ST95HF Near field communication transceiver Datasheet - production data – Up to 528-byte command/reception buffer (FIFO) depending on communication protocol • 32-lead, 5x5 mm, very thin fine pitch quad flat (VFQFPN) ECOPACK®2 package Applications Typical protocols supported: VFQFPN32 5x5 mm • ISO/IEC 14443-3 Type A and B tags • ISO/IEC 15693 tags • ISO/IEC 18000-3M1 tags Features • NFC Forum tags: Types 1, 2, 3 and 4 • Belonging to ST25 family, that includes all NFC/RF ID tag and reader products from STMicroelectronics • Operating modes supported: – Reader/Writer – Card Emulation (ISO/IEC 14443-3 Type A) • Hardware features – Dedicated internal frame controller – Highly integrated Analog Front End (AFE) for RF communications – Transmission and reception modes – Optimized power management – Tag Detection mode – Field Detection mode • ST Dual Interface EEPROM Typical ST95HF applications include: • Consumer electronics • Gaming • Healthcare • Industrial Typical ST95HF use cases include: • NFC-enabled Wi-Fi pairing • NFC-enabled Bluetooth pairing • Data exchange Communications with NFC/RFID tag (reader mode) • RF communication @13.56 MHz – ISO/IEC 14443 Type A and B in Reader and Card Emulation modes – ISO/IEC 15693 in Reader mode – ISO/IEC 18092 in Reader and Card Emulation modes – MIFARE® Classic compatible • Communication interfaces with a Host Controller – Serial peripheral interface (SPI) Slave interface up to 2 Mbps February 2016 This is information on a product in full production. DocID025630 Rev 4 1/93 www.st.com Contents ST95HF Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 List of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Pin and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Power management and operating modes . . . . . . . . . . . . . . . . . . . . . . 12 4 3.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Communication protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 5 4.1.1 Polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.2 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Support of long frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1 Command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 List of commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 IDN command (0x01) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Protocol Select command (0x02) description . . . . . . . . . . . . . . . . . . . . . . 21 5.5 Pollfield command (0x03) description . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.6 Send Receive (SendRecv) command (0x04) description . . . . . . . . . . . . . 27 5.7 Listen command (0x05) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.8 Send command (0x06) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.9 Idle command (0x07) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.10 2/93 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.9.1 Idle command parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.9.2 Using LFO frequency setting to reduce power consumption . . . . . . . . . 38 5.9.3 Optimizing wake-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.9.4 Using various techniques to return to Ready state . . . . . . . . . . . . . . . . 39 5.9.5 Tag detection calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Read Register (RdReg) command (0x08) description . . . . . . . . . . . . . . . 42 DocID025630 Rev 4 ST95HF Contents 5.11 6 7 5.11.1 Improving RF performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.11.2 Improving frame reception for ISO/IEC 14443 Type A tags . . . . . . . . . . 47 5.11.3 Improving RF reception for ISO/IEC 18092 tags . . . . . . . . . . . . . . . . . . 48 5.12 Subcarrier frequency response (0x0B) description . . . . . . . . . . . . . . . . . 48 5.13 AcFilter command (0x0D) description . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.14 Echo command (0x55) description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Power consumption characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.4 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.5 RF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.6 Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.1 8 Write Register (WrReg) command (0x09) description . . . . . . . . . . . . . . . 43 VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Appendix A Additional Idle command description . . . . . . . . . . . . . . . . . . . . . . . 64 Appendix B Example of tag detection calibration process . . . . . . . . . . . . . . . . 65 Appendix C Example of tag detection command using results of tag detection calibration . . . . . . . . . . . . . . . . . . . . . . . . . 68 Appendix D Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags . . . . . . . . . . . . . . . . . 69 D.1 D.2 ISO/IEC 14443 Type A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 D.1.1 NFC Forum Tag Type 1 (Topaz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 D.1.2 NFC Forum Tag Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 D.1.3 NFC Forum Tag Type 2 or 4: using split frames to resolve collisions . . . 72 D.1.4 NFC Forum Tag Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 D.1.5 NFC Forum Tag Type 4A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ISO/IEC 14443 Type B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID025630 Rev 4 3/93 4 Contents ST95HF D.2.1 D.3 ISO/IEC 18092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 D.3.1 D.4 NFC Forum Tag Type 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ISO/IEC 15693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 D.4.1 Appendix E NFC Forum Tag Type 4B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ISO/IEC 15693 tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Card emulation communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4/93 DocID025630 Rev 4 ST95HF List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. List of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ST95HF pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ST95HF operating modes and states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Select serial communication interface selection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Interpretation of flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Possible error codes and their meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Format of ResultCode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Examples of ResultCode: Len pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 List of ST95HF commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 IDN command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ProtocolSelect command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 List of <Parameters> values for the ProtocolSelect command for different protocols (Reader) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 List of <Parameters> values for different protocols (Card Emulation) . . . . . . . . . . . . . . . 25 Pollfield command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Response for <Pollfield> command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SendRecv command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 List of <Data> Send values for the SendRecv command for different protocols . . . . . . . . 28 List of <Data> Response values for the SendRecv command for different protocols . . . . 30 Structure of Parity byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Listen command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Response codes from the ST95HF in Listening mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Data format sent to the Host in Listening mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Send command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Format of data to be sent using Send command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Idle command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Idle command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Summary of Idle command parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 RdReg command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 WrReg command description (Modulation Index and Receiver Gain) . . . . . . . . . . . . . . . . 44 WrReg command description (Load Modulation Index and Demodulator Sensitivity) . . . . 44 Possible Modulation Index values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Possible Receiver Gain values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Possible Load Modulation Index values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Possible Demodulator Sensitivity values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ARC_B default code for available Reader protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ACC_A default code for available Card Emulation protocols . . . . . . . . . . . . . . . . . . . . . . . 47 WrReg command description (Timer Window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 WrReg command description (AutoDetect Filter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 SubFreqRes command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 AC filter command description (Command <Len> > 0x02). . . . . . . . . . . . . . . . . . . . . . . . . 49 ST95HF state when behaving as ISO/IEC 14443-A tag . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Commands to which the device is able to respond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Echo command description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Power consumption characteristics (VPS_Main from 2.7 to 3.3 V) . . . . . . . . . . . . . . . . . . 53 Power consumption characteristics (VPS_TX from 2.7 to 3.3 V) . . . . . . . . . . . . . . . . . . . . 53 DocID025630 Rev 4 5/93 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. 6/93 ST95HF Power consumption characteristics (VPS_TX from 4.5 to 5.5 V) . . . . . . . . . . . . . . . . . . . . 54 SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Tag/Card Emulation characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Field detection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Reader characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 HFO 27.12 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Wake-up source register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Wake-up event register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Example logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DocID025630 Rev 4 ST95HF List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. ST95HF application overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ST95HF block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ST95HF pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ST95HF initialization and operating state change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Sending command to ST95HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Polling the ST95HF until it is ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reading data from ST95HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reset the ST95HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Long frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Data transfer (in both command and response) when Parity Framing mode is enabled . . 30 SPI timing diagram (Slave mode and CPOL = 0, CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . 55 SPI timing diagram (Slave mode and CPOL = 1, CPHA = 1) . . . . . . . . . . . . . . . . . . . . . . . 56 Typical application with a 27.12 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DocID025630 Rev 4 7/93 7 Description 1 ST95HF Description The ST95HF is an integrated transceiver IC for contactless applications. The ST95HF manages frame coding and decoding in Reader and Card Emulation modes for standard applications such as Near Field Communication (NFC), proximity and vicinity standards. The ST95HF embeds an Analog Front End to provide the 13.56 MHz Air Interface. The ST95HF supports ISO/IEC 14443 Type A and B communication in Reader and Card Emulation modes, ISO/IEC 15693 (single or double subcarrier in Reader mode only) and ISO/IEC 18092 communication protocols in Reader and Card Emulation modes. The ST95HF also supports the detection, reading and writing of NFC Forum Type 1, 2, 3 and 4 tags. Figure 1. ST95HF application overview Interrupt Management Host Controller (MCU) ST95HF SPI 1.1 Block diagram Figure 2. ST95HF block diagram 27.12 MHz VPS_Main GND_Dig XIN XOUT VPS_TX ST95HF AFE IP Status registers Host Power & Clock Management Digital Tag/Field Detector Tag Detector TX2 User interface (User Side) Reader AFE Frame Controller SPI Interrupt Signal Mux ISO/IEC 14443 Type A and B ISO/IEC 15693 GND_TX RX1 ISO/IEC 18092 Timer Accelerators Mod/ Demod Configuration register TX1 FIFO Encoder/Decoder Card Emulator ISO/IEC 14443 Type A and B RX2 ISO/IEC 18092 GND_RX 8/93 DocID025630 Rev 4 ST95HF 1.2 Description List of terms Table 1. List of terms Term Meaning DAC Digital analog converter GND Ground HFO High frequency oscillator LFO Low frequency oscillator MCU Microcontroller unit MIFARE(1) Communication protocol NFC Near Field Communication RFID Radio Frequency Identification RFU Reserved for future use SPI Serial peripheral interface tL Low frequency period tREF Reference time WFE Wait For Event 1. MIFARE® and MIFARE® Classic are registered trademarks of NXP BV, and are used under license. DocID025630 Rev 4 9/93 11 Pin and signal descriptions 2 ST95HF Pin and signal descriptions TX1 NC NC NC NC XIN XOUT VPS_TX GND_TX Figure 3. ST95HF pinout description 25 1 TX2 NC NC NC GND NC ST_R1 RX1 SSI_1 RX2 SSI_0 NC GND_RX SPI_SCK 17 9 SPI_MOSI SPI_MISO SPI_SS IRQ_OUT VPS IRQ_IN NC NC ST_R0 Shaded area represents the dissipation pad. (Must be connected to ground.) Table 2. ST95HF pin descriptions Pin 10/93 Pin name Type(1) Main function Alternate function 1 TX1 O Driver output 1 - 2 TX2 O Driver output 2 - 3 NC - Not connected - 4 NC - Not connected - 5 RX1 I Receiver input 1 - 6 RX2 I Receiver input 2 - 7 NC - Not connected - 8 GND_RX P Ground (analog) - (2) - 9 ST_R0 O ST Reserved 10 NC - Not connected - 11 NC - Not connected - 12 IRQ_IN (3) Interrupt input - 13 VPS P Main power supply - I DocID025630 Rev 4 ST95HF Pin and signal descriptions Table 2. ST95HF pin descriptions (continued) Pin Pin name Type(1) (4) 14 IRQ_OUT O 15 SPI_SS I (5) 16 17 SPI_MISO SPI_MOSI O (5) Main function Alternate function Interrupt output - SPI Slave Select (active low) - SPI Data, Slave Output - I (5) (5) SPI Data, Slave Input (6) SPI serial clock - - 18 SPI_SCK I 19 SSI_0 I (5) Select serial communication interface - 20 SSI_1 I (5) Select serial communication interface - 21 ST_R1 I (7) ST Reserved - 22 GND P Ground (digital) - 23 NC - Not connected - 24 NC - Not connected - 25 NC - Not connected - 26 NC - Not connected - 27 NC - Not connected - 28 NC - Not connected - 29 XIN - Crystal oscillator input - 30 XOUT - Crystal oscillator output - 31 GND_TX P Ground (RF drivers) - 32 VPS_TX P Power supply (RF drivers) - 1. I: Input, O: Output, and P: Power 2. Must add a capacitor to ground (~1 nF). 3. Pad internally connected to a Very Weak Pull-up to VPS. 4. Pad internally connected to a Weak Pull-up to VPS. 5. Must not be left floating. 