

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - CRC V2.10 Datasheet.pdf

		
				 ®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
2.10
Features
 1 to 64 bits
 Time Division Multiplexing mode
 Requires clock and data for serial bit stream input
 Serial data in, parallel result
 Standard [CRC-1 (parity bit), CRC-4 (ITU-T G.704), CRC-5-USB, etc.] or custom polynomial
 Standard or custom seed value
 Enable input provides synchronized operation with other components
General Description
The default use of the Cyclic Redundancy Check (CRC) component is to compute the CRC from
a serial bit stream of any length. The input data is sampled on the rising edge of the data clock.
The CRC value is reset to 0 before starting or can optionally be seeded with an initial value. On
completion of the bitstream, the computed CRC value may be read out.
When to Use a CRC
You can use the default CRC component as a checksum to detect alteration of data during
transmission or storage. CRCs are popular because they are simple to implement in binary
hardware, are easy to analyze mathematically, and are particularly good at detecting common
errors caused by noise in transmission channels.
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-73569 Rev. **
Revised October 17, 2011
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Input/Output Connections
This section describes the various input and output connections for the CRC. An asterisk (*) in
the list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in
the description of that I/O.
clock – Input
The CRC requires a data input that provides the serial bitstream used to calculate the CRC. A
data clock input is also required in order to correctly sample the serial data input. The input data
is sampled on the rising edge of the data clock.
reset – Input
The reset input defines the signal to asynchronous reset the CRC.
enable – Input
The CRC component runs after it is started and as long as the Enable input is held high. This
input provides synchronized operation with other components.
di – Input
Data input that provides the serial bitstream used to calculate the CRC.
Page 2 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Component Parameters
Drag a CRC component onto your design and double click it to open the Configure dialog. This
dialog has several tabs to guide you through the process of setting up the CRC component.
Polynomial Tab
Standard Polynomial
This parameter allows you to choose one of the standard CRC polynomials provided in the
Standard polynomial combo box or generate a custom polynomial. The additional information
about each standard polynomial is given in the tool tip. The default is CRC-16.
Polynomial Name
Polynomial
Use
Custom
User defined
General
CRC-1
x+1
Parity
4
CRC-4-ITU
x +x+1
CRC-5-ITU
x + x + x +1
CRC-5-USB
x +x +1
CRC-6-ITU
x +x+1
CRC-7
x +x +1
CRC-8-ATM
x +x +x+1
CRC-8-CCITT
CRC-8-Maxim
5
4
5
2
ITU G.704
2
ITU G.704
USB
6
ITU G.704
7
3
8
2
8
7
3
8
5
4
Telecom systems, MMC
ATM HEC
2
x +x +x +x +1
x +x +x +1
Document Number: 001-73569 Rev. **
1-Wire bus
1-Wire bus
Page 3 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
Polynomial Name
CRC-8
CRC-8-SAE
Polynomial
8
7
6
4
8
4
3
2
Use
2
x +x +x +x +x +1
General
x +x +x +x +1
9
5
SAE J1850
CRC-10
x
10
4
CRC-12
x
12
+x
11
+x +x +x+1
CRC-15-CAN
x
15
+x
14
+x
CRC-16-CCITT
x
16
+x
12
+x +1
CRC-16
x
16
+x
15
+x +1
24
23
18
32
26
23
32
28
27
26
25
32
30
29
28
26
+x +x +x +x+1
3
10
General
2
8
7
Telecom systems
4
3
+x +x +x +x +1
CAN
5
XMODEM,X.25, V.41,
Bluetooth, PPP, IrDA, CRCCCITT
2
USB
+x
17
+x
22
+x
14
+x
16
+x
11
+x
12
+x
10
7
6
5
4
+x +x +x +x +x
3
General
CRC-24-Radix64
x +x +x
+x+1
CRC-32-IEEE802.3
x +x +x
2
+x +x+1
+x
11
+x
10
+x +x +x +x
CRC-32C
x +x +x +x +x +x +x
13
11
10
9
8
6
x +x +x +x +x +x +1
23
22
+x
20
+x
19
+x
18
+x
14
+
General
CRC-32K
x +x +x +x +x +x +x
10
7
6
4
2
x +x +x +x +x +x+1
20
19
+x
17
+x
16
+x
15
+x
11
+
General
CRC-64-ISO
x
CRC-64-ECMA
x +x +x +x +x +x +x +x +x +x +x +
39
38
37
35
33
32
31
29
27
24
23
x +x +x +x +x +x +x +x +x +x +x +
22
21
19
17
13
12
10
9
7
4
x + x + x + x + x + x + x + x + x + x + x +1
64
64
4
8
7
5
4
3
+x +x +x+1
62
57
55
Ethernet, MPEG2
ISO 3309
54
53
52
47
46
45
40
ECMA-182
Polynomial Value
This parameter is represented in hexadecimal format. It is calculated automatically when one of
the standard polynomials is selected. You may also enter it manually (see Custom Polynomials).
Seed Value
This parameter is represented in hexadecimal format. The maximum possible value is 2 N – 1.
N
This parameter defines the degree of polynomial. Possible values are 1 to 64 bits. The table with
numbers indicates which degrees are included in the polynomial. Cells with selected numbers
are blue; others are white. The number of active cells is equal to N. Numbers are arranged in
reverse order. You may click on the cell to select or deselect a number.
Polynomial representation
This parameter displays the resulting polynomial in mathematical notation.
Page 4 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Custom Polynomials
You may enter a custom polynomial in three different ways:
Small Changes to Standard Polynomial

