply Current per Amplifier, 800µV VOS (Max),
Drives All Capacitive Loads
LT1358/LT1359
Dual and Quad 25MHz, 600V/µs Op Amps
2.5mA Max Supply Current per Amplifier, 600µV VOS (Max),
Drives All Capacitive Loads
LT1361/LT1362
Dual and Quad 50MHz, 800V/µs Op Amps
5mA Max Supply Current per Amplifier, 1mV VOS (Max),
Drives All Capacitive Loads
C-Load is a trademark of Linear Technology Corporation.
20
Linear Technology Corporation
12156fb LT/TP 1101 1.5K REV B • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
 LINEAR TECHNOLOGY CORPORATION 1993