INFINEON BAS40-04

BAS40.../BAS140W
Silicon Schottky Diode
• General-purpose diode for high-speed switching
• Circuit protection
• Voltage clamping
• High-level detecting and mixing
• Pb-free (RoHS compliant) package
• Qualified according AEC Q1011)
BAS140W
BAS40-02L
BAS40
BAS40-04
!
BAS40-05
BAS40-05W
!
, BAS40-06
BAS40-06W
!
, ,
!
,
, ,
BAS40-07
BAS40-07W
"
!
, ,
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BAS140W
BAS40
BAS40-02L*
BAS40-04
BAS40-05
BAS40-05W
BAS40-06
BAS40-06W
BAS40-07
BAS40-07W
1*
Package
SOD323
SOT23
TSLP-2-1
SOT23
SOT23
SOT323
SOT23
SOT323
SOT143
SOT343
Configuration
single
single
single, leadless
series
common cathode
common cathode
common anode
common anode
parallel pair
parallel pair
Marking
white 4
43s
FF
44s
45s
45s
46s
46s
47s
47s
BAS40-02L is not qualified according AEC Q101
1
2013-01-11
BAS40.../BAS140W
Maximum Ratings at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Value
Unit
Diode reverse voltage
VR
40
V
Forward current
IF
120
mA
Non-repetitive peak surge forward current
IFSM
200
t ≤ 10ms
Total power dissipation
Ptot
mW
BAS140W, TS ≤ 113°C
250
BAS40, BAS40-07, TS ≤ 81°C
250
BAS40-02L, TS ≤ 127°C
250
BAS40-04, BAS40-06, TS ≤ 56°C
250
BAS40-06W, TS ≤ 106°C
250
BAS40-05, TS ≤ 31°C
250
BAS40-05W, TS ≤ 98°C
250
BAS40-07W, TS ≤ 118°C
250
150
Junction temperature
Tj
Operating temperature range
Top
-55 ...150
Storage temperature
Tstg
-55 ...150
°C
Thermal Resistance
Parameter
Symbol
Junction - soldering point1)
RthJS
Value
Unit
K/W
BAS140W
≤ 150
BAS40, BAS40-07
≤ 275
BAS40-02L
≤ 90
BAS40-04, BAS40-06
≤ 375
BAS40-06W
≤ 175
BAS40-05
≤ 475
BAS40-05W
≤ 205
BAS40-07W
≤ 125
1For calculation of R
thJA please refer to Application Note AN077 (Thermal Resistance Calculation)
2
2013-01-11
BAS40.../BAS140W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ. max.
DC Characteristics
40
V
Breakdown voltage
V(BR)
I(BR) = 10 µA
Reverse current
IR
-
-
1
µA
VR = 30 V
Forward voltage
mV
VF
IF = 1 mA
250
310
380
IF = 10 mA
350
450
500
IF = 40 mA
600
720
1000
∆ VF
-
-
20
CT
-
3
5
pF
RF
-
10
-
Ω
τ rr
-
-
100
ps
Forward voltage matching1)
IF = 10 mA
AC Characteristics
Diode capacitance
VR = 0 , f = 1 MHz
Differential forward resistance
IF = 10 mA, f = 10 kHz
Charge carrier life time
IF = 25 mA
1∆V
F is the difference between lowest and highest VF in a multiple diode component.
3
2013-01-11
BAS40.../BAS140W
Diode capacitance CT = ƒ (VR )
Forward resistance rf = ƒ (IF)
f = 1MHz
f = 10 kHz
BAS 40...
5
CT
EHB00040
10 3
rf
pF
BAS 40...
EHB00041
Ω
4
10 2
3
2
10 1
1
0
10
0
20
V
10 3
0.1
30
1
10
mA 100
ΙF
VR
Reverse current IR = ƒ (TA)
Reverse current IR = ƒ(VR )
VR = Parameter
TA = Parameter
10 -4
10 3
A
ΙR
BAS 40...
EHB00039
µA
TA = 150 C
10 2
IR
10 -5
10 1
10 -6
85 C
10 0
VR = 40V
30V
20V
10V
10 -7
10 -1
25 C
10 -8
0
25
50
75
100
°C
10 -2
150
TA
0
10
20
30
V
40
VR
4
2013-01-11
BAS40.../BAS140W
Forward Voltage VF = ƒ (TA)
Forward current IF = ƒ (VF)
IF = Parameter
TA = Parameter
10 2
0.8
ΙF
V
EHB00038
mA
10 1
0.6
VF
BAS 40...