Choose one of the standard polynomials.
Select the necessary degrees in the table by clicking on the appropriate cells; the text in
Standard polynomial changes to Custom.
The polynomial value is recalculated automatically based on the polynomial that is
represented.
Use Polynomial Degrees

Enter a custom polynomial in the N textbox; the text in Standard polynomial changes to
Custom.

Select the necessary degrees in the table by clicking on the appropriate cells.
Check the view of the polynomial in Polynomial representation.
The polynomial value is recalculated automatically based on the polynomial that is
represented.
Use Hexadecimal Format

Enter a polynomial value in hexadecimal form in the Polynomial Value text box.
Press [Enter] or switch to another control; the text in Standard polynomial changes to
Custom.
The N value and degrees of polynomial will be recalculated based on the entered polynomial
value.
Document Number: 001-73569 Rev. **
Page 5 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Advanced Tab
Implementation
This parameter defines the implementation of the CRC component: Time Division Multiplex or
Single Cycle. The default is Single Cycle.
Local Parameters (For API use)
These parameters are used in the API and are not exposed in the GUI:

PolyValueLower (uint32) – Contains the lower half of the polynomial value in hexadecimal
format. The default is 0xB8h (LFSR= [8,6,5,4]) because the default resolution is 8.

PolyValueUpper (uint32) – Contains the upper half of the polynomial value in hexadecimal
format. The default is 0x00h because the default resolution is 8.

SeedValueLower (uint32) – Contains the lower half of the seed value in hexadecimal
format. The default is 0xFFh because the default resolution is 8.

