

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 CSDAUTO_001-56927.pdf

		
				 Autotuning CapSense® Sigma-Delta Datasheet CSDAUTO V 1.0
001-56927 Rev. *C
Autotuning CapSense Sigma-Delta
Copyright © 2009-2014 Cypress Semiconductor Corporation. All Rights Reserved.
PSoC® Blocks
Resources
CapSense I2C/SPI
API Memory
Timer Comparator
Flash
RAM
Pins (per
External IO)
CY8C20x66, CY8C20x36, CY8C20336AN, CY8C20436AN, CY8C20636AN, CY8C20x46, CY8C20x96,
CY8C20xx6AS, CY7C645xx, CY7C643/4/5xx, CY7C60424, CY7C6053x, CYONS2110, CYONS21L1T,
CYONSFN2162
1
-
1
1
1540
35
0
Features and Overview
„ AutoTuning algorithms optimize the operational parameters at runtime based on the parasitic capacitance of each sensor.
„ Scans 1 to 36 capacitive sensors.
„ Capable of detecting 0.1 pF touch with parasitic sensor capacitance (Cp) up to 50 pF, as long as the
„
„
„
„
„
„
„
„
„
layout guidelines given in the application note “Capacitance Sensing - Layout Guidelines for PSoC
CapSense”, AN2292, are followed.
Sensing possible through up to a 15 mm glass overlay.
High immunity to AC mains noise, other EMI, and power supply voltage changes.
Supports capacitive sensors configured as independent buttons, proximity sensors, and/or as dependent arrays to form sliders. Sliders and proximity sensors not fully supported in this beta version.
Effective number of slider elements can double the number of dedicated IO pins using diplexing technique.
Supports slider resolution greater than physical pitch through interpolation.
Touchpads can be implemented as pairs of interwoven orthogonal sliders.
Shield electrode provides for reliable operation with high parasitic capacitance and/or in the presence
of water film.
Guided sensor and pin assignments using the CSDAUTO Wizard.
PC GUI application support for raw data monitoring in real-time.
The CSDAUTO (Autotuning CapSense® using a Sigma-Delta Modulator) User Module provides
capacitance sensing using the switched capacitor technique with a sigma-delta modulator to convert the
sensor capacitance into digital code.
Note
This user module supports only C language projects. ASM (Assembly language) projects are not
supported.
Cypress Semiconductor Corporation
Document Number: 001-56927 Rev. *C
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised November 25, 2014
Autotuning CapSense Sigma-Delta
Figure 1.
CSDAUTO Typical Application
Functional Description
The capacitive sensor consists of physical, electrical, and software components:
„ Physical
–
The physical sensor itself, typically a conductive pattern constructed on a PCB connected to the
PSoC with an insulating cover, a flexible membrane, or a transparent overlay over a display.
„ Electrical
–
A method to convert the sensor capacitance to digital format. The conversion system consists
of a sensing switched capacitor, a sigma-delta modulator, and a counter-based digital filter to
convert the modulator output bit stream to a readable digital format.
„ Software
–
Detection and compensation software algorithms convert the count value into a sensor detection decision.
–
In the case of consecutive, dependent sensors (sliders and touchpads, for example) APIs are
provided to interpolate a position with greater resolution than the physical pitch of the sensors.
For example, you can create a volume slider with 10 sensors and use the provided firmware to
expand the number of volume levels to 100. Alternatively, using the same APIs, you can use two
capacitive sensors that taper into each other and determine the position of a conductive object
(such as a finger) between them.
–
High level decision logic provides compensation for environmental factors, such as temperature,
humidity, and power supply voltage change. A separate shield electrode can be used for
shielding the sensor array to reduce stray capacitance, providing more reliable operation in the
presence of a water film or droplets.
–
High level software functions accommodate slider diplexing so that a single I/O pin can be
routed to two physical sensors to reduce by half the number of IO consumed for a given number
of slider elements.
Document Number: 001-56927 Rev. *C
Page 2 of 35
Autotuning CapSense Sigma-Delta
The following documents are recommended reading before implementing a CapSense design using the
CSDAUTO user module:
„ The PSoC® CY8C20x66, CY8C20x66A, CY8C20x46/96, CY8C20x46A/96A, CY8C20x36,
CY8C20x36A, CY8CTMG20x, CY8CTMG20xA, CY8CTST200, CY8CTST200A Technical Reference
Manual (TRM) sections:
–
CapSense System
The following application notes are recommended after reading the CSD User Module documentation.
