

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - Counter V2.10 Datasheet.pdf

		
				 ®
PSoC Creator™ Component Datasheet
Counter
2.10
Features
 Fixed-function (FF) and universal digital block (UDB)
implementations

8-, 16-, 24-, or 32-bit counter
Up, down, or up-and-down configurations
Optional compare output
Optional capture input
Enable and reset inputs for synchronizing with other components
Continuous or one shot run modes
General Description
The Counter component provides a method to count events. It can implement a basic counter
function and offers advanced features such as capture, compare output, and count direction
control.
This component can be implemented using FF blocks or UDBs. A UDB implementation typically
has more features than an FF implementation. If your design is simple enough, consider using
FF and conserve UDB resources for other purposes.
The following table shows the major differences between FF and UDB. For more details about
FF resources in the devices, refer to the applicable device datasheet or Technical Reference
Manual.
Feature
FF
UDB
No. of bits
8 or 16
8, 16, 24, or 32
Run mode
Continuous or one shot
Continuous or one shot
Counter mode
Down only
Up, down, or up-and-down
Enable input
No (software enable only)
Yes (hardware or software enable)
Capture input
No
Yes
Capture mode
None
Rising edge, falling edge, either edge, or software
controlled
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-73566 Rev. **
Revised October 17, 2011
®
Counter
PSoC Creator™ Component Datasheet
Feature
FF
UDB
Capture FIFO
No (one capture register)
Yes (up to four captures)
Reset input
Yes
Yes
Terminal count output
Yes
Yes
Compare output
No
Yes
Compare mode
None
<, £, =, ³, >, or software controlled
Interrupt output
Yes
Yes
Interrupt conditions
TC
TC, capture, and compare
Period register
Yes
Yes
Period reload
Y (always reload on reset or TC)
Y (reload on one or more of reset, TC, capture,
compare)
Clock input
Limited to digital clocks in the clock Any signal
system
Sampling clock input
No
Requires an explicit clock signal (component clock)
for sampling input signals of the component
When to Use a Counter
The default use of the Counter is to count the number of edge events on the count input.
However, there are several other potential uses of the Counter:

Clock divider: By driving a clock into the count input and using the compare or terminal count
output as the divided clock output

Frequency counter: By connecting a signal with a known period to the enable input of the
counter while counting the signal to measure on the count input.

Tool to measure complementary events such as the output of a quadrature decoder
Note A Timer component is better used in situations focused on measuring the time between
events. A PWM component is better used in situations requiring multiple compare outputs with
more control features such as center alignment, output kill, and deadband outputs.
Page 2 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Input/Output Connections
This section describes the various input and output connections for the Counter component.
Some I/Os may be hidden on the symbol under the conditions listed in the description of that I/O.
Note All signals are active high unless otherwise specified. All inputs to the counter must be
synchronized outside of the counter.
Input
clock
Count
May Be
Hidden
N
Y
Description
The functional behavior of the clock input differs for the fixed-function Counter compared to
the UDB Counter.

For a fixed-function Counter, there is no count input. A fixed-function Counter updates
(decrements its internal counter) on every rising edge of the clock input.

For a UDB Counter, both the clock and count input appear on the Counter symbol. The
clock is used to sample the inputs of the Counter component. The UDB Counter is
implemented as a synchronous counter that uses the clock input only as a
synchronization clock. All inputs of the Counter must be synchronized to the clock input
to avoid setup violations. This also makes sure that the edge-detect circuitry in the UDB
Counter implementation functions properly.
In a fixed-function Counter, there is no count input on the Counter symbol. A FF Counter
updates its internal count on every rising edge of the clock input.
For a UDB Counter, the Counter updates its internal counter with an edge-detect logic to
determine an update event. The source signal for the update event depends on the clock
mode of the UDB Counter. The edge-detect logic is clocked using the clock input. Both
edges of the count input must meet setup to the clock input; therefore, the maximum count
input is one-half of the clock input frequency.

For a UDB Counter in the Up Counter or Down Counter clock mode, the edge detect
logic detects the rising edge of the count input synchronous to the clock input.
Depending on whether the Counter is configured as an up counter or down counter, the
edge detect event on the count input increments or decrements the Counter,
respectively. See Figure 5 on page 25 for a functional description of the Up/Down
Counter.

For a UDB Counter in the Count Input and Direction clock mode, the edge-detect
logic detects the rising edge of the count input synchronous to the clock input.
Depending on the whether the "upndown" signal is a 1 or a 0, the edge-detect event on
the count input increments or decrements the Counter, respectively. See Figure 7 on
page 26 for a functional description of the Counter in Count Input and Direction clock
mode.

For a UDB Counter in the Clock with UpCnt & DwnCnt clock mode, there is no count
input. The Counter update event is determined by a combination of the edge-detect
logic on UpCnt and DwnCnt signals synchronous to the clock input. See Figure 9 on
page 28 for a functional description of the Counter in Clock with UpCnt & DwnCnt
clock mode.
Document Number: 001-73566 Rev. **
Page 3 of 49
®
Counter
Input
PSoC Creator™ Component Datasheet
May Be
Hidden
Description
upCnt
Y
Increment signal to the counter. When Clock Mode is set to Clock With UpCnt & DwnCnt,
this input is used in conjunction with the dwnCnt input and the clock input to allow the
Counter to be used as an encoder. A rising edge on this input increments the count value.
Both edges of the upCnt input must meet setup to the clock input; therefore, the maximum
count input is one-half of the clock input frequency.
dwnCnt
Y
Decrement signal to the counter. When Clock Mode of the counter is set to Clock With
UpCnt & DwnCnt, this input is used in conjunction with the upCnt input and the clock input
to allow the counter to be used as an encoder. A rising edge on this input decrements the
count value. Both edges of the dwnCnt input must meet setup to the clock input; therefore,
the maximum count input is one-half of the clock input frequency.
up_ndown Y
Defines the counting direction of the counter. This input is only available if Clock Mode is
set to enable direction control (Count Input and Direction) On a rising edge of the count
input, a ‘1’ on this input causes the counter to increment, and a ‘0’ on this input causes the
counter to decrement.
reset
The reset input resets the counter to the starting value.
N

For the Up Counter configuration, the starting value is zero.