6. Pad internally connected to a Weak Pull-down to GND. 7. Pad input in High Impedance. Must be connected to VPS. DocID025630 Rev 4 11/93 11 Power management and operating modes ST95HF 3 Power management and operating modes 3.1 Operating modes The ST95HF has 2 operating modes: Wait for Event (WFE) and Active. In Active mode, the ST95HF communicates actively with a tag or an external host (an MCU, for example). WFE mode includes four low consumption states: Power-up, Hibernate, Sleep/Field Detector and Tag Detector. The ST95HF can switch from one mode to another. Table 3. ST95HF operating modes and states Mode Wait For Event (WFE) Active State Description Power-up This mode is accessible directly after POR. Low level on IRQ_IN pin (longer than 10 µs) is the only wakeup source. LFO (low-frequency oscillator) is running in this state. Hibernate Lowest power consumption state. The ST95HF has to be woken-up in order to communicate. Low level on IRQ_IN pin (longer than 10 µs) is the only wakeup source. Sleep/Field Detector Low power consumption state. Wakeup source is configurable: – Timer – IRQ_IN pin – SPI_SS pin – Field Detector LFO (low-frequency oscillator) is running in this state. Tag Detector Low power consumption state with tag detection. Wakeup source is configurable: – Timer – IRQ_IN pin – SPI_SS pin – Tag detector LFO (low-frequency oscillator) is running in this state. Ready In this mode, the RF is OFF and the ST95HF waits for a command (PROTOCOLSELECT, ...) from the external host via the selected serial interface (SPI). Reader The ST95HF can communicate with a tag using the selected protocol or with an external host using the SPI interface. The ST95HF can communicate as a Card or Tag with an external Card Emulation reader. The Card or Tag application is located in the Host and communicates with the ST95HF via the SPI interface. Hibernate, Tag Detector, and Sleep/Field Detector states can only be activated by a command from the external host. As soon as any of these three states are activated, the ST95HF can no longer communicate with the external host. It can only be woken up. The behavior of the ST95HF in 'Tag Detector' state is defined by the Idle command. 12/93 DocID025630 Rev 4 ST95HF Power management and operating modes Figure 4. ST95HF initialization and operating state change Supply off WAIT FOR EVENT Sleep / Field Detector PowerUP Hibernate Tag Detector Serial I/F selection Wake UP IDLE cde ACTIVE Card Emulation 3.2 Protocol Select cde Protocol Select cde READY Reader Startup sequence After the power supply is established at power-on, the ST95HF waits for a low pulse on the pin IRQ_IN (t1) before automatically selecting the external interface (SPI) and entering Ready state after a delay (t3). Figure 5. Power-up sequence W 936 9 66,B W 66,B ,54B,1 W W W )LUVWYDOLGFRPPDQG 069 1. Note for pin SSI0: - - - SPI selected 2. Pin IRQ_IN low level < 0.2 VPS_Main. Note: When ST95HF leaves WFE mode (from Power-up, Hibernate, Tag Detector, or Sleep/Field Detector) following an IRQ_IN low level pulse. DocID025630 Rev 4 13/93 92 Power management and operating modes ST95HF Figure 5 shows the power-up sequence for a ST95HF device; where, Note: • t0 is the initial wake-up delay 100 µs (minimum) • t1 is the minimum interrupt width 10 µs (minimum) • t2 is the delay for the serial interface selection 250 ns (typical) • t3 is the HFO setup time (tSU(HFO)) 10 ms (maximum) • t4 is the VPS ramp-up time from 0V to VPS 10 ms (max. by design validation) VPS must be 0V before executing the start-up sequence. The serial interface is selected after the following falling edge of pin IRQ_IN when leaving from POR or Hibernate state. Table 4 lists the signal configuration used to select the serial communication interface. Table 4. Select serial communication interface selection table 14/93 Pin Serial interface SSI_0 SPI: 1 SSI_1 SPI: 0 DocID025630 Rev 4 ST95HF Communication protocols 4 Communication protocols 4.1 Serial peripheral interface (SPI) 4.1.1 Polling mode In order to send commands and receive replies, the application software has to perform 3 steps. 1. Send the command to the ST95HF. 2. Poll the ST95HF until it is ready to transmit the response. 3. Read the response. The application software should never read data from the ST95HF without being sure that the ST95HF is ready to send the response. The maximum allowed SPI communication speed is fSCK. A Control byte is used to specify a communication type and direction: • 0x00: Send command to the ST95HF • 0x03: Poll the ST95HF • 0x02: Read data from the ST95HF • 0x01: Reset the ST95HF The SPI_SS line is used to select a device on the common SPI bus. The SPI_SS pin is active low. When the SPI_SS line is inactive, all data sent by the Master device is ignored and the MISO line remains in High Impedance state. In Slave mode, the phase and polarization are defined with CPOL = 1 and CPHA = 1 or CPOL = 0 and CPHA = 0. Figure 6. Sending command to ST95HF MOSI 00000000 CMD LEN DATA Several data bytes Control Byte MISO DATA XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Figure 7. Polling the ST95HF until it is ready MOSI 00000011 XXXXXX11 Control Byte MISO XXXXXXXX 00000XXX XXXXXX11 XXXXXX11 Flag Flag 00000XXX 00001XXX Flags are polled until data is ready (Bit 3 is set when data is ready) DocID025630 Rev 4 15/93 92 Communication protocols ST95HF Table 5. Interpretation of flags Bit [7:4] Meaning (application point of view) Not significant 3 Data can be read from the ST95HF when set. 2 Data can be sent to the ST95HF when set. [1:0] Not significant Figure 8. Reading data from ST95HF MOSI 00000010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Control Byte MISO XXXXXXXX Resp Code LEN DATA DATA Several data bytes Data must be sampled at the rising edge of the SCK signal. ‘Sending’, ‘Polling’ and ‘Reading’ commands must be separated by a high level of the SPI_SS line. For example, when the application needs to wait for data from the ST95HF, it asserts the SPI_SS line low and issues a ‘Polling’ command. Keeping the SPI_SS line low, the Host can read the Flags Waiting bit which indicates that the ST95HF can be read. Then, the application has to assert the SPI_SS line high to finish the polling command. The Host asserts the SPI_SS line low and issues a ‘Reading’ command to read data. When all data is read, the application asserts the SPI_SS line high. The application is not obliged to keep reading Flags using the Polling command until the ST95HF is ready in one command. It can issue as many 'Polling' commands as necessary. For example, the application asserts SPI_SS low, issues 'Polling' commands and reads Flags. If the ST95HF is not ready, the application can assert SPI_SS high and continue its algorithm (measuring temperature, communication with something else). Then, the application can assert SPI_SS low again and again issue 'Polling' commands, and so on, as many times as necessary, until the ST95HF is ready. Note that at the beginning of communication, the application does not need to check flags to start transmission. The ST95HF is assumed to be ready to receive a command from the application. Figure 9. Reset the ST95HF MOSI 00000001 Control Byte 01 MISO XXXXXXXX To reset the ST95HF using the SPI, the application sends the SPI Reset command (Control Byte 01, see Figure 9) which starts the internal controller reset process and puts the ST95HF into Power-up state. The ST95HF will wake up when pin IRQ_IN goes low. The ST95HF reset process only starts when the SPI_SS pin returns to high level. 16/93 DocID025630 Rev 4 ST95HF Communication protocols Caution: SPI communication is MSB first. 4.1.2 Interrupt mode When the ST95HF is configure to use the SPI serial interface, pin IRQ_OUT is used to give additional information to user. When the ST95HF is ready to send back a reply, it sends an Interrupt Request by setting a low level on pin IRQ_OUT, which remains low until the host reads the data. The application can use the Interrupt mode to skip the polling stage. Caution: SPI communication is MSB first. 4.2 Error codes Table 6. Possible error codes and their meaning Code Name Meaning 0x80 EFrameRecvOK Frame correctly received (additionally see CRC/Parity information) 0x85 EUserStop Stopped by user (used only in Card mode) 0x86 ECommError Hardware communication error 0x87 EFrameWaitTOut Frame wait time out (no valid reception) 0x88 EInvalidSof Invalid SOF 0x89 EBufOverflow Too many bytes received and data still arriving 0x8A EFramingError if start bit = 1 or stop bit = 0 0x8B EEgtError EGT time out 0x8C EInvalidLen Valid for ISO/IEC 18092, if Length <3 0x8D ECrcError CRC error, Valid only for ISO/IEC 18092 0x8E ERecvLost When reception is lost without EOF received (or subcarrier was lost) 0x8F ENoField When Listen command detects the absence of external field 0x90 EUnintByte Residual bits in last byte. Useful for ACK/NAK reception of ISO/IEC 14443 Type A. DocID025630 Rev 4 17/93 92 Communication protocols 4.3 ST95HF Support of long frames In Reader mode it is possible to receive up to 528 bytes of frame data from VICC and TypeB cards and up to 256 bytes of frame data from Type-A cards. In this case, the device sends a reply to the external MCU in the following format: <ResultCode> + <Len> + <N bytes of data> Table 7. Format of ResultCode Bit Meaning 7 Always 1 6 Bit 9 of Length 5 Bit 8 of Length 4 If set, there are residual bits in the last byte. Applicable only for Type-A protocol. 3:0 See examples and explanation below Always 0 Figure 10. Long frame format The number of databytes is 10-bit long. Table 8. Examples of ResultCode: Len pairs 18/93 ResultCode Len Length of data 0x80 0x00 0 0x80 0x01 1 0x80 0xFF 255 0xA0 0x00 256 0xA0 0x01 257 0xA0 0xFF 511 0xC0 0x00 512 0xC0 0x01 513 DocID025630 Rev 4 ST95HF Commands 5 Commands 5.1 Command format • The frame from the Host to the ST95HF has the following format: <CMD><Len><Data> • The frame from the ST95HF to Host has the following format: <RespCode><Len><Data> These two formats are available in SPI mode. Fields <Cmd>, <RespCode> and <Len> are always 1 byte long. <Data> can be from 0 to 253 bytes. Note: The ECHO command is an exception as it has only one byte (0x55). The following symbols correspond to: >>> Frame sent by the Host to ST95HF <<< Frame sent by the ST95HF to the Host 5.2 List of commands Table 9 summarizes the available commands. Table 9. List of ST95HF commands Code Command Description 0x01 IDN Requests short information about the ST95HF and its revision. 0x02 PROTOCOLSELECT Selects the RF communication protocol and specifies certain protocol-related parameters. 0x03 POLLFIELD Returns the current value of the FieldDet flag (used in Card Emulation mode). 0x04 SendRecv Sends data using the previously selected protocol and receives the tag response. 0x05 LISTEN Listens for data using previously selected protocol (used in Card Emulation mode). 0x06 SEND Sends data using previously selected protocol (used in Card Emulation mode). 0x07 IDLE Switches the ST95HF into a low consumption Wait for Event (WFE) mode (Power-up, Hibernate, Sleep/Field or Tag Detection), specifies the authorized wake-up sources and waits for an event to exit to Ready state. 0x08 RDREG Reads Wake-up event register or the Analog Register Configuration (ACC_A or ARC_B) register. DocID025630 Rev 4 19/93 92 Commands ST95HF Table 9. List of ST95HF commands (continued) Code Command Description 0x09 WRREG Writes Analog Register Configuration (ACC_A or ARC_B)) register or writes index of ACC_A or ARC_B register address. Writes the Timer Window (TimerW) value dedicated to ISO/IEC 14443 Type A tags. Writes the AutoDetect Filter enable register dedicated to ISO/IEC 18092 tags. 0x0B SubFreqRes Returns the most recent subcarrier frequency detected for ISO/IEC 18092 communication. 0x0D ACFILTER Enables or disables the anti-collision filter for ISO/IEC 14443 Type A protocol. 0x55 ECHO ST95HF performs a serial interface ECHO command (reply data 0x55 or stops the Listening state when a listen command has been sent without error). Other codes 5.3 ST Reserved IDN command (0x01) description The IDN command (0x01) gives brief information about the ST95HF and its revision. Table 10. IDN command description Direction Host to ST95HF ST95HF to Host Data Comments 0x01 Command code 0x00 Length of data 0x00 Result code <Len> Length of data <Device ID> Data in ASCII format (13 bytes) <ROM CRC> CRC calculated for ROM content (2 bytes) Example >>>0x0100 <<<0x000F4E4643204653324A415354 34002ACE In this example, <<<0x4E4643204653324A4153543400 : ‘NFC FS2JAST4’, #4 (Last Character of NFC FS2JAST4 means ROM code revision 4.) 0x2ACE: CRC of ROM (real CRC may differ from this example) It takes approximately 6 ms to calculate the CRC for the entire ROM. The application must allow sufficient time for waiting for a response for this command. 20/93 DocID025630 Rev 4 ST95HF 5.4 Commands Protocol Select command (0x02) description This command selects the RF communication protocol and prepares the ST95HF for communication with a reader or contactless tag. Table 11. PROTOCOLSELECT command description Direction Host to ST95HF Data Comments 0x02 Command code <Len> Length of data <Protocol> Protocol codes (Reader): 00: Field OFF 01: ISO/IEC 15693 02: ISO/IEC 14443-A / NFC Forum Tag Type 1, Type 2, Type 4A 03: ISO/IEC 14443-B / NFC Forum Tag Type 4B 04: ISO/IEC 18092 / NFC Forum Tag Type 3 ------------------------------Protocol codes (Card Emulation): 12: ISO/IEC 14443-A 13: ST Reserved (ISO/IEC 14443-B under qualification) 14: ST Reserved (ISO/IEC 18092 under qualification) Example See Table 12: List of <Parameters> values for the ProtocolSelect command for different protocols (Reader) on page 22. See Table 13: List of <Parameters> values for different protocols (Card Emulation) on page 25. Each protocol has a different set of <Parameters> parameters. See Table 12. ST95HF to Host 0x00 Result code 0x00 Length of data ST95HF to Host 0x82 Error code 0x00 Length of data ST95HF to Host 0x83 Error code 0x00 Length of data <<<0x0000 Protocol is successfully selected <<<0x8200 Invalid command length <<<0x8300 Invalid protocol Note that there is no ‘Field ON’ command. When the application selects an RF communication protocol, the field automatically switches ON if the Reader state is selected. When the application selects a protocol, the ST95HF performs all necessary settings: it will choose the appropriate reception and transmission chains, switch ON or OFF the RF field and connect the antenna accordingly. DocID025630 Rev 4 21/93 92 Commands ST95HF Different protocols have different sets of parameters. Values for the <Parameters> field are listed in Table 12. Table 12. List of <Parameters> values for the PROTOCOLSELECT command for different protocols (Reader) Parameters Protocol Code Examples of commands Byte Field OFF ISO/IEC 15693 0x00 0x01 0 0 Bit 7:0 RFU 7:6 RFU 5:4 00: 26 Kbps (H) 01: 52 Kbps 10: 6 Kbps (L) 11: RFU 3 0: Respect 312-µs delay 1: Wait for SOF (1) 2 0: 100% modulation (100) 1: 10% modulation (10) 1 0: Single subcarrier (S) 1: Dual subcarrier (D) 0 ISO/IEC 14443 Type A NFC Forum Tag Type 1 (Topaz) NFC Forum Tag Type 2 NFC Forum Tag Type 4A 22/93 Function >>>0x02020000 H 100 S: >>>0x02 02 01 01 H 100 D: >>>0x02 02 01 03 H 10 S: >>>0x02 02 01 05 H 10 D: >>>0x02 02 01 07 L 100 S: >>>0x02 02 01 21 L 100 D: >>>0x02 02 01 23 L 10 S: >>>0x02 02 01 25 L 10 D: >>>0x02 02 01 27 In these examples, the CRC is automatically appended. Append CRC if set to ‘1’. (1) >>>0x02020200: ISO/IEC 14443 Type A tag, 106 Kbps transmission and reception rates, Time interval 86/90 7:6 Transmission data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps 11: RFU 5:4 Reception data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps 11: RFU 3 RFU 2:0 RFU 1 7:0 PP 2 7:0 MM 3 7:0 DD (optional to PP:MM) 4 7:0 ST Reserved (Optional) - 5 7:0 ST Reserved (Optional) - 0 0x02 DocID025630 Rev 4 Note that REQA, WUPA, Select20 and Select70 commands use a fixed interval of 86/90 µs between a request and its reply. Other commands use a variable interval with fixed granularity. Refer to the ISO/IEC 14443 standard for more details. These 5 bytes are optional. The default PP:MM:DD value is 0 (corresponds to FDT 86/90µs) . For other values, FDT = (2^PP)*(MM+1)*(DD+128) *32/13.56 µs ST95HF Commands Table 12. List of <Parameters> values for the PROTOCOLSELECT command for different protocols (Reader) (continued) Parameters Protocol Code Examples of commands Byte Bit 7:6 Transmission data rate 00: 106 Kbps 01: 212 Kbps 10: 424 Kbps 11: 848 Kbps 5:4 Reception data rate 00: 106 Kbps 01: 212 Kbps 10: 424 Kbps 11: 848 Kbps 3:1 RFU 0 0 ISO/IEC 14443 Type B 0x03 NFC Forum Tag Type 4B Function >>>0x02020301: ISO/IEC 14443 Type B tag with CRC appended Append CRC if set to ‘1’. (1) These 9 bytes are optional. Default value of PP:MM:DD is 0 and corresponds to FWT ~302µs. FWT = (2^PP)*(MM+1)*(DD+128)* 32/13.56 µs 1 7:0 PP 2 7:0 MM 3 7:0 DD (optional to PP:MM) 5:4 7:0 TTTT (Optional) TR0 = TTTT/FC (LSB first), default 1023 = 0x3FF 6 7:0 YY (Optional) PCD Min TR1 (Min_TR1 = 8 * XX / fS), default = 0 7 7:0 ZZ (Optional) PCD Max TR1 (Max_TR1 = 8 * ZZ / fS), default = 26 = 0x1A 8 7:0 ST Reserved (Optional) - 9 7:0 ST Reserved (Optional) - DocID025630 Rev 4 23/93 92 Commands ST95HF Table 12. List of <Parameters> values for the PROTOCOLSELECT command for different protocols (Reader) (continued) Parameters Protocol Code Examples of commands Byte Bit 7:6 Transmission data rate 00: RFU 01: 212 Kbps 10: 424 Kbps 11: RFU 5:4 Reception data rate 00: RFU 01: 212 Kbps 10: 424 Kbps 11: RFU 3:1 RFU 0 0 ISO/IEC 18092 NFC Forum Tag Type 3 7:5 0x04 Function 4 1 3:0 Append CRC if set to ‘1’. (1) RFU 0: FWT = 2.4 ms 1: FWT is specified by PP:MM bits Slot counter 0: 1 slot 1: 2 slots … F: 16 slots 2 7:0 PP 3 7:0 MM 4 7:0 DD (optional to PP:MM) 1. It is recommended to set this bit to ‘1’. 