

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN47310 PSoC 1 Power Savings Using Sleep Mode.pdf

		
				 AN47310
PSoC® 1 Power Savings Using Sleep Mode
Author: Grey Reynolds, Ashutosh Srivastava
Associated Project: Yes
Associated Part Family: CY8C21x23, CY8C21x34, CY8C21x45, CY8C22x45, CY8C23x33,
CY8C24x33, CY8C24x23A, CY8C24x94, CY8C27x43, CY8C28xxx, CY8C29x66
Software Version: PSoC Designer™ 5.4 SP1
Related Application Notes: For a complete list of the application notes, click here.
To get the latest version of this application note, or the associated project file, click here
®
AN47310 introduces PSoC 1 sleep mode operation and power-saving techniques. The topics include sleep mode
basics, wakeup sources, power-saving techniques, and special sleep mode considerations. An example project that
demonstrates sleep and wakeup operation is also provided.
Contents
1
2
3
4
5
6
7
8
9
Introduction ...2
PSoC Resources ..2
2.1
PSoC Designer ..2
2.2
Code Examples ...4
2.3
Technical Support ..5
PSoC 1 Sleep Mode Basics......................................6
3.1
Entering Sleep Mode6
3.2
Behavior during Sleep Mode............................6
3.3
Wakeup from Sleep Mode6
3.4
Posted Interrupts versus Pending Interrupts6
3.5
Interrupt Masks and Global Interrupt Enable ...7
3.6
Interrupt Service Routines and Boot.tpl7
3.7
Wakeup Source ...8
3.8
Reset versus Wakeup 10
Additional Power-Saving Techniques 11
4.1
Disable Analog Block References 11
4.2
Disable Analog Buffers 11
4.3
Disable CT/SC Blocks 11
4.4
Set GPIO Drive Modes to Analog HI-Z 11
Other Sleep Mode Considerations.......................... 12
5.1
ILO Variance .. 12
5.2
Interrupts Before Sleep Mode Entry 12
5.3
Prefetched Code .. 12
5.4
PLL Operation.. 12
2
5.5
I C Slave Addressing and Sleep Mode 13
Implementation Sequence 14
Example Project ... 14
7.1
Description ... 14
7.2
Expected Power Consumption....................... 16
Summary .. 17
Related Application Notes 17
www.cypress.com
Appendix A – Register Reference Table 18
Appendix B – Example Project Description 19
B.1
Source Files... 19
B.2
Header Files .. 19
Document History.. 20
Worldwide Sales and Design Support 21
Products .. 21
PSoC Solutions ... 21
Cypress Developer Community....................................... 21
Technical Support ... 21
A
B
Document No. 001-47310 Rev. *E
1
PSoC® 1 Power Savings Using Sleep Mode
1
Introduction
Sleep mode is a simple and efficient way to reduce the average current consumption of a PSoC device. It places the
device in a low-power state whenever the CPU and other internally clocked functions are not needed. Sleep mode is
most useful for battery-powered systems but it is applicable to any design.
Sleep mode decreases the overall current drawn without limiting the functionality. You can achieve significant power
savings by paying attention to proper entry, use and, exit of sleep mode. Implemented in conjunction with many other
power-saving features and techniques described in this document, sleep mode can be extremely effective in reducing
the overall power consumption in a PSoC based design.
This application note describes the fundamentals of sleep mode and provides information on power-saving methods
and other sleep-related considerations. It is assumed that the reader is familiar with the PSoC 1 architecture and
PSoC Designer™ operation.
Note In this document, „PSoC‟ refers only to PSoC 1 devices.
2
PSoC Resources
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design,
and quickly and effectively integrate the device into your design. In this document, PSoC refers to the PSoC 1 family
®
of devices. To learn more about PSoC 1, refer to the application note AN75320 - Getting Started with PSoC 1.
The following is an abbreviated list for PSoC 1 resources:
Overview: PSoC Portfolio, PSoC Roadmap
Development Kits:
Product Selectors: PSoC 1, PSoC 3, PSoC 4,
or PSoC 5LP. In addition, PSoC Designer
includes a device selection tool.

CY3215A-DK
In-Circuit
Emulation
Lite
Development Kit includes an in-circuit emulator
(ICE). While the ICE-Cube is primarily used to
debug PSoC 1 devices, it can also program PSoC
1 devices using ISSP.

CY3210-PSOCEVAL1 Kit enables you to evaluate
and experiment Cypress's PSoC 1 programmable
system-on-chip
design
methodology
and
architecture.
Datasheets: Describe and provide electrical
specifications for the PSoC 1 device family.
Application Notes and Code Examples: Cover
a broad range of topics, from basic to
advanced level. Many of the application
notes include code examples.
Technical Reference Manuals (TRM): Provide
detailed descriptions of the internal
architecture of the PSoC 1 devices.
2.1