SeedValueUpper (uint32) – Contains the upper half of the seed value in hexadecimal
format. The default is 0 because the default resolution is 8.
Clock Selection
There is no internal clock in this component. You must attach a clock source.
Page 6 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Note Generation of the proper CRC sequence for a resolution of greater than eight requires a
clock signal four times greater than the data rate, if you select Time Division Multiplex for the
Implementation parameter.
Placement
The CRC is placed throughout the UDB array and all placement information is provided to the
API through the cyfitter.h file.
Resources
Single Cycle Implementation
API Memory
(Bytes)
Resource Type
Resources
Datapath
Cells
PLDs
Control/Count7
Cells
Flash
RAM
Pins (per External
I/O)
1..8-Bits Resolution
1
1
1
166
2
4
9..16-Bits Resolution
2
1
1
210
2
4
17..24-Bits Resolution
3
1
1
287
2
4
25..32-Bits Resolution
4
1
1
288
2
4
Time Division Multiplex Implementation
API Memory
(Bytes)
Resource Type
Resources
Datapath
Cells
PLDs
Control/Count7
Cells
Flash
RAM
Pins (per External
I/O)
9..16-Bits Resolution
1
3
1
242
2
4
17..24-Bits Resolution
2
3
1
538
2
4
25..32-Bits Resolution
2
3
1
615
2
4
33..40-Bits Resolution
3
3
1
763
2
4
41..48-Bits Resolution
3
3
1
894
2
4
49..56-Bits Resolution
4
3
1
999
2
4
57..64-Bits Resolution
4
3
1
1101
2
4
Document Number: 001-73569 Rev. **
Page 7 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “CRC_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“CRC.”
Function
Description
CRC_Start()
Initializes seed and polynomial registers with initial values. Computation of CRC
starts on rising edge of input clock.
CRC_Stop()
Stops CRC computation.
CRC_Wakeup()
Restores the CRC configuration and starts CRC computation on rising edge of
input clock.
CRC_Sleep()
Stops CRC computation and saves the CRC configuration.
CRC_Init()
Initializes the seed and polynomial registers with initial values.
CRC_Enable()
Starts CRC computation on rising edge of input clock.
CRC_SaveConfig()
Saves the seed and polynomial registers.
CRC_RestoreConfig()
Restores the seed and polynomial registers.
CRC_WriteSeed()
Writes the seed value.
CRC_WriteSeedUpper()
Writes the upper half of the seed value. Only generated for 33- to 64-bit CRC.
CRC_WriteSeedLower()
Writes the lower half of the seed value. Only generated for 33- to 64-bit CRC.
CRC_ReadCRC()
Reads the CRC value.
CRC_ReadCRCUpper()
Reads the upper half of the CRC value. Only generated for 33- to 64-bit CRC.
CRC_ReadCRCLower()
Reads the lower half of the CRC value. Only generated for 33- to 64-bit CRC.
CRC_WritePolynomial()
Writes the CRC polynomial value.
RC_WritePolynomialUpper()
Writes the upper half of the CRC polynomial value. Only generated for 33- to 64bit CRC.
CRC_WritePolynomialLower()
Writes the lower half of the CRC polynomial value. Only generated for 33- to 64bit CRC.
CRC_ReadPolynomial()
Reads the CRC polynomial value.
CRC_ReadPolynomialUpper()
Reads the upper half of the CRC polynomial value. Only generated for 33- to 64bit CRC.
CRC_ReadPolynomialLower()
Reads the lower half of the CRC polynomial value. Only generated for 33- to 64bit CRC.
Page 8 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Global Variables
Variable
CRC_initVar
Description
Indicates whether the CRC has been initialized. The variable is initialized to 0 and set to 1 the
first time CRC_Start() is called. This allows the component to restart without reinitialization after
the first call to the CRC_Start() routine.
If reinitialization of the component is required, then the CRC_Init() function can be called before
the CRC_Start() or CRC_Enable() function.
void CRC_Start(void)
Description:
Initializes seed and polynomial registers with initial values. Computation of CRC starts
on rising edge of input clock.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_Stop(void)
Description:
Stops CRC computation.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_Sleep(void)
Description:
Stops CRC computation and saves the CRC configuration.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-73569 Rev. **
Page 9 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
void CRC_Wakeup(void)
Description:
Restores the CRC configuration and starts CRC computation on the rising edge of the
input clock.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_Init(void)
Description:
Initializes the seed and polynomial registers with initial values.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_Enable(void)
Description:
Starts CRC computation on the rising edge of the input clock.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_SaveConfig(void)
Description:
Saves the initial seed and polynomial registers.
Parameters:
None