2. Not characterized. 24/93 DocID025630 Rev 4 >>>0x02020451: ISO/IEC18092 tag, 212 Kbps transmission and reception rates with CRC appended. Parameter ‘Slot counter’ is not mandatory. If it is not present, it is assumed that SlotCounter = 0x00 (1 slot) For device detection commands, byte 1 bit 4 must be set to ‘0’. In this case, the FWT is 2.4 ms for the 1st slot and 1.2 ms more for each following slot, if slot counter is specified. If slot counter = 0x10, the ST95HF does not respect reply timings, but polls incoming data and searches a valid response during ~8.4 ms. These 3 bytes are optional. Default value PP:MM:DD: is 0 and corresponds to RWT ~302µs. RWT = (2^PP)*(MM+1)* (DD+128)*32/13.56µs ST95HF Commands Table 13. List of <Parameters> values for different protocols (Card Emulation) Protocol (Card) ISO/IEC 14443 Type A (1) Code Parameters Byte Bit Function 7:6 Transmission data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps (2) 11: RFU 5:4 Reception data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps (2) 11: RFU 3 0: Return an error, if no RF field 1: Wait for RF field 2 RFU 1 0: HFO 1: ClkRec 0 RFU 0x12 0 Examples of commands Comments >>>0x02021208 <<<0x0000 Card Emulation for ISO/IEC 14443 Type A, Data rate is 106 Kbps for both up- and down-links. 1. Topaz is not supported in Card Emulation mode. 2. Not qualified for this version. DocID025630 Rev 4 25/93 92 Commands 5.5 ST95HF Pollfield command (0x03) description This command returns the current value of the FieldDet flag. Table 14. POLLFIELD command description Direction Host to ST95HF ST95HF to Host Data Comments 03 Command code <Len> Length of data <Flags> RF field presence (Optional): 01: Wait for RF field appearance 00: Wait for RF field disappearance <Presc> Timer prescaler (Optional) <Timer> Timer time-out (Optional) 00 Result code 01 Length of data <FieldDet> 01, if FieldDet is set. Otherwise, 00. Example >>>0x0300 Check if RF Field is ON or OFF >>> 0x0303010FFF - Wait for RF Field appearance for (16*256)/13.56 µs Flags, Presc and Timer parameters are optional. They must be specidfied if the application has to wait for RF field appearance or disappearance. The time to wait is (Presc+1)*(Timer+1)/13.56 µs. <<<0x0000 or 0x000100 (No RF field detected) or 0x000101 (RF field detected) The result of this command depends on the protocol selected. If we select a Reader mode protocol, the flag FieldDet is set to ‘1’ because the RF field is turned ON by the reader. Table 15. Response for <POLLFIELD> command Function Explanation Response Response example 00 01 01 or 00 Result code Pollfield Length of data field Bits [7:1]: RFU Bit 0: Field detected (if set) 26/93 DocID025630 Rev 4 Comments This command returns the current state of the RF field. <<<0x0000 or 0x000100 (No RF field detected) or 0x000101 (RF field detected) ST95HF 5.6 Commands Send Receive (SendRecv) command (0x04) description This command sends data to a contactless tag and receives its reply. Before sending this command, the Host must first send the PROTOCOLSELECT command to select an RF communication protocol. If the tag response was received and decoded correctly, the <Data> field can contain additional information which is protocol-specific. This is explained in Table 17. Table 16. SENDRECV command description Direction Host to ST95HF ST95HF to Host Data 0x04 Command code <Len> Length of data <Data> Data to be sent 0x80 Result code <Len> Length of data <Data> ST95HF to Host Comments Example See Table 17 and Table 26 for detailed examples. <<<0x800F5077FE01B30000000000 71718EBA00 The tag response is decoded. This is an Data received. example of an ISO/IEC 14443 ATQB Interpretation depends on response (Answer to Request Type B) protocol 0x90 Result code <Len> Length of data ACK or NAK ISO 14443-A ACK or NAK detection <<<0x90040x240000 (exception for 4-bit frames where ‘x’ represents ACK or NAK value) 90: Result code for “non-integer number of bytes are received” 04: total length of data 0A or 00: Data 24: “2” means no CRC, “4” means 4 significant bits in Data byte. 00 00: No collision in response Example ACK <<< 0x90040A240000 Example NAK <<< 0x900400240000 xx yy zz ST95HF to Host 3-byte response flag analysis xx: Error type and number of significant bits in first data byte yy: First byte collision zz: First bit collision (1) X0 + <Len> + Data (see Support of long frames on page 18) ST95HF to Host 0x86 Error code 0x00 Length of data ST95HF to Host 0x87 Error code 0x00 Length of data DocID025630 Rev 4 <<<0x8600 Communication error <<<0x8700 Frame wait time out or no tag 27/93 92 Commands ST95HF Table 16. SENDRECV command description (continued) Direction Data Comments ST95HF to Host 0x88 Error code 0x00 Length of data ST95HF to Host 0x89 Error code 0x00 Length of data 0x8A Error code 0x00 Length of data 0x8B Error code 0x00 Length of data ST95HF to Host 0x8C Error code 0x00 Length of data ST95HF to Host 0x8D Error code 0x00 Length of data ST95HF to Host 0x8E Error code 0x00 Length of data ST95HF to Host ST95HF to Host Example <<<0x8800 Invalid SOF <<<0x8900 Receive buffer overflow (too many bytes received) <<<0x8A00 Framing error (start bit = 0, stop bit = 1) <<<0x8B00 EGT time out (for ISO/IEC 14443-B) <<<0x8C00 Invalid length. Used in NFC Forum Tag Type 3, when field Length < 3 <<<0x8D00 CRC error (Used in NFC Forum Tag Type 3 protocol) <<<0x8E00 Reception lost without EOF received 1. See Table 17 for details. Table 17 gives examples of communication between the ST95HF and a contactless tag. The ST95HF receives a SendRecv command (>>> 0x04...) from the host and returns its response to the host (<<< 0x80...). Table 17 provides more details on the ST95HF response format. Table 17. List of <Data> Send values for the SENDRECV command for different protocols Protocol Explanation Send example Command example 04 03 022000 Command code Length of entire data field ISO/IEC 15693 Data 28/93 DocID025630 Rev 4 Comments Example of an Inventory command using different protocol configuration: Uplink: 100% ASK, 1/4 coding Downlink: High data rate, Single subcarrier >>> 0x0403260100 (Inventory - 1 slot) <<< 0x800D0000CDE0406CD62902 E0057900 If length of data is ‘0’, only the EOF will be sent. This can be used for an anticollision procedure. ST95HF Commands Table 17. List of <Data> Send values for the SENDRECV command for different protocols (continued) Protocol Explanation Send example Command example 04 07 9370800 28 F8C8E Command code Length of entire data field Data Comments Example of an NFC Forum Type 2 request sequence: >>>0x04022607 (REQA) <<<0x800544002800 (ATQA) >>>0x0403932008 (Anti-collision CL1) <<<0x80088804A8D5F1280000 (UID CL1)... Example of an NFC Forum Type 1 (Topaz) request sequence: >>>0x04022607 (REQA) <<<0x8005000C280000 (ATQ0 ATQ1) >>>0x040878000000000000A8 (RID) <<<0x800B11486E567A003E450800 00 (Header0 Header1 UID0 UID 1 UID2 UID3 CRC0 CRC1Signifcant bits indexColbyte IndexColbit) ISO/IEC 14443 Type A NFC Forum Tag Type 4A Transmission flags: 7: Topaz send format. Use EOF instead of NFC Forum Tag parity bit and use SOF at beginning of each byte. Pause between bytes and assume 1st Type 1 byte is 7 bits. (Topaz) 6: SplitFrame 5: Append CRC NFC (2) Forum Tag 4: Parity Framing mode [3:0]: Number of significant bits in last byte Type 2 Application SW must specify how many bits to send in the last byte. If flag SplitFrame is set, ST95HF will expect 8 – <significant bit count> bits in the 1st byte during reception. In this case, the first byte received is padded with zeros in lsb to complete the byte, while the last byte received is padded with zeros in msb. Example of an anti-collision command /response in ISO/IEC 14443_A communication using a Split frame: (1) >>> 0x0403932008 (Anticol) <<< 0x800888047B75B7B80204 (Collision Detected B8) >>> 0x0406934588040B45 (Anticol Split frame request 45) <<< 0x80064074B3230000 (Spilt frame Answer 23) This command is useful for anti-collision. ISO/IEC 14443 Type B Send example 04 03 050000 Command code Length of entire data field NFC Forum Tag Data Type 4B DocID025630 Rev 4 Example of an NFC Forum Type 4B request sequence: >>>0x0403050000 (REQB) <<<0x800F5077FE01B30000000000 71718EBA00 (ATQB) 29/93 92 Commands ST95HF Table 17. List of <Data> Send values for the SENDRECV command for different protocols (continued) Protocol ISO/IEC 18092 Explanation Send example Command example 04 05 00FFFF0000 Command code Length of entire data field NFC Forum Tag Data Type 3 Comments Example of an ISO/IEC 18092 / NFC Forum Type 3 request sequence: >>>0x040500FFFF0000 (REQC) <<<0x801201010102148E0DB41310 0B4B428485D0FF00 (ATQC) 1. For more information on using split frames, refer to Appendix D on page 69. 2. If Parity Framing mode is used (Bit 4 of transmission flag byte is set to ‘1’), then the parity bit must be coded inside the data for each byte to be sent using the send/receive command in Transmit mode, and is not decoded by the ST95HF in Receive mode. In Receive mode, each data byte is accompanied by an additional byte which encodes the parity: <data byte> <parity byte> <data byte > ... Examples of data received by send / receive in Parity Framing mode: 80 05 32 80 34 00 00 meaning: if the ST95HF received 2 data bytes: 0x32 with parity = ‘1’ (0x80) and 0x34 with parity = ‘0’ (0x0) in Parity Framing mode. For more details, see NFC Forum Tag Type 2 on page 75. The Parity Framing mode is compatible with MIFARE® Classic requirements. However, access to Authenticated state must be supported by the external secure host which embeds the MIFARE® Classic library. Figure 11. Data transfer (in both command and response) when Parity Framing mode is enabled Bytes sent or received XXXXXXXX P0000000 Data Byte Parity Byte .... .... .... 2nd CRC P0000000 2nd CRC Byte Parity Byte Table 18. List of <Data> Response values for the SENDRECV command for different protocols Protocol Explanation Response example Response example 80 08 0000000000 Result code ISO/IEC 15693 Length of entire data field Data received from tag Original (received) value of CRC [7:2]: RFU 1: CRC error if set 0: Collision is detected if set 30/93 DocID025630 Rev 4 77CF Comments 00 This is a response to Read Single Block command for ISO/IEC 15693 TAG. Actual TAG response is <<<0x000000000077CF, other fields are added by the ST95HF. ST95HF Commands Table 18. List of <Data> Response values for the SENDRECV command for different protocols (continued) Protocol ISO/IEC 14443 Type A Explanation Response example Response example 80 or 09 90 80B30B8DB500 (1) Result code NFC Forum Length of entire data Tag Type field 4A Data received from TAG NFC Forum Tag Type 1 (Topaz) Comments ISO/IEC 14443-A is bit oriented protocol, so we can 00 00 00 receive non-integer amount of bytes. Number of significant bits in the 1st byte is the same as indicated in the command sent. To calculate a position of a collision, application has to take index of byte first. Index of bit indicates a position inside this byte. Note that both indexes start from 0 and bit index can be 8, meaning that collision affected parity. 7: Collision is detected 6: RFU 5: CRC error 4: Parity error [3:0]: Shows how many significant bits are there in the first byte NFC 7:0: Index of the first byte where collision is detected Forum Tag Type [7:4]: RFU 2 [3:0]: Index of the first bit where collision is detected Response example ISO/IEC 14443 Type B 5092036A8D0 80 0F 00000000071 71 3411 Note that collision information is only valid when bit ‘Collision is detected’ is set. (2) 00 Result code Length of entire data field - NFC Data received from tag Forum Tag Type Original (received) value of CRC 4B [7:2]: RFU 1: CRC error if set 0: RFU Response example ISO/IEC 18092 80 12 01010105017B0...93FF 00 Result code Length of entire data field NFC Forum Data received from tag Tag Type [7:2]: RFU 3 1: CRC error if set 0: RFU <<<0x801201010105017B 06941004014B024F4993F F00 1. Result code 90: Response is decoded but number of byte is not an integer. 2. For more information on using split frames, refer to Appendix D on page 69. DocID025630 Rev 4 31/93 92 Commands ST95HF For more detailed examples of use with NFC Forum and ISO/IEC 15693 tags, refer to Appendix D on page 69. If Parity Framing mode is used, the parity bit stays unchanged. On transmission, it is not encoded and on reception it is not decoded. The length of Data must be even. Each data byte is accompanied by an additional byte which encodes the parity: <DataByte>, <Parity>, <DataByte>, <Parity> … Table 19. Structure of Parity byte Bit Description 7 Parity bit [6:0] Reserved for future use On reception, bits [6:0] of the parity byte are zeroes; on transmission, bits [6:0] are ignored. 5.7 Listen command (0x05) description In Card Emulation mode, this command waits for a command from an external reader. Before sending this command, the application must select a protocol. Table 20. LISTEN command description Direction Data Comments Host to ST95HF 05 Command code 00 Length of data ST95HF to Host 00 Result code 00 Length of data ST95HF to Host 82 Error code 00 Length of data 83 Error code 00 Length of data 8F Error code 00 Length of data ST95HF to Host ST95HF to Host Example 0x0500: Enters a Listening mode where the ST95HF waits for a command from an external reader. 0x0000: No error. Confirmation that ST95HF now is in Listening mode. 0x8200: Invalid command length 0x8300: Invalid protocol or protocol is not supported. For example, application selects protocol ISO/IEC 15693 using command select protocol and then executes the LISTEN command. ISO/IEC 15693 is not supported in Card Emulation mode. 0x8F00: No field. Command cannot be executed because there is no external field. After reception of the LISTEN command and the return of a ‘No error’ confirmation, the ST95HF enters Listening mode. The host controller has to use SPI Poll mode or IRQ_OUT pin to detect when a receive frame is available in the ST95HF buffer. The ST95HF will exit Listening mode as soon it receives the ECHO command (0x55) from the Host Controller (MCU) or a command from an external reader (not including commands supported by the ACFILTER command listed in Table 42). In all cases, the ST95HF will send data or an error code to the Host controller (MCU). 