CY8CKIT-001 is a common development platform
for all PSoC family devices.
The MiniProg1 and MiniProg3 devices provide an interface
for flash programming.
PSoC Designer
PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a
library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize
your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows.
Note: This is not the default view.
1.
Global Resources – all device hardware settings.
2.
Parameters – the parameters of the currently selected User Modules.
3.
Pinout – information related to device pins.
4.
Chip-Level Editor – a diagram of the resources available on the selected chip.
5.
Datasheet – the datasheet for the currently selected UM
6.
User Modules – all available User Modules for the selected device.
7.
Device Resource Meter – device resource usage for the current project configuration.
8.
Workspace – a tree level diagram of files associated with the project.
9.
Output – output from project build and debug operations.
www.cypress.com
Document No. 001-47310 Rev. *E
2
PSoC® 1 Power Savings Using Sleep Mode
®
Note: For detailed information on PSoC Designer, go to PSoC
Designer Specific Documents > IDE User Guide.
Designer > Help > Documentation >
Figure 1. PSoC Designer Layout
www.cypress.com
Document No. 001-47310 Rev. *E
3
PSoC® 1 Power Savings Using Sleep Mode
2.2
Code Examples
The following webpage lists the PSoC Designer based code examples. These code examples can speed up your
design process by starting you off with a complete design, instead of a blank page and also show how
PSoC Designer User Modules can be used for various applications.
http://www.cypress.com/documentation/code-examples/psoc-1-code-examples
To access the code examples integrated with PSoC Designer, follow the path Start Page > Design Catalog >
Launch Example Browser as shown in Figure 2.
Figure 2. Code Examples in PSoC Designer
In the Example Projects browser shown in Figure 3, you have the following options.

Keyword search to filter the projects.
Listing the projects based on Category.
Review the datasheet for the selection (on the Description tab).
Review the code example for the selection. You can copy and paste code from this window to your project, which
can help speed up code development, or
Create a new project (and a new workspace if needed) based on the selection. This can speed up your design
process by starting you off with a complete, basic design. You can then adapt that design to your application
www.cypress.com
Document No. 001-47310 Rev. *E
4
PSoC® 1 Power Savings Using Sleep Mode
Figure 3. Code Example Projects, with Sample Codes
2.3
Technical Support
If you have any questions, our technical support team is happy to assist you. You can create a support request on the
Cypress Technical Support page.
You can also use the following support resources if you need quick assistance.

Self-help
Local Sales Office Locations
www.cypress.com
Document No. 001-47310 Rev. *E
5
PSoC® 1 Power Savings Using Sleep Mode
3
PSoC 1 Sleep Mode Basics
This section is an introduction to sleep mode. It provides information on the behavior of the PSoC device during sleep
and explains wakeup and reset sources. It also describes the firmware functions related to sleep mode.
3.1
Entering Sleep Mode
The PSoC device enters sleep mode by writing a „1‟ to the SLEEP bit in the CPU_SCR0 register (bit 3). The
M8C_Sleep macro is typically used to accomplish this, but a direct write to the register will have the same effect.
/* Enter Sleep Mode */
M8C_Sleep;
When the SLEEP bit is set, the PSoC sleep logic circuit asserts a device-wide power-down (PD) signal. When the PD
signal is asserted, the PSoC device enters sleep mode.
3.2
Behavior during Sleep Mode
The PD signal controls three major blocks: the internal main oscillator (IMO), flash memory, and the bandgap voltage
reference. These blocks are powered down and remain in this state until a wakeup or reset event occurs. The CPU is
also halted and placed in a low-power state.
Some core circuits remain active during sleep mode. The internal low-speed oscillator (ILO), bandgap refresh circuit,
supply voltage monitor, and switch mode pump (SMP) continue to operate to ensure that the PSoC device remains
stable and can resume operation. The Sleep Timer and the bandgap refresh circuit use the ILO during sleep mode.
The ILO is also used to synchronize signals upon wakeup until the IMO and flash memory have had enough time to
settle.
The switched capacitor (SC) blocks require a column clock. As the column clock is either VC1 or VC2, which is
sourced by IMO, or by a digital block clocked by IMO, SC blocks are not functional during sleep. Only the continuous
time (CT) blocks will be active during sleep. Additionally, GPIO pins remain in whatever state they were in when the
PD signal was asserted. So, they can continue to source or sink current during sleep mode operation.
3.3
Wakeup from Sleep Mode
The only event that can wake the PSoC device from sleep mode is a pending interrupt. Following a wakeup interrupt,
the PD signal is deasserted. This causes the IMO, flash memory, and bandgap reference to be powered on. After a
short delay (typically 15 µs) to allow for the clock settling, normal instruction execution continues. Any settings that
were changed to reduce power during sleep mode must be restored by the firmware when the CPU resumes code
execution.
3.4
Posted Interrupts versus Pending Interrupts
An interrupt is posted when its interrupt condition occurs. A posted interrupt is not pending unless it is unmasked in
the appropriate INT_MSKx register. So, to set up an interrupt to wake PSoC from sleep, it has to be unmasked using
the INT_MSKx register. The CPU will not service any interrupts unless the Global Interrupt Enable bit is set in the
CPU_F register. The block diagram in Figure 4 illustrates this logic.
Figure 4. Simplified Interrupt Controller Block Diagram
Interrupt
Source
Posted
Interrupt
Priority
Encoder
M8C
Core
INT_MSKx
www.cypress.com
Pending
Interrupt
Global
Interrupt
Enable
Document No. 001-47310 Rev. *E
6
PSoC® 1 Power Savings Using Sleep Mode
3.5
Interrupt Masks and Global Interrupt Enable
Global interrupts do not need to be enabled to wake the PSoC device from sleep mode. The only requirement is to
unmask the interrupt using the the INT_MSKx register. PSoC Designer provides an API for user modules to make the
register writes more readable, as shown in the following example code.
/* Set Mask for GPIO Interrupts */
M8C_EnableIntMask(INT_MSK0, INT_MSK0_GPIO);
If global interrupts are disabled, then the ISR that wakes the PSoC device is not executed, but the device still exits
sleep mode. The firmware must then either manually clear the pending interrupt or enable global interrupts to allow
the ISR to be serviced. Interrupts are cleared in the INT_CLRx registers, as shown in the following example code.
/* Clear Posted Interrupt Flag */
M8C_ClearIntFlag (INT_CLR0, INT_MSK0_GPIO);
The macro M8C_ClearIntFlag is defined in file m8c.h. See the Interrupt Controller section of the PSoC 1 TRM for
more detailed information on the function of the interrupt system. The #define values for the system registers and
macros are located in the m8c.h file of all PSoC Designer projects. The m8c.h file is located in the External Headers
> Device-dependent folder, as shown in Figure 5.
Figure 5. Location of m8c.h File
3.6
Interrupt Service Routines and Boot.tpl
The PSoC Designer Device Editor uses a template file called boot.tpl, located in the project's root directory, to create
the configuration code that is executed at bootup. In PSoC devices, ISRs are mapped to interrupt vectors by adding a
link to the ISR in the boot.tpl file.
The example project included with this document uses a flag set by an ISR to trigger sleep mode. The ISR is serviced
when a GPIO interrupt is pending. To properly define an ISR in PSoC devices, follow these three steps.
1.
Using the “#pragma interrupt_handler directive, declare the interrupt handler function as an ISR. This ensures
that the compiler terminates the function with a “reti” instruction to exit from the interrupt.
www.cypress.com
Document No. 001-47310 Rev. *E
7
PSoC® 1 Power Savings Using Sleep Mode
/* Declare the function as an ISR */
#pragma interrupt_handler GPIO_ISR
2. Write the function using the same name used in the previous step.
void GPIO_ISR(void);
{
/* GPIO ISR */
}
3.
Open the boot.tpl file and add a jump to the interrupt handler function in the corresponding interrupt vector – in
this example, the GPIO interrupt vector.
org
1Ch
ljmp _GPIO_ISR
reti
;GPIO Interrupt Vector
After the ISR has been defined and associated with a vector, the function will be executed when the pending interrupt
is serviced. Note that any changes made to boot.asm are overwritten every time the project is generated. Therefore,
changes should be made only to the boot.tpl file.
3.7
Wakeup Source
The interrupt sources available to wake up from sleep are the following:

3.7.1
Sleep Timer
GPIO
Low-voltage monitor
Analog columns
Digital blocks clocked by ILO
Sleep Timer Interrupt
The Sleep Timer is most often used to periodically wake the PSoC device from sleep mode to do processing or check
for activity. An example would be to wake it up at regular intervals to scan a sensor, process the data, and go back to
sleep again.
The Sleep Timer consists of a 15-bit counter that is always enabled. It is clocked by the ILO or external crystal
oscillator (ECO), so it can function in both active and sleep modes. The counter period can be set to roll over at 1 Hz,
8 Hz, 64 Hz, or 512 Hz in the Global Resources window of PSoC Designer, as shown in Figure 6.
Figure 6. Sleep Timer Period Selection
www.cypress.com
Document No. 001-47310 Rev. *E
8
PSoC® 1 Power Savings Using Sleep Mode
A write to the Sleep bits [4:3] of the OSC_CR0 register will also set the Sleep Timer interrupt period. Note that the
ILO frequency may vary, so the Sleep Timer periods are approximate (see the ILO Variance section on page 12).
When the Sleep Timer rolls over, an interrupt is posted to the system. To allow an interrupt from the Sleep Timer to
wake the PSoC device, it must be unmasked in the INT_MSK0 register like any other interrupt source.
/* Set Mask for Sleep Timer Interrupts */
M8C_EnableIntMask(INT_MSK0,INT_MSK0_SLEEP);
The SleepTimer User Module provides an API to control the interrupt period and mask or unmask the interrupt. It also
uses the Sleep Timer to provide additional general-purpose timer functions, but those functions are available only
when the PSoC device is in active mode. They do not relate to sleep mode operation.
The SleepTimer User Module datasheet contains detailed information about the features, parameters, and API
associated with it. The datasheet is part of PSoC Designer and is also available on the Cypress website.
3.7.2
More than a ‘Sleep Timer’
The Sleep Timer is a hardware counter that does not have to be used in conjunction with the PSoC sleep
mechanism. When configured properly, the Sleep Timer generates a periodic interrupt and wakes the CPU from
sleep. However, any interrupt source can wake the CPU, even from analog or digital blocks. So, the Sleep Timer may
be used with PSoC sleep, but is also very useful as a standalone long-duration counter.
The Sleep Timer is tied to the watchdog timer (WDT) reset functionality in PSoC. When enabled, the WDT is
designed to generate a hardware reset in PSoC after three cycles of the Sleep Timer. This is not intuitively obvious,
so if you are using the Sleep Timer, and have enabled the watchdog timer, be aware of its implications on the
watchdog reset.
3.7.3
GPIO Interrupt
Each GPIO pin can be individually configured to trigger an interrupt on a rising edge, falling edge, or any change
condition. Interrupts are enabled through a write to the PRTxIC1 and PRTxIC0 registers. Each register has one bit
that applies to each GPIO pin in the bank. For example, to enable a rising-edge interrupt on P1[4] (a value of 01b in
the registers), code similar to the following example can be used.
/* Enable P1[4] rising-edge interrupt */
PRT1IC1 |= 0x10; /* Force set bit 4 */
PRT1IC0 &= ~0x10; /* Force clear bit 4 */
Interrupts on GPIO pins are typically enabled in PSoC Designer so that the configuration is set at boot. The Pinout
interface contains a field for every pin in the selected device. If the pin view is expanded, as shown in Figure 7, the
drop-down menu that appears can be used to set the interrupt type.
Figure 7. Pinout View with GPIO Interrupt
Note that once a GPIO is configured, the GPIO block interrupt must still be unmasked in the INT_MSK0 register
before it can wake the PSoC device.
www.cypress.com
Document No. 001-47310 Rev. *E
9
PSoC® 1 Power Savings Using Sleep Mode
3.7.4
Low-Voltage Monitor Interrupt
The bandgap and LVD blocks are periodically re-enabled during sleep to monitor for low-voltage conditions. This is
accomplished by turning on the bandgap and refreshing the reference voltage. If a low supply voltage is detected
during the refresh, an interrupt is posted to the system. If the interrupt is unmasked, the PSoC device wakes up. The
voltage refresh rate is set with a write to the PSSDC bits [7:6] of the ECO_TR register, but modifying this value is not
recommended. As with other interrupt sources, the low-voltage monitor interrupt must be unmasked in the INT_MSK0
register to wake the PSoC device.
3.7.5
Analog Column Interrupt
The analog columns each have associated interrupts that can be unmasked and used to wake the PSoC device from
sleep mode. Any PSoC function that interfaces to the analog columns can be used as an interrupt source, but only
those that remain operational in sleep mode can be used as wakeup sources.
The most common example is a comparator used to wake the PSoC device when an external signal crosses the trip
voltage. The comparator control latch must be set to “transparent” mode. This can be done by clearing bit 6 (CLatch)
of ACBxxCR2.
/* Set the comparator to transparent mode so that it can be used to wake up PSoC*/
ACBxxCR2 |= 0x10;
Register INT_MSK0 holds the four analog bits [4:1] that are used to mask the interrupts, one bit per column. The
following example code shows how to unmask the interrupts for analog column 3.
/* Unmask analog column 3 interrupt */
M8C_EnableIntMask(INT_MSK0, INT_MSK0_ACOLUMN_3);
Some PSoC devices have less than four analog columns. In these cases, fewer bits are used in the register. See the
individual PSoC datasheets for specific details.
Switched capacitor analog blocks cannot be used to wake the device from sleep mode. These blocks do not operate
under Sleep mode as they require the column clock to operate. The column clock is derived from the IMO, which is
disabled during sleep.
3.7.6
Digital Blocks
Digital blocks can also be used as interrupt source to wake the PSoC from sleep. For example, a counter‟s terminal
count event can be used to wake the PSoC. However, there are two important points to remember. If the clock input
of the digital block is derived from IMO, the digital block will not operate when the PSoC is put to sleep and, hence,
will not be able to generate the wakeup interrupt. The ClockSync parameter of the digital block should be set to
“Unsynchronized”.
3.8
Reset versus Wakeup
A reset will also wake the PSoC device from sleep, but the difference between a reset and an interrupt wakeup is