Return Value:
None
Side Effects:
None
void CRC_RestoreConfig(void)
Description:
Restores the initial seed and polynomial registers.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 10 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
void CRC_WriteSeed(uint8/16/32 seed)
Description:
Writes the seed value.
Parameters:
uint8/16/32 seed: Seed value
Return Value:
None
Side Effects:
The seed value is cut according to mask = 2
Resolution
– 1.
For example, if CRC Resolution is 14 bits, the mask value is:
14
mask = 2 – 1 = 0x3FFFu.
The seed value = 0xFFFFu is cut: seed and mask = 0xFFFFu and 0x3FFFu = 0x3FFFu.
void CRC_WriteSeedUpper(uint32 seed)
Description:
Writes the upper half of the seed value. Only generated for 33- to 64-bit CRC.
Parameters:
uint32 seed: Upper half of the seed value
Return Value:
None
Side Effects:
The upper half of the seed value is cut according to mask = 2
Resolution – 32
– 1.
For example, if CRC Resolution is 35 bits, the mask value is:
(35 – 32)
2
3
– 1 = 2 – 1 = 0x0000 0007u.
The upper half of the seed value = 0x0000 00FFu is cut:
upper half of seed and mask = 0x0000 00FFu and 0x0000 0007u = 0x0000 0007u.
void CRC_WriteSeedLower(uint32 seed)
Description:
Writes the lower half of the seed value. Only generated for 33- to 64-bit CRC.
Parameters:
uint32 seed: Lower half of the seed value
Return Value:
None
Side Effects:
None
uint8/16/32 CRC_ReadCRC(void)
Description:
Reads the CRC value.
Parameters:
None
Return Value:
uint8/16/32: Returns the CRC value
Side Effects:
None
Document Number: 001-73569 Rev. **
Page 11 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
uint32 CRC_ReadCRCUpper(void)
Description:
Reads the upper half of the CRC value. Only generated for 33- to 64-bit CRC.
Parameters:
None
Return Value:
uint32: Returns the upper half of the CRC value
Side Effects:
None
uint32 CRC_ReadCRCLower(void)
Description:
Reads the lower half of the CRC value. Only generated for 33- to 64-bit CRC.
Parameters:
None
Return Value:
uint32: Returns the lower half of the CRC value
Side Effects:
None
void CRC_WritePolynomial(uint8/16/32 polynomial)
Description:
Writes the CRC polynomial value.
Parameters:
uint8/16/32 polynomial: CRC polynomial
Return Value:
None
Side Effects:
– 1. For example, if CRC
The polynomial value is cut according to mask = 2
14
Resolution is 14 bits, the mask value is: mask = 2 – 1 = 0x3FFFu.
Resolution
The polynomial value = 0xFFFFu is cut:
polynomial and mask = 0xFFFFu and 0x3FFFu = 0x3FFFu.
void RC_WritePolynomialUpper(uint32 polynomial)
Description:
Writes the upper half of the CRC polynomial value. Only generated for 33- to 64-bit
CRC.
Parameters:
uint32 polynomial: Upper half of the CRC polynomial value
Return Value:
None
Side Effects:
The upper half of the polynomial value is cut according to mask = 2
example, if CRC Resolution is 35 bits, the mask value is:
(35 – 32)
2
(Resolution – 32)
– 1. For
3
– 1 = 2 – 1 = 0x0000 0007u.
The upper half of the polynomial value = 0x0000 00FFu is cut:
upper half of polynomial and mask = 0x0000 00FFu and 0x0000 0007u = 0x0000
0007u.
Page 12 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
void CRC_WritePolynomialLower(uint32 polynomial)
Description:
Writes the lower half of the CRC polynomial value. Only generated for 33- to 64-bit
CRC.
Parameters:
uint32 polynomial: Lower half of the CRC polynomial value
Return Value:
None
Side Effects:
None
uint8/16/32 CRC_ReadPolynomial(void)
Description:
Reads the CRC polynomial value.
Parameters:
None
Return Value:
uint8/16/32: Returns the CRC polynomial value
Side Effects:
None
uint32 CRC_ReadPolynomialUpper(void)
Description:
Reads the upper half of the CRC polynomial value. Only generated for 33- to 64-bit
CRC.
Parameters:
None
Return Value:
uint32: Returns the upper half of the CRC polynomial value
Side Effects:
None
uint32 CRC_ReadPolynomialLower(void)
Description:
Reads the lower half of the CRC polynomial value. Only generated for 33- to 64-bit
CRC.
Parameters:
None
Return Value:
uint32: Returns the lower half of the CRC polynomial value.
Side Effects:
None
Document Number: 001-73569 Rev. **
Page 13 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.
Functional Description
The CRC is implemented as a linear feedback shift register (LFSR). The shift register computes
the LFSR function, the polynomial register holds the polynomial that defines the LFSR
polynomial, and the seed register enables initialization of the starting data.
The seed and polynomial registers must be initialized before starting the component.
Computation of an N-bit LFSR result is specified by a polynomial with N + 1 terms, the last of
which is the X0 term where X0 = 1. For example, the widely used CRC-CCITT 16-bit polynomial is
