APTGT30DA170T1G Boost chopper Trench + Field Stop IGBT3 Power Module 5 6 VCES = 1700V IC = 30A @ Tc = 80°C Application 11 CR1 Features 3 4 Q2 NTC CR2 9 10 1 2 AC and DC motor control Switched Mode Power Supplies Power Factor Correction 12 Trench + Field Stop IGBT3 Technology - Low voltage drop - Low tail current - Switching frequency up to 20 kHz - Soft recovery parallel diodes - Low diode VF - Low leakage current - RBSOA and SCSOA rated Very low stray inductance Internal thermistor for temperature monitoring High level of integration Benefits Outstanding performance at high frequency operation Direct mounting to heatsink (isolated package) Low junction to case thermal resistance Solderable terminals both for power and signal for easy PCB mounting Low profile RoHS Compliant Pins 1/2 ; 3/4 ; 5/6 must be shorted together Absolute maximum ratings Parameter Collector - Emitter Breakdown Voltage IC Continuous Collector Current ICM VGE PD Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation RBSOA TC = 25°C Max ratings 1700 45 30 70 ±20 210 Tj = 125°C 60A@1600V TC = 25°C TC = 80°C TC = 25°C Reverse Bias Safe Operating Area Unit V A V W These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com www.microsemi.com 1–6 APTGT30DA170T1G – Rev 1 October, 2012 Symbol VCES APTGT30DA170T1G All ratings @ Tj = 25°C unless otherwise specified Electrical Characteristics Symbol Characteristic ICES Zero Gate Voltage Collector Current VCE(sat) Collector Emitter saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Test Conditions Min VGE = 0V, VCE = 1700V Tj = 25°C VGE = 15V IC = 30A Tj = 125°C VGE = VCE , IC = 1.5mA VGE = 20V, VCE = 0V 5.2 Typ 2.0 2.4 5.8 Max Unit 250 2.4 µA 6.4 600 V nA Max Unit V Dynamic Characteristics Symbol Cies Cres Td(on) Tr Td(off) Tf Td(on) Tr Td(off) Characteristic Input Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Delay Time Rise Time Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy Test Conditions VGE = 0V, VCE = 25V f = 1MHz Inductive Switching (25°C) VGE = ±15V VBus = 900V IC = 30A RG = 18 Inductive Switching (125°C) VGE = ±15V VBus = 900V IC = 30A RG = 18 VGE = ±15V Tj = 125°C VBus = 900V IC = 30A Tj = 125°C RG = 18 Min Test Conditions Min 1700 Typ 2500 90 100 70 pF ns 650 80 100 70 750 ns 100 17 mJ 15 Chopper diode ratings and characteristics IRM IF Maximum Reverse Leakage Current VR=1700V DC Forward Current VF Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge Er Reverse Recovery Energy IF = 50A VGE = 0V IF = 50A VR = 900V di/dt =800A/µs www.microsemi.com Typ Tj = 25°C Tj = 125°C TC=80°C Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C Tj = 25°C 50 1.8 1.9 385 490 14 Tj = 125°C Tj = 25°C Tj = 125°C 23 6 12 Max 250 500 Unit V µA A 2.2 V ns µC mJ 2–6 APTGT30DA170T1G – Rev 1 October, 2012 Symbol Characteristic VRRM Maximum Peak Repetitive Reverse Voltage APTGT30DA170T1G Thermal and package characteristics Symbol Characteristic RthJC VISOL TJ TSTG TC Torque Wt Min Junction to Case Thermal Resistance RMS Isolation Voltage, any terminal to case t =1 min, 50/60Hz Operating junction temperature range Storage Temperature Range Operating Case Temperature Mounting torque Package Weight Typ IGBT Diode To heatsink M4 4000 -40 -40 -40 2 Max 0.60 0.70 Unit °C/W V 150 125 100 3 80 °C N.m g Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information). Symbol Characteristic R25 Resistance @ 25°C B 25/85 T25 = 298.15 K RT Min Typ 50 3952 Max Unit k K R25 T: Thermistor temperature 1 1 RT: Thermistor value at T exp B25 / 85 T25 T See application note 1904 - Mounting Instructions for SP1 Power Modules on www.microsemi.com www.microsemi.com 3–6 APTGT30DA170T1G – Rev 1 October, 2012 SP1 Package outline (dimensions in mm) APTGT30DA170T1G Typical Performance Curve Output Characteristics (VGE=15V) Output Characteristics 60 60 TJ = 125°C 50 TJ=25°C VGE=19V 40 40 IC (A) TJ=125°C 30 VGE=15V 30 20 20 10 10 0 VGE=13V VGE=9V 0 0 0.5 1 1.5 2 2.5 VCE (V) 3 3.5 4 0 VCE = 900V VGE = 15V RG = 18 Ω TJ = 125°C 35 TJ=25°C 30 30 E (mJ) IC (A) 40 TJ=125°C 20 4 5 25 Eon Eoff 20 15 Er 10 10 TJ=125°C 5 0 0 5 6 7 8 9 10 0 11 20 Switching Energy Losses vs Gate Resistance 60 80 100 Reverse Bias Safe Operating Area 80 70 VCE = 900V VGE =15V IC = 30A TJ = 125°C 60 Eon 50 IC (A) 60 40 IC (A) VGE (V) E (mJ) 3 VCE (V) 40 50 40 Eoff 40 30 VGE=15V TJ=125°C RG=18 Ω 20 20 Er 10 0 0 0 20 40 60 80 100 Gate Resistance (ohms) 0.6 0.5 0 120 400 800 1200 1600 VCE (V) maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 0.7 Thermal Impedance (°C/W) 2 Energy losses vs Collector Current Transfert Characteristics 60 1 IGBT 0.9 0.7 0.4 0.3 0.2 0.1 0 0.00001 0.5 0.3 0.1 0.05 Single Pulse 0.0001 0.001 0.01 0.1 1 10 rectangular Pulse Duration (Seconds) www.microsemi.com 4–6 APTGT30DA170T1G – Rev 1 October, 2012 IC (A) 50 APTGT30DA170T1G Forward Characteristic of diode 100 VCE=900V D=50% RG=18 Ω TJ=125°C TC=75°C ZVS 40 35 30 25 20 ZCS 15 hard switching 10 TJ=25°C 80 IF (A) Fmax, Operating Frequency (kHz) Operating Frequency vs Collector Current 45 60 TJ=125°C 40 20 TJ=125°C 5 0 0 0 10 20 30 IC (A) 40 50 0 60 0.5 1 1.5 VF (V) 2 2.5 3 maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 0.7 Diode 0.9 0.6 0.5 0.4 0.3 0.2 0.1 0.7 0.5 0.3 0.1 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 rectangular Pulse Duration (Seconds) www.microsemi.com 5–6 APTGT30DA170T1G – Rev 1 October, 2012 Thermal Impedance (°C/W) 0.8 APTGT30DA170T1G DISCLAIMER The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi. Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer’s and user’s responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided “AS IS, WHERE IS” and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp Life Support Application Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications"). Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods. www.microsemi.com 6–6 APTGT30DA170T1G – Rev 1 October, 2012 Buyer must notify Seller in writing before using Seller’s Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.