what happens after sleep is exited. A reset takes the PSoC device out of sleep mode and holds it in a reset state as
long as the reset is asserted. Once the reset deasserts, the PSoC device begins executing code starting at the
beginning of Boot.asm. There are three types of resets within PSoC: external reset (XRES), watchdog reset, and
power-on reset (POR).
www.cypress.com
Document No. 001-47310 Rev. *E
10
PSoC® 1 Power Savings Using Sleep Mode
4
Additional Power-Saving Techniques
This section describes techniques to further reduce the power consumption in sleep mode by disabling PSoC
features that may remain active when the SLEEP bit is set.
4.1
Disable Analog Block References
PSoC analog blocks have individual power-down settings that are controlled by the firmware. The analog block
references can be disabled through a write to the PWR bits [2:0] of the ARF_CR register, similar to the following
code.
/* Turn off analog ref */
ARF_CR &= ~ARF_CR_REFPWR;
Note that this register is not available for the CY8C21x34, CY8C21x34B, and CY8C21x23 PSoC devices. Also, if the
analog column was configured to generate interrupt to wake the PSoC, analog reference should not be turned off.
4.2
Disable Analog Buffers
The analog output buffers, which connect the analog column outputs to the output pins, can be disabled to save
power. This is accomplished through a write to the ABUFxEN bits [5:2] in the ABF_CR0 register. The following
example shows how to disable all four analog output buffers.
/* Turn off analog buffers */
ABF_CR0 &= ~(ABF_CR0_ABUF1EN | ABF_CR0_ABUF2EN | ABF_CR0_ABUF0EN | ABF_CR0_ABUF3EN);
Some PSoC devices have less than four analog output buffers or do not have analog output buffers at all. In these
cases, fewer bits are used in the register. See the individual PSoC datasheets for information on the number of
analog buffers.
4.3
Disable CT/SC Blocks
The continuous time (CT) blocks are powered down individually with a write to each ACBxxCRy or ACExxCRy
register corresponding to the block‟s column. The switched capacitor (SC) blocks are similarly controlled by the
ASCxxCRy or ASDxxCRy registers. The following example shows how to disable the CT and SC blocks for column 0.
#define ACB_CT_SC_ENABLE 0x03
ACB00CR2 &= ~ACB_CT_SC_ENABLE; /* Disable CT Block of row 0 and column 0 */
ASC10CR3 &= ~ACB_CT_SC_ENABLE; /* Disable typeC SC block of row 1 and column 0 */
ASD20CR3 &= ~ACB_CT_SC_ENABLE; /* Disable typeC SC block of row 2 and column 0 */
The CT blocks can remain in operation because they do not require a clock source. However, the SC blocks do not
operate because there is no clock source for the switches.
4.4
Set GPIO Drive Modes to Analog HI-Z
The state of the GPIO drive mode can affect the power consumption in sleep mode. GPIO pins retain their drive
mode settings during sleep, so if a pin sources or sinks current during active mode, then it will continue to do so in
sleep mode. Unless the signal must stay at that state during sleep, additional power savings can be realized by
changing the drive mode of the GPIO to Analog HI-Z.
The drive modes can be set manually in firmware before sleep mode is entered. The three registers that control the
GPIO drive modes are PRTxDM0, PRTxDM1, and PRTxDM2. One bit per register is assigned to each pin, and the
combination of the three bits determines the drive mode. So, changing the drive mode of a single pin or an entire port
typically requires three register writes. Because only one of the three PRTxDM registers can be written at a time, it is
important to consider the order in which it is done. Intermediate drive modes are enabled as the registers are written
one by one. Controlling the order of the writes determines which of those states are enabled. It is recommended that
resistive pull-up or pull-down modes be used as intermediate states to prevent glitches. For example, to transition
P2[0] from a Strong drive mode to Analog HI-Z, the following code could be used.
#define PORT_2_0
0x01
/* Original state: DM = 001 = Strong */
PRT2DM0 &= ~PORT_2_0; /* Pull-down */
PRT2DM1 |= PORT_2_0; /* HI-Z */
www.cypress.com
Document No. 001-47310 Rev. *E
11
PSoC® 1 Power Savings Using Sleep Mode
PRT2DM2 |= PORT_2_0; /* HI-Z Analog */
Current consumption can be reduced in many designs if consideration is given to the state of the GPIO pins during
sleep mode. For more information about GPIO functionality, refer to the PSoC 1 TRM and AN2094 – PSoC 1 –
Getting Started with GPIO.
5
Other Sleep Mode Considerations
This section provides information on special considerations for using sleep mode. These topics may not be applicable
to all designs.
5.1
ILO Variance
By default, the Sleep Timer circuit uses the ILO as its clock source. The ILO frequency can deviate from –50 percent
to +100 percent, however, and is not considered a precision wakeup source. If a precise wakeup time is needed,
some PSoC devices have the capability to clock the Sleep Timer from an ECO. If the added cost of an external
crystal is prohibitive, an alternative is an external R/C oscillator circuit implemented with two GPIO pins, a resistor,
and a capacitor. For details on this method, refer to AN47215 – PSoC RC Oscillator to Accurately Time Sleep Cycles.
5.2
Interrupts Before Sleep Mode Entry
If an unmasked interrupt is pending when a write is made to the SLEEP bit, the SLEEP bit is not set and the system
will not enter sleep mode. To avoid this situation, the firmware should disable the global interrupts and clear any
pending interrupts before preparing to enter sleep mode.
M8C_DisableGInt; /*Disable interrupts */
INT_CLR0 = 0x00; /*Clear pending interrupts */
Global interrupts can be enabled again immediately before M8C_Sleep is called because the timing of the global
interrupt logic makes it impossible for an interrupt to occur during the next instruction, which in this case is setting the
SLEEP bit.
M8C_DisableGInt; /* Disable interrupts */
SleepPrep();/* Configure PSoC for sleep */
M8C_EnableGInt; /* Enable interrupts */
M8C_Sleep; /* Sleep the PSoC */
WakeupRestore();/*Reconfigure for active */
Note that even if global interrupts are disabled, an unmasked interrupt will still wake the PSoC device from sleep.
Therefore, it is not required to enable global interrupts before Sleep mode is entered, especially if you do not want an
ISR to be executed until after the PSoC device is reconfigured after a wakeup.
5.3
Prefetched Code
The instruction immediately following the sleep instruction is prefetched before the CPU is halted. If global interrupts