X16 + X12 + X5 + 1. The CRC algorithm assumes the presence of the X0 term, so that the
polynomial for an N-bit result can be expressed by an N bit rather than (N + 1)-bit specification.
To specify the polynomial specification, write an (N + 1)-bit binary number corresponding to the
full polynomial, with 1s for each term present. The CRC-CCITT polynomial would be
10001000000100001b. Then, drop the right-most bit (the X 0 term) to obtain the CRC polynomial
value. To implement the CRC-CCITT example, the polynomial register is loaded with a value of
8810h.
A rising edge of the input clock shifts each bit of the input data stream, MSB first, through the
shift register, computing the specified CRC algorithm. Eight clocks are required to compute the
CRC for each byte of input data.
Note that the initial seed value is lost. This is usually of no consequence because the seed value
is only used to initialize the Shift register once, for each data set.
Block Diagram and Configuration
Page 14 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Timing Diagrams
Figure 1. Time Division Multiplex Implementation Mode
Figure 2. Single Cycle Implementation Mode
DC and AC Electrical Characteristics
The following values indicate expected performance and are based on initial characterization
data.
Document Number: 001-73569 Rev. **
Page 15 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
Timing Characteristics “Maximum with Nominal Routing”
Parameter
fCLOCK
Description
Component clock Frequency
tCLOCKH
Input clock high time
tCLOCKL
Input clock low time
Config.
2
3
3
1
Min
Typ
Max
Units
Config 1
45
MHz
Config 2
30
MHz
Config 3
41
MHz
Config 4
24
MHz
Config 5
35
MHz
Config 6
21
MHz
N/A
0.5
1/fCLOCK
N/A
0.5
1/fCLOCK
Inputs
1
tPD_ps
Input path delay, pin to sync
4
1
STA
tPD_ps
Input path delay, pin to sync
6
2
8.5
5
ns
ns
Configurations:
Config 1:
Resolution: 8 bits
Implementation: Single Cycle
Config 2:
Resolution: 16 bits
Implementation: Single Cycle
Config 3:
Resolution: 16 bits
Implementation: Time Division Multiplex
Config 4:
Resolution: 32 bits
Implementation: Single Cycle
Config 5:
Resolution: 32 bits
Implementation: Time Division Multiplex
Config 6:
Resolution: 64 bits
Implementation: Time Division Multiplex
2
If Time Division Multiplex implementation is selected, component clock frequency must be four times greater than the data rate.
3
tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.
4
tPD_ps is found in the Static Timing Results, as described later. The number listed here is a nominal value based on STA
analysis on many inputs.
5
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and directly affect the maximum
component clock and sync clock frequencies. The values are found in the Static Timing Analysis results.
6
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the pins
available on the device
Page 16 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
7
Description
Cyclic Redundancy Check (CRC)
Config.
tPD_si
Sync output to input path delay
(route)
1,2,3,4
tI_clk
Alignment of clockX and clock
1,2,3,4
tPD_IE
Input path delay to component
clock (edge-sensitive input)
tPD_IE
1
Min
Typ
Max
STA
5
Units
ns
0
1
tCY_clock
1,2
tPD_ps +
tSYNC +
tPD_si
tPD_ps +
tSYNC +
tPD_si +
tI_clk
ns
Input path delay to component
clock (edge-sensitive input)
3,4
tsync +
tPD_si
tsync +
tPD_si +
tI_clk
ns
tIH
Input high time
1,2,3,4
tCY_clock
7
ns
tIL
Input low time
1,2,3,4
tCY_clock
7
ns
tCY_clock = 4 × [1/fCLOCK] if Time Division Multiplex Implementation is selected.
Document Number: 001-73569 Rev. **
Page 17 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
Timing Characteristics “Maximum with All Routing”
Parameter
fCLOCK
Description
Component clock frequency
TCLOCKH
TCLOCKL
Input clock high time
Input clock low time
Config.
10
11
11
8
Min
Typ
Max
9
Units
Config 1
23
MHz
Config 2
15
MHz
Config 3
21
MHz
Config 4
12
MHz
Config 5
18
MHz
Config 6
11
MHz
N/A
0.5
1/fCLOCK
N/A
0.5
1/fCLOCK
Inputs
tPD_ps
8
Input path delay, pin to sync
12
1
STA
13
ns
Configurations:
Config 1:
Resolution: 8 bits
Implementation: Single Cycle
Config 2:
Resolution: 16 bits
Implementation: Single Cycle
Config 3:
Resolution: 16 bits
Implementation: Time Division Multiplex
Config 4:
Resolution: 32 bits
Implementation: Single Cycle
Config 5:
Resolution: 32 bits
Implementation: Time Division Multiplex
Config 6:
Resolution: 64 bits
Implementation: Time Division Multiplex
9
The Maximum for All Routing timing numbers are calculated by derating the Nominal Routing timing numbers by a factor of 2. If
your component instance operates at or below these speeds, then meeting timing should not be a concern for this component.
10
If Time Division Multiplex implementation is selected, component clock frequency must be four times greater than the data
rate.
11
tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.
12
tPD_ps is found in the Static Timing Results as described later. The number listed here is a nominal value based on STA
analysis on many inputs.
13
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and directly affect the maximum
component clock and sync clock frequencies. The values are found in the Static Timing Analysis results.
Page 18 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
tPD_ps
Cyclic Redundancy Check (CRC)
Description
Input path delay, pin to sync
Config.
14
8
Min
Typ
2
tPD_si
Sync output to input path delay
(route)
1,2,3,4
tI_clk
Alignment of clockX and clock
1,2,3,4
tPD_IE
Input path delay to component
clock (edge-sensitive input)
tPD_IE
Max
9
8.5
STA
Units
ns
5
ns
0
1
tCY_clock
1,2
tPD_ps +
tSYNC +
tPD_si
tPD_ps +
tSYNC +
tPD_si +
tI_clk
ns
Input path delay to component
clock (edge-sensitive input)
3,4
tSYNC +
tPD_si
tSYNC +
tPD_si +
tI_clk
ns
tIH
Input high time
1,2,3,4
tCY_clock
15
ns
tIL
Input low time
1,2,3,4
tCY_clock
15
ns
How to Use STA Results for Characteristics Data
Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). You can calculate the maximums for your designs with the STA results using the
following methods:
fCLOCK Maximum component clock frequency appears in Timing results in the clock summary as
the named external clock. The graphic below shows an example of the clock limitations
from _timing.html:
Input Path Delay and Pulse Width
When characterizing the functionality of inputs, all inputs, no matter how you have configured
them, look like one of four possible configurations, as shown in Figure 3.
14
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the
pins available on the device
15
tCY_clock = 4 × [1/fCLOCK] if Time Division Multiplex Implementation is selected.
Document Number: 001-73569 Rev. **
Page 19 of 29
®
Cyclic Redundancy Check (CRC)
PSoC Creator™ Component Datasheet
All inputs must be synchronized. The synchronization mechanism depends on the source of the
input to the component. To fully interpret how your system will work you must understand which
input configuration you have set up for each input and the clock configuration of your system.
This section describes how to use the Static Timing Analysis (STA) results to determine the
characteristics of your system.
Figure 3. Input Configurations for Component Timing Specifications
Configuration
Component Clock
Synchronizer Clock (Frequency)
Figures
1
master_clock
master_clock
Figure 8
1
clock
master_clock
Figure 6
1
clock
clockX = clock
16
16
Figure 4
Clock frequencies are equal but alignment of rising edges is not guaranteed.
Page 20 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Configuration
Component Clock
Cyclic Redundancy Check (CRC)
Synchronizer Clock (Frequency)
Figures
1
clock
clockX > clock
Figure 5
1
clock
clockX < clock
Figure 7
2
master_clock
master_clock
Figure 8
2
clock
master_clock
Figure 6
3
master_clock
master_clock
Figure 13
3
clock
master_clock
Figure 11
3
clock
clockX = clock
3
clock
clockX > clock
Figure 10
3
clock
clockX < clock
Figure 12
4
master_clock
master_clock
Figure 13
4
clock
clock
Figure 9
16
Figure 9
1. The input is driven by a device pin and synchronized internally with a “sync” component. This
component is clocked using a different internal clock than the clock the component uses (all
internal clocks are derived from master_clock).
When characterizing inputs configured in this way, clockX may be faster than, equal to, or
slower than the component clock. It may also be equal to master_clock, which produces the
characterization parameters shown in Figure 4, Figure 5, Figure 7, and Figure 8.
2. The input is driven by a device pin and synchronized at the pin using master_clock.
When characterizing inputs configured in this way, master_clock is faster than or equal to the
component clock (it is never slower than). This produces the characterization parameters
shown in Figure 5 and Figure 8.
Document Number: 001-73569 Rev. **
Page 21 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Figure 4. Input Configuration 1 and 2; Synchronizer Clock Frequency = Component Clock
Frequency (Edge alignment of clock and clockX is not guaranteed)
Figure 5. Input Configuration 1 and 2; Synchronizer Clock Frequency > Component Clock
Frequency
Page 22 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Figure 6. Input Configuration 1 and 2; [Synchronizer Clock Frequency == master_clock] >
Component Clock Frequency
Figure 7. Input Configuration 1; Synchronizer Clock Frequency < Component Clock
Frequency
master_clock
clockX
tsync
clock
tPD_ps
Input @ pin
tPD_si
Input @ sync output
Input @ component
tPD_IE
Document Number: 001-73569 Rev. **
tIH
tIL