For Down Counter, Count Input and Direction, and Clock With UpCnt & DwnCnt
configurations, the starting value is set to the current period register value
The reset input is sampled on the count/clock input.
Note For PSoC 3 ES2 silicon, the Terminal Count pin for the fixed-function counter is held
high during reset. A schematic fix for this is provided under Reset in Fixed-Function Block in
the Functional Description section of this datasheet.
For PSoC 3 Production or later silicon, the Terminal Count pin for the fixed-function counter
is held low during reset. The reset input is used to reset the control register in PSoC 3
Production and PSoC 5 UDB counter implementation, and also to implement the One Shot
Run Mode feature.
UDB one shot mode needs a reset pulse in order to start counting. If the Counter is only run
in one shot mode from power up, it won’t start counting until reset is applied and removed.
enable
Y
Hardware enable of the counter. This input is visible when the Enable Mode parameter is
set to Hardware.
capture
Y
Captures the current count value to a capture register or FIFO. This input is visible if the
Capture Mode parameter is set to any mode other than None. Capture may take place on
a rising edge, falling edge, or either edge applied to this input, depending on the Capture
Mode setting.
The capture input is sampled on the clock input.
Output
tc
Page 4 of 49
May Be
Hidden
N
Description
Terminal count is a synchronous output that indicates that the count value is equal to the
terminal count. The output is synchronous to the clock input of the Counter. The signal goes
high one clock cycle after the count value matches the terminal count and stays high while
the count value is equal to the terminal count. If the Counter is disabled when the count is at
terminal count, the output stays high until the Counter is re-enabled.
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Output
May Be
Hidden
Counter
Description
comp
Y
The compare output indicates the counter value compared to the compare value based on
the configuration in the Compare Mode parameter. The output goes high one clock cycle of
the clock input, after the compare event has taken place.
interrupt
N
The interrupt output is driven by the interrupt sources configured in the hardware. All
sources are ORed together to create the final output signal. The sources of the interrupt can
be: Compare, Terminal Count or Capture.
Component Parameters
Drag a Counter onto your design and double-click it to open the Configure dialog.
Hardware versus Software Configuration Options
Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value, which may be modified at any time with the
API provided. Most parameters described in the following sections are hardware options. The
software options are noted as such.
Configure Tab
Document Number: 001-73566 Rev. **
Page 5 of 49
Counter
®
PSoC Creator™ Component Datasheet
Resolution
The Resolution parameter defines the bit-width resolution of the Counter component. This value
may be set to 8, 16, 24 or 32 for maximum count values of 255, 65535, 16777215, and
4294967295 respectively.
Implementation
The Implementation parameter allows you to choose between a fixed-function block
implementation and a UDB implementation of the Counter. If you select Fixed Function, then
UDB functions become disabled.
Period (Software Option)
The Period parameter defines the max counts value (or rollover point) for the Counter
component. This parameter defines the initial value loaded into the period register, which the
software can change at any time with the Counter_WritePeriod() API.
The limits of this value are defined by the Resolution parameter. For 8-, 16-, 24-, and 32-bit
Resolution parameters, the maximum value of the Period value is defined as (2^8) – 1,
(2^16) – 1, (2^24) – 1, and (2^32) – 1 or 255, 65535, 16777215, and 4294967295 respectively.
When Clock Mode is configured as Clock with UpCnt & DwnCnt or Count Input and
Direction, the counter is set to the period at start and any time the counter overflows or
underflows. In these clock modes, do not set the period value to all 1s or all 0s. Instead, the
normal practice is to keep the period value at the midpoint of the period range (for an 8-bit
counter, 0x7F). Figure 1 shows Clock Mode set to Count Input and Direction.
Figure 1. Clock Mode
Page 6 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Compare Mode (Software Option)
The Compare Mode parameter configures the operation of the comp output signal. This signal is
the status of a compare between the compare value parameter and current counter value. This
parameter defines the initial setting. You can change it at any time to reconfigure the compare
operation of the Counter component.
Compare Mode can be set to any of the following values:

Less Than – The counter value is less than the compare value.
Less Than Or Equal – The counter value is less than or equal to the compare value.
Equal To – The counter value is equal to the compare value.
Greater Than – The counter value is greater than the compare value.
Greater Than Or Equal – The counter value is greater than or equal to the compare value.
Software Controlled – The compare mode can be set during run time with the
Counter_SetCompareMode() API call to any one of the other five compare modes on this list.
Compare Value (Software Option)
The Compare Value parameter defines the initial value loaded into the compare register of the
counter. This value is used in conjunction with the Compare Mode parameter to define the
operation of the compare output.
This value can be any unsigned integer from 0 to (2^Resolution – 1), but it must be less than or
equal to the period value.
Clock Mode
The Clock Mode parameter configures how the Counter will count. This mode can be set to any
of the following values:

Count Input and Direction – Counter is a bidirectional counter. It counts up while the
up_ndown input is high on each rising edge of the input clock and counts down while
up_ndown is low on each rising edge of the input clock.

Clock With UpCnt & DwnCnt – Counter is a bidirectional counter. It increments the counter
for each rising edge on the upCnt input and decrements the counter for each rising edge of
the dwnCnt input, with respect to the clock input. In this mode, the clock input frequency must
be at least 2x the frequency of the upCnt and dwnCnt inputs.

Up Counter – Counter is an up counter only. It increments on a rising edge of the count input
with respect to the clock signal while the counter is enabled.
Document Number: 001-73566 Rev. **
Page 7 of 49
Counter

®
PSoC Creator™ Component Datasheet
Down Counter – Counter is a down counter only. It decrements on a rising edge of the count
input with respect to the clock signal while the counter is enabled.
Advanced Tab
Capture Mode
The Capture Mode parameter configures when a capture takes place. The capture input is
sampled on the rising edge of the clock input. This mode can be set to any of the following
values:

None – No capture implemented. The capture input pin is hidden.
Rising Edge – Capture the counter value on a rising edge of the capture input with respect to
the clock input.

Falling Edge – Capture the counter value on a falling edge of the capture input with respect
to the clock input.

Either Edge – Capture the counter value on either edge of the capture input with respect to
the clock input.

Software Controlled –Set the mode at run time by setting the capture mode bits in the
control register Counter_CTRL_CAPMODE_MASK with the enumerated capture mode types.
These are defined in the Counter.h header file.
Page 8 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Enable Mode
The Enable Mode parameter configures the enable implementation of the counter. The enable
input is sampled on the rising edge of the clock input. This mode can be set to any of the
following values:

Software Only – The Counter is enabled based on the enable bit of the control register only.
Hardware Only – The Counter is enabled based on the enable input only.
Hardware and Software – The Counter is enabled if both hardware and software enables
are true.
Run Mode
The Run Mode parameter allows you to configure the Counter component to run continuously or
in one-shot mode:

Continuous – The Counter runs continuously while it is enabled.
One Shot – The Counter runs through a single period and stops at terminal count. After it is
reset, it begins another single cycle. On stop, for a UDB counter, it reloads period into the
count register; for a fixed-function counter, the count register remains at terminal count.
Reload Counter
The Reload Counter parameters allow you to configure when the counter value is reloaded. The
counter value is reloaded when one or more of the following selected events occur. The counter
is reloaded with its start value on a reload event.

On Capture – The counter value is reloaded when a capture event has occurred. By default,
this parameter is cleared. This parameter is only shown when UDB is selected for
Implementation.

On Compare – The counter value is reloaded when a compare true event has occurred. By
default, this parameter is cleared. This parameter is only shown when UDB is selected for
Implementation.

On Reset – The counter value is reloaded when a reset event has occurred. By default this
parameter is selected. This parameter is always shown. For a fixed-function counter, it
cannot be changed. For a UDB counter, it can be turned off.

On TC – The counter value is reloaded when the counter has overflowed (in up count mode)
or underflowed (in down count mode). By default, this parameter is selected. For a fixedfunction counter, it cannot be changed. For a UDB counter, it can be turned off.
When the clock mode is set to Clock With UpCnt & DwnCnt this option reloads to the period
value when counter is 0x00 or all 0xFF.
Document Number: 001-73566 Rev. **
Page 9 of 49
®
Counter
PSoC Creator™ Component Datasheet
The following table lists the reload and terminal count conditions for the various Clock Modes of
the Counter component.
Clock Mode
Terminal Count Condition
Counter Start Value and Reload Value on
a Reload Event
Fixed Function
Counter
When counter equals 0.
The start and the reload value of the Counter
is the Period value of the component.
UDB Up
Counter
When counter equals Period value
The start and the reload value of the Counter
is 0.
UDB Down
Counter
When counter equals 0.
The start and the reload value of the Counter
is the Period value of the component.
UDB Count
Input and
Direction
When the Counter is all 1s (0xFF for 8-bit,
0xFFFF for 16-bit, 0xFFFFFF for 24-bit, or
0xFFFFFFFF for a 32 bit Counter) when it
is counting up OR when the Counter
equals 0 when it is counting down.
The start and reload value of the Counter is
the Period value of the component. If there is
no reload condition, the counter wraps
around and continues counting without a
counter register reload.
UDB Clock
with UpCnt and
DwnCnt
When the Counter is all 1s (0xFF for 8-bit,
0xFFFF for 16-bit, 0xFFFFFF for 24-bit, or
0xFFFFFFFF for a 32-bit Counter) when it
is counting up OR when the Counter
equals 0 when it is counting down.
The start and reload value of the Counter is
the Period value of the component. If there is
no reload condition, then the counter wraps
around and continues counting without a
counter register reload.
Interrupt
The Interrupt parameters allow you to configure the initial interrupt sources. An interrupt will be
generated when one or more of the following selected events occur. This parameter defines an
initial configuration. The software can reconfigure this mode at any time.