are enabled when the PSoC device enters sleep mode, then there is a chance that a jump into an ISR will be the
action that follows the execution of the prefetched instruction. One way to ensure that the
prefetched code will have no effect on the ISR is to place a “nop” after the sleep macro.
M8C_Sleep; /* Enter sleep mode */
asm(“nop”); /* Use nop as pre-fetched code */
In this case, if there are no pending interrupts, the nop is executed at wakeup and nothing happens. If there is a
pending interrupt, then the prefetched nop will not have any effect on the ISR after wakeup.
5.4
PLL Operation
If PLL_Mode is enabled in the Global Resources section of the PSoC Designer project, the PLL should be stopped
and the CPU frequency should be reduced to 3 MHz or less before going to sleep. This is because the PLL may
briefly overshoot as it attempts to relock after the PSoC device wakes up. The relock can take up to 10 ms.
The CPUSpeed bits [2:0] of the OSC_CR0 register set the divider of SYSCLK, which is the CPU‟s clock source, and
the PLLMode bit [6] enables or disables the PLL. The frequency of SYSCLK is typically 24 MHz for PSoC devices,
but it can be changed to 6 MHz on some devices. The following code is an example of using the OSC_CR0 register
to disable PLL mode and reduce the CPU clock speed.
OSC_CR0 &= 0xb8; /* CPU = IMO/8 */
www.cypress.com
Document No. 001-47310 Rev. *E
12
PSoC® 1 Power Savings Using Sleep Mode
It is recommended that the firmware in projects that use PLL_Mode and sleep be able to execute at 3 MHz to ensure
that there are no issues with functionality soon after wakeup. If the firmware cannot execute at 3 MHz, ensure that the
PLL is locked before normal operation is resumed after wakeup.
5.5
I2C Slave Addressing and Sleep Mode
2
While in Sleep mode, a PSoC device cannot immediately process an I C address and respond because the IMO and
2
CPU are powered off. A workaround is to set up falling-edge interrupts on either the clock or the data lines of the I C
bus. The master must then send a dummy START condition to wake up the PSoC device or continue to transmit the
address until an ACK is received. The master may need to delay up to 200 µs between the dummy START and the
real one to allow the PSoC device to wake up and resume code execution, as shown in Figure 8.
Figure 8. Dummy START to Wake PSoC Device
Slave
Address
SDA
SCL
Clock
Dummy
Start
~200us
Delay
Real
Start
2
A side effect of this workaround is that the PSoC device will wake up on any I C falling-edge traffic, which means that
it will result in more total active time and higher average current. To avoid the increased active time, a separate GPIO
2
can be dedicated to wake up the PSoC device when the I C master is ready to address it, as shown in Figure 9. The
2
I C master would need to toggle the GPIO pin and wait for the appropriate delay time before the initial transmission is
sent.
Figure 9. Separate GPIO for Wakeup Signal
Slave
Address
SDA
SCL
Clock
GPIO
Wakeup
Signal
~200us
Delay
I2C
Start
2
This technique does not require nonstandard I C master behavior, but it does require the use of an additional GPIO
pin.
Note: When using an external clock, follow the steps in the Implementation Sequence section to handle the sleep
and wakeup process.
Immediately before the device goes to sleep, disable the external clock using the EXTCLKEN bit in the OSC_CR2
register. Immediately after the device wakes from sleep, enable the external clock using the EXTCLKEN bit in the
OSC_CR2 register.
www.cypress.com
Document No. 001-47310 Rev. *E
13
PSoC® 1 Power Savings Using Sleep Mode
6
Implementation Sequence
To implement sleep mode, follow this example sequence.
1.
Unmask the interrupts that have to wake the PSoC device; for example, unmask the GPIO or sleep interrupt.
2.
Enable the global interrupts.
3.
Enter the while loop.
4.
Disable all peripherals such as analog reference, analog output buffer, CT blocks, and SC blocks to reduce
power consumption.
5.
Change the drive state of the GPIOs that are not used to HI-Z Analog.
6.
Execute the M8C_Sleep macro. This puts PSoC to sleep. Any interrupt will wake PSoC.
7.
Enable all resources that were disabled before sleep.
8.
Configure the GPIOs to the original state.
9.
If multiple sources of interrupts can wake PSoC, check which interrupt caused wakeup and process the
event accordingly.
10. Go to step 4.
7
Example Project
The example project included with this application note demonstrates sleep mode operation with a CY8C27443
device. The project is applicable to any PSoC 1 device, but minor changes may be needed to accommodate the
specific architecture of other devices. This section provides a general description of the project and the expected
power consumption values.
7.1
Description
This project demonstrates how to put a PSoC 1 device to sleep and wake it again using the Sleep Timer and GPIO
interrupts. It also demonstrates the use of different registers to disable portions of the PSoC device that may continue
to draw power during sleep.
The example code was developed and tested using an Evaluation Kit CY3210-PSoCEval1 shown in Figure 10. Other
hardware can easily be used to duplicate this setup if the PSoC device‟s power supply can be isolated for
measurement.
Figure 10. Test Setup using CY3210-PSoCEval1 Kit
Power Supply
Multimeter Agilent 34401A
5.0V
P2[0] - LED
P1[4] - SW
CY3210 PSoC Eval
CY8C27443
www.cypress.com
Document No. 001-47310 Rev. *E
14
PSoC® 1 Power Savings Using Sleep Mode
When the project is tested with the CY3210-PSoCEval kit, the measured current includes the device current and the
current consumed by the other components on the kit. Follow these steps to measure the typical current consumption
for only the PSoC device:
1.
Place the PSoC 1 device on the kit and program the device.
2.
Remove the device from the kit.
3.
Turn on the kit power supply and measure the current. This will be offset current I Offset.
4.
Turn off the kit power supply and place the PSoC 1 device on the Kit.
5.
Turn on the kit power supply and measure the current. This will be total current I Total.
6.
Subtract the IOffset from ITotal. This will be the typical current consumption for the PSoC device.
To help demonstrate the power-saving techniques mentioned previously in this document, the CPU clock is set to
3 MHz and the supply voltage is set to 5 V. The following three pins are used in the project:

P0[3]: Output from an inverting amplifier. This is used to demonstrate a way to disable the analog buffer and
subsequent power saving.

P1[4]: Digital input used to trigger a GPIO interrupt on a rising edge.
P2[0]: Digital output for driving an LED. Used to demonstrate changing drive modes to Analog
HI-Z.
With the unmodified example firmware, the PSoC device will enter sleep when a positive edge on P1[4] causes a
GPIO ISR to be executed. On the CY3210-PSoCEval1 Kit, this pin is connected to a pushbutton switch for
convenience. The following set of #defines can be commented out to modify the behavior of the PSoC device.
/* Defined Interrupt Sources */
#define USE_GPIO_INT
1
#define USE_SLEEP_INT
1
/* Use GPIO interrupt to wake PSoC */
/* Use sleep timer interrupt to wake PSoC */
/* Defined Sleep Mode Configuration Modifiers */
#define ANALOG_REF
1
/* Disable analog references in sleep */
#define ANALOG_OUTPUT_BUFFERS 1
/* Disable analog output buffers in sleep */
#define DRIVE_MODES
1
/* Set drive modes to Hi-Z in sleep */
#define CT_SC_BLOCKS
1
/* Disable CT and SC blocks in sleep */
Including or excluding these #defines when compiling the code will change the behavior of the example project. This
will result in power consumption that is somewhere between normal device operation and the lowest possible power
state for the particular PSoC device being used. Any combination of the previous definitions can be used with this
example project.
Definitions used to enable the interrupt sources that trigger sleep mode and wakeup are as follows:

USE_GPIO_INT: Including this #define will enable the use of the GPIO interrupt to trigger the ISR to put the
PSoC device into sleep mode and wake it again. If it is not included, the PSoC device will not enter into sleep
mode.

USE_SLEEP_INT: Including this #define enables the Sleep Timer interrupt to periodically wake up the PSoC
device from sleep mode. This is done to reduce the average power consumption. If it is not included, then the
Sleep Timer interrupt will not wake the PSoC device. The default Sleep Timer interval for this example project is
8 Hz.
Definitions used to disable features that can remain active in sleep mode are as follows:

ANALOG_REF: Including this #define will disable the analog references as part of the preparation for entering
sleep mode and enable them again as part of the wakeup recovery. If it is not included, the analog references will
remain powered and active in sleep mode.

ANALOG_OUTPUT_BUFFERS: Including this #define will disable the analog output buffers as part of the
preparation for entering sleep mode and enable them again as part of the wakeup recovery. If it is not included,
the analog output buffers will remain powered and active in sleep mode.
www.cypress.com
Document No. 001-47310 Rev. *E
15
PSoC® 1 Power Savings Using Sleep Mode

DRIVE_MODES: Including this #define will change the drive mode of the LED pin P2[0] to Analog HI-Z as part of
the preparation for entering sleep mode and change it back to Strong Drive as part of the wakeup recovery. If it is
not included, the LED will continue to be driven by the PSoC device in sleep mode.
Note: The current in this configuration depends on the external parameters such as external resistor, LED and
applied VDD.

CT_SC_BLOCKS: Including this #define will disable the CT and SC blocks as part of the preparation for entering
sleep mode and enable them again as part of the wakeup recovery. If it is not included, the CT and SC blocks
will remain powered in sleep mode. The blocks may not show activity, however, because their clock sources may
be disabled.
After the hardware and firmware are configured as desired, the PSoC device can be programmed and its behavior
can be observed with an ammeter.
Note: The MiniProg should be disconnected from the PSoC device after programming is complete to ensure that
there is no current leakage through the program/debug pins.
7.2
Expected Power Consumption
The associated example project provides two methods to put the device into Sleep mode.
1.
Using GPIO interrupt
2.
Using Sleep Timer interrupt
Case 1: Table 1 gives the typical current consumption for the PSoC device when executing the example code on a
CY8C27443 device enabling GPIO interrupt (default code):
#define USE_GPIO_INT
1
//#define USE_SLEEP_INT 1
/* Use GPIO interrupt to wake up PSoC */
/* Use sleep timer interrupt to wake up PSoC */
Table 2 gives the typical current consumption for the CY8C27443 device resources used in the example project
under the above condition.
Table 1. Current Consumption by CY8C27443 Device using Example Project
Operating Mode
Current (mA)
Active Mode Current
20.0
Sleep Mode Current – With no Sleep Mode Modifiers
13.8
Sleep Mode Current – With only Analog References Off
3.4
Sleep Mode Current – With only Analog Buffers Off
13.4
Sleep Mode Current – With only CT/SC Blocks Off
9.8
Sleep Mode Current – With only Drive Modes Changed
10.8
Sleep Mode Current – Using all Sleep Mode Modifiers
0.004
Note: The values shown in Table 1 reflect typical numbers for the CY8C27x43 family of devices.
Table 2. Current Consumption by CY8C27443 Device Resources using Example Project
Device Resources
Current Consumed (mA)
Analog References
10.4
Analog Buffers
0.4
CT/SC Blocks
4.0
Drive Mode
3.0
www.cypress.com
Document No. 001-47310 Rev. *E
16
PSoC® 1 Power Savings Using Sleep Mode
Case 2: Table 3 shows the current consumed by the CY8C27443 device enabling sleep timer interrupt:
//#define USE_GPIO_INT
#define USE_SLEEP_INT
1
1
/* Use GPIO interrupt to wake up PSoC */
/* Use sleep timer interrupt to wake up PSoC */
In the Example Project the sleep timer interrupt frequency set to 8Hz and with a constant delay in the main loop for
the device active time. The device active time is set to 12.8ms.
Table 3. Current Consumption by CY8C27443 Device using Sleep Timer Interrupt
8
Operating Condition
Current (mA)
Device Current – With no Sleep Mode Modifiers
14.4
Device Current – Using all Sleep Mode Modifiers
2.2
Summary
This application note described the PSoC 1 sleep mode operation and power-saving techniques. It provided basic
information on sleep mode and power-saving methods, including the behavior of the PSoC device during sleep,
wakeup, and reset, and discussed wakeup sources. The document also explained special considerations that may be
relevant when using sleep mode.
9
Related Application Notes