32/93 DocID025630 Rev 4 ST95HF Commands The ECHO command (0x55) allows exiting Listening mode. In response to the ECHO command, the ST95HF sends 0x55 + 0x8500 (error code of the Listening state cancelled by the MCU). Possible return codes are listed in Table 21. Table 21. Response codes from the ST95HF in Listening mode Direction Data Comments 80 Result code <Len> Length of data <Data> Data received. Interpretation depends on protocol ST95HF to Host 85 Error code 00 Length of data ST95HF to Host 86 Error code 00 Length of data ST95HF to Host 88 Error code 00 Length of data ST95HF to Host 89 Error code 00 Length of data ST95HF to Host 8A Error code 00 Length of data ST95HF to Host 8B Error code 00 Length of data ST95HF to Host 8D Error code 00 Length of data ST95HF Host 8E Error code 00 Length of data ST95HF to Host Example <<<0x800605000071FF00 The request from the Reader is decoded. This is an example of a response in ISO/IEC 14443 Type B protocol. <<<0x8500 Listening mode was cancelled by the application <<<0x8600 Communication error <<<0x8800 Invalid SOF <<<0x8900 Receive buffer overflow (too many bytes received) <<<0x8A00 Framing error (start bit=0, stop bit=1) <<<0x8B00 EGT time out (for ISO/IEC 14443-B) <<<0x8D00 CRC error (Used in NFC Forum Tag Type 3 protocol) <<<0x8E00 Reception lost without EOF received If the request from the Reader was received and decoded correctly, the ST95HF will send data back to the Host (Card Emulation application). This is explained in Table 22. DocID025630 Rev 4 33/93 92 Commands ST95HF Table 22. Data format sent to the Host in Listening mode Protocol Explanation Response example Request example 80 0A 9370800F8C8E Comments 8D 4E01 08 Result code Length of entire data field Data received from reader ISO/IEC14443 Type A Received value of BCC (if any) <<<0x80 0A 9370800F8C8E 8D 4E01 08 Received value of CRC (if any) 7: RFU 6: RFU 5: CRC error 4: Parity error 3:0: number of significant bits in last byte 5.8 Send command (0x06) description This command immediately sends data to the reader without waiting for a reply. Before sending this command, the application must select a communication protocol. Table 23. SEND command description Direction Comments 06 Command code <Len> Length of data <Data> Data and additional parameter to be sent ST95HF to Host 00 Result code 00 Length of data ST95HF to Host 82 Error code 00 Length of data ST95HF to Host 83 Error code 00 Length of data Host to ST95HF 34/93 Data DocID025630 Rev 4 Example Depends on protocol previously selected! >>>0x0606D07387080028: Emulation of TAG response in ISO/IEC 14443 Type B protocol <<<0x0000 Data was successfully sent <<<0x8200 Invalid length (for example, Length=0 where it is not possible) <<<0x8300 Invalid protocol previously selected by Select Protocol command ST95HF Commands Table 24. Format of data to be sent using SEND command Protocol Explanation Send example Response example 06 03 0400 Comments 08 Command code Length of entire data field ISO/IEC14443 Type A Data Parameter: 7:6: RFU 5: Append CRC 4: RFU (Do not append parity) 3:0: Number of significant bits in first byte Send example ISO/IEC14443 Type B 06 04 >>>0x0603040008 01020304 Command code - Length of entire data field Data Reader ISO/IEC18092 212/424 5.9 Send example 06 04 01020304 Command code Length of entire data field Data Note the difference in data in Reader and Card Emulation mode: in Reader mode there is no slot information. Idle command (0x07) description This command switches the ST95HF into low consumption mode and defines the way to return to Ready state. The Result code contains the Wake-up flag register value indicating to the application the wake-up event that caused the device to exit WFE mode. DocID025630 Rev 4 35/93 92 Commands ST95HF Table 25. IDLE command description Direction Data 07 Command code 0E Length of data <WU Source> Specifies authorized wakeup sources and the LFO frequency EnterCtrlL EnterCtrlH WUCtrlL WUCtrlH LeaveCtrlL LeaveCtrlH <WUPeriod> Host to ST95HF 36/93 Comments Settings to enter WFE mode Settings to wake-up from WFE mode Settings to leave WFE mode (Default value = 0x1800) Example Example of switch from Active mode to Hibernate state: >>>0x07 0E 08 04 00 04 00 18 00 00 00 00 00 00 00 00 Example of switch from Active to WFE mode (wake-up by low pulse on IRQ_IN pin): >>>0x07 0E 08 01 00 38 00 18 00 00 60 00 00 00 00 00 Example of switch from Active to Period of time between two WFE mode (wake-up by low pulse on SPI_SS pin): tag detection bursts. Also used to specify the duration >>>0x07 0E 10 01 00 38 00 18 00 00 60 00 00 00 00 00 before Timeout. <OscStart> Defines the Wait time for HFO to stabilize: <OscStart> * tL (Default value = 0x60) <DacStart> Defines the Wait time for DAC to stabilize: <DacStart> * tL (Default value = 0x60) <DacDataL> Lower compare value for tag detection (1). This value must be set to 0x00 during tag detection calibration. <DacDataH> Higher compare value for tag detection (1). This is a variable used during tag detection calibration. <SwingsCnt> Number of swings HF during tag detection (Default value = 0x3F) <MaxSleep> Max. number of tag detection trials before Timeout (1). This value must be set to 0x01 during tag detection calibration. Also used to specify duration before Timeout. MaxSleep must be: 0x00 < MaxSleep < 0x1F DocID025630 Rev 4 Example of switch from Active mode to WFE mode (Sleep / Field Detector with wake-up by Field Detection): >>> 0x07 0E 04 01 42 38 00 18 00 00 60 00 00 00 00 Example of wake-up by Timeout (7 seconds): Duration before Timeout = 256 * tL * (WU period + 2) * (MaxSleep + 1) >>>0x07 0E 01 21 00 38 00 18 00 60 60 00 00 00 00 08 Example of switch from Active to Tag Detector mode (wake-up by tag detection or low pulse on IRQ_IN pin) (32 kHz, inactivity duration = 272 ms, DAC oscillator = 3 ms, Swing = 63 pulses of 13.56 MHz): >>>0x07 0E 0A 21 00 79 01 18 00 20 60 60 64 74 3F 08 Example of a basic Idle command used during the Tag Detection Calibration process: >>>0x07 0E 03 A1 00 F8 01 18 00 20 60 60 00 xx 3F 01 where xx is the DacDataH value. ST95HF Commands Table 25. IDLE command description (continued) Direction Data Comments 0x00 Result code 0x01 Length of data <Data> Data (Wake-up source): 0x01: Timeout 0x02: Tag detect 0x08: Low pulse on IRQ_IN pin 0x10: Low pulse on SPI_SS pin 0x82 Error code 0x00 Length of data ST95HF to Host ST95HF to Host Example This response is sent only when ST95HF exits WFE mode. <<<0x000101 Wake-up by Timeout <<<0x000102 Wake-up by tag detect <<<0x000108 Wake-up by low pulse on IRQ_IN pin <<<0x8200 Invalid command length 1. An initial calibration is necessary to determine DacDataL and DacDataH values required for leaving Tag Detector state. For more information, contact your ST sales office for the corresponding application note. 5.9.1 Idle command parameters The Idle command (Host to ST95HF) has the following structure (all values are hexadecimal): Table 26. Idle command structure 07 0E xx yy zz yy zz yy zz aa bb cc dd ee ff gg Command code Data length WU source Enter Control WU Control Leave Control WU Period Osc Start DAC Start DAC Data Swing Count Max Sleep Table 27. Summary of Idle command parameters Parameter Description Command code This byte is the command code. ‘07’ represents the Idle command. This command switches the device from Active mode to WFE mode. Data length This byte is the length of the command in bytes. Its value depends on the following parameter values. WU Source This byte defines the authorized wake-up sources in the Wake-up source register. Predefined values are: 0x01: Time out 0x02: Tag Detection 0x04: Field Detector 0x06: Not defined 0x10: Low pulse on SPI_SS 0x08: Low pulse on IRQ_IN Enter Control These two bytes (EnterCtrlL and EnterCtrlH) define the resources when entering WFE mode. 0x0400: Hibernate 0x0100: Sleep (or 0x2100 if Timer source is enabled) 0x0142: Sleep (if Field Detector source is enabled) 0xA200: Tag Detector Calibration 0x2100: Tag Detection DocID025630 Rev 4 37/93 92 Commands ST95HF Table 27. Summary of Idle command parameters (continued) Parameter 5.9.2 Description WU Control These two bytes (WuCtrlL and WuCtrlH) define the wake-up resources. 0x0400: Hibernate 0x3800: Sleep/Field Detector 0xF801: Tag Detector Calibration 0x7901: Tag Detection Leave Control These two bytes (LeaveCtrlL and LeaveCtrlH) define the resources when returning to Ready state. 0x1800: Hibernate 0x1800: Sleep/Field Detector 0x1800: Tag Detector Calibration 0x1800: Tag Detection WU Period This byte is the coefficient used to adjust the time allowed between two tag detections. Also used to specify the duration before Timeout. (Typical value: 0x20) Duration before Timeout = 256 * tL * (WU period + 2) * (MaxSleep + 1) Osc Start This byte defines the delay for HFO stabilization. (Recommended value: 0x60) Defines the Wait time for HFO to stabilize: <OscStart> * tL DAC Start This byte defines the delay for DAC stabilization. (Recommended value: 0x60) Defines the Wait time for DAC to stabilize: <DacStart> * tL DAC Data These two bytes (DacDataL and DacDataH) define the lower and higher comparator values, respectively. These values are determined by a calibration process. When using the demo board, these values should be set to approximately 0x64 and 0x74, respectively. Swing Count This byte defines the number of HF swings allowed during Tag Detection. (Recommended value: 0x3F) Max Sleep This byte defines the maximum number of tag detection trials or the coefficient to adjust the maximum inactivity duration before Timeout. MaxSleep must be: 0x00 < MaxSleep < 0x1F This value must be set to 0x01 during tag detection calibration. Also used to specify duration before Timeout. Duration before Timeout = 256 * tL * (WU period + 2) * (MaxSleep + 1) (Typical value: 0x28) Using LFO frequency setting to reduce power consumption In WFE mode, the high frequency oscillator (HFO) is stopped and most processes being executed are clocked by the low frequency oscillator (LFO). To minimize ST95HF power consumption in WFE mode, the slower the LFO frequency, the lower the power consumption. Example 1: Setting a lower LFO frequency The following equation defines a basic timing reference: tREF = 256*tL ms (where tL = 1/fLFO) tREF = 8 ms (when bits [7:6] are set to “00”, or 32 kHz) tREF = 64 ms (when bits [7:6] are set to “11”, or 4 kHz) 38/93 DocID025630 Rev 4 ST95HF 5.9.3 Commands Optimizing wake-up conditions Using the Wake-up source register, it is possible to cumulate sources for a wake-up event. It is strongly recommended to always set an external event as a possible wake-up source. To cumulate wake-up sources, simply set the corresponding bits in the Wake-up source register. For example, to enable a wake-up when a tag is detected (bit 1 set to ‘1’) or on a low pulse on pin IRQ_IN (bit 3 set to ‘1’), set the register to 0x0A. 5.9.4 Using various techniques to return to Ready state The Idle command and reply set offers several benefits to users by enabling various methods to return the ST95HF to Ready state. Some methods are nearly automatic, such as waiting for a timer overflow or a tag detection, but others consume more power compared to the ones requesting a host action. A description of each method follows below. Default setting: from POR to Ready state After power-on, the ST95HF enters Power-up state. To wake up the ST95HF and set it to Ready state, the user must send a low pulse on the IRQ_IN pin. The ST95HF then automatically selects the external interface (SPI) and enters Ready state and is able to accept commSands after a delay of approximately 6 ms (t3). From Ready state to Hibernate state and back to Ready state In Hibernate state, most resources are switched off to achieve an ultra-low power consumption. The only way the ST95HF can wake-up from Hibernate state is by an external event (low pulse on pin IRQ_IN). A basic Idle command is: >>>0x07 0E 08 04 00 04 00 18 00 00 00 00 00 00 00 00 Note: The Wake-up flag value is NOT significant when returning to Ready state from Hibernate state or after a POR. From Ready state to Sleep state and back to Ready state Wake-up by external event (low pulse on IRQ_IN or SPI_SS pin) In Sleep or Power-up states, operating resources are limited in function of the selected wake-up source to achieve a moderate power consumption level. An Idle command example when wake-up source is pin IRQ_IN: >>>0x07 0E 08 01 00 38 00 18 00 00 60 00 00 00 00 00 A similar command can be implemented using pin SPI_SS as a wake-up source: >>>0x07 0E 10 01 00 38 00 18 00 00 60 00 00 00 00 00 Wake-up by timeout The LFO is required to use the timer. However, this increases the typical power consumption by 80 µA. Several parameters can be modified to reduce power consumption as much as possible. The Duration before Timeout is defined by parameters WU period and MaxSleep, respectively 0x60 and 0x08 in the following example. DocID025630 Rev 4 39/93 92 Commands ST95HF Duration before Timeout = 256 * tL * (WU period + 2) * (MaxSleep + 1) Note: Note that: 0x00 < MaxSleep < 0x1F. An Idle command example when wake-up source is timer (0x01) when fLFO = 32 kHz (mean power consumption is 25 µA) >>>0x07 0E 01 21 00 38 00 18 00 60 60 00 00 00 00 08 An Idle command example when wake-up source is timer (0xC1) when fLFO = 4 kHz (mean power consumption is 20 µA): >>>0x07 0E C1 21 00 38 00 18 00 60 60 00 00 00 00 08 The same command can be used mixing a timer and the IRQ_IN pin (0xC9) as a wake-up source: >>>0x07 0E C9 21 00 38 00 18 00 60 60 00 00 00 00 08 Wake-up by Tag Detection In this mode, the typical consumption can greatly vary in function of parameter settings (WU period without RF activity and Swing Count defining the RF burst duration). Using default settings, consumption in the range of 100 µA can be achieved. Tag Detector is a state where ST95HF is able to detect an RF event, a wake-up will occur when a tag sufficiently modifies the antenna load and is detected by the ST95HF. An Idle command example when wake-up source is Tag Detection (0x02): >>>0x07 0E 02 21 00 79 01 18 00 20 60 60 64 74 3F 08 The same command can be used mixing Tag Detection and the IRQ_IN pin (0x0A) as a wake-up source: >>>0x07 0E 0A 21 00 79 01 18 00 20 60 60 64 74 3F 08 The tag detection sequence is defined by dedicated parameters: • WU source (Byte 3) (Wake-up source register on page 64) – The Timeout bit (bit 0) must be set to ‘1’ in order to manage a certain number of emitted bursts. Otherwise, bursts will be sent indefinitely until a stop event occurs (for example, tag detection or a low pulse on pin IRQ_IN). – The Tag Detect bit (bit 1) must be set to ‘1’ to enable RF burst emissions. – It is recommended to also set Bits 3 or 4 to ‘1’ to ensure that it is possible to leave Tag Detect mode via an external event (for example, a low pulse on pin IRQ_IN). • WU period (Byte 10): Defines the period of inactivity (tINACTIVE) between two RF bursts: • OscStart, DacStart (Bytes 11 and 12): Define the set-up time of the HFO and Digital Analog Converter, respectively. In general, 3 ms is used both set-up times. tINACTIVE = (WuPeriod + 2) * tREF HFO | DAC set-up time = (OscStart | DacStart) * tL 40/93 • DacDataL, DacDataH (Bytes 13 and 14): Reference level for Tag Detection (calculated during the tag detection calibration process). • SwingsCnt (Byte 15): Represents the number of 13.56-MHz swing allowed during a Tag Detection burst. We recommend using 0x3F. • Maxsleep (Byte 16): The ST95HF emits (MaxSleep +1) bursts before leaving Tag Detection mode if bit 0 (Timer Out) of the WU source register is set to ‘1’. Otherwise, when this bit is set to ‘0’, a burst is emitted indefinitely. DocID025630 Rev 4 ST95HF Note: Commands Bytes 4 to 9 should be used as shown in the examples in Section 5.9: Idle command (0x07) description. Note that the MaxSleep value is coded on the 5 least significant bits, thus: 0x00 < MaxSleep < 0x1F. All the previously described command parameters must be chosen accordingly for the initial tag detection calibration when setting up the ST95HF. Their value will impact tag detection efficiency, and ST95HF power consumption during Tag Detection periods. 