On TC –This parameter is always active; by default, it is not selected.
On Capture – By default, this parameter is not selected. It is always shown, but it is only
active when the Implementation parameter is set to UDB.
On Compare – By default, this parameter is not selected. It is always shown, but it is only
active when the Implementation parameter is set to UDB.
Clock Selection
For the Counter component,

When the Clock Mode parameter is set to Up Counter or Down Counter, the count input
can be any signal for which the rising edges are counted. The clock input to the component
samples the count input and both the rising and falling edges must meet the setup
requirements to the clock.
Page 10 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter

When the Clock Mode parameter is set to Count Input and Direction, the count input can
be any signal for which the rising edges are counted. The clock input to the component
samples the count input and both the rising and falling edges must meet the setup
requirements to the clock. The counter will count up or down depending on the up_ndown
input.

When the Clock Mode parameter is set to Clock With UpCnt & DwnCnt, the upCnt and
dwnCnt rising edges are sampled with respect to the clock input. The counter counts on a
rising edge of the upCnt signal and down on the rising edge of the dwnCnt signal. Both edges
of upCnt and dwnCnt must meet setup requirements to the clock.
See the Clock component datasheet and the appropriate device datasheet for more details about
PSoC 3 or PSoC 5 clocking systems.
Fixed-Function Components
When configured to use the FF block in the device, the Counter component has the following
restrictions:

The count input must be a digital clock from the clock system.
If the frequency of the clock is to be the same as bus clock, the clock must actually be the
bus clock.
Open the Configure dialog of the appropriate Clock component to configure the Clock Type
parameter as Existing and the Source parameter as BUS_CLK. A clock at this frequency
cannot be divided from any other source, such as the master clock, IMO, and so on.
UDB-based Components
You can connect any digital signal from any source to the count/clock input. The frequency of
that signal is limited to the frequency range defined in the DC and AC Electrical Characteristics
(UDB Implementation) section in this datasheet. The count input must, at most, be half the
frequency as that of the clock input in any of the Counter Clock modes.
Placement
PSoC Creator places the Counter component in the device based on the Implementation
parameter. If it is set to Fixed Function, this component is placed in any available FF
counter/timer block. If it is set to UDB, this component is placed around the UDB array in the
best possible configuration.
Document Number: 001-73566 Rev. **
Page 11 of 49
®
Counter
PSoC Creator™ Component Datasheet
Resources
Digital Blocks
API Memory (Bytes)
Datapaths
Macro
cells
Status
Registers
Control
Registers
Counter7
Flash
RAM
Pins (per
External
I/O)
1
6
1
1
0
267
5
0
8 Bits UDB
Counter with
2
direction
1
10
1
1
0
267
5
0
8 Bits FF
3
Counter
0
0
0
0
0
239
5
0
16 Bits UDB
Basic Up or
1
Down Counter
2
6
1
1
0
318
6
0
16 Bits UDB
Counter with
2
direction
2
10
1
1
0
319
6
0
16 Bits FF
3
Counter
0
0
0
0
0
255
6
0
24 Bits Basic
1
Counter
3
6
1
1
0
308
8
0
32 Bits Basic
Up or Down
1
Counter
4
6
1
1
0
308
8
0
Resolution
8 Bits UDB
Basic Up or
Down Counter
1
1
The UDB Counter with corresponding resolution is configured as a simple Up Counter or Down Counter with Software Only
Enable mode, Continuous Run mode, Reload on Reset and Interrupt on TC with no Capture mode.
2
The FF Counter with corresponding resolution is configured for Continuous Run mode and Interrupt on TC with no Capture
mode for the corresponding resolution
3
The UDB Counter with corresponding resolution is configured in the Count Input and Direction Clock mode with Software Only
Enable mode, Continuous Run mode, Reload on Reset and Interrupt on TC with no Capture mode.
Page 12 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “Counter_1” to the first instance of a
component in a given design. You can then rename the instance to any unique value that follows
the syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “Counter.”
Function
Description
Counter_Start()
Sets the initVar variable, calls the Counter_Init() function, and then calls the
Enable function
Counter_Stop()
Disables the Counter
Counter_SetInterruptMode()
Enables or disables the sources of the interrupt output
Counter_ReadStatusRegister()
Returns the current state of the status register.
Counter_ReadControlRegister()
Returns the current state of the control register
Counter_WriteControlRegister()
Sets the bit-field of the control register
Counter_WriteCounter()
Writes a new value directly into the counter register.
Counter_ReadCounter()
Forces a capture, and then returns the capture value
Counter_ReadCapture()
Returns the contents of the capture register or the output of the FIFO
Counter_WritePeriod()
Writes the period register
Counter_ReadPeriod()
Reads the period register
Counter_WriteCompare()
Writes the compare register
Counter_ReadCompare()
Reads the compare register
Counter_SetCompareMode()
Sets the compare mode
Counter_SetCaptureMode()
Sets the capture mode
Counter_ClearFIFO()
Clears the capture FIFO
Counter_Sleep()
Stops the Counter and saves the user configuration.
Counter_Wakeup()
Restores and enables the user configuration
Counter_Init()
Initializes or restores the Counter per the Configure dialog settings
Counter_Enable()
Enables the Counter.
Counter_SaveConfig()
Saves the Counter configuration
Counter_RestoreConfig()
Restores the Counter configuration
Document Number: 001-73566 Rev. **
Page 13 of 49
®
Counter
PSoC Creator™ Component Datasheet
Global Variables
Variable
Description
Counter_initVar
Indicates whether the Counter has been initialized. The variable is initialized to 0 and set to 1 the
first time Counter_Start() is called. This allows the component to restart without reinitialization
after the first call to the Counter_Start() routine.
If reinitialization of the component is required, then the Counter_Init() function can be called
before the Counter_Start() or Counter_Enable() function.
void Counter_Start(void)
Description:
This is the preferred method to begin component operation. Counter_Start() sets the initVar
variable, calls the Counter_Init() function, and then calls the Counter_Enable() function.
Parameters:
None
Return Value:
None
Side Effects:
If the initVar variable is already set, this function only calls the Counter_Enable() function.
void Counter_Stop(void)
Description:
Disables the Counter only in software enable modes.
Parameters:
None
Return Value: None
Side Effects:
If Enable Mode is set to Hardware Only, this function has no effect.
void Counter_SetInterruptMode(uint8 interruptSource)
Description:
Enables or disables the sources of the interrupt output.
Parameters:
uint8: interrupt sources. For bit definitions, sees the Status Register section of this datasheet.
Return Value:
None
Side Effects:
The bit locations are different between FF and UDB. Mask #defines are provided to
encapsulate the differences.
Page 14 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
uint8 Counter_ReadStatusRegister(void)
Description:
Returns the current state of the status register.
Parameters:
None
Return Value: uint8: Current status register value. The status register bits are:
[7]: Unused (0)
[6]: FIFO not empty
[5]: FIFO full
[4]: Capture status
[3]: Underflow status
[2]: Overflow status
[1]: A0 Zero status
[0]: Compare output
For bit definitions, see the Status Register section of this datasheet.
Side Effects:
Some of these bits are cleared when status register is read. Clear-on-read bits are defined in
the Status Register section of this datasheet.
uint8 Counter_ReadControlRegister(void)
Description:
Returns the current state of the control register. This function is available only if one of the
modes defined in the control register is actually used.
Parameters:
None
Return Value: uint8: Current control register value. The control register bits are:
[7]: Counter Enable
[6:5]: Unused
[4:3]: Capture Mode select
[2:0]: Compare Mode select
For bit definitions, see the Control Register section of this datasheet.
Side Effects:
None
Document Number: 001-73566 Rev. **
Page 15 of 49
®
Counter
PSoC Creator™ Component Datasheet
void Counter_WriteControlRegister(uint8 control)
Description:
Sets the bit field of the control register. This function is available only if one of the modes
defined in the control register is actually used.
Parameters:
uint8: Control register bit field. The control register bits are:
[7]: Counter Enable
[6:5]: Unused
[4:3]: Capture Mode select
[2:0]: Compare Mode select
For bit definitions, see the Control Register section of this datasheet.
Return Value: None
Side Effects:
None
void Counter_WriteCounter(uint8/16/32 count)
Description:
Writes a new value directly into the counter register.
Parameters:
uint8/16/32: New counter value. For 24-bit Counters, the parameter is uint32.
Return Value: None
Side Effects:
Overwrites the counter value. This may cause unwanted behavior on the compare output,
terminal count output, or period width. This is not an atomic write and the function may be
interrupted. The Counter should be disabled before calling this function.