IF = 40 mA
10 mA
1 mA
0.1 mA
10 µA
1 µA
0.5
0.4
TA = -40 ˚C
25 ˚C
85 ˚C
150 ˚C
10 0
0.3
10 -1
0.2
0.1
0
-50
-25
0
25
50
75
100
°C
10-2
0.0
150
0.5
1.0
TA
V
1.5
VF
Forward current IF = ƒ (TS )
Forward current IF = ƒ (TS )
BAS140W
BAS40, BAS40-07
140
140
mA
mA
IF
100
IF
100
80
80
60
60
40
40
20
20
0
0
15
30
45
60
75
90 105 120 °C
0
0
150
TS
15
30
45
60
75
90 105 120 °C
150
TS
5
2013-01-11
BAS40.../BAS140W
Forward current IF = ƒ (TS )
Forward current IF = ƒ (TS )
BAS40-02L
BAS40-04, BAS40-06
140
140
mA
mA
IF
100
IF
100
80
80
60
60
40
40
20
20
0
0
15
30
45
60
75
90 105 120 °C
0
0
150
15
30
45
60
75
90 105 120 °C
TS
150
TS
Forward current IF = ƒ (TS )
Forward current IF = ƒ (TS )
BAS40-06W
BAS40-05
140
140
mA
mA
IF
100
IF
100
80
80
60
60
40
40
20
20
0
0
15
30
45
60
75
90 105 120 °C
0
0
150
TS
15
30
45
60
75
90 105 120 °C
150
TS
6
2013-01-11
BAS40.../BAS140W
Forward current IF = ƒ (TS )
Forward current IF = ƒ (TS )
BAS40-05W
BAS40-07W
140
140
mA
mA
IF
100
IF
100
80
80
60
60
40
40
20
20
0
0
15
30
45
60
90 105 120 °C
75
0
0
150
15
30
45
60
75
90 105 120 °C
TS
150
TS
Permissible Puls Load RthJS = ƒ (t p)
Permissible Pulse Load
BAS140W
IFmax / IFDC = ƒ (t p)
BAS140W
R thJS
5
K/W
EHD07165
BAS 140W
Ι F max
Ι F DC
10 2
EHD07166
BAS 140W
tp
tp
D=
T
5
T
10 2
D=
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
5
10 1
5
D=
0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
5
tp
tp
D=
T
10 0
10 -6
10
-5
10
-4
10
T
-3
10
-2
s
10
10 0
10 -6
0
tp
7
10 -5
10 -4
10 -3
10 -2
s
tp
10 0
2013-01-11
BAS40.../BAS140W
Permissible Puls Load RthJS = ƒ (t p)
Permissible Pulse Load
BAS40-02L
IFmax / IFDC = ƒ (t p)
BAS40-02L
10
2
10 1
RthJS
IFmax/IFDC
K/W
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 1
10 0 -6
10
10
-5
10
-4
10
-3
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-
10
-2
10
-1
s
10
10 0 -6
10
1
10
-5
10
-4
10
-3
10
-2
tp
s
10
0
10
0
tp
Permissible Puls Load RthJS = ƒ (t p)
Permissible Pulse Load
BAS40-06W
IFmax / IFDC = ƒ (t p)
BAS40-06W
10 2
10 3
IFmax/IFDC
RthJS
K/W
10 2
-
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 1
10 0 -6
10
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -6
10
0
tp
10
-5
10
-4
10
-3
10
-2
s
tp
8
2013-01-11
BAS40.../BAS140W
Permissible Puls Load RthJS = ƒ (t p)
Permissible Pulse Load
BAS40-05W
IFmax / IFDC = ƒ (t p)
BAS40-05W
10
10 2
3
IFmax/IFDC
RthJS
K/W
10 2
-
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
10
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
1
10 0 -6
10
10
-5
10
-4
10
-3
10
-2
s
10
10 0 -6
10
0
tp
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
9
2013-01-11
Package SOD323
10
BAS40.../BAS140W
2013-01-11
Package SOT143
BAS40.../BAS140W
2
0.1 MAX.
10˚ MAX.
1
1 ±0.1
0.2
0.8 +0.1
-0.05
0.4 +0.1
-0.05
A
5
0...8˚
0.2 M A
0.25 M B
1.7
0.08...0.1
1.3 ±0.1
3
2.4 ±0.15
4
B
10˚ MAX.
2.9 ±0.1
1.9
0.15 MIN.
Package Outline
Foot Print
1.2
0.8
0.9
1.1
0.9
0.8 1.2 0.8
0.8
Marking Layout (Example)
RF s
56
Manufacturer
Pin 1
2005, June
Date code (YM)
BFP181
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
2.6
8
4
Pin 1
3.15
1.15
11
2013-01-11
Package SOT23
BAS40.../BAS140W
0.4 +0.1
-0.05
1)
2
0.08...0.1
C
0.95
1.3 ±0.1
1
2.4 ±0.15
3
0.1 MAX.
10˚ MAX.
B
1 ±0.1
10˚ MAX.
2.9 ±0.1
0.15 MIN.
Package Outline
A
5
0...8˚
1.9
0.2
0.25 M B C
M
A
1) Lead width can be 0.6 max. in dambar area
Foot Print
0.8
0.9
1.3
0.9
0.8
1.2
Marking Layout (Example)
Manufacturer
EH s
2005, June
Date code (YM)
Pin 1
BCW66
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
4
0.2
8
2.13
2.65
0.9
Pin 1
1.15
3.15
12
2013-01-11
Package SOT323
BAS40.../BAS140W
Package Outline
0.9 ±0.1
2 ±0.2
0.3 +0.1
-0.05
0.1 MAX.
3x
0.1
M
0.1
A
1
2
1.25 ±0.1
0.1 MIN.
2.1 ±0.1
3
0.15 +0.1
-0.05
0.65 0.65
0.2
M
A
Foot Print
0.8
1.6
0.6
0.65
0.65
Marking Layout (Example)
Manufacturer
2005, June
Date code (YM)
BCR108W
Type code
Pin 1
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
2.3
8
4
Pin 1
2.15
1.1
13
2013-01-11
Package TSLP-2-1
14
BAS40.../BAS140W
2013-01-11
BAS40.../BAS140W
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
15
2013-01-11