5.9.5 Tag detection calibration procedure The Idle command allows the use of a tag detection as a wake-up event. Certain parameters of the Idle command are dedicated to setting the conditions of a tag detection sequence. During the tag detection sequence, the ST95HF regularly emits RF bursts and measures the current in the antenna driver IDRIVE using the internal 6-bit DAC. When a tag enters the ST95HF antenna RF operating volume, it modifies the antenna loading characteristics and induces a change in IDRIVE, and consequently, the DAC data register reports a new value. This value is then compared to the reference value established during the tag detection calibration process. This enables the ST95HF to decide if a tag has entered or not its operating volume. The reference value (DacDataRef) is established during a tag detection calibration process using the ST95HF application setting with no tag in its environment. The calibration process consists in executing a tag detection sequence using a well-known configuration, with no tag within the antenna RF operating volume, to determine a specific reference value (DacDataRef) that will be reused by the host to define the tag detection parameters (DacDataL and DacDataH). During the calibration process, DacDataL is forced to 0x00 and the software successively varies the DacDataH value from its maximum value (0xFE) to it minimum value (0x00). At the end of the calibration process, DacDataRef will correspond to the value of DacDataH for which the wake-up event switches from Timeout (no tag in the RF field) to tag detected. To avoid too much sensitivity of the tag detection process, we recommend using a guard band. This value corresponds to 2 DAC steps (0x08). Recommended guard band value: DacDataL = DacDataRef – Guard and DacDataH = DacDataRef + Guard The parameters used to define the tag detection calibration sequence (clocking, set-up time, burst duration, etc.) must be the same as those used for the future tag detection sequences. When executing a tag detection sequence, the ST95HF compares the DAC data register value to the DAC Data parameter values (DacDataL and DacDataH) included in the Idle command. The ST95HF will exit WFE mode through a Tag Detection event if the DAC data register value is greater than the DAC Data parameter high value (DacDataH) or less than the DAC Data parameter low value (DacDataL). Otherwise, it will return to Ready state after a Timeout. An efficient 8-step calibration algorithm is described in Example of tag detection calibration process on page 65. DocID025630 Rev 4 41/93 92 Commands ST95HF An example of a basic Idle command used during the Tag Detection Calibration process: >>>0x07 0E 03 A1 00 F8 01 18 00 20 60 60 00 xx 3F 01 where xx is the DacDataH value. An example of a tag detection sequence is provided in Example of tag detection command using results of tag detection calibration on page 68. 5.10 Read Register (RdReg) command (0x08) description This command is used to read the Wakeup register. Table 28. RDREG command description Direction Host to ST95HF Data Comments 0x08 Command code 0x03 Length of data 0x62 or 0x69 Register address 0x01 Register size 0x00 ST Reserved 0x00 Result code <Len> Length of data (= RegCount) ST95HF to Host <RegData> Register data Example Ex 1. >>>0x0803690100 Reads the ACC_A or ARC_B register. (1) <<<0x000101 Wake-up by Timeout (Ex. 1) <<<0x000102 Wake-up by Tag Detect (Ex. 1) <<<0x000113 Depth = 1, Gain = 3 (Ex. 2) <<< 0x000127 (ACC_A register) Default value for Demodulator Sensitivity and Load Modulation. See Write Register description for more information on received data. <<< 0x000113 (ARC_B register) Depth = 1, Gain = 3 (Ex. 2). See Write Register description for more information on received data. ST95HF to Host 0x82 Error code 0x00 Length of data <<<0x8200 Invalid command length 1. This command must be preceded by the setting of the ACC_A register index (0x0903680004) or by setting the ARC_B register index (0x0903680001). Note: 42/93 The Management of the Analog Register Configuration register (ACC_A or ARC_B) is described in Section 5.11: Write Register (WrReg) command (0x09) description. DocID025630 Rev 4 ST95HF 5.11 Commands Write Register (WrReg) command (0x09) description The Write Register (WRREG) command (0x09) is used to: 5.11.1 • set the Analog Register Configuration address index value before reading or overwriting the Analog Register Configuration register (ARC_B) value • set the Analog Register Configuration register (ACC_A) value – Bits [7:6] are ST Reserved and must be set to ‘0’ – Bits [5:4] set the Demodulator Sensitivity (‘00’ = AM 10% or ‘10’ = AM 100%) – Bits [3:0] set the Load Modulation Index (‘0001’ = minimum load modulation, ‘0111’ = default value, ‘1111’ = maximum load modulation). The user can adjust this value to better fit his application. • set the Timer Window (TimerW) value used to improve ST95HF demodulation when communicating with ISO/IEC 14443 Type A tags • set the AutoDetect Filter used to help synchronization of ST95HF with ISO/IEC 18092 tags • configure the HF2RF bit(a) to manage ICC RF (VPS_TX) consumption in Ready state Improving RF performance Adjusting the Modulation Index and Receiver Gain parameters in Reader mode or the Load Modulation Index and Demodulator Sensitivity parameters in Card Emulation mode helps improve application behavior. Modulation Index and Receiver Gain parameters for Reader mode The default values of these parameters (Table 35) are set by the PROTOCOLSELECT command, but they can be overwritten using the Write Register (WRREG) command (0x09). Table 31 and Table 32 list possible values for the Modulation Index and Receiver Gain parameters, respectively. This new configuration is valid until a new PROTOCOLSELECT or Write Register (of register ARC_B) command is executed. Register values are cleared at power off. a. When the HF2RF bit is ‘0’, Reader mode is possible (default mode). When set to ‘1’, VPS_TX power consumption is reduced (Ready mode). DocID025630 Rev 4 43/93 92 Commands ST95HF Table 29. WRREG command description (Modulation Index and Receiver Gain) Direction Data 0x09 Comments Example Command code 0x03 or Length of data 0x04 0x68 Host to ST95HF >>>0x090468010113 Update ARC_B value to 0x13 0x00 or Flag Increment address or not after Write 0x01 command 0x01 ST95HF to Host Analog Register Configuration address index >>>0x0903680001 Set Analog Register Index to Index pointing to the Modulation Index and 0x01 (ARC_B) (1) Receiver Gain values in the ARC_B register (0x01) (see Section 5.11.1) 0xXX New value for Modulation Index and Receiver Gain nibbles (see Section 5.11.1) 0x00 Result code 0x00 Length of data (= RegCount) <<<0x0000 Register written 1. This command must be executed before reading the ARC_B register (0x0803690100). Load Modulation Index and Demodulator Sensitivity parameters for Card Emulation mode The default value of these parameters (Table 35) is set by the PROTOCOLSELECT command, but they can be overwritten using the Write Register (WRREG) command (0x09). Table 33 and Table 34 list possible values for the Load Modulation Index and Demodulator Sensitivity parameters respectively. This new configuration is valid until a new PROTOCOLSELECT or Write Register (of register ACC_A) command is executed. Register values are cleared at power off. Table 30. WRREG command description (Load Modulation Index and Demodulator Sensitivity) Direction Data 0x09 Comments Example Command code 0x03 or Length of data 0x04 0x68 Host to ST95HF 44/93 Analog Register Configuration address index 0x00 or Flag Increment address or not after Write 0x01 command 0x04 Index pointing to the Demodulator Sensitivity and Load Modulation values in ACC_A register (0x04) (see Section 5.11.1) 0xXX New value for Demodulator Sensitivity and Load Modulation (see Section 5.11.1) DocID025630 Rev 4 >>>0x0903680004 Set Analog Register Index to 0x04 (ACC_A) (1) >>>0x090468010425 Update ACC_A to 0x25 ST95HF Commands Table 30. WRREG command description (Load Modulation Index and Demodulator Sensitivity) (continued) Direction Data Comments Example ST95HF to Host 0x00 Result code 0x00 Length of data (= RegCount) <<<0x0000 Register written 1. This command must be executed before reading the ACC_A register (0x0903680004). How to modify Analog Register Configuration register (ARC_B) values 1. Use the PROTOCOLSELECT command (0x02) to select the correct communication protocol. For example, to select the ISO/IEC 18092 protocol: Send PROTOCOLSELECT command: ST95HF reply: 2. >>>0x02020451 <<<0x0000 Read the Analog Register Configuration register (ARC_B) value. a) Write the ARC_B register index at 0x01: ST95HF reply: >>>0x0903680001 <<<0x0000 b) Read the ARC_B register value: ST95HF reply: >>>0x0803690100 <<<0x015F In this example, the ARC_B register value is 0x5F, where “5” is the Modulation Index and “F” is the Receiver Gain. 3. Modify the Modulation Index and Receiver Gain values with 0x23. Write the ARC_B register index: ST95HF reply: 4. >>>0x090468010123 <<<0x0000 Read the Analog Configuration register (ARC_B) value. a) Write the ARC_B register index at 0x01: ST95HF reply: >>>0x0903680001 <<<0x0000 b) Read the ARC_B register value: ST95HF reply: >>>0x0803690100 <<<0x0123 Modulation Index and Receiver Gain values . Table 31. Possible Modulation Index values Code Modulation Index (1) 1 2 3 4 5 6 D 10% 17% 25% 30% 33% 36% 95% 1. Characterized only using ISO/IEC 10373 test set-up. Table 32. Possible Receiver Gain values Code Receiver Gain (1) 0 1 3 7 F 34 dB 32 dB 27 dB 20 dB 8 dB 1. Characterized by design simulation. DocID025630 Rev 4 45/93 92 Commands ST95HF How to modify Analog Register Configuration register (ACC_A) values 1. Use the PROTOCOLSELECT command (0x02) to select the correct communication protocol. For example, to select the ISO/IEC 14443-A card emulation protocol: Send PROTOCOLSELECT command: ST95HF reply: 2. >>>0x02021208 <<<0x0000 Read the Analog Register Configuration register (ACC_A) value. a) Write the ACC_A register index at 0x04: ST95HF reply: >>>0x0903680004 <<<0x0000 b) Read the ACC_A register value: ST95HF reply: >>>0x0803690100 <<<0x0127 In this example, the ACC_A register value is 0x27, where “2” is the Demodulator Sensitivity and “7” is the Load Modulation Index. 3. Modify the Load Modulation Index values with 0x25. Write the ACC_A register index: ST95HF reply: 4. >>>0x090468010425 <<<0x0000 Read the Analog Configuration register (ACC_A) value. a) Write the ACC_A register index at 0x04: ST95HF reply: >>>0x0903680004 <<<0x0000 b) Read the ACC_A register value: ST95HF reply: >>>0x0803690100 <<<0x0125 Load Modulation Index and Demodulator Sensitivity values . Table 33. Possible Load Modulation Index values Code (bits [3:0] of ACC_A register) Load Modulation Index 1 2 ... 7 ... E F Min. - - Default - - Max. Table 34. Possible Demodulator Sensitivity values Code (bits [5:4] of ACC_A register) Demodulator Sensitivity (1) 1. Characterized by design simulation. Note: 46/93 Bits [7:6] of ACC_A register are RFU and must set to ‘0’. DocID025630 Rev 4 0x1 0x2 10% 100% ST95HF Commands Default code per protocol Table 35. ARC_B default code for available Reader protocols Default value Recommended values for ST95HF demo board Possible Modulation Index values (MS nibble) Possible Receiver Gain values (LS nibble) ISO/IEC 14443 Type A reader 0xDF 0xD7 0xD 0x0, 0x1, 0x3, 0x7 or 0xF ISO/IEC 14443 Type B reader 0x2F 0x37 0x1, 0x2, 0x3 or 0x4 0x0, 0x1, 0x3, 0x7 or 0xF ISO/IEC 18092 reader 0x5F 0x23 0x1, 0x2, 0x3 or 0x4 0x0, 0x1, 0x3, 0x7 or 0xF ISO/IEC 15693 reader 30% 0x53 0x53 0x4, 0x5 or 0x6 0x0, 0x1, 0x3, 0x7 or 0xF ISO/IEC 15693 reader 100% 0xD3 0xD3 0xD 0x0, 0x1, 0x3, 0x7 or 0xF Communication protocol Table 36. ACC_A default code for available Card Emulation protocols Communication protocol ISO/IEC 14443 Type A 5.11.2 Default value Recommended values for ST95HF demo board Possible Demodulator Sensitivity values (MS nibble) Possible Load Modulation Index values (LS nibble) 0x27 0x27 0x2 From 0x1 to 0xF Improving frame reception for ISO/IEC 14443 Type A tags To improve ST95HF demodulation when communicating with ISO/IEC 14443 Type A tags, it is possible to adjust the synchronization between digital and analog inputs by fine-tuning the Timer Window (TimerW) value. This can be done using the Write Register (WRREG) command to set a new TimerW value (min. 0x50, max. 0x60). The recommended value is 0x56 or 0x58 when using the ST95HF demo board. The default value of this parameter (0x52) is set by the PROTOCOLSELECT command, but it can be overwritten using the WRREG command (0x09). DocID025630 Rev 4 47/93 92 Commands ST95HF Table 37. WRREG command description (Timer Window) Direction Data 0x09 Comments Example Command code 0x03 or Length of data 0x04 Host to ST95HF 0x3A 0x00 or Flag Increment address or not after Write 0x01 command 0xXX ST95HF to Host 5.11.3 Timer Window (TimerW) value >>>0x09043A005804 Set recommended TimerW value. Set TimerW value (recommended value is 0x56 or 0x58) 0x04 TimerW value confirmation 0x00 Result code 0x00 Length of data (= RegCount) <<<0x0000 Register written Improving RF reception for ISO/IEC 18092 tags To improve ST95HF reception when communicating with ISO/IEC 18092 tags, it is possible to enable an AutoDetect filter to synchronize ISO/IEC 18092 tags with the ST95HF. This can be done using the Write Register (WRREG) command to enable the AutoDetect filter. By default, this filter is disabled after the execution of the PROTOCOLSELECT command, but it can be enabled using the WRREG command (0x09). Table 38. WRREG command description (AutoDetect Filter) Direction Data 0x09 Comments Example Command code 0x03 or Length of data 0x04 Host to ST95HF ST95HF to Host 5.12 0x0A AutoDetect filter control value 0x00 or Flag Increment address or not after Write 0x01 command 0x02 AutoDetect filter enable 0xA1 AutoDetect filter confirmation 0x00 Result code 0x00 Length of data (= RegCount) >>>0x09040A0102A1 Enable the AutoDetect filter. <<<0x0000 Register written Subcarrier frequency response (0x0B) description The SubFreqRes command (0x0B) returns the most recent subcarrier frequency detected for ISO/IEC 18092 communication. 48/93 DocID025630 Rev 4 ST95HF Commands Table 39. SubFreqRes command description Direction Host to ST95HF Data Comments 0x0B Command code 0x00 Length of data 0x00 Result code 0x01 Length of data <FreqDiv> N, frequency divider ST95HF to Host 5.13 Example >>>0x0B00 <<<0x00010F In this example, 0x0F: is a frequency divider. Use this value to configure the ST95HF. Subcarrier frequency is fC f S = ---------------------2(N + 1) AcFilter command (0x0D) description This command activates/deactivates the anti-collision filter in Type A Card Emulation mode. Table 40. AC filter command description (Command <Len> > 0x02) Direction Host to ST95HF Data Comments 0D Command code <Len> Length of data <ATQA> (2 bytes) Unused and proprietary bits of SAK (protocol bits will be handled by firmware) <SAK> Unused and proprietary bits of SAK (protocol bits will be handled by firmware) <UID part 1> UID for cascade level 1 (Mandatory) <UID part 2> UID for cascade level 2 (Optional) <UID part 3> UID for cascade level 3 (Optional) DocID025630 Rev 4 Example General case (LEN ≠ 0x00, 0x01 or 0x02) >>>0D0B440320880251744AEF2280 Activate filter for 2-cascade anti-collision Note that the command length can be 7, 11 or 15 bytes depending on UID length: 7: for 1-cascade level filter 11: for 2-cascade levels filter 15: for 3-cascade levels filter All other values greater than 2 will result in an ‘Invalid command length’ error. *** Special cases of command *** LEN = 0x00 >>>0x0D00 De-activate AC Filter (LEN = 0x00) <<< 0x0001XX0000 AC Filter is successfully deactivated (XX: Table 28) LEN = 0x01 >>>0x0D01XX - Set AC state (see table below) <<< 0x0000 AC state successfully set LEN = 0x02 >>> 0x0D020000 - Returns AC state without deactivating filter <<< 0x0001XX AC state (XX: Table 28) 49/93 92 Commands ST95HF Table 40. AC filter command description (Command <Len> > 0x02) (continued) Direction Data ST95HF to Host ST95HF to Host Comments 00 Result code 00 Length of data 82 Error code 00 Length of data Example AC Filter is successfully activated. <<<0x0000 AC Filter is successfully deactivated (LEN = 0x00). <<<0x0001XX0000 (where XX is ST Reserved) <<<0x8200 Invalid command length Table 41. ST95HF state when behaving as ISO/IEC 14443-A tag Value AC state 0x00 Idle 0x01 ReadyA 0x02 ReadyB 0x03 ReadyC 0x04 Active 0x80 Halt 0x81 ReadyAX 0x82 ReadyBX 0x83 ReadyCX 0x84 ActiveX The ACFILTER command activates or deactivates an anti-collision filter for ISO/IEC 14443A card protocol. This command also forces or indicates the Card Emulator state. If the AC filter is not activated, all received commands are stored in the ST95HF buffer before being read by the external microcontroller. If the AC filter is activated, internal firmware will try to interpret the commands sent by the reader itself and perform an anti-collision sequence. Non-interpreted commands are stored in the ST95HF buffer before being read by the external microcontroller to perform Level 4 of the ISO/IEC 14443 Type A protocol. The ST95HF is able to interpret and respond to the commands listed in the table below. The device remains in Listening mode after executing these commands. Table 42. Commands to which the device is able to respond Command 50/93 Code Definition SENS_REQ 26 (7-bit) Sense request ALL_REQ 52 (7-bit) WakeUp All request DocID025630 Rev 4 ST95HF Commands Table 42. Commands to which the device is able to respond (continued) Command 5.14 Code Definition SDD_REQ 93, 95, 97 Single device detection request SEL_REQ 9370, 9570, 9770 Select request Echo command (0x55) description The ECHO command verifies the possibility of communication between a Host and the ST95HF. This command also can be used to exit Listening mode without an error when the ST95HF has received a Listen command. Table 43. ECHO command description Direction Data Comments Example Host to ST95HF 0x55 Command code - ST95HF to Host 0x55 Code response DocID025630 Rev 4 >>> 0x55: Sends an ECHO command <<< 0x55: Response to an ECHO command 51/93 92 Electrical characteristics ST95HF 6 Electrical characteristics 6.1 Absolute maximum ratings Table 44. Absolute maximum ratings Symbol VPS_Main VPS_TX VIO VMaxCarrier TA TSTG Parameter Supply voltage (1) Supply voltage (RF drivers) Input or output voltage relative to ground Unit –0.3 to 7.0 V –0.3 to 7.0 V –0.3 to VPS_Main +0.3 V ±14.0 V Maximum input voltage (pins RX1 and RX2) Ambient operating temperature –25 to +85 Ambient operating temperature (RF mode) –25 to +85 Storage temperature (Please also refer to package specification). –65 to +150 °C note(2) °C TLEAD Lead temperature during soldering VESD Electrostatic discharge voltage according to JESD22-A114, Human Body Model PTOT (3) Value See Total power dissipation per package °C 2000 V 1 W 1. To properly reset the device, VPS_Main must be tied to 0V before executing the start-up sequence. 2. Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS directive 2011/65/EU of July 2011). 3. Depending on the thermal resistance of package. Note: 52/93 Stresses listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DocID025630 Rev 4 ST95HF Electrical characteristics 6.2 DC characteristics Table 45. DC characteristics Symbol Parameter Condition VPS_Main Supply voltage Min. Typ. Max. Unit - 2.7 3.0 5.5 V Supply voltage (RF drivers) - 2.7 3.0 5.5 V VIL Input low voltage (I/Os) - 0 - 0.2 x VPS_Main V VIH Input high voltage (I/Os) - 0.7 x VPS_Main - VPS_Main V VOH Output high voltage (I/Os) IOH = - 8 µA 0.7 x VPS_Main - VPS_Main V VOL Output low voltage (I/Os) IOLMAX = 500 µA 0 - 0.15 x VPS_Main V POR Power-on reset voltage - - 1.8 - V VPS_TX 6.3 Power consumption characteristics TA = –25 °C to 85 °C, unless otherwise specified. Table 46. Power consumption characteristics (VPS_Main from 2.7 to 3.3 V) Symbol ICC (VPS) Power-up ICC (VPS) Card Emulation ICC (VPS) Hibernate ICC (VPS) Sleep/Field Detector Parameter Condition Typ. Max. Unit Supply current in power-up state TA = 25°C 200 600 µA Supply current in Card Emulation mode TA = 25 °C 2.5 5.0 mA Supply current in Hibernate state TA = 25 °C 1 5 µA Supply current in Sleep/Field Detector state TA = 25 °C 20/25 80 µA TA = 25 °C 2.5 5.0 mA TA = 25 °C, 4 RF bursts per second 50 100 µA ICC (VPS) Ready Supply current in Ready state ICC (VPS) Tag Detect Average supply current in Tag Detector state The ST95HF supports two VPS_TX supply ranges for RF drivers: 2.7V to 3.3V or 4.5V to 5.5V. Antenna matching circuit must be defined accordingly. Table 47. Power consumption characteristics (VPS_TX from 2.7 to 3.3 V) Symbol Parameter Condition Typ. Max. Unit ICC RF (VPS_TX) Supply current in RF Field (Reader mode) (1) RF Field ON TA = 25 °C 70 100 mA ICC RF (VPS_TX) Supply current in RF Field (Ready mode) (2) RF Field OFF TA = 25 °C - 200 µA ICC RF (VPS_TX) Peak(3) current during Burst detection Tag Detect TA = 25 °C 70 100 mA 1. Parameter measured using recommended output matching network (Z load is 27 Ω and 0°). DocID025630 Rev 4 53/93 92 Electrical characteristics ST95HF 2. This consumption can be reduced to approximately 2 µA (typ.) by setting a control bit (bit HF2RF) to ‘1’ using command 090468010710. In this case, Reader mode is not available. To re-enable Reader mode, reset the HF2RF bit to ‘0’ using the command 090468010700 or execute a new PROTOCOLSELECT command. 3. The maximum differential input voltage between pins RX1 and RX2 (VRx1-Rx2) has a peak-peak of 18 V. Table 48. Power consumption characteristics (VPS_TX from 4.5 to 5.5 V) Symbol Parameter Condition Typ. Max. Unit ICC RF (VPS_TX) Supply current in RF Field (Reader mode) (1) RF Field ON TA = 25 °C 120 200 mA ICC RF (VPS_TX) Supply current in RF Field (Ready mode) (2) RF Field OFF TA = 25 °C - 300 µA ICC RF (VPS_TX) Peak(3) current during Burst detection Tag Detect TA = 25 °C 120 200 mA 1. Parameter measured using recommended output matching network. (Z load is 16 Ω and 0°). 2. This consumption can be reduced to approximately 2 µA (typ.) by setting a control bit (bit HF2RF) to ‘1’ using command 090468010710. In this case, Reader mode is not available. To re-enable Reader mode, reset the HF2RF bit to ‘0’ using the command 090468010700 or execute a new PROTOCOLSELECT command. 3. The maximum differential input voltage between pins RX1 and RX2 (VRx1-Rx2) has a peak-peak of 18 V. This voltage can be limited by adding a damping resistor in parallel of the antenna or between ST_R0 and Ground. 54/93 DocID025630 Rev 4 ST95HF 6.4 Electrical characteristics SPI characteristics The ST95HF supports (CPOL = 0, CPHA = 0) and (CPOL = 1, CPHA = 1) modes. Table 49. SPI interface characteristics Symbol Condition Min. Max. Unit SPI clock frequency - - 2.0 MHz VIL Input low voltage - - 0.3 x VPS VIH Input high voltage - 0.7 x VPS - VOL Output low voltage - VOH Output high voltage - 0.7 x VPS - tSU(NSS)(1) NSS setup time - 70 - th(NSS)(1) NSS hold time - 0 - tCH(SCKL)(1) Clock low time - 200 - Clock high time - 200 - Data slave Input setup time - 20 - Data slave Input hold time - 80 - tv(SO)(1) Data slave output valid time - (1) Data slave output hold time After enable edge 0 - Capacitive load for input pins NSS, CLK, MOSI - - 3 pF Cb_SPI_OUT Capacitive load for input pins MOSI - - 20 pF fSCK 1/ tc(SCK) tCH(SCKH) (1) tSU(SI)(1) th(SI) (1) th(SO) Cb_SPI_IN Parameter V 0.4 x VPS ns ns ns 80 ns 1. Values based on design simulation and/or characterization results, and not on tested in production. Figure 12. SPI timing diagram (Slave mode and CPOL = 0, CPHA = 0) 3#+)NPUT .33INPUT T35.33 TC3#+ #0/, #0(! T#(3#+( T63/ -)3/ TH.33 T#(3#+, TH3/ -3"/UT "IT/UT -3")N "IT)N ,3"/UT TSU3) -/3) TH3) ,3")N -36 DocID025630 Rev 4 55/93 92 Electrical characteristics ST95HF Figure 13. SPI timing diagram (Slave mode and CPOL = 1, CPHA = 1) 166LQSXW WF6&. 6&.,QSXW W68166 W&+6&.+ WK166 W&+6&./ &32/ &3+$ WK62 WY62 06%2XW 0,62 WVX6, 026, %LW2XW /6%2XW WK6, 06%,Q %LW,Q /6%,Q 069 56/93 DocID025630 Rev 4 ST95HF 6.5 Electrical characteristics RF characteristics Test conditions are TA = 0°C to 50°C, unless otherwise specified. VPS_TX = 3V ± 10% and VPS_MAIN = 3V ± 10%. Table 50. Tag/Card Emulation characteristics Symbol Condition Min. Typ. Max. Unit Frequency of operating field (carrier frequency) - 13.553 13.56 13.567 MHz Carrier Modulation Index from reader ISO/IEC 14443 -Type A - - 100 HField (1) Operating field strength in ISO/IEC 14443 - 1.5 - 7.5 A/m VMaxCarrier Input voltage between RX1 and RX2 - - - 18 V Frequency of Subcarrier modulation (ISO/IEC 14443, ISO/IEC 18092 and ISO/IEC 15693) - - - fC / 16 Load Modulation Amplitude ISO 10373-6 test fC + fS methods for ISO/IEC 14443-A @ 1.5 A/m fC - fS 18 18 - - mV ISO 10373-6 test methods for ISO/IEC 14443-A @ 7.5A/m 8 8 - - mV Load Modulation Amplitude ECMA 356 test methods for ECMA fC + fS 340 @ 1.5 A/m fC - fS 18 18 - - mV ECMA 356 test methods for ECMA 340 @ 7.5 A/m 8 8 - - mV 106 - 212 Kbps fC MI Carrier fS (2) ALoad Parameter fC + fS fC - fS ALoad fC + fS fC - fS DataR ISO/IEC 14443 Type A % 1. Maximum values based on design simulation and/or characterization results, and not tested in production. 2. Parameter measured on samples using recommended output matching network. Table 51. Field detection characteristics Symbol - Parameter Level of detection (1) Min. Typ. Max. Unit 0.5 - 8 A/m 1. Parameter measured using recommended output matching network for ISO/IEC 14443 communication. DocID025630 Rev 4 57/93 92 Electrical characteristics ST95HF Table 52. Reader characteristics Symbol fC Parameter Min. Typ. Max. Unit Frequency of operating field (carrier frequency) 13.553 13.56 13. 567 MHz index(1) 8 8 10 80 - 100 14 14 30 100 % Carrier modulation ISO/IEC 14443-A ISO/IEC 14443-B ISO/IEC 18092 ISO/IEC 15693 (10% modulation)(2) ISO/IEC 15693 (100% modulation) MI Carrier Transmitter specifications (VPS_TX = 2.7 to 3.3 V) - ZOUT differential impedance between TX1 and TX2(1) - 27 - Ω - Output power for 3V operation on pin VPS_TX (1)(2) - 55 - mW Transmitter specifications (VPS_TX = 4.5 to 5.5 V) - ZOUT differential impedance between TX1 and TX2(1) - 16 - Ω - Output power for 5V operation on pin VPS_TX (1) (2) - 230 - mW Small signal differential input resistance (Rx1/Rx2)(1) - 100 - kΩ Differential input voltage between pins RX1 and RX2(3) - - 18 V - Small signal differential input capacitance (Cx1/Cx2)(1) - 22 - pF - Sensitivity (106 Kbps data rate)(4) - 8 - mV Receiver specifications VRx1-Rx2 1. Maximum values based on design simulation and/or characterization results, and not tested in production. 2. Parameter measured on samples using recommended output matching network. (Z load is 27 Ω and 0°.) 3. This voltage can be limited by adding a damping resistor in parallel of the antenna or between ST_R0 and Ground. 4. Based on ISO/IEC 10373-6 protocol measurement. The reader sensitivity corresponds to the load modulation value of the REQ reply sent by an ISO reference card when decoded by the ST95HF. 58/93 DocID025630 Rev 4 ST95HF 6.6 Electrical characteristics Oscillator characteristics The external crystal used for this product is a 27.12 MHz crystal with an accuracy of ± 14 kHz. Table 53. HFO 27.12 MHz oscillator characteristics(1) (2) Symbol Conditions Min. Typ. Max. Unit Oscillator frequency - - 27.12 - MHz RF Feedback resistor - - 2 - MΩ C Recommended load capacitance versus equivalent serial resistance of RS = 30 Ω the crystal (RS)(3) - 6 - pF - 6 10 ms fXTAL Parameter tSU(HFO)(4) Startup time VPS is stabilized 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the Host is used in tough humidity conditions. 4. tSU(HFO) is the startup time measured from the moment it is enabled (by software) to a stabilized 27.12 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 10 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Figure 14. Typical application with a 27.12 MHz crystal &/ I+)2 ;,1 0+ ] FU\VWDO 5) ;28 7 1)&GHYLFH &/ DLE9 Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 10 to 20 pF range, selected to match the requirements of the crystal or resonator. CL1 and CL2, have usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray, where Cstray (typically between 2 and 7 pF) is the pin capacitance and board or trace PCB-related capacitance. DocID025630 Rev 4 59/93 92 Package information 7 ST95HF Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at www.st.com. ECOPACK® is an ST trademark. 7.1 VFQFPN32 package information Figure 15. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline 6HDWLQJSODQH & GGG & $ $ $ ' H ( ( E 3LQ,' 5 / ' %RWWRPYLHZ 1. Drawing is not to scale. 60/93 DocID025630 Rev 4 / ?-% ST95HF Package information Table 54. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.200 - - 0.0079 - b 0.180 0.250 0.300 0.0071 0.0098 0.0118 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D2 3.400 3.450 3.500 0.1339 0.1358 0.1378 E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E2 3.400 3.450 3.500 0.1339 0.1358 0.1378 e 0.450 0.500 0.550 0.0177 0.0197 0.0217 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID025630 Rev 4 61/93 92 Package information ST95HF Figure 16. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint B)3 1. Dimensions are expressed in millimeters. 62/93 DocID025630 Rev 4 ST95HF 8 Part numbering Part numbering Table 55. Ordering information scheme Example: ST 95 HF –V MD 5 T Device type ST = NFC transceiver Wired access 95 = SPI Frequency band HF = High frequency (13.56 MHz) Operating voltage V = 2.7 to 5.5 V Package MD = 32-pin VFQFPN (5 x 5 mm) Operating temperature 5 = –25° to +85° C Packaging T = Tape and Reel Not all combinations are necessarily available. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest STMicroelectronics Sales Office. DocID025630 Rev 4 63/93 92 Additional Idle command description Appendix A ST95HF Additional Idle command description This section provides examples of use for the IDLE command. The wake-up source is the third of the 16 bytes in the IDLE command. This byte specifies authorized Wake-up events. This revision now also provides the capability to set the LFO frequency in WFE mode. The LFO frequency and the authorized wake-up source settings are stored in the Wake-up source register as the parameters of the IDLE command. The Wake-up event is updated by the ST95HF when it exits WFE mode. The contents of the Wake-up event register can be read using the Read Register command or in the ST95HF reply to the Idle command. Table 56. Wake-up source register Bits [7:6] Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LFO frequency RFU(1) IRQ on pin SPI_SS IRQ on pin IRQ_IN Field Detect Tag Detect Timeout 1. Must be set to ‘0’. Table 57. Wake-up event register Bits [7:6] Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LFO frequency RFU IRQ on pin SPI_SS IRQ on pin IRQ_IN Field Detect Tag Detect Timeout Bits [7:6] define the LFO frequency (fLFO): 00: 32 kHz 01: 16 kHz 10: 8 kHz 11: 4 kHz Bit 4: When set, the ST95HF will wake up when an external interrupt (low level on pin SPI_SS) is detected. Bit 3: When set, the ST95HF will wake up when an external interrupt (low level on pin IRQ_IN) is detected. This is useful for SPI communication. It is recommended to set this bit to ‘1’ in order to recover in the event of a system crash. Bit 2: When set, the ST95HF will wake up when an RF field is detected. Bit 1: When set, the ST95HF will wake up when a tag is detected in the RF field. This bit must also be set during Tag Detection calibration or during a Tag Detection sequence. Bit 0: When set, the ST95HF will wake up and return to Ready state at the end of a predefined cycle. The Timeout (TO) value is defined by the MaxSleep and Wake-up period: TO = (MaxSleep *(WuPeriod+1)*tREF tREF= 256*tL = 8 ms (fLFO = 32 kHz), mean power consumption in Sleep mode is 25 µA tREF= 256*tL = 64 ms (fLFO = 4 kHz), mean power consumption in Sleep mode is 20 µA Note: Note that: 0x00 < MaxSleep < 0x1F. This bit must be set when using the timer as a possible wake-up source. It must be set during Tag Detection Calibration to force a wake-up after the first Tag Detection trial. 