uint8/16/32 Counter_ReadCounter(void)
Description:
Forces a capture then returns the capture value.
Parameters:
None
Return Value:
uint8/16/32: Current counter value. For 24-bit Counters, the return type is uint32.
Side Effects:
Returns the contents of the capture register or the output of the FIFO (UDB only).
uint8/16/32 Counter_ReadCapture(void)
Description:
Returns the contents of the capture register or the output of the FIFO (UDB only).
Parameters:
None
Return Value:
uint8/16/32: Current capture value. For 24-bit Counters, the return type is uint32.
Side Effects:
None
Page 16 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
void Counter_WritePeriod(uint8/16/32 period)
Description:
Writes the period register.
Parameters:
uint8/16/32: New period value. For 24-bit Counters, the parameter is uint32.
Return Value:
None
Side Effects:
The period of the counter output does not change until the Counter is reloaded.
uint8/16/32 Counter_ReadPeriod(void)
Description:
Reads the period register.
Parameters:
None
Return Value:
uint8/16/32: Current period value. For 24-bit Counters, the return type is uint32.
Side Effects:
None
void Counter_WriteCompare(uint8/16/32 compare)
Description:
Writes the compare register. This function is available only for UDB implementation.
Parameters:
uint8/16/32: New compare value. For 24-bit Counters, the parameter is uint32.
Return Value:
None
Side Effects:
The compare output may change immediately depending on the value written and the current
value of the Counter.
uint8/16/32 Counter_ReadCompare(void)
Description:
Reads the compare register. This function is available only for UDB implementation.
Parameters:
None
Return Value:
uint8/16/32: Current compare value. For 24-bit Counters, the return type is uint32.
Side Effects:
None
Document Number: 001-73566 Rev. **
Page 17 of 49
®
Counter
PSoC Creator™ Component Datasheet
void Counter_SetCompareMode(uint8 compareMode)
Description:
Sets the compare mode. This function is available only for UDB implementation and when
software compare mode is selected.
Parameters:
uint8: Enumerated compare mode. Also see the Control Register section.
Counter__B_COUNTER__LESS_THAN
Counter__B_COUNTER__LESS_THAN_OR_EQUAL
Counter__B_COUNTER__EQUAL
Counter__B_COUNTER__GREATER_THAN
Counter__B_COUNTER__GREATER_THAN_OR_EQUAL
Counter__B_COUNTER__SOFTWARE
Return Value:
None
Side Effects:
The compare output may change immediately depending on the value written and the current
value of the counter.
void Counter_SetCaptureMode(uint8 captureMode)
Description:
Sets the capture mode. This function is available only for UDB implementation and when the
Capture Mode parameter is set to Software Controlled.
Parameters:
uint8: Enumerated capture mode. Also see the Control Register section.
Counter__B_COUNTER__NONE
Counter__B_COUNTER__RISING_EDGE
Counter__B_COUNTER__FALLING_EDGE
Counter__B_COUNTER__EITHER_EDGE
Counter__B_COUNTER__SOFTWARE_CONTROL
Return Value:
None
Side Effects:
None
void Counter_ClearFIFO(void)
Description:
Clears the capture FIFO. This function is available only for UDB implementation.
See UDB FIFOs in the Functional Description section of this datasheet.
Parameters:
None
Return Value: None
Side Effects:
Page 18 of 49
None
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
void Counter_Sleep(void)
Description:
This is the preferred routine to prepare the component for sleep. The Counter_Sleep() routine
saves the current component state. Then it calls the Counter_Stop() function and calls
Counter_SaveConfig() to save the hardware configuration.
Call the Counter_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power-management functions.
Parameters:
None
Return Value: None
Side Effects:
For FF implementation, all registers are retained across low-power modes. For UDB
implementation, the control register and counter value register are saved and restored.
Additionally, when calling Counter_Sleep, the enable state is stored in case you call
Counter_Sleep() without calling Counter_Stop().
void Counter_Wakeup(void)
Description:
This is the preferred routine to restore the component to the state when Counter_Sleep() was
called. The Counter_Wakeup() function calls the Counter_RestoreConfig() function to restore
the configuration. If the component was enabled before the Counter_Sleep() function was
called, the Counter_Wakeup() function also re-enables the component.
Parameters:
None
Return Value: None
Side Effects:
Calling the Counter_Wakeup() function without first calling the Counter_Sleep() or
Counter_SaveConfig() function may produce unexpected behavior.
void Counter_Init(void)
Description:
Initializes or restores the component according to the customizer Configure dialog settings. It
is not necessary to call Counter_Init() because the Counter_Start() routine calls this function
and is the preferred method to begin component operation.
Parameters:
None
Return Value: None
Side Effects:
All registers will be set to values according to the customizer Configure dialog.
Document Number: 001-73566 Rev. **
Page 19 of 49
®
Counter
PSoC Creator™ Component Datasheet
void Counter_Enable(void)
Description:
Activates the hardware and begins component operation. It is not necessary to call
Counter_Enable() because the Counter_Start() routine calls this function, which is the
preferred method to begin component operation. This function enables the Counter for either
of the software controlled enable modes.
Parameters:
None
Return Value: None
Side Effects:
If the Enable Mode parameter is set to Hardware Only, this function has no effect on the
operation of the Counter.
void Counter_SaveConfig(void)
Description:
This function saves the component configuration and nonretention registers. It also saves the
current component parameter values, as defined in the Configure dialog or as modified by
appropriate APIs. This function is called by the Counter_Sleep() function.
Parameters:
None
Return Value: None
Side Effects:
None
void Counter_RestoreConfig(void)
Description:
This function restores the component configuration and nonretention registers. It also restores
the component parameter values to what they were before calling the Counter_Sleep()
function.
Parameters:
None
Return Value: None
Side Effects:
Calling this function without first calling the Counter_Sleep() or Counter_SaveConfig() function
may produce unexpected behavior.
Conditional Compilation Information
The Counter component API files require two conditional compile definitions to handle the
multiple configurations the Counter must support. The API files must conditionally compile on the
Resolution and Implementation parameters chosen between the FF or UDB block. The two
conditions defined are based on these parameters. The API files should never use these
parameters directly but should use the two defines listed here.
Counter_DataWidth
The DataWidth define is assigned to the Resolution value at build time. It is used throughout the
API to compile in the correct data width types for the API functions relying on this information.
Page 20 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Counter_UsingFixedFunction
The UsingFixedFunction define is used mostly in the header file to make the correct register
assignments. This is necessary because the registers provided in the FF block are different than
those used when the component is implemented in UDBs. In some cases, this define is also
used with the DataWidth define because the FF block is limited to 16 bits maximum data width.
Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.
Functional Description
General Operation
The Counter component can count in one direction (either up or down) or both directions,
depending on the Clock Mode parameter setting.