Application notes can be found on the Cypress Semiconductor web site at www.cypress.com:
„
„
„
„
„
„
„
„
CapSense Best Practices – AN2394
Signal-to-Noise Ratio Requirements for CapSense Applications – AN2403
Design Aids - CapSense Data Viewing Tool – AN2397
EMC Design Considerations for PSoC CapSense Applications – AN2318
Power and Sleep Considerations – AN2360
Layout Guidelines for PSoC CapSense – AN2292
Software Implementation of a Universal Asynchronous Transmitter – AN2399
Waterproof Capacitance Sensing – AN2398
Capacitance Sensing Operation
CY8C20x66 family of devices have an Analog MUX Bus. It allows connection of the CapSense Circuitry to
any PSoC pin. The CSDAUTO user module connects the active sensor to the analog Mux bus so the
always-connected CapSense circuitry can measure the capacitance of the sensor and translate that
capacitance into a digital code. The firmware performs sensor scanning in series by setting corresponding
bits in the MUX_CRx registers.
Figure 2.
CSDAUTO Block Diagram
Document Number: 001-56927 Rev. *C
Page 3 of 35
Autotuning CapSense Sigma-Delta
Sliders
Note
Sliders and proximity sensors are not fully supported in this beta version.
Sliders are used for controls requiring gradual adjustments. Examples include a lighting controls (dimmer),
volume controls, graphic equalizers, and speed controls. The sensors that make up a slider are adjacent
to one another. Actuation of one sensor results in partial actuation of physically adjacent sensors. The
actual position in the slider is found by computing the centroid location of the set of activated sensors.
Sliders are accommodated in the CSDAUTO Wizard, by establishing groups in which each group of
sliders has a specific order. The practical lower limit number for sensors slider is five, the upper limit is
simply the number of sensor positions available on the PSoC device selected.
Figure 3.
Interpolated Centroid Position of a Finger on a Slider
Document Number: 001-56927 Rev. *C
Page 4 of 35
Autotuning CapSense Sigma-Delta
Radial Sliders
Figure 4.
Finger touches Radial Slider
For the CSDAUTO user module, two slider types are available: linear and radial. Radial sliders are similar
to linear ones. While linear sliders have a beginning and an end, radial sliders do not. When a touch
happens, the centroid calculation algorithm takes into account sensor counts of the switches to the right
and left of the current switch. Radial sliders are not diplexed.
The CSDAUTO user module has two API functions that support radial sliders. The first function
CSDAUTO_wGetRadiaPos() returns centroid location and the second CSDAUTO_wGetRadialInc()
returns finger shift in resolution units. When the finger moves in a clockwise direction it is a positive offset.
The reference point(0) is located in the middle of the first sensor. The Resolution for both linear and radial
sliders is limited and is 3000.
Document Number: 001-56927 Rev. *C
Page 5 of 35
Autotuning CapSense Sigma-Delta
Diplexing
When Diplexing is used, each PSoC sensor connection in a slider is mapped to two physical locations in
the array of slider sensors. The first (or numerically lower) half of the physical locations is mapped
sequentially to the base assigned sensors, with the port pin assigned by the designer using the CSDAUTO
Wizard. The second (or upper) half of the physical sensor locations is automatically mapped by an
algorithm as shown in the following figure.
Figure 5.
Indexing of Diplexed Slider Array by CSDAUTO
The close proximity of strong signals in one half of the slider results in the same levels aliased into the
upper half, but the results are scattered. The sensing algorithms search for strong adjacent sets of signals
to declare the resolved slider position. The order is established so that adjacent sensor actuation in one
half does not result in adjacent sensor actuation in the other half.
Ensure that the mapping of sensors to pins on the printed circuit board matches the Index by 3 pattern
used by the user module. The capacitance of sensor pairs in a diplexed slider should be reasonably well
matched (within 10 pF).
The diplex sensor index table is automatically generated by the CSDAUTO Wizard when you select
diplexing. This table illustrates the diplexing sequences for different slider segments count:
Document Number: 001-56927 Rev. *C
Page 6 of 35
Autotuning CapSense Sigma-Delta
Table 1.