®
AN2010 – PSoC 1 Best Practices and Recommendations
®
AN47215 – PSoC RC Oscillator to Accurately Time Sleep Cycles
®
AN2094 – PSoC 1 – Getting Started with GPIO
www.cypress.com
Document No. 001-47310 Rev. *E
17
PSoC® 1 Power Savings Using Sleep Mode
A
Appendix A – Register Reference Table
Table 4 is a quick reference for some registers mentioned in this document that relate to sleep mode. The PSoC 1
TRM and the device datasheets contain detailed descriptions of these registers, including register mapping tables
and bit definitions.
Table 4. Register Reference Table
Name
Address
Relation to Sleep Mode
ABF_CR0
0x162h
The Analog Output Buffer Control Register 0 is used to enable or disable the analog
output buffers.
ARF_CR
0x0F3h
The Analog Reference Control Register is used to enable or disable the analog reference
power.
INT_MSK0
0x0E0h
The Interrupt Mask Register 0 is used to mask or unmask pending interrupts.
INT_CLR0
0x0DAh
The Interrupt Clear Register is used to clear pending interrupts.
RES_WDT
0x0E3h
The Reset Watchdog Timer Register is used to clear the sleep timer by writing a 0x38 to
it. Note that any write to this register clears the WDT.
CPU_SCR0 0x0FFh
The System Status and Control Register 0 contain the SLEEP bit.
OSC_CR0
The Oscillator Control Register 0 is used to configure the Sleep Timer interval.
0x1E0h
PRTxDM2
PRTxDM1
See Datasheet The Port Drive Mode Bit Registers are used to specify the drive mode for GPIO pins.
PRTxDM0
PRTxIC1
See Datasheet
The Port Interrupt Control Registers are used to specify the interrupt mode for GPIO
pins.
ECO_TR
0x1EBh
The External Crystal Oscillator Trim Register is used to set the voltage refresh rate. The
factory default values are strongly recommended.
ACBxxCRy
See Datasheet These registers are used to enable or disable a type B CT PSoC block.
ACExxCRy
See Datasheet These registers are used to enable or disable a type E CT PSoC block.
ASCxxCRy
See Datasheet These registers are used to enable or disable a type C SC PSoC block.
ASDxxCRy
See Datasheet These registers are used to enable or disable a type D SC PSoC block.
PRTxIC0
www.cypress.com
Document No. 001-47310 Rev. *E
18
PSoC® 1 Power Savings Using Sleep Mode
B
Appendix B – Example Project Description
This project demonstrates how to put PSoC to sleep and wake it again using the Sleep Timer and GPIO interrupts. It
also demonstrates the use of different registers to disable portions of the PSoC device that may continue to draw
power during sleep. Monitoring the power consumption of the PSoC device during normal operation and sleep mode
shows the difference in current.
The project includes three source files and two header files.
B.1
Source Files

main.c: This file includes the main function. This function is the main loop for the example project. It sets the
analog system to full power, unmasks any defined interrupt sources, starts the Sleep Timer (if defined), and turns
on the LED. It then enters an infinite while loop to either wait for a GPIO interrupt (if defined) or call sleep mode
every time through the while loop.

sleep.c: This file includes three APIs.

B.2

SleepPrep: This function configures the PSoC device for sleep according to the sleep mode configuration
modifiers, such as ANALOG_REF, ANALOG_OUTPUT_BUFFERS, DRIVE_MODES, and CT_SC_BLOCKS,
defined in sleep.h.

WakeUpRestore: This function restores the PSoC device to normal operation after sleep according to the
sleep mode configuration modifiers defined in sleep.h.
gpio_isr.c: This file includes the GPIO_ISR function. This function is the ISR for the GPIO interrupt. It sets a flag
that is checked at every pass through the main loop.
Header Files

sleep.h: This header file includes the interrupt sources and sleep mode configuration modifier definitions. It also
includes the prototypes for the functions that are used to configure the PSoC device for sleep mode and wake it
from sleep mode.

global.h: This file contains the global variables and functions declaration.
www.cypress.com
Document No. 001-47310 Rev. *E
19
PSoC® 1 Power Savings Using Sleep Mode
Document History
Document Title: AN47310 - PSoC® 1 Power Savings Using Sleep Mode
Document Number: 001-47310
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2551464
CFW
08/12/2008
New application note.
*A
3435093
GIR
11/10/2011
Complete rewrite and reformat of content for new template; new example project.
*B
3674258
GULA
07/12/2012
Code modularized.
Replaced magic numbers with standard macros from m8c.h.
Replaced the code in the document with the files and API description.
*C
3888965
GULA
29/01/2013
Updated the project to PSoC Designer 5.3
Added Figure 5 to show the location of m8c.h
*D
4652356
DIMA
02/05/2015
Updated the project to PSoC Designer 5.4 CP1
Added a note in page 7 on sleep and wakeup handling when using external clock
Completing sunset review
Updated template
*E
4792848
ASRI
09/02/2015
Changed section name “ Summary” to “Implementation Sequence”
Added section “Summary” as application note summary
Added wakeup source “Digital blocks clocked by ILO” in section “Wakeup Source”
Removed the content related to Mini-Eval Programming Board
Added Figure 11. Test Setup using CY3210-PSoCEval1 Programming Board
Added steps to calculate the typical current consumption for the PSoC device.
Added Table 2. - Current Consumption by Device Resources Used in the Example
Project
Added Table 3 - Current Consumption by Device using sleep timer interrupt
Corrected the web links for TRMs and datasheets.
Updated the project to PSoC Designer 5.4 SP1.
Updated template.
www.cypress.com
Document No. 001-47310 Rev. *E
20
PSoC® 1 Power Savings Using Sleep Mode
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
Products
PSoC Solutions
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Cypress Developer Community
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
PSoC is a registered trademark and PSoC Designer is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2008-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-47310 Rev. *E
21

				

 Open as PDF

 	Similar pages
	

										AN47215 PSoC RC Oscillator to Accurately Time Sleep Cycles.pdf

	

										AN2010 PSoC 1 Best Practices and Recommendations.pdf

	

										AN2161 PSoC® 1 Analog Voltage-to-Frequency Converter.pdf

	

										AN2094 PSoC® 1 Getting Started with GPIO (Japanese).pdf

	

										CYPRESS CY8C27543

	

										CY8C27143, CY8C27243, CY8C27443, CY8C27543, CY8C27643:PSoC® 可编程片上系统™

	

										CYPRESS CY8C22213

	

										AN75320 Getting Started with PSoC® 1.pdf

	

										CYPRESS CY8C29X66

	

										AN90833 PSoC 1 Interrupts.pdf

	

										AN2094 PSoC® 1 Getting Started with GPIO.pdf

	

										Download AN2094 -001-40480_0E_V[1].pdf

	

										Download ADC10 to measure 0 to 4V

	

										MR10086

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