If set to Up Counter or Down Counter, the component counts in only one direction. The
counter register increments or decrements once for each rising edge on the count input with
respect to the clock input.

If set to Clock Input and Direction or Clock With UpCnt & DwnCnt, the component can
count in both directions, based on the upCnt, dwnCnt, and up_ndown inputs. These inputs
are described in detail in the Input/Output Connections section of this datasheet.
Counter Overflow/Underflow
Counter underflow and overflow can occur in any clock mode. Bits are available in the status
register to indicate when the overflow or underflow has occurred. Bits in the mode register exist
to control whether an int is generated on these conditions.
Clock Mode
Overflow occurs when
Underflow occurs when
Down Counter
Not defined. Interrupt generation should be
masked.
Counter register equals 0.
Up Counter
Counter register equals period register
Not defined. Interrupt generation
should be masked.
Document Number: 001-73566 Rev. **
Page 21 of 49
®
Counter
PSoC Creator™ Component Datasheet
Clock Mode
Overflow occurs when
Underflow occurs when
Clock Input and Direction
Counter register equals 0xFF, 0xFFFF,
0xFFFFFF, or 0xFFFFFFFF
Counter register equals 0.
Clock With UpCnt & DwnCnt
Counter register equals 0xFF, 0xFFFF,
0xFFFFFF, or 0xFFFFFFFF
Counter register equals 0.
Counter Outputs
The counter register can be monitored and reloaded. Two outputs, tc and comp, are available to
monitor the current value of the counter register and may be configured as reload events. See
the Input/Output Connections section for more details.
The counter register is reloaded from the period register. The following table shows how terminal
count and reload work for each of the Clock Mode settings:
Clock Mode
tc Output is Active When
Counter is Reloaded with
Down Counter
One clock input cycle after the counter register
is equal to 0
Contents of the period register
as soon as the counter register
is equal to 0
Up Counter
One clock input cycle after the counter register
equals the period register
Counter is reset to 0 as soon as
the counter register equals the
period register
Clock Input and Direction
One clock input cycle after the counter register
rolls over to 0
None – counter rolls over
Clock With UpCnt & DwnCnt
One clock input cycle after the counter register
is equal to 0
None – counter rolls over
The comp output continually indicates the counter value compared to the compare value. The
Compare Mode parameter is configurable to all of the standard modes (for example, Less Than
Or Equal, Greater Than). This can be used to create different output waveforms while the
counter is counting. The comp output is synchronous to the clock input of the Counter.
Counter Inputs
A capture operation can be done in either hardware or firmware. The current value in the counter
register is copied into either a capture register or a FIFO. Firmware can then read the captured
value at a later time.
Reset and enable features allow the Counter component to be synchronized to other
components. The Counter component counts only when enabled and not held in reset. It may be
reset or enabled by either hardware or firmware.
Page 22 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Counter Interrupt
An interrupt output is available to communicate event occurrences to the CPU or to other
components. The interrupt can be set to be active on a combination of one or more events. The
interrupt handler should be designed with careful consideration for determining the source of the
interrupt and whether it is edge- or level-sensitive, and clearing the source of the interrupt.
Counter Registers
There are two registers: status and control. Refer to the Registers section.
Configurations
The following sections describe a few of the different Clock component configurations.
Default Configuration
When you drag a Counter component onto a PSoC Creator schematic, the default configuration
is an 8-bit, FF counter that decrements the counter register on a rising edge at the clock input.
Figure 2 shows the default component symbol and Configure dialog tabs.
Figure 2. Default Configuration
Figure 3 shows the timing diagram for the default configuration.
Document Number: 001-73566 Rev. **
Page 23 of 49
®
Counter
PSoC Creator™ Component Datasheet
Figure 3. Default Configuration Waveform
UDB 8-bit Up/Down Counter Configuration
In this configuration, the count register either increments or decrements on the rising edge at the
clock input, depending on the clock mode selected. If the clock mode selected is Up Counter,
the count register increments from 0 to period value. If the clock mode selected is Down
Counter, then the count register decrements from period value to 0.
Figure 4 shows the UDB 8-bit Up/Down Counter symbol and Configure dialog tabs
Figure 4. UDB 8-bit Up/Down Counter Configuration
Figure 5 shows the timing diagram for the UDB 8-bit Up/Down Counter configuration.
Page 24 of 49
Document Number: 001-73566 Rev. **
l
k
t
t
t
®
PSoC Creator™ Component Datasheet
Counter
Figure 5. UDB 8-bit Up/Down Counter Configuration Waveform
Clock Input and Direction Configuration
In this configuration, the count register either increments or decrements, based on the signal to
the up_ndown input terminal. When the up_ndown input receives a high signal, the counter
increments on the rising edge of the count input. When the up_ndown input receives a low
signal, the counter decrements on the rising edge of the count input.
Figure 6 shows the Clock input and Direction configuration symbol and Configure dialog tabs
Document Number: 001-73566 Rev. **
Page 25 of 49
Counter
®
PSoC Creator™ Component Datasheet
Figure 6. Clock Input and Direction Configuration
Figure 7 shows the timing diagram for the Clock Input and Direction mode configuration
Figure 7. Clock Input and Direction Mode Configuration Waveform
Clock with UpCnt and DwnCnt Configuration
In this configuration, the count input is absent. The Counter either increments or decrements,
based on the signal to the upCnt and downCnt inputs.
Page 26 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 8 shows the Clock with UpCnt & DwnCnt configuration symbol and Configure dialog
tabs
Figure 8. Clock with UpCnt and DwnCnt Mode Configuration
Figure 9 shows the timing diagram for the Clock with UpCnt & DwnCnt mode configuration
Document Number: 001-73566 Rev. **
Page 27 of 49
Counter
®
PSoC Creator™ Component Datasheet
Figure 9. Clock with UpCnt and DwnCnt Mode Configuration Waveform
Event Counter Configuration
There are limitations on what signal can be applied to the count input when the Implementation
parameter is set to Fixed Function. Therefore, setting the component to UDB can make it
easier to create an event counter. In this configuration, intermittent asynchronous events can be
detected and processed to generate a pulse. The clock input is used to sample this count input
to produce a rising edge that causes the counter to increment or decrement, depending on the
Clock Mode setting. The counter register can be captured and read by the CPU to determine
the number of events that have occurred.
Clock Divider Configuration
Changing the Implementation parameter setting to UDB also enables a comp output. This
output can be used to create a clock divider with a programmable frequency and duty cycle. With
the default configuration, the comp output is a ~50-percent duty cycle clock whose frequency is
1/256 the frequency of the input clock.
Page 28 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 10. Clock Divider Configuration
Figure 11 is an example waveform where the period is 6, the compare value is 2 and the
Compare Mode parameter is set to Less Than.
Figure 11. Clock Divider Configuration Example Waveform
Document Number: 001-73566 Rev. **
l
k
m
p
r
i
u
t
n
t
r
Page 29 of 49
Counter
®
PSoC Creator™ Component Datasheet
Frequency Counter Configuration
Adding hardware enable allows the Counter to implement a frequency counter function. If the
enable input is driven by a known period signal, the frequency of a signal on the count input can
be determined. The math can be simplified if the Clock Mode parameter is set to Up Counter
instead of Down Counter.
Figure 12. Frequency Counter Configuration
Figure 13. Frequency Counter Configuration Example Waveform
Reset in Fixed-Function Block
For PSoC 3 ES2 silicon, the FF implementation of the Counter differs from the UDB
implementation in that the tc output goes high during reset. In the UDB implementation, tc goes
low. Figure 14 shows a FF implementation that drives tc low while reset is active, which gives the
same functionality as the UDB implementation of the same component.
Page 30 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 14. Terminal Count Adjust Circuit for PSoC 3 ES2 Silicon
UDB FIFOs
Each UDB datapath contains two 8-bit FIFO registers: F0 and F1 (see the applicable device
datasheet or TRM for details). Each FIFO is four bytes deep. The Counter UDB implementation
uses one of the FIFOs as a capture register. Additional FIFOs in other datapaths are used for
16-, 24- and 32-bit counters. Therefore, up to four captures can be done before the CPU must
read the capture register to avoid losing data.
Document Number: 001-73566 Rev. **
Page 31 of 49
®
Counter
PSoC Creator™ Component Datasheet
Registers
There are several constants defined to address all of the registers. Each of the register
definitions requires either a pointer into the register data or a register address. Because different
compilers have different endian settings, use the CY_GET_REGX and CY_SET_REGX macros
for register accesses greater than 8 bits, with the _PTR definition for each of the registers. The
_PTR definitions are provided in the generated header file.
Status Register
The status register is a read-only register that contains the status bits defined for the counter.
Use the Counter_ReadStatusRegister() function to read the status register value. All operations
on the status register must use the following defines for the bit fields because these bit fields
may be different between FF and UDB implementations.
Some bits in the status register are sticky, meaning that after they are set to 1, they retain that
state until cleared when the register is read. The status data for sticky bits is registered at the
input clock edge of the counter, giving all sticky bits the timing resolution of the counter. All
nonsticky bits are transparent and read directly from the inputs to the status register.
Counter_Status (UDB Implementation)
Bits
7
6
5
4
3
2
1
0
Name
RSVD
FIFO Not
Empty
FIFO Full
Capture
Underflow
Overflow
Zero
Cmp
Sticky
N/A
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
3
2
1
0
Counter_Status (Fixed Function Implementation)
Bits
7
6
5
4
Name
TC
Capture
Enable
Stop
RSVD
RSVD
RSVD
RSVD
Sticky
TRUE
TRUE
TRUE
TRUE
N/A
N/A
N/A
N/A
Bit Name
#define in header file
Description
Cmp
Counter_STATUS_CMP
This bit goes to 1 when the compare output is high.
Zero
Counter_STATUS_ZERO
This bit goes to 1 when the counter value is equal to zero.
Overflow
Counter_STATUS_OVERFLOW
This bit goes to 1 when the counter value is equal to the period
value.
Underflow
Counter_STATUS_UNDERFLOW
This bit goes high when the counter value is equal to zero.
Capture
Counter_STATUS_CAPTURE
This bit goes to 1 whenever a valid capture event has been
triggered. This does not include software capture.
Page 32 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Bit Name
Counter
#define in header file
Description
FIFO Full
Counter_STATUS_FIFOFULL
This bit goes to 1 when the UDB FIFO reaches the full state
defined as four entries.
FIFO Not
Empty
Counter_STATUS_FIFONEMP
This bit goes to 1 when the UDB FIFO contains at least one
entry.
Mode Register
The mode register is a read/write register that contains the interrupt mask bits defined for the
counter. Use the Counter_SetInterruptMode() function to set the mode bits. All operations on the
mode register must use the following defines for the bit fields because these bit fields may be
different between FF and UDB implementations.
The Counter component interrupt output is an OR function of all interrupt sources. Each source
can be enabled or masked by the corresponding bit in the mode register.
Counter_Mode (UDB Implementation)
Bits
7
6
5
4
3
2
1
0
Name
RSVD
FIFO Not
Empty
FIFO Full
Capture
Underflow
Overflow
Zero
Cmp
Counter_Mode (Fixed Function Implementation)
Bits
7
6
5
4
3
2
1
0
Name
RSVD
RSVD
RSVD
RSVD
TC
Capture
Enable
Stop
Bit Name
#define in header file
Enables Interrupt Output On
Cmp
Counter_STATUS_CMP_INT_MASK
Compare
Zero
Counter_STATUS_ZERO_INT_MASK
Counter register equals 0
Overflow
Counter_STATUS_OVERFLOW_INT_MASK
Counter register overflow
Underflow
Counter_STATUS_UNDERFLOW_INT_MASK
Counter register underflow
Capture
Counter_STATUS_CAPTURE_INT_MASK
Capture
FIFO Full
Counter_STATUS_FIFOFULL_INT_MASK
UDB FIFO full
FIFO Not Empty Counter_STATUS_FIFONEMP_INT_MASK
Document Number: 001-73566 Rev. **
UDB FIFO not empty
Page 33 of 49
®
Counter
PSoC Creator™ Component Datasheet
Control Register
The control register allows you to control the general operation of the counter. This register is
written with the Counter_WriteControlRegister() function and read with the
Counter_ReadControlRegister() function. All operations on the control register must use the
following defines for the bit fields because these bit-fields may be different between FF and UDB
implementations.
Note When writing to the control register, you must not change any of the reserved bits. All
operations must be read-modify-write with the reserved bits masked.
Counter_Control (UDB Implementation)
Bits
7
6
5
Name
Enable
RSVD
RSVD
4
3
2
Capture Mode[1:0]
1
0
Compare Mode[2:0]
Counter_Control (Fixed Function Implementation)
Bits
7
6
5
4
3
2
1
0
Name
Enable
RSVD
RSVD
RSVD
RSVD
RSVD
RSVD
RSVD
Bit Name
Compare
Mode
Capture
Mode
Enable
Page 34 of 49
#define in header file
Counter_CTRL_CMPMODE_MASK
Counter_CTRL_CAPMODE_MASK
Counter_CTRL_ENABLE
Description / Enumerated Type
The compare mode control bits define the expected compare
output operation. This bit field is configured at initialization with
the compare mode defined in the Compare Mode parameter.