Diplexing Sequence for Different Slider Segment Counts
Total
Slider
Segment
Count
Segment Sequence
10
0,1,2,3,4,0,3,1,4,2
12
0,1,2,3,4,5,0,3,1,4,2,5
14
0,1,2,3,4,5,6,0,3,6,1,4,2,5
16
0,1,2,3,4,5,6,7,0,3,6,1,4,7,2,5
18
0,1,2,3,4,5,6,7,8,0,3,6,1,4,7,2,5,8
20
0,1,2,3,4,5,6,7,8,9,0,3,6,9,1,4,7,2,5,8
22
0,1,2,3,4,5,6,7,8,9,10,0,3,6,9,1,4,7,10,2,5,8
24
0,1,2,3,4,5,6,7,8,9,10,11,0,3,6,9,1,4,7,10,2,5,8,11
26
0,1,2,3,4,5,6,7,8,9,10,11,12,0,3,6,9,12,1,4,7,10,2,5,8,11
28
0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,3,6,9,12,1,4,7,10,13,2,5,8,11
30
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,3,6,9,12,1,4,7,10,13,2,5,8,11,14
32
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14
34
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14
36
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14,17
38
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,0,3,6,9,12,15,18,1,4,7,10,13,16,2,5,8,11,14,17
40
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17
42
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,1
7,20
44
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,2,5,8,1
1,14,17,20
46
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,22,
2,5,8,11,14,17,20
48
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,
22,2,5,8,11,14,17,20,23
Document Number: 001-56927 Rev. *C
Page 7 of 35
Autotuning CapSense Sigma-Delta
Total
Slider
Segment
Count
Segment Sequence
50
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,0,3,6,9,12,15,18,21,24,1,4,7,10,13,
16,19,22,2,5,8,11,14,17,20,23
52
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,0,3,6,9,12,15,18,21,24,1,4,7,10,
13,16,19,22,25,2,5,8,11,14,17,20,23
54
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,0,3,6,9,12,15,18,21,24,1,4,7,
10,13,16,19,22,25,2,5,8,11,14,17,20,23,26
56
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,0,3,6,9,12,15,18,21,24,27,
1,4,7,10,13,16,19,22,25,2,5,8,11,14,17,20,23,26
Interpolation and Scaling
In applications for sliding sensors and touchpads it is often necessary to determine finger (or other
capacitive object) position to more resolution than the native pitch of the individual sensors. The contact
area of a finger on a sliding sensor or a touchpad is often larger than any single sensor.
To calculate the interpolated position using a centroid, the array is first scanned to verify that a given
sensor location is valid. The requirement is for some number of adjacent sensor signals to be above a
noise threshold. When the strongest signal is found, this signal and those contiguous signals larger than
the noise threshold are used to compute a centroid. As few as two and as many as (typically) eight
sensors are used to calculate the centroid in the form of:
Equation 1
The calculated value is typically fractional. To report the centroid to a specific resolution, for example a
range of 0 to 100 for 12 sensors, the centroid value is multiplied by a calculated scalar. It is more efficient
to combine the interpolation and scaling operations into a single calculation and report this result directly
in the desired scale. This is handled in the high-level APIs.
Slider sensor count and resolution are set in the CSDAUTO Wizard. A scaling value is calculated by the
wizard and stored as fractional values.
Document Number: 001-56927 Rev. *C
Page 8 of 35
Autotuning CapSense Sigma-Delta
The multiplier for the centroid resolution is contained in three bytes with these bit definitions:
Resolution Multiplier MSB
Bit
Multiplier
7
215
6
5
4
3
2
1
0
214
213
212
211
210
29
28
64
32
18
16
8
4
2
1/4
1/8
1/16
1/32
1/64
1/128
1/256
Resolution Multiplier ISB
Multiplier
128
Resolution Multiplier LSB
Multiplier
1/2
The resolution is found by using this equation:
Resolution = (Number of Sensors – 1) × Multiplier
The centroid is held in a 24-bit unsigned integer and its resolution is a function of the number of sensors
and the multiplier.
External Component Selection Guidelines
CSDAUTO can use internal or external modulation capacitor, Cmod, connected from Vss ground to either
P0[1], or P0[3] port pins. The pins are selected by the Pin Selection Wizard setting. The selected pin
should not be used for any other purposes.
Unless CSDAUTO can work with internal capacitor the external capacitor is recommended. The
recommended value for the external modulation capacitor is 2.2 nF. The optimal capacitance can be
selected by experiment to get maximum SNR. A value of 2.2 nF gives good results in the most cases. A
ceramic capacitor should be used. The temperature capacitance coefficient is not important.
Shield Electrode
Some applications require reliable operation in the presence of water films or droplets. White goods,
automotive applications, various industrial applications, and others need capacitive sensors that do not
provide false triggering because of water, ice, and humidity changes. In this case a separate shielding
electrode can be used. This electrode is located behind or outside the sensing electrode. When water
films are located on the insulation overlay surface, the coupling between the shielding and sensing
electrodes is increased. The shielding electrode allows you to reduce the influence of parasitic
capacitance, which gives you more dynamic range for processing sense capacitance changes.
In some applications it is useful to select the shielding electrode signal and its placement relative to the
sensing electrode such that increasing the coupling between these electrodes causes the opposite of the
touch change of the sensing electrode capacitance measurement. This simplifies the high-level software
API work. The CSDAUTO User Module supports separate output for the shielding electrode.
Document Number: 001-56927 Rev. *C
Page 9 of 35
Autotuning CapSense Sigma-Delta
Figure 6.
Possible Shield Electrode PCB Layout
The previous figure illustrates one possible layout configuration for the button’s shield electrode. In this
example, the button is covered by a shielding electrode plane. As an alternative, the shielding electrode
can be located on the opposite PCB layer, including the plane under the button. A hatch pattern is
recommended in this case, with a fill ratio of about 30 to 40%. No additional ground plane is required in
this case.
When water drops are located between the shielding and sensing electrodes, the Cpar is increased and
modulator current can be reduced. In practical tests, the modulator reference voltage can be increased by
the API so that the raw count increase from water drops should be close to zero or be slightly negative.
You can achieve this by selecting the appropriate modulator reference.
CSDAUTO uses the same signal used for the precharge clock to drive the shielding electrode.
The shield electrode can be connected to dedicated PSoC pins (P0[7] or P1[2]). The drive mode for
selected pin should be set to Strong. A slew limiting resistor can be connected between the PSoC device
and the shielding electrode to reduced emitted EMI.
Document Number: 001-56927 Rev. *C
Page 10 of 35
Autotuning CapSense Sigma-Delta
DC and AC Electrical Characteristics
Table 2.
Power Supply Requirement
Parameter
Vdd
Table 3.
Min
1.7
Typical
5.0
Max
Test Conditions and
Comments
Unit
5.25
V
Noisea
(Counts)
SNR
NA
Signal and Noise at Various Cp’s
Parasitic Capacitance, Cp
(pF)
Signal for 0.1 pF
Touch (Counts)
Scan Time (µs)
10
15
20
a. This noise value is a typical value based on a reference design following the guidelines of AN2292.
Placement
The blocks for the user module are automatically placed when the user module is instantiated, alternate
placements are not available. The CSDAUTO User Module consumes the CapSense block and one Timer
(Timer1).
User modules that require specific pin resources, including the LCD and I2CHW, must be placed before
starting the CSDAUTO Wizard to establish pin connections for the CSDAUTO User Module.
Avoid P1[0] and P1[1] when placing capacitive sensor connections. These pins are used for programming
the part and may have excess routing capacitance affecting sensor sensitivity and noise.
Document Number: 001-56927 Rev. *C
Page 11 of 35
Autotuning CapSense Sigma-Delta
Wizard Access
1. To access the Wizard, right click any block of the CSDAUTO in the Device Editor Interconnect View,
then select the CSDAUTO Wizard with a left mouse click.
2. The Wizard displays the numeric entry boxes for the number of sensors and the number of slider sensors.
Document Number: 001-56927 Rev. *C
Page 12 of 35
Autotuning CapSense Sigma-Delta
Wizard Pin Legend
White – The pin can not be used as a CapSense input.
Gray – The pin is locked. There are two possible causes for this. The first possibility is that
another user module such as the LCD or I2C has claimed the pin. The second possibility is
that the name of the pin has been changed from its default.To return the pin name to its
default, in the Pinout view expand the pin, from the Select menu, select Default. The pin is
now available for assignment in the wizard.
Orange – The pin is available for assignment.
Green – The pin has been assigned as a CapSense input.
3. Type the number of independent buttons, sliders, and radial sliders. The total number of sensors (buttons plus slider elements) is limited to the number of pins avail-able. After entering the data, press the
[Enter] key to update the display with the new value. X-Y touchpads require two sliders.
4. Select Sensor Settings to set the settings for sliders and radial sliders. To alter settings, click one of
your sliders to activate it. Type the number of sensor elements in each slider. The practical minimum
number of sensors in a slider sensor is five, the maximum is limited by pin count. After entering the
data, press the [Enter] key to update the display. Select modulator capacitor (Cmod) pin. Choose
from the available pins P0[1], P0[3]. If the internal capacitor is used select None. You usually
get better SNR with an external 2.2 nF capacitor.
Document Number: 001-56927 Rev. *C
Page 13 of 35
Autotuning CapSense Sigma-Delta
5. Type the output resolution. The minimum value is five. The maximum value is (# of pins used for sensors – 1) × 216 – 1 or (2 x pins used for sensors – 1) × 216 – 1 for diplexed sliders. The software
attempts to interpolate the touch results to the specified resolution using the relative strength of adjacent segments. The software reports touch results on the slider between zero and the resolution – 1.
6. Select Diplex, if desired. This maps the number of pins selected for sensors to twice as many sensor
locations on the board. Only the first half of the diplex sensors is shown; the second half is automatically mapped as outlined in the previous section on Diplexing. See the Diplexing section to find Diplexing tables for pin connections.
7. Assign switches or sensors to pins by dragging the switch or sensor onto the pin in the Pin Assignment
View. You can choose to drag switches or sensors onto pins in the Chip Pin Assignment View or the
Table Pin Assignment View. The port pin is green after selection and is no longer available. Change
sensor assignments by dragging the port pin back to the uncommitted table. Make sure to avoid
selecting pins already committed to other user modules.
Document Number: 001-56927 Rev. *C
Page 14 of 35
Autotuning CapSense Sigma-Delta
8. Repeat for the remainder of independent sensors. Mapping of individual slider sensors onto physical
port pins is the same as for individual sensors. Click OK to accept data and return to PSoC Designer.
Sensor placement is now complete. Right-click in the Device Editor window and select Refresh to update
the pin connections.
Document Number: 001-56927 Rev. *C
Page 15 of 35
Autotuning CapSense Sigma-Delta
Set user module parameters and generate the application. You can adapt a sample project now, if you
wish.
If you want change pin assignment, place your cursor on the assigned pin, click the pin, and drag and drop
it outside the switches box. The pin is unassigned and you can then reassign it.
After completing the Wizard, click Generate Application. Based on your entries for sensor count, pin
assignment, diplexing, and resolution, a set of tables is generated. The tables are located in
CSDAUTO_Table.asm
Sensor Table
The Sensor Table consists of a 2-byte entry for each sensor. The first byte is the port number and the
second byte is the bit mask for the bit (not the bit number). The table includes all independent sensors,
then each sensor in order. An example for a table with six sensors is:
CSDAUTO_Sensor_Table:
_CSDAUTO_Sensor_Table:
dw
0x0140 //
Port 1 Bit 6
Document Number: 001-56927 Rev. *C
Page 16 of 35
Autotuning CapSense Sigma-Delta
dw
dw
dw
dw
dw
0x0301
0x0304
0x0308
0x0302
0x0108
//
//
//
//
//
Port
Port
Port
Port
Port
3
3
3
3
1
Bit
Bit
Bit
Bit
Bit
0
2
3
1
3
This table is used by CSDAUTO_wGetPortPin() routine.
Group Table
The Group Table defines each of the groups of button sensors or sliders. There is one entry for each slider
plus one for the free button sensors. The first entry is always the free sensors. Each entry is six bytes. The
first byte is the index in the Sensor Table where the group starts. The second byte is how many sensors
are in that group. The third byte signifies whether the slider is diplexed or not (4 is diplexed, 0 is not
diplexed). The fourth, fifth, and sixth bytes are the fixed point multiplier that the slider's calculated centroid
is multiplied by to achieve the resolution desired in the CSDAUTO wizard.
CSDAUTO_Group_Table:
_CSDAUTO_Group_Table:
; Group Table:
;
Origin
Count
db
0x0,
0x3,
db
0x3,
0x8,
Diplex?
0x00,
0x4,
DivBtwSw(wholeMSB, wholeLSB, fractByte)
0x00,
0x00,
0x00 ; Buttons
0x0,
0x0,
0x44 ; Slider 1
Diplex Table
Diplex table scan order data is produced for a group that is a slider and with diplexing enabled. Otherwise,
a label is created but no data is placed. The table consists of two parts: sensor mapping for each slider,
and a reference for each separate slider to its table. A typical example for an eight sensor slider is shown
here:
DiplexTable_0:
; This group is not a diplexed slider
DiplexTable_1:
db 0,1,2,3,4,5,6,7,0,3,6,1,4,7,2,5// 8 switch slider
CSDAUTO_Diplex_Table:
_CSDAUTO_Diplex_Table:
db >DiplexTable_0, <DiplexTable_0
db >DiplexTable_1, <DiplexTable_1
Parameters and Resources
Sensors Autoreset
This parameter determines whether the baseline is updated at all times or only when the signal difference is below the Noise Threshold. When set to Enabled the baseline is updated constantly. This
setting limits the maximum time duration of the sensor (typical values are 5 – 10s), but it prevents the
sensors from permanently turning on when the raw count suddenly rises without anything touching
the sensor. This sudden rise can be caused by a large power supply voltage fluctuation, a high energy
RF noise source, or a very quick temperature change.
Document Number: 001-56927 Rev. *C
Page 17 of 35
Autotuning CapSense Sigma-Delta
When the parameter is set to Disabled the baseline is updated only when raw count and baseline
difference is below the Noise Threshold parameter. You should leave this parameter Disabled unless
you have problems with sensors permanently turning on when the raw count suddenly rises without
anything touching the sensor.
The following figure illustrates this parameter’s influence on the baseline update.
Figure 7.
The Sensor Autoreset Parameter
Debounce
The Debounce parameter adds a debounce counter to the sensor active transition. For the sensor to
transition from inactive to active, the difference count value must stay above the finger threshold plus
hysteresis for the number of samples specified. The debounce counter is incremented by the bIsSensorActive or bIsAnySensorActive API functions.
Possible values are 1 to 255. A setting of 1 provides no debouncing.
ShieldElectrodeOut
The shielding electrode signal source can be routed to P0[7] or P1[2].
Document Number: 001-56927 Rev. *C
Page 18 of 35
Autotuning CapSense Sigma-Delta
Application Programming Interface
The Application Programming Interface (API) functions are provided as part of the user module to allow
you to deal with the module at a higher level. This section specifies the interface to each function together
with related constants provided by the include files.
Each time a user module is placed, it is assigned an instance name. By default, PSoC Designer assigns
the CSDAUTO_1 to the first instance of this user module in a given project. It can be changed to any
unique value that follows the syntactic rules for identifiers. The assigned instance name becomes the
prefix of every global function name, variable and constant symbol. In the following descriptions the
instance name has been shortened to CSDAUTO for simplicity.
Note ** In this, as in all user module APIs, the values of the A and X register may be altered by calling an
API function. It is the responsibility of the calling function to preserve the values of A and X before the call
if those values are required after the call. This "registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must also ensure their code observes the
policy. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.
Entry Points are supplied to initialize the CSDAUTO, start it sampling, and stop the CSDAUTO. In all
cases the instance name of the module replaces the CSDAUTO prefix shown in the following entry points.
Failure to use the correct instance name is a common cause of syntax errors.
API functions use different global arrays. You should not alter these arrays manually. You can inspect
these values for debugging purposes, however. For example, you can use a charting tool to display the
contents of the arrays. There several global arrays:
„
„
„
„
CSDAUTO_waSnsBaseline[]
CSDAUTO_waSnsResult[]
CSDAUTO_waSnsDiff[]
CSDAUTO_baSnsOnMask[]
CSDAUTO_waSnsBaseline[] – This is an integer array that contains the baseline data of each sensor.
The array size is equal to the sensor count. The CSDAUTO_waSnsBaseline[] array is updated by these
functions:
„ CSDAUTO_UpdateAllBaselines();
„ CSDAUTO_UpdateSensorBaseline();
„ CSDAUTO_InitializeBaselines().
CSDAUTO_waSnsResult[] – This is an integer array that contains the raw data of each sensor. The array
size is equal to the sensor count. The CSDAUTO_waSnsResult[] data is updated by these functions:
„ CSDAUTO_ScanSensor();
„ CSDAUTO_ScanAllSensors().
CSDAUTO_waSnsDiff [] – This is an integer array that contains the difference between the raw data and
the baseline data of each sensor. The array size is equal to the sensor count.
CSDAUTO_baSnsOnMask[] – This is a byte array that holds the sensor on or off state (for buttons or
sliders). CSDAUTO_baSnsOnMask[0] contains the masked bits for sensors 0 through 7 (sensor 0 is bit 0,
sensor 1 is bit 1). CSDAUTO_baSnsOnMask[1] contains