64/93 DocID025630 Rev 4 ST95HF Example of tag detection calibration process Appendix B Example of tag detection calibration process The following script works on the DEMO_CR95HF evaluation board and with the ST95HF development software available on www.st.com. This is a dichotomous approach to quickly converge to the DacDataRef value for which a wake-up event switches from tag detection to Timeout. In this process, only the DacDataH parameter is changed in successive Idle commands. And we look at the wake-up event reply to decide the next step. 00 01 02 corresponds to a Tag Detect, 00 01 01 corresponds to a Timeout. REM, Tag Detection Calibration Test REM, Sequence: Power-up Tag Detect Wake-up by Tag Detect (1 try measurement greater or equal to DacDataH) or Timeout REM, CMD 07 0E 03 A100 D801 1800 01 60 60 00 XX 3F 00 REM, 03 REM, A100 Initial Dac Compare REM, F801 Initial Dac Compare REM, 1800 HFO REM, 20 Wup Period 32 Inactivity period = 256ms (LFO @ 32kHz) REM, 60 Osc 3ms (LFO @ 32kHz) REM, 60 Dac 3ms (LFO @ 32kHz) REM, 00 DacDataL REM, xx DacDataH 00 = minimum level (ceiling) REM, 3F Swing 13.56 REM, 01 Maximum number of Sleep before Wakeup 2 WU source = Tagdet or Timeout = minimum level (floor) 4.6 us REM, Tag Detection Calibration Test REM, During tag detection calibration process DacDataL = 0x00 REM, We execute several tag detection commands with different DacDataH values to determine DacDataRef level corresponding to ST95HF application set-up REM, DacDataReg value corresponds to DacDataH value for which Wakeup event switches from Timeout (0x01) to Tag Detect (0x02) REM, Wake-up event and DacDataH = Timeout when DacDataRef is between DacDataL REM, Search DacDataref value corresponding to value of DacDataH for which Wake-up event switches from Tag Detect (02) to Timeout(01) DocID025630 Rev 4 65/93 92 Example of tag detection calibration process ST95HF REM, Step 0: force wake-up event to Tag Detect (set DacDataH = 0x00) REM, With these conditions Wake-Up event must be Tag Detect >>> CR95HFDLL_STCMD, 01070E03A100F801180020606000003F01 <<< 000102 REM, Read Wake-up event = Tag Detect (0x02); if not, error . REM, Step 1: force Wake-up event to Timeout (set DacDataH = 0xFC REM, With these conditions, Wake-Up event must be Timeout >>> CR95HFDLL_STCMD, 01070E03A100F801180020606000FC3F01 <<< 000101 REM, Read Wake-up event = Timeout (0x01); if not, error . REM, Step 2: new DacDataH value = previous DacDataH +/- 0x80 REM, If previous Wake-up event was Timeout (0x01) we must decrease DacDataH (-0x80) >>> CR95HFDLL_STCMD, 01070E03A100F8011800206060007C3F01 <<< 000101 REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag Detect (0x02) REM, Step 3: new DacDataH value = previous DacDataH +/- 0x40 REM, If previous Wake-up event was Timeout (0x01), we must decrease DacDataH (-0x40); else, we increase DacDataH (+ 0x40) >>> CR95HFDLL_STCMD, 01070E03A100F8011800206060003C3F01 <<< 000102 REM, Read Wake-up event = Timeout (0x01) Detect (0x02) or Wake-up event = Tag REM, Step 4: new DacDataH value = previous DacDataH +/- 0x20 REM, If previous Wake-up event was Timeout (0x01), we must decrease DacDataH (-0x20); else, we increase DacDataH (+ 0x20) >>> CR95HFDLL_STCMD, 01070E03A100F8011800206060005C3F01 <<< 000102 REM, Read Wake-up event = Timeout (0x01) Detect (0x02) 66/93 DocID025630 Rev 4 or Wake-up event = Tag ST95HF Example of tag detection calibration process REM, Step 5: new DacDataH value = previous DacDataH +/- 0x10 REM, If previous Wake-up event was Timeout (0x01), we must decrease DacdataH (-0x10); else, we increase DacDataH (+ 0x10) >>> CR95HFDLL_STCMD, 01070E03A100F8011800206060006C3F01 <<< 000102 REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag Detect (0x02) REM, Step 6: new DacDataH value = previous DacDataH +/- 0x08 REM, If previous Wake-up event was Timeout (0x01), we must decrease DacDataH (-0x08); else, we increase DacDataH (+ 0x08) >>> CR95HFDLL_STCMD, 01070E03A100F801180020606000743F01 <<< 000101 REM, Read Wake-up event = Timeout (0x01) or Detect (0x02) Wake-up event = Tag REM, Step 7: new DacDataH value = previous DacDataH +/- 0x04 REM, If previous Wake-up event was Timeout (0x01), we must decrease DacDataH (-0x04); else, we increase DacDataH (+ 0x04) >>> CR95HFDLL_STCMD, 01070E03A100F801180020606000703F01 <<< 000101 REM, Read Wake-up event = Timeout (0x01) or Detect (0x02) Wake-up event = Tag REM, If last Wake-up event = Tag Detect (0x02), search DacDataRef = last DacDataH value REM, If last Wake-up event = Timeout (0x01), search DacDataRef = last DacDataH value -4 REM, For tag detection usage, we recommend setting DacDataL = DacDataRef -8 and DacDataH = DacDataRef +8 >>> CR95HFDLL_STCMD, 01070E0B21007801180020606064743F01 <<< 000101 DocID025630 Rev 4 67/93 92 Example of tag detection command using results of tag detection calibration Appendix C ST95HF Example of tag detection command using results of tag detection calibration The following script works on the DEMO_CR95HF evaluation board and with the ST95HF development software available on www.st.com. This is an example of a Tag Detection command when a tag is not present in the RF operating volume using the ST95HF: >>> CR95HFDLL_STCMD, 01 070E0B21007801180020606064743F01 <<< 000101 Wake-up event = Timeout (0x01) >>> CR95HFDLL_STCMD, 01 0803620100 <<< 000101 This is an example of a Tag Detection command when a tag is present in the RF operating volume using the ST95HF: >>> CR95HFDLL_STCMD, 01 070E0B21007801180020606064743F01 <<< 000102 Wake-up event = Tag Detect (0x02) >>> CR95HFDLL_STCMD, 01 0803620100 <<< 000102 68/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags Appendix D Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags The following script works on the DEMO_CR95HF evaluation board and with the ST95HF development software available on www.st.com. This section provides examples of ST95HF command code used to activate NFC Forum and ISO/IEC 15693 tags using ST95HF development software. CR95HFDLL_STCMD: Is the standard ST95HF frame exchange command. In this command, the first byte 01 is not sent, it is only requested by the ST95HF development software in order to recognize if it is a user or service command. CR95HFDLL_SENDRECV: Is the encapsulated ST95HF SendReceive command for which command codes, number of bytes, and CRC are automatically appended to the parameter. In this section, • The ST95HF command overhead (command code, length of data and transmission flag) is in black. • The Tag instruction is in blue. • The ST95HF response overhead (result code, length of data and status) is in green. • The Tag response is in red. When the CRC append option is set in the Protocol Select command, the CRC is automatically appended by the ST95HF, but the CRC is not visible in the instruction log file. When the CRC is present in the command or response, CRC reply is in italics. The following symbols correspond to: >>> Frame sent by Host to ST95HF <<< Frame received by Host from ST95HF D.1 ISO/IEC 14443 Type A D.1.1 NFC Forum Tag Type 1 (Topaz) REM, ST95HF code example to support NFC Forum Tag Type 1 14443_A REM, TEST TOPAZ 14443A (UID 6E567A00) REM, first byte 01 in CR95HFDLL_STCMD is only requested by ST95HF Development SW REM, RFOFF >>> CR95HFDLL_STCMD, 01 02020000 <<< 0000 REM, TEST TOPAZ 14443A (UID 6E567A00) REM, Sel Prot 14443A option TOPAZ >>> CR95HFDLL_STCMD, 01 020402000300 <<< 0000 DocID025630 Rev 4 69/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF REM, Optimization of synchronization between digital and analog inputs by adjusting TimerW value (default 0x52, min. 0x50, max. 0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 1 (Topaz). >>> CR95HFDLL_STCMD, 01 09043A005804 <<< 0000 REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum Tag Type 1 (Topaz). >>> CR95HFDLL_STCMD, 01 0904680101D1 <<< 0000 REM, last Byte x7 or x8 in CR95HFDLL_SENDRECV bits in the 14443 _Type A frame REM, command number of REQA reply ATQA 000C >>> CR95HFDLL_STCMD, 01 04 02 26 07 <<< 80 05 000C 280000 REM, RID reply HR0 HR1 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 78000000000000 A8 <<< 80 0B 11 48 6E567A00 3E45 080000 REM, RAll 0408 0000 UID0 UID 1 UID2 UID3 Reply HR0 HR1 UID0 UID 1 UID2 UID3 datas >>> CR95HFDLL_STCMD, 01 04 08 000000 6E567A00 A8 <<< 80 40 11 48 6E567A00 0002250000100E000313D1010F5402656E557365204352393552462021000000000 0000000000000000000000000000000000000000000CCCCCC REM, Read ad08 00 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8 <<< 80 07 08 00 87C1 080000 REM, Write_E ad08 data 12 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 53 0812 6E567A00 A8 <<< 80 07 08 12 14F2 080000 REM, Read ad08 00 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8 <<< 80 07 08 12 14F2 080000 REM, Write_NE ad08 data A5 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 1A 08A5 6E567A00 A8 <<< 80 07 08 B7 B300 080000 REM, Read ad08 00 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8 70/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags <<< 80 07 08 B7 B300 080000 REM, Write_E ad08 data 00 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 53 0800 6E567A00 A8 <<< 80 07 08 00 87C1 080000 REM, Read ad08 00 UID0 UID 1 UID2 UID3 >>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8 <<< 80 07 08 00 87C1 080000 D.1.2 NFC Forum Tag Type 2 REM, ST95HF code example to support NFC Forum Tag Type 2 14443_A REM, TEST INVENTORY then Read & Write in Memory REM, Protocol select 14443A >>> CR95HFDLL_STCMD, 01 02020200 <<< 0000 REM, Optimization of synchronization between digital and analog inputs by adjusting TimerW value (default 0x52, min. 0x50, max. 0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 2. >>> CR95HFDLL_STCMD, 01 09043A005804 <<< 0000 REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum Tag Type 2. >>> CR95HFDLL_STCMD, 01 0904680101D1 <<< 0000 >>> CR95HFDLL_ANTICOLSELECT123 ------ ISO14443-A STARTING ANTICOLLISION ALGORITHM -----ISO14443-A REQAreply ATQA >>> CR95HFDLL_SENDRECV, 26 07 <<< 80 05 4400 280000 ISO14443-A ANTICOL 1 >>> CR95HFDLL_SENDRECV, 93 20 08 <<< 80 08 8804179F04 280000 ISO14443-A SELECT 1 >>> CR95HFDLL_SENDRECV, 93 70 8804179F04 28 <<< 80 06 04 DA17 080000 DocID025630 Rev 4 71/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF ISO14443-A ANTICOL 2 >>> CR95HFDLL_SENDRECV, 9520 08 <<< 80 08 7910000069 280000 ISO14443-A SELECT 2 >>> CR95HFDLL_SENDRECV, 9570 7910000069 28 <<< 80 06 00 FE51 080000 --> UID = 04179F10000069 --> TAG selected ------ ISO14443-A END OF ANTICOLLISION ALGORITHM ------ REM, READ @A5 >>> CR95HFDLL_SENDRECV, 300C 28 <<< 80 15 00000000FFFFFFFFFFFFFFFFFFFFFFFF F4CD 080000 REM, WRITE @0C data A5 >>> CR95HFDLL_SENDRECV, A20CA5A5A5A5 28 <<< 87 00 : Frame wait time out OR no tag REM, READ @A5 >>> CR95HFDLL_SENDRECV, 300C 28 <<< 80 15 A5A5A5A5FFFFFFFFFFFFFFFFFFFFFFFF 84D8 080000 D.1.3 NFC Forum Tag Type 2 or 4: using split frames to resolve collisions REM, TEST ANTICOLISION 2 tags 14443_A REM, CR95HF CONFIGURATION : ISO14443-A protocol >>> CR95HFDLL_SELECT, 02000280 <<< 0000 REM, ISO14443-A : CONFIG >>> CR95HFDLL_STCMD, 01 09043A005A04 <<< 0000 REM, ISO14443-A : INCREASE DEMOD GAIN >>> CR95HFDLL_STCMD, 01 0904680101DF <<< 0000 REM, Anticollision 2 tags REM, Tag 1 --> UID = 044B744AEF2280 72/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags REM, Tag 2 --> UID = 043B114AEF2280 REM, Response When 2 tags are present NVB = nb Byte OK + nb bit OK REM, Collision B8 REM, First Byte Coll 02 (3 eme Byte) (8804 ok) REM, Index bit Coll 04 (5eme bit) => SN finish by 0 or 1 REM, REM, set NVB = 45 REQA Poll field with Two tags In operating volume >>> CR95HFDLL_STCMD, 01 04022607 <<< 80 05 4403 280000 REM, Ant CL1 Collision Detection (NVB 20) none data on UID REM, Response Flag F1=B8 F2=02 F3=04 REM, F1=B8 collision detected 8 bits significatifs in first byte of response REM, 0 F2=02 collision detected in 3rd response byte, index start at REM, F3=04 collision detected on 5th bit, index start at 0 >>> CR95HFDLL_STCMD, 01 0403932008 <<< 80 08 88047B75B7 B80204 REM, Collision Management Usage of split frame with NVB = 45 4bytes OK + 5 lsb bit OK in next byte REM, last bit (collision one) branch of UID tree REM, 0B arbitrary fixed to select only one padding of last byte with zeros as msb (tranmission lsb first) REM, command flag 45 usage of Split Frame (4) with 5 bits significatif in last byte REM, uncomplete response byte is padded with 0 as lsb bits REM, Response Flag F1=23 REM, F1=23, No collision F2=00 F3=00 REM, 3 bit significatif (msb last received bits) in first response byte 40 REM, F2=00, not significant REM, F3=00, not significant >>> CR95HFDLL_STCMD, 01 0406934588040B45 DocID025630 Rev 4 73/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags <<< 80 06 4074B3 230000 REM, Activation tag Highest branch >>> CR95HFDLL_SENDRECV, 937088044B74B328 <<< 80 06 24D836 080000 REM, Ant CL2 >>> CR95HFDLL_STCMD, 01 0403952008 <<< 80 08 4AEF228007 280000 REM, Sel CL2 tag Highest branch >>> CR95HFDLL_SENDRECV, 95704AEF22800728 <<< 80 06 20FC70 080000 REM, ISO14443-A HLTA tag1 Highest branch >>> CR95HFDLL_SENDRECV, 500028 <<< 8700 : Frame wait time out OR no tag REM, WUPA Second tags In field >>> CR95HFDLL_STCMD, 01 04025207 <<< 80 05 4403 280000 REM, Ant CL1 Detection Collision second tag (No collision) >>> CR95HFDLL_STCMD, 01 0403932008 <<< 80 08 88047B75B7 B80204 REM, Activation tag lowest branch 043B114AEF2280 >>> CR95HFDLL_SENDRECV, 937088043B11A6789808 <<< 80 06 24D836 080000 REM, Ant CL2 >>> CR95HFDLL_STCMD, 01 0403952008 <<< 80 08 4AEF228007 280000 REM, Sel CL2 tag Highest branch >>> CR95HFDLL_SENDRECV, 95704AEF22800728 <<< 80 06 20FC70 080000 REM, ISO14443-A HLTA tag2 Lowest branch >>> CR95HFDLL_SENDRECV, 500028 <<< 8700 : Frame wait time out OR no tag 74/93 DocID025630 Rev 4 ST95HF ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags REM, REQA no other tag In operating volume >>> CR95HFDLL_STCMD, 01 04022607 <<< 8700 D.1.4 NFC Forum Tag Type 2 Communication using Parity Framing mode which is compliant with MIFARE® framing requirements. REM, TEST Extract NDEF Message of NFC Tag Type 2 using Parity Framing mode option REM, ISO14443-A protocol select >>> 02000280 <<< 0000 REM, ISO14443-A configuration >>> 09043A005A04 <<< 0000 REM, ISO14443-A: Increase modulation and gain >>> 0904680101DF <<< 0000 REM, REQA >>> 04 02 26 07 <<< 80 05 4400 280000 REM, Ant CL1 >>> 04 03 93 20 08 <<< 80 08 8804CB8CCB 280000 REM, Sel CL1 >>> 04 08 9370 8804CB8CCB 28 <<< 80 06 04 DA17 080000 REM, Ant CL2 >>> 04 03 9520 08 <<< 80 08 1A432880F1 280000 REM, Sel CL2 >>> 04 08 9570 1A432880F1 28 <<< 80 06 00 FE51 080000 DocID025630 Rev 4 75/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF REM, All commands below are sent using Parity Framing mode option which defines the parity bit value coming with data byte. REM, All commands byte including CRC are sent or received in format Data Byte Parity Byte. REM, Special case occur when receiving single nibble for ACK (9004 0A 2400) or NAK (9004 0y 2400) where ‘y’ depends on error code. REM, Row0 SN0 SN1 SN2 BCC0 REM, Read ROW0 option (cmd CRC1 automatically included addr CRC1 CRC2) Parity REM, response Result code Length Data Status >>> 04 05 30 00 02 A8 08 <<< 80 15 04 CB 8C CB 1A 43 28 80 F1 48 00 00 E1 10 12 00 CF2F 080000 REM, Read ROW0 option Parity Framing (cmd CRC1 Parity specify after each byte addr CRC1 CRC2) REM, response Result code Length Data (data byte+parity byte) Status >>> 04 09 3080 0080 0200 A800 18 <<< 80 27 0400 CB00 8C00 CB00 1A00 4300 2880 8000 F100 4880 0080 0080 E180 1000 1280 0080 CF80 2F00 080000 REM, Read ROW0 option Parity Framing (cmd CRC1 with error in Parity addr CRC1 CRC2) REM, Response Result code Length Data (data byte+parity byte) Status REM, NACK REM, CR95HFDLL_STCmd REM, CR95HFDLL_STCmd REM, Read ROW1_9 option Parity Framing (cmd CRC1 Parity specify after each byte REM REM, addr CRC1 CRC2) Row1 SN3 SN4 SN5 SN6 >>> 04 09 3080 0100 8B80 B900 18 <<< 80 27 1A00 4300 2880 8000 F100 4880 0080 0080 E180 1000 1280 0080 0100 0380 A080 1000 1880 7A00 080000 REM, Row2 BCC1 internal lock byte0 lock byte1 >>> 04 09 3080 0200 1000 8B80 18 <<< 80 27 F100 4880 0080 0080 E180 1000 1280 0080 0100 0380 A080 1000 4480 0380 0B00 D180 A580 4C00 080000 76/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags REM, Row3 CCFile Magic E1 Ver 10 MMY Size 12 Access 00 >>> 04 09 3080 0380 9980 9A80 18 <<< 80 27 E180 1000 1280 0080 0100 0380 A080 1000 4480 0380 0B00 D180 0100 0700 5580 0100 8880 1300 080000 REM, Row4 First TL (T01 Prop L 3 V) >>> 04 09 3080 0400 2600 EE80 18 <<< 80 27 0100 0380 A080 1000 4480 0380 0B00 D180 0100 0700 5580 0100 7300 7480 2E80 6380 5A80 2A00 080000 REM, Row5 Second TLV NDEF MSG (T03 L 0B V www.st.com) >>> 04 09 3080 0580 AF80 FF80 18 <<< 80 27 4480 0380 0B00 D180 0100 0700 5580 0100 7300 7480 2E80 6380 6F80 6D00 FE00 0080 3F80 8500 080000 REM, Row6 Second TLV NDEF MSG ( T V www.st.com) >>> 04 09 3080 0680 3400 CD00 18 <<< 80 27 0100 0700 5580 0100 7300 7480 2E80 6380 6F80 6D00 FE00 0080 0080 FF80 0080 FF80 3F80 F680 080000 REM, Row7 Secobd TLV NDEF MSG (T V www.st.com) >>> 04 09 3080 0700 BD80 DC00 18 <<< 80 27 7300 7480 2E80 6380 6F80 6D00 FE00 0080 0080 FF80 0080 FF80 4500 7300 7300 6100 4880 CB00 080000 REM, Row8 Third TLV Terminator (T V FE 00) >>> 04 09 3080 0800 4A00 2480 18 <<< 80 27 6F80 6D00 FE00 0080 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80 F080 4B80 080000 REM, Row9 Read Scratch pad >>> 04 09 3080 0980 C380 3580 18 <<< 80 27 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80 4500 4600 2000 5400 9A80 4880 080000 REM, Write ROW9 option Parity Framing (cmd CRC1 Parity specify after each byte DocID025630 Rev 4 addr CRC1 CRC2) 77/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF REM, Response Result code Length Data (data byte+parity byte) Status REM, Row9 Write Scratch pad (ACK) >>> 04 11 A200 0980 AA80 5580 AA80 5580 2900 7D80 18 <<< 90 04 0A 240000 REM, Row9 Read Scratch pad >>> 04 09 3080 0980 C380 3580 18 <<< 80 27 AA80 5580 AA80 5580 4500 7300 7300 6100 0080 FF80 0080 FF80 4500 4600 2000 5400 1780 B480 080000 REM, Row9 Write Scratch pad (ACK) >>> 04 11 A200 0980 0080 FF80 0080 FF80 C800 2780 18 <<< 90 04 0A 240000 REM, Row9 Read Scratch pad >>> 04 09 3080 0980 C380 3580 18 <<< 80 27 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80 4500 4600 2000 5400 9A80 4880 080000 REM, Select Sector 0 (NACK) >>> 04 09 C200 FF80 C200 E880 18 <<< 90 04 00 240000 BREAK >>> CR95HFDLL_RESET_SPI <<< 8000 >>> CR95HFDLL_ECHO <<< 5500 >>> CR95HFDLL_IDN <<< 00 0F 4E46 4320 4653 324A 4153 5434 002ACE D.1.5 NFC Forum Tag Type 4A **** ST95HF code example to support NFC Forum Tag Type 4A (14443-A) & NDEF message REM, 14443B (ST95HF Protocol Selection 14443_A) REM, first Byte 01 in CR95HFDLL_STCMD is only requested by ST95HF Development SW 78/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ********** ST95HF setting to support extended Frame Waiting Time ********** >>> CR95HFDLL_STCMD, 01 020402000180 <<< 0000 REM, Optimization of synchronization between digital and analog inputs by adjusting TimerW value (default 0x52, min. 0x50, max. 0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 1 (Topaz). >>> CR95HFDLL_STCMD, 01 09043A005804 <<< 0000 REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum Tag Type 1 (Topaz). >>> CR95HFDLL_STCMD, 01 0904680101D1 <<< 0000 REM, last Byte x7 or x8 in CR95HFDLL_SENDRECV bit in the 14443 _Type A frame command number of >>> CR95HFDLL_ANTICOLSELECT123 ------ ISO14443-A STARTING ANTICOLLISION ALGORITHM -----ISO14443-A REQA >>> CR95HFDLL_SENDRECV, 26 07 <<< 80 05 0400 280000 ISO14443-A ANTICOL 1 >>> CR95HFDLL_SENDRECV, 9320 08 <<< 80 08 08192D A29E 280000 ISO14443-A SELECT 1 >>> CR95HFDLL_SENDRECV, 937008192DA29E 28 <<< 80 06 20 FC70 080000 --> UID = 192DA29E , TAG selected ------ ISO14443-A END OF ANTICOLLISION ALGORITHM ------ *** ISO14443A_4 RATS/ATS (bit rate capability/FDT/CID usage) >>> CR95HFDLL_SENDRECV, E050 28 <<< 80 0A 057833B003 A0F8 080000 ****** ISO14443A_4 PPS (Protocol parameter data rate) >>> CR95HFDLL_SENDRECV, D01100 28 DocID025630 Rev 4 79/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF <<< 80 06 D0 7387 080000 ** ISO14443_4 APDU (command & reply are using Iblock format, Prolog Information (APDU) Epilog) *** 7816_ APDU format (Class Instruction, Param , Length expeted) Length cmd data *** last byte 28 is a control byte to request ST95HF to automatically happen CRC as Epilog *** In response first 2 Byte 80 xx and last three bytes 08 0000 are ST95HF's control bytes *** Detect & Access NDEF Message *** Select Application by name >>> CR95HFDLL_SENDRECV, 02 00 A4040007D2760000850100 28 <<< 80 08 02 9000 F109 080000 ******************* Select CC File by name >>> CR95HFDLL_SENDRECV, 03 00 A4000002E103 28 <<< 80 08 03 9000 2D53 080000 ******************* ReadBinary CC (offset Le) >>> CR95HFDLL_SENDRECV, 02 00 B000000F 28 <<< 80 17 02 000F1000FF00FF0406000100FF0000 9000 B755 080000 ******************* Select NDEF MSG by Identifier 0001 >>> CR95HFDLL_SENDRECV, 03 00 A40000020001 28 <<< 80 08 03 9000 2D53 080000 ******************* bytes) ReadBinary NDEF MSG (MSG Length offset 00 2 >>> CR95HFDLL_SENDRECV, 02 00 B0000002 28 <<< 80 0A 02 0015 9000 ABB3 080000 ******************* Select NDEF File by name >>> CR95HFDLL_SENDRECV, 03 00 A40000020001 28 <<< 80 08 03 9000 2D53 080000 ******************* 80/93 ReadBinary NDEF (MSG offset 02 , 20 Bytes) DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags >>> CR95HFDLL_SENDRECV, 02 00 B0000215 28 <<< 80 1D 02D101115402656E4D32344C52313620747970652034 9000 25C5 080000 *** Header D1 type 01 Payload 11 type 54 status 02 english 656E , MSG : M24LR16 type D.2 ISO/IEC 14443 Type B D.2.1 NFC Forum Tag Type 4B **** ST95HF code example to support NFC Forum Tag Type 4B (14443-B) & NDEF message REM, Check ST95HF setting & Protocol selection REM, FIELD OFF REM, first Byte 01 in CR95HFDLL_STCMD is only requested by ST95HF Development SW >>> CR95HFDLL_STCMD, 01 02020000 <<< 0000 REM, 14443B (ST95HF PROTOCOL Selection 14443_B >>> CR95HFDLL_STCMD, 01 020403010180 <<< 0000 REM, 14443B Optimization ST95HF Analog Configuration for 144443 (0x30) >>> CR95HFDLL_STCMD, 01 090468010130 <<< 0000 REM, Access to NFC FORUM TAG Type 4B REM, REQB 0x 050000 + CRC_B (APf AFI Param (slot0)) REM, Reply ATQB 0x50 4Bytes 4 Bytes 3 Bytes + CRC_B (PUPI AppliData Protocol Info) REM, Reply from ST95HF 80 0F 50AABBCCDD30ABAB010081E1AE00 00 REM, 80 response OK, 0F nb byte response including tag reply and the ultimate ST95HF status byte 00 (reply OK) REM, Tag reply 50AABBCCDD30ABAB010081E1AE00 REM, Response code 50 REM, Pupi AABBCCDD REM, AFI 30 access control DocID025630 Rev 4 81/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags REM, CRC_B(AID) ABAB REM, Nb Appli (1) 01 REM, Prot Info byte1 00 REM, Prot Info byte 2 0081E1AE0000 ST95HF (106 Kbps both direction) 81( frame max 256 Bytes ISO compliant) REM, Prot Info byte 3 E1 (Max frame wait time 4.9 ms Appli proprietary CID supported) REM, CRC_B AE00 REM, 14443_3 REM, REQB .... >>> CR95HFDLL_STCMD, 01 04 03 050000 <<< 80 0F 50AABBCCDD30ABAB010081E1 AE00 00 REM, ATTRIB 0x1D PUPI 1byte 1byte 1byte 1 byte Identifier Param1 Param2 Param3 Param4) 00 + CRC_B (1D REM, Param1 use default TR0 TR1 use EOF REM, Param2 07 max frame size 106 Kbps Up & Dwn link REM, Param3 01 ISO14443 compliant REM, Param4 08 REM, reply ST95HF 80 04 18EBC3 00 CID (8) REM, 80 response OK 00 ST95HF reply OK card Identifier 04 nb byte response REM, Reply 10F9E0 coefBufferLength 1 REM, ATTRIB ....CID0 including ultimate byte CID 1 + CRC_B >>> CR95HFDLL_STCMD, 01 04 09 1D AABBCCDD00070100 <<< 80 04 10 F9E0 00 REM, 14443_4 REM, APDU , CID not used for NDEF management REM, command format (INF) Data(optional) 82/93 CLA INS P1 P2 Lc(optional) REM, Response (optional ): body (optional) Sw1 sW2 REM, ) Block Format Prolog INFO Epilog ( 02 [CID] [NAD] DocID025630 Rev 4 [INF] CRC_B ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags REM, Sequence lecture NDEF ( for all automatically appends by ST95HF) REM, following commands CRC_B is Select application suivant la version du tag (100) >>> CR95HFDLL_SENDRECV, 02 00 A4 040007D2760000850100 <<< 80 06 029000296A 00 REM, response 90 00 ok REM, response REM, Select CC 6A 82 application not found >>> CR95HFDLL_SENDRECV, 03 00 A4 0000 02 E103 <<< 80 06 03 9000 F530 00 REM, Read CC >>> CR95HFDLL_SENDRECV, 02 00 B0 0000 0F <<< 80 15 02 000F1000FF00FF0406000110020000 9000 E7FA 00 REM, Select Ndef 0001 >>> CR95HFDLL_SENDRECV, 03 00 A4 0000 02 0001 <<< 80 06 03 9000 F530 00 REM, Read Msg Length >>> CR95HFDLL_SENDRECV, 02 00 B0 0000 02 <<< 80 08 02 0013 9000 53AA 00 REM, Select Ndef 0001 >>> CR95HFDLL_SENDRECV, 03 00 A4 0000 02 0001 <<< 80 06 03 9000 F530 00 REM, Read Message >>> CR95HFDLL_SENDRECV, 02 00 B0 0002 13 <<< 80 19 02 D1010F5402656E557365204352393548462021 9000 8571 00 D.3 ISO/IEC 18092 D.3.1 NFC Forum Tag Type 3 REM, ST95HF code example to support NFC Forum Tag Type 3 REM, TEST INVENTORY ISO/IEC 18092 REM, RFOFF >>> CR95HFDLL_STCMD, 01 02020000 <<< 0000 DocID025630 Rev 4 83/93 92 Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags ST95HF REM, Select Protocol 14443C >>> CR95HFDLL_STCMD, 01 02020451 <<< 0000 REM, ISO/IEC 18092 New Modulation and Gain 0x50 >>> CR95HFDLL_STCMD, 01 090468010150 <<< 0000 REM, ISO/IEC 18092 Enable AutoDetect Filter to synchronize NFC Forum Tag Type 3 with ST95HF device >>> CR95HFDLL_STCMD, 01 09040A0102A1 <<< 0000 REM, REQC 00 FFFF 00 00 (command code System code No request slot 0) REM, ATQC 80 12 01 010102148E0DB413 (Manuf ID) 100B4B428485D0FF (Manuf Parameter) >>> CR95HFDLL_STCMD, 01 04 05 00FFFF0000 <<< 80 12 01 010102148E0DB413 100B4B428485D0FF 00 D.4 ISO/IEC 15693 D.4.1 ISO/IEC 15693 tag REM, Test Tag ISO/IEC 15693 (LR family) REM, Protocol Selection Up link Ask 30% coding 1/4 REM, Down link Single Sub carrier High data rate REM, Inventory One Slot REM, Command Protocol Select 02 02 01 05 REM, Protocol Selection >>> CR95HFDLL_STCMD, 01 02020105 <<< 0000 REM, Modification of IndexMod & Gain in Analog Value register @69_index1 0x50 >>> CR95HFDLL_STCMD, 01 090468010150 <<< 0000 REM, Inventory 1 Slot >>> CR95HFDLL_STCMD, 01 0403 260100 84/93 DocID025630 Rev 4 ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags <<< 80 0D 0000B7100128B42102E0 66CC 00 REM, GetSystem Info REM, Flags, UID E00221B4280110B7 DSFID BlockSize 03 IC Reference 21 00 AFI 00 MemorySize 3F >>> CR95HFDLL_SENDRECV, 022B <<< 80 12 00 0F B7100128B42102E000003F03 21 DFB0 00 REM, Test Tag ISO/IEC 15693 (Dual family) REM, Protocol Selection Up link Ask 30% coding 1/4 REM, Down link Single Sub carrier High data rate REM, Inventory 1 Slot REM, Command Protocol Select 02 02 01 05 REM, Protocol Selection >>> CR95HFDLL_STCMD, 01 02020105 <<< 0000 REM, Modification of IndexMod & Gain in Analog Value register @69_index1 0x50 >>> CR95HFDLL_STCMD, 01 090468010150 <<< 0000 REM, Inventory 1 Slot >>> CR95HFDLL_STCMD, 01 0403 260100 <<< 80 0D 00FF07062092132C02E0 3D22 00 REM, GetSystem Info REM, Flags ,UID E0022C1392200607 DSFID BlockSize 03 IC Reference 2C FF AFI 00 MemorySize 07FF >>> CR95HFDLL_SENDRECV, 0A2B <<< 80 13 00 0F 07062092132C02E0 FF 00 FF07 03 2C 984D DocID025630 Rev 4 00 85/93 92 Card emulation communication Appendix E ST95HF Card emulation communication The following information is a log of basic exchanges between the CR95HF transceiver and ST95HF card emulator. CR95HFDLL_STCMD: Is the standard ST95HF frame exchange command. In this command, the first byte 01 is not sent, it is only requested by the ST95HF development software in order to recognize if it is a user or service command. CR95HFDLL_SENDRECV: Is the encapsulated CR95HF SendReceive command for which command codes, number of bytes, and CRC are automatically appended to the parameter. In this section, • The CR95HF data exchanges are in blue. • The ST95HF card emulation data exchanges are in green. • The CR95HF and ST95HF command overhead (command code, length of data and transmission flag) is in bold. • The CRC value is in red. When the CRC append option is set in the Protocol Select command, the CRC is automatically appended by the ST95HF, but the CRC is not visible in the instruction log file. When the CRC is present in the command or response, CRC reply is in italics. The following symbols correspond to: >>> Frame sent by Host to ST95HF <<< Frame received by Host from ST95HF 86/93 DocID025630 Rev 4 ST95HF Card emulation communication Comment Direction Table 58. Example logs CR95HF Reader ST95HF Card Emulation CR95 ST95 Exchange: Host -> Reader Comment Exchange: Host -> Card Emulator REM, DEMO ST95HF for Card Emulation Exchange REM, 0A REM, Check serial com with host - - Set Reader Config. ISO/IEC 14443 Type A at 106 Kbps >>> ST95HFDLL_ECHO <<< 5500 >>> ST95HFDLL_IDN <<< 000F4E4643204653324A41535434002 ACE Check ST95HF connection to Host REM, POLLFIELD - - REM, Reader for Card Emulation Test Max waiting time for manual exchange REM, 0B >>> CR95HFDLL_STCMD, 01 020402000A05 <<< 0000 >>> ST95HFDLL_STCMD, 01 0300 <<< 000100 REM, Select Emulation Tag Mode 14443A - >>> ST95HFDLL_STCMD, 01 02021208 <<< 0000 DocID025630 Rev 4 No Field detected Set ST95HF config. Card Emulator ISO/IEC 14443 Type A at 106 Kbps 87/93 92 Card emulation communication ST95HF Comment Direction Table 58. Example logs (continued) CR95HF Reader REM, 02000180 REM, CR95HFDll_STCmd REM, CR95HFDll_STCmd 01 09043A00xx04 REM, Default xx 52 Max 5A REM, ACCA (7:6 card clamp 00 default REM, ACCA (5:4 Card Demod 01 noise immunity low sensitivity 10% REM, ACCA (3:0 mod depth default 7 mon 0 max F) REM, Increase demodulator gain D3 - >>> CR95HFDLL_STCMD, 01 0904680101D3 <<< 0000 REM, increase Dec tolerance ISO/IEC 14443 Type A at 106 Kbps (cont.) Comment REM, Read Default value Card Emulator Configuration register ACCA >>> CR95HFDLL_STCMD, 01 09043A005804 <<< 0000 Set Reader Config. ST95HF Card Emulation REM, READ Default value Reg ACCA Set Reg Index @4 Check Configuration >>> ST95HFDLL_STCMD, 01 0903680004 <<< 0000 REM, READ Reg ACCA card config 1 Reg @69 index 4 >>> CR95HFDLL_STCMD, 01 09110B00241204880F1F3F3F0100050 5005500 <<< 0000 >>> ST95HFDLL_STCMD, 01 0803690100 <<< 000127 BREAK - REM, CONFIGURE CARD EMULATOR (Set UID) REM, Set Anti-collision Filter Type A UID 0251744AEF2280 REM, ATQA 4403 SAK 20 UID1 88025174 UID2 4AEF2280 >>> ST95HFDLL_STCMD, 01 0D0B440320880251744AEF2280 <<< 0000 Set ST95HF Identity BREAK REM, POLLFIELD - - >>> ST95HFDLL_STCMD, 01 0300 <<< 000101 Check RF Field On REM, LISTEN >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 ST95HF Set in Listening mode BREAK 88/93 DocID025630 Rev 4 ST95HF Card emulation communication Comment Direction Table 58. Example logs (continued) CR95HF Reader ST95HF Card Emulation Comment >>> CR95HFDLL_ANTICOLSELECT123 ------ ISO14443-A Start of Anti-Collision Algorithm -----ISO14443-A REQA >>> CR95HFDLL_SENDRECV, 2607 <<< 80054403280000 Execute Anti-collision Process ISO/IEC 14443 Type A ISO14443-A ANTICOL 1 >>> CR95HFDLL_SENDRECV, 932008 <<< 800888025174A9280000 ISO14443-A SELECT 1 >>> CR95HFDLL_SENDRECV, 937088025174A928 <<< 800624D836080000 ISO14443-A ANTICOL 2 >>> CR95HFDLL_SENDRECV, 952008 <<< 80084AEF228007280000 ISO14443-A SELECT 2 >>> CR95HFDLL_SENDRECV, 95704AEF22800728 <<< 800620FC70080000 > < Anti-collision Process on RX side (no return to Host) > < > < > < - Response automatically sent to reader ISO/IEC 14443-3 > < --> UID = 0251744AEF2280 --> TAG selected ------ ISO14443-A End of Anti-Collision Algorithm -----BREAK DocID025630 Rev 4 89/93 92 Card emulation communication ST95HF Comment Direction Table 58. Example logs (continued) CR95HF Reader ST95HF Card Emulation Comment Applicative Communication ISO/IEC 14443-4: Data Exchange between Reader (CR95HF) & Card Emulator (ST95HF) - - - ST95HF is in Listening mode REM, RATS 1A >>> CR95HFDLL_SENDRECV, E05028 > <<< 800F06757781028002F00800 < BREAK REM, LISTEN Application comm protocol setup ISO/IEC 14443-4 >>> ST95HFDLL_POLLING_READING After capture, <<< 8005E050BCA508 Data is transferred REM, 1B SEND ATS to Host 060706757781028028 which defines the >>> ST95HFDLL_STCMD, 01 response 060B06757781028002F0080028 <<< 0000 - - >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 BREAK REM, PPS 2A >>> CR95HFDLL_SENDRECV, D0110028 > <<< 800AD073870800 < BREAK >>> ST95HFDLL_POLLING_READING After capture, <<< 8006D0110052A608 Data is transferred REM, 2B PPS to Host which >>> ST95HFDLL_STCMD, 01 defines the 0606D07387080028 response <<< 0000 REM, LISTEN - >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 BREAK 90/93 ST95HF returns to Listening mode DocID025630 Rev 4 ST95HF returns to Listening mode ST95HF Card emulation communication Comment Direction Table 58. Example logs (continued) CR95HF Reader ST95HF Card Emulation Comment REM, IBLOCK Exchange 3A >>> CR95HFDLL_SENDRECV, 0200A4040007D276000086010028 Applica<<< 800C029000F1090800 tion comm protocol setup > < >>> ST95HFDLL_POLLING_READING After <<< 80100200A4040007D27600008601004 capture, Data is BF708 transferred to Host REM, 3B IBLOCK which defines the >>> ST95HFDLL_STCMD, 01 response 0608029000F109080028 <<< 0000 REM, LISTEN ISO/IEC 14443-4 (cont.) - - >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 ST95HF returns to Listening mode BREAK REM, Set RF OFF >>> CR95HFDLL_STCMD, 01 02020000 <<< 0000 - BREAK Close SPI >>> CR95HFDLL_RESET_SPI link <<< 0000 - No Field >>> ST95HFDLL_POLLING_READING error <<< 8F00 BREAK REM, 4B >>> ST95HFDLL_RESET_SPI <<< 0000 DocID025630 Rev 4 Close SPI link 91/93 92 Revision history ST95HF Revision history Table 59. Document revision history Date Revision 14-Apr-2014 1 Initial release. 10-Jun-2014 2 Updated Section 3.2: Startup sequence on page 13 and Table 44: Absolute maximum ratings on page 52. 3 Updated Applications on page 1, Table 16: SendRecv command description on page 27 and Table 18: List of <Data> Response values for the SendRecv command for different protocols on page 30. 4 Updated Features and Applications on cover page. Updated Section 1: Description and Section 7: Package information. Updated Table 1: List of terms and Figure 5: Power-up sequence. Removed former Table 52: DC characteristics (VPS_Main = 3V±10% or 5V±10% and VPS_TX = 5V±10%). 20-Aug-2014 08-Feb-2016 92/93 Changes DocID025630 Rev 4 ST95HF IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved DocID025630 Rev 4 93/93 93