Counter__B_COUNTER__CM_LESSTHAN

Counter__B_COUNTER__CM_LESSTHANOREQUAL

Counter__B_COUNTER__CM_EQUAL

Counter__B_COUNTER__CM_GREATERTHAN

Counter__B_COUNTER__CM_GREATERTHANOREQUAL
The capture mode control bits are a two-bit field that defines the
expected capture input operation. This bit field is configured at
initialization with the capture mode defined in the Capture Mode
parameter.

Counter__B_COUNTER__CPTM_NONE

Counter__B_COUNTER__CPTM_RISINGEDGE

Counter__B_COUNTER__CPTM_FALLINGEDGE

Counter__B_COUNTER__CPTM_EITHEREDGE
This bit enables counting under software control. This bit is valid
only if the Enable Mode parameter is set to Software Only or
Hardware and Software.
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Counter (8-, 16-, 24-, or 32-bit based on Resolution)
The counter register contains the current counter value. This register is incremented or
decremented in response to various count/clock inputs. This register may be read at any time
with the Counter_ReadCounter() function.
Capture (8-, 16-, 24-, or 32-bit based on Resolution)
The capture register contains the captured counter value. Any capture event copies the counter
register to this register. In the UDB implementation, this register is actually a FIFO. See the UDB
FIFOs section for details.
Period (8-, 16-, 24-, or 32-bit based on Resolution)
The period register contains the period value set through the Counter_WritePeriod() function and
defined by the Period parameter at initialization. The period register is copied into the counter
register on a reload event.
Compare (8-, 16-, 24-, or 32-bit based on Resolution)
The compare register contains the compare value used to determine the state of the compare
(comp) output.
DC and AC Electrical Characteristics for PSoC 3
(FF Implementation)
The following values indicate expected performance and are based on initial characterization
data.
Counter DC Specifications
Parameter
Description
Min
Typ
Max
–
–
–
A
3 MHz
–
15
–
A
12 MHz
–
60
--
A
48 MHz
–
260
–
A
67 MHz
–
350
–
A
Block current consumption
Document Number: 001-73566 Rev. **
Conditions
16-bit counter, at listed input
clock frequency
Units
Page 35 of 49
®
Counter
PSoC Creator™ Component Datasheet
Counter AC Specifications
Parameter
Description
Conditions
Min
Typ
Max
Units
Operating frequency
DC
–
67
MHz
Capture pulse
15
–
–
ns
Resolution
15
–
–
ns
Pulse width
15
–
–
ns
Pulse width (external)
30
–
–
ns
Enable pulse width
15
–
–
ns
Enable pulse width (external)
30
–
–
ns
Reset pulse width
15
–
–
ns
Reset pulse width (external)
30
–
–
Ns
DC and AC Electrical Characteristics for PSoC 5
(FF Implementation)
The following values indicate expected performance and are based on initial characterization
data.
Counter DC Specifications
Parameter
Description
Min
Typ
Max
–
–
–
A
3 MHz
–
15
–
A
12 MHz
–
60
--
A
48 MHz
–
260
–
A
67 MHz
–
350
–
A
Block current consumption
Conditions
16-bit counter, at listed input
clock frequency
Units
Counter AC Specifications
Parameter
Page 36 of 49
Description
Conditions
Min
Typ
Max
Units
Operating frequency
DC
–
67.01
Capture pulse
13
–
–
ns
Resolution
13
–
–
ns
Pulse width
13
–
–
ns
MHz
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
Counter
Description
Conditions
Min
Typ
Max
Units
Pulse width (external)
30
–
–
ns
Enable pulse width
13
–
–
ns
Enable pulse width (external)
30
–
–
ns
Reset pulse width
13
–
–
ns
Reset pulse width (external)
30
–
–
ns
DC and AC Electrical Characteristics (UDB Implementation)
The following values indicate expected performance and are based on initial characterization
data.
Timing Characteristics “Maximum with Nominal Routing”
Parameter
fCLOCK
tclockH
tclockL
4
5
Description
Component clock frequency
Input clock high time
Input clock low time
5
5
Config.
4
Min
Typ
Max
Units
Config 1
–
–
45
MHz
Config 2
–
–
40
MHz
Config 3
–
–
35
MHz
Config 4
–
–
30
MHz
Config 5
–
–
25
MHz
N/A
–
0.5
–
1/fCLOCK
N/A
–
0.5
–
1/fCLOCK
Configurations:
Config 1:
Resolution: 8 bits
Implementation: Basic Up/Down Counter
Config 2:
Resolution: 8 bits
Implementation: Counter with Direction
Config 3:
Resolution: 16 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
Config 4:
Resolution: 24 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
Config 5:
Resolution: 32 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.
Document Number: 001-73566 Rev. **
Page 37 of 49
®
Counter
Parameter
PSoC Creator™ Component Datasheet
Description
Config.
4
Min
Typ
Max
1
–
–
STA
2
–
–
8.5
STA
Units
Inputs
tPD_ps
Input path delay, pin to sync
7
6
ns
tPD_ps
Input path delay, pin to sync
ns
tPD_si
Sync output to input path delay
(route)
1,2,3,4
–
–
tI_clk
Alignment of clockX and clock
1,2,3,4
0
–
1
tCY_clock
tPD_IE
Input path delay to component
clock (edge-sensitive input)
1,2
tPD_ps +
tSYNC +
tPD_si
–
tPD_ps +
tSYNC +
tPD_si +
tI_clk
ns
tPD_IE
Input path delay to component
clock (edge-sensitive input)
3,4
tSYNC +
tPD_si
–
tsync +
tPD_si +
tI_clk
ns
tIH
Input high time
1,2,3,4
tCY_clock
–
–
ns
tIL
Input low time
1,2,3,4
tCY_clock
–
–
ns
6
ns
6
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and will directly affect the
maximum component clock and sync clock frequencies. The values are found in the Static Timing Analysis results.
7
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the pins
available on the device.
Page 38 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Timing Characteristics “Maximum with All Routing”
Parameter
fCLOCK
tclockH
tclockL
Description
Config.
Component clock frequency
Input clock high time
Input clock low time
10
10
8
Max
9
Min
Typ
Units
Config 1
–
–
22
MHz
Config 2
–
–
20
MHz
Config 3
–
–
17
MHz
Config 4
–
–
15
MHz
Config 5
–
–
12
MHz
N/A
–
0.5
–
1/fCLOCK
N/A
–
0.5
–
1/fCLOCK
1
–
–
STA
2
–
–
8.5
Inputs
8
tPD_ps
Input path delay, pin to sync
tPD_ps
Input path delay, pin to sync
tPD_si
Sync output to input path delay
(route)
1,2,3,4
–
–
STA
tI_clk
Alignment of clockX and clock
1,2,3,4
0
–
1
12
11
ns
ns
11
ns
tCY_clock
Configurations:
Config 1:
Resolution: 8 bits
Implementation: Basic Up/Down Counter
Config 2:
Resolution: 8 bits
Implementation: Counter with Direction
Config 3:
Resolution: 16 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
Config 4:
Resolution: 24 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
Config 5:
Resolution: 32 bits
Implementation: Up/Down Counter or with direction (includes Clock with Direction and Clock with UpCnt & DwnCnt)
9
The Maximum for All Routing timing numbers are calculated by derating the Nominal Routing timing numbers by a factor of 2. If
your component instance operates at or below these speeds, then meeting timing should not be a concern for this component.
10
tCY_clock = 1/fCLOCK. This is the cycle time of one clock period.
11
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and will directly affect the
maximum component clock and sync clock frequencies. The values are found in the Static Timing Analysis results.
12
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the
pins available on the device.
Document Number: 001-73566 Rev. **
Page 39 of 49
®
Counter
Parameter
PSoC Creator™ Component Datasheet
Description
Config.
8
Min
Typ
Max
9
Units
tPD_IE
Input path delay to component
clock (edge-sensitive input)
1,2
tPD_ps +
tSYNC +
tPD_si
–
tPD_ps +
tSYNC +
tPD_si +
tI_clk
ns
tPD_IE
Input path delay to component
clock (edge-sensitive input)
3,4
tSYNC +
tPD_si
–
tSYNC +
tPD_si +
tI_clk
ns
tIH
Input high time
1,2,3,4
tCY_clock
–
–
ns
tIL
Input low time
1,2,3,4
tCY_clock
–
–
ns
How to Use STA Results for Characteristics Data
Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). You can calculate the maximums for your designs from the STA results using the
following methods:
fCLOCK Maximum Component Clock Frequency appears in Timing results in the clock summary
as the named external clock. The graphic below shows an example of the clock limitations
from the _timing.html:
Input Path Delay and Pulse Width
When characterizing the functionality of inputs, all inputs, no matter how you have configured
them, look like one of four possible configurations, as shown in Figure 15.
All inputs must be synchronized. The synchronization mechanism depends on the source of the
input to the component. To interpret how your system will work, you must understand which input
configuration you have set up for each input and the clock configuration of your system. This
section describes how to use the Static Timing Analysis (STA) results to determine the
characteristics of your system.
Page 40 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 15. Input Configurations for Component Timing Specifications
Configuration
Component Clock
Synchronizer Clock (Frequency)
1
master_clock
master_clock
1
clock
master_clock
Figures
Figure 20
Figure 18
13
1
clock
clockX = clock
1
clock
clockX > clock
Figure 17
1
clock
clockX < clock
Figure 19
2
master_clock
master_clock
Figure 20
2
clock
master_clock
Figure 18
3
master_clock
master_clock