Page 23 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Figure 8. Input Configuration 1 and 2; Synchronizer Clock = Component Clock =
master_clock
3. The input is driven by logic internal to the PSoC, which is synchronous based on a clock
other than the clock the component uses (all internal clocks are derived from master_clock).
When characterizing inputs configured in this way, the synchronizer clock is faster than,
slower than, or equal to the component clock, which produces the characterization
parameters shown in Figure 9, Figure 10, and Figure 12.
4. The input is driven by logic internal to the PSoC, which is synchronous based on the same
clock the component uses.
When characterizing inputs configured in this way, the synchronizer clock is equal to the
component clock, which produces the characterization parameters as shown in Figure 13.
Page 24 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Figure 9. Input Configuration 3 only; Synchronizer Clock Frequency = Component Clock
Frequency (Edge alignment of clock and clockX is not guaranteed)
This figure represents the understanding that Static Timing Analysis holds about the clocks. All
clocks in the digital clock domain are synchronous to master_clock. However, it is possible that
two clocks with the same frequency are not rising-edge-aligned. Therefore, the static timing
analysis tool does not know which edge the clocks are synchronous to and must assume the
minimum of one master_clock cycle. This means that t PD_si now has a limiting effect on
master_clock of the system. master_clock setup time violations appear if this path delay is too
long. You must change the synchronization clocks of your system or run master_clock at a
slower frequency.
Figure 10. Input Configuration 3; Synchronizer Clock Frequency > Component Clock
Frequency
Document Number: 001-73569 Rev. **
Page 25 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
In much the same way as shown in Figure 9, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run the master_clock at a slower frequency.
Figure 11. Input Configuration 3; Synchronizer Clock Frequency = master_clock >
Component Clock Frequency
Figure 12. Input Configuration 3; Synchronizer Clock Frequency < Component Clock
Frequency
In much the same way as shown in Figure 9, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run master_clock at a slower frequency.
Page 26 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Cyclic Redundancy Check (CRC)
Figure 13. Input Configuration 4 only; Synchronizer Clock = Component Clock
In all previous figures in this section, the most critical parameters to use when understanding
your implementation are f CLOCK and tPD_IE. tPD_IE is defined by tPD_ps and tSYNC (for configurations 1
and 2 only), tPD_si, and tI_Clk. Of critical importance is the fact that tPD_si defines the maximum
component clock frequency. tI_Clk does not come from the STA results but is used to represent
when tPD_IE is registered. This is the margin left over after the route between the synchronizer
and the component clock.
tPD_ps and tPD_si are included in the STA results.
To find tPD_ps, look at the input setup times defined in the _timing.html file. The fanout of this input
may be more than 1 so you need to evaluate the maximum of these paths.
tPD_si is defined in the Register-to-register times. You need to know the name of the net to use
the _timing.html file. The fanout of this path may be more than 1 so you need to evaluate the
maximum of these paths.
Document Number: 001-73569 Rev. **
Page 27 of 29
Cyclic Redundancy Check (CRC)
®
PSoC Creator™ Component Datasheet
Output Path Delays
When characterizing the path delays of outputs, you must consider where the output is going in
order to know where you can find the data in the STA results. For this component, all outputs are
synchronized to the component clock. Outputs fall into one of two categories. The output goes
either to another component inside the device, or to a pin to the outside of the device. In the first
case, you must look at the Register-to-register times shown for the Logic-to-input descriptions
above (the source clock is the component clock). For the second case, you can look at the
Clock-to-Output times in the _timing.html STA results.
Component Changes
This section lists the major changes in the component from the previous version.
Version
2.10
Description of Changes
Reason for Changes / Impact
Changed error messages and their appearance for
implementation parameter.
Fixed setting polynomial degree 'N' to 64-bit
resolution.
Fixed polynomial value validation.
2.0.b
Minor datasheet edits and updates
2.0.a
Added characterization data to datasheet
Minor datasheet edits and updates
2.0
Added support for PSoC 3 ES3 silicon. Changes
include:

4x clock for Time Division Multiplex
Implementation added

Single Cycle Implementation on 1x clock now
available for 1 to 32 bits.

Time Division Multiplex Implementation on 4x
clock now available for 9 to 64 bits.

Asynchronous input signal reset is added.

Synchronous input signal enable is added.

Added new 'Advanced' page to the Configure
dialog for the Implementation (Time Division
Multiplex, Single Cycle) parameter
New requirements to support the PSoC 3 ES3
device, thus a new 2.0 version of the CRC
component was created.
Added CRC_Sleep()/CRC_Wakeup() and
CRC_Init()/CRC_Enable() APIs.
To support low-power modes, as well as to
provide common interfaces to separate control of
initialization and enabling of most components.
Updated functions CRC_WriteSeed() and
CRC_WriteSeedUpper().
The mask parameter was used to cut the seed
value to define CRC resolution while writing.
Page 28 of 29
Document Number: 001-73569 Rev. **
®
PSoC Creator™ Component Datasheet
Version
1.20
Description of Changes
Cyclic Redundancy Check (CRC)
Reason for Changes / Impact
Add validator to Resolution parameter.
The resolution of CRC is 1 to 64 bits. The validator
was added to restrict input values.
Add reset DFF triggers to polynomial write
functions: CRC_WritePolynomial(),
CRC_WritePolynomialUpper() and
CRC_WritePolynomialLower().
The DFF triggers need to be set in proper state
(most significant bit of polynomial, always 1)
before CRC calculation starts. To meet this
condition, any write to the Seed or Polynomial
registers resets the DFF triggers.
Updated Configure dialog to allow the Expression
View for the following parameters:
'PolyValueLower', 'PolyValueUpper',
'SeedValueLower', 'SeedValueLower'
Expression View is used to directly access the
symbol parameters. This view allows you to
connect component parameters with external
parameters, if desired.
Updated Configure dialog to add error icons for
various parameters.
If you enter an incorrect value in a text box, the
error icon displays with a tool tip of the problem
description. This provides easier use than a
separate error message.
Changed method of API generation. In version 1.10, This change allows users to view and make
changes to the generated API files, and they will
APIs were generated by settings from the
not be overwritten on subsequent builds.
customizer. For 1.20, APIs are provided by the .c
and .h files like most other components.
Seed and Polynomial parameters were changed to
have hexadecimal representation.
Change was made to comply with corporate
standard.
© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC® Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A HALFICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-73569 Rev. **
Page 29 of 29

				

 Open as PDF

 	Similar pages
	

										Component - CRC V2.0 Datasheet.pdf

	

										Component - CRC V2.20 Datasheet.pdf

	

										Component - CRC V2.30 Datasheet.pdf

	

										Component - CRC V2.40 Datasheet.pdf

	

										Component - Pseudo Random Sequence (PRS) V2.0 Datasheet.pdf

	

										Component - Pseudo Random Sequence (PRS) V2.30 Datasheet.pdf

	

										Component - Pseudo Random Sequence (PRS) V2.40 Datasheet.pdf

	

										Component - CRC V2.10 Datasheet (Japanese).pdf

	

										Quadrature Decoder (QuadDec) - Component - QuadDec V2.0 Datasheet.pdf

	

										HYNIX GDC21D301A

	

										PEREGRINE PE3291EK

	

										Quadrature Decoder (QuadDec) - Component - QuadDec V1.50 Datasheet.pdf

	

										PEREGRINE PE3282A

	

										AN78646 Integrated Power Manager Using PSoC 1.pdf

	

										AEROFLEX R4430PCF10MCM

	

										Component - PrISM V2.0

	

										CRC16_V_3.2_13268.pdf

	

										Component - Thermistor V1.10

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