Figure 25
13
Figure 16
Clock frequencies are equal but alignment of rising edges is not guaranteed.
Document Number: 001-73566 Rev. **
Page 41 of 49
®
Counter
Configuration
3
PSoC Creator™ Component Datasheet
Component Clock
clock
Synchronizer Clock (Frequency)
master_clock
Figures
Figure 23
13
3
clock
clockX = clock
Figure 21
3
clock
clockX > clock
Figure 22
3
clock
clockX < clock
Figure 24
4
master_clock
master_clock
Figure 25
4
clock
clock
Figure 21
1. The input is driven by a device pin and synchronized internally with a “sync” component. This
component is clocked using a different internal clock than the clock the component uses (all
internal clocks are derived from master_clock).
When characterizing inputs configured in this way, clockX may be faster than, equal to, or
slower than the component clock. It may also be equal to master_clock. This produces the
characterization parameters shown in Figure 16, Figure 17, Figure 19, and Figure 20.
2. The input is driven by a device pin and synchronized at the pin using master_clock.
When characterizing inputs configured in this way, master_clock is faster than or equal to the
component clock (it is never slower than). This produces the characterization parameters
shown in Figure 17 and Figure 20.
Figure 16. Input Configuration 1 and 2; Sync Clock Frequency = Component Clock
Frequency (Edge alignment of clock and clockX is not guaranteed)
Page 42 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 17. Input Configuration 1 and 2; Sync. Clock Frequency > Component Clock
Frequency
Figure 18. Input Configuration 1 and 2; [Sync. Clock Frequency == master_clock] >
Component Clock Frequency
Document Number: 001-73566 Rev. **
Page 43 of 49
®
Counter
PSoC Creator™ Component Datasheet
Figure 19. Input Configuration 1; Sync. Clock Frequency < Component Clock Frequency
master_clock
clockX
tsync
clock
tPD_ps
Input @ pin
tPD_si
Input @ sync output
Input @ component
tPD_IE
tIH
tIL
Figure 20. Input Configuration 1 and 2; Sync. Clock = Component Clock = master_clock
3. The input is driven by logic internal to the PSoC. This logic is synchronous based on a clock
other than the clock the component uses (all internal clocks are derived from master_clock).
When characterizing inputs configured in this way, the synchronizer clock is faster than,
slower than, or equal to the component clock. This produces the characterization parameters
shown in Figure 21, Figure 22, and Figure 24.
4. The input is driven by logic internal to the PSoC. This logic is synchronous based on the
same clock the component uses.
Page 44 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
When characterizing inputs configured in this way, the synchronizer clock is equal to the
component clock. This produces the characterization parameters shown in Figure 25.
Figure 21. Input Configuration 3 only; Sync. Clock Frequency = Component Clock
Frequency (Edge alignment of clock and clockX is not guaranteed)
Figure 21 shows the information that Static Timing Analysis has about the clocks. All clocks in
the digital clock domain are synchronous to master_clock. However, two clocks with the same
frequency may not be rising-edge-aligned. Therefore, the Static Timing Analysis tool does not
know which edge the clocks are synchronous to and must assume the minimum of one
master_clock cycle. This means that tPD_si now has a limiting effect on the system’s
master_clock. master_clock setup time violations appear if this path delay is too long. You must
change the synchronization clocks of your system or run master_clock at a slower frequency.
Figure 22. Input Configuration 3; Sync. Clock Freq. > Component Clock Freq.
Document Number: 001-73566 Rev. **
Page 45 of 49
Counter
®
PSoC Creator™ Component Datasheet
In much the same way as shown in Figure 21, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run the master_clock at a slower frequency.
Figure 23. Input Configuration 3; Synchronizer Clock Frequency = master_clock >
Component Clock Frequency
Figure 24. Input Configuration 3; Synchronizer Clock Frequency < Component Clock
Frequency
In much the same way as shown in Figure 21, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run master_clock at a slower frequency.
Page 46 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Counter
Figure 25. Input Configuration 4 only; Synchronizer Clock = Component Clock
In all previous figures in this section, the most critical parameters to use when understanding
your implementation are f CLOCK and tPD_IE. tPD_IE is defined by tPD_ps and tSYNC (for configurations 1
and 2 only), tPD_si, and tI_Clk. It is very important to note that tPD_si defines the maximum
component clock frequency. tI_Clk does not come from the STA results but is used to represent
when tPD_IE is registered. This is the margin left over after the route between the synchronizer
and the component clock.
tPD_ps and tPD_si are included in the STA results.
To find tPD_ps, look at the input setup times defined in the _timing.html file. The fanout of this input
may be more than 1 so you will need to evaluate the maximum of these paths.
tPD_si is defined in the Register-to-register times. You need to know the name of the net to use
the _timing.html file. The fanout of this path may be more than 1 so you will need to evaluate the
maximum of these paths.
Document Number: 001-73566 Rev. **
Page 47 of 49
®
Counter
PSoC Creator™ Component Datasheet
Output Path Delays
When characterizing the path delays of outputs, you must consider where the output is going in
order to know where you can find the data in the STA results. For this component, all outputs are
synchronized to the component clock. Outputs fall into one of two categories. The output goes
either to another component inside the device, or to a pin to the outside of the device. In the first
case, you must look at the Register-to-register times shown for the Logic-to-input descriptions
(the source clock is the component clock). For the second case, you can look at the Clock-toOutput times in the _timing.html STA results.
Component Changes
This section lists the major changes in the component from the previous version.
Version
2.10
Description of Changes
Reason for Changes / Impact
Customizer related updates for UDB
implementation.
The compare value is now allowed to take any values
in the full range of resolution for modes that count
both up and down.
Counter_RestoreConfig() API updates
To fix an issue with interrupt trigger after wakeup from
low power mode.
Added PSoC 5 DC and AC FF characteristics
to datasheet
2.0.a
Updated Resource information in datasheet
Added additional configuration sections to
datasheet
2.0
Redesigned as a synchronous counter with
over-sampling in all modes.
The architecture of the device and the tool has proven
that a synchronous design is the only viable solution.
All modes are still supported but require a clock for
oversampling.
Removed “comp” terminal from fixed-function
implementation
The implementation does not support a compare
output. The pin is now correctly hidden.
Synchronized inputs
All inputs are synchronized in fixed-function
implementation, at the input of the block.
Counter_GetInterruptSource() function was
converted to a macro
The Counter_GetInterruptSource() function is exactly
the same implementation as the
Counter_ReadStatusRegister() function. To save
code space this was converted to a macro substitution
of the Counter_ReadStatusRegister() function.
Outputs are now registered to the component
clock
To avoid glitches on the outputs of the component it
was required that all outputs be synchronized. This is
done inside of the datapath when possible, to avoid
using too many resources.
Page 48 of 49
Document Number: 001-73566 Rev. **
®
PSoC Creator™ Component Datasheet
Version
Description of Changes
Implemented critical regions when writing to
Aux Control registers.
Counter
Reason for Changes / Impact
CyEnterCriticalSection and CyExitCriticalSections
functions are used when writing to Aux Control
registers so that it is not modified by any other
process thread.
Added characterization data to datasheet
Minor datasheet edits and updates
© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in lifesupport systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-73566 Rev. **
Page 49 of 49

				

 Open as PDF

 	Similar pages
	

										Component - Counter V2.0 Datasheet.pdf

	

										Component - Timer V2.50 Datasheet.pdf

	

										Component - Timer V2.20 Datasheet.pdf

	

										Component - Timer V2.0 Datasheet.pdf

	

										Component - Timer V2.40 Datasheet.pdf

	

										Component - Pins V2.20 Datasheet.pdf

	

										AN211293 Getting Started with PSoC Analog Coprocessor.pdf

	

										Download SPI_Master_v2_50.pdf

	

										AN65977 PSoC® 3 PSoC 4 and PSoC 5LP Temperature Measurement with a TMP05/TMP06 Digital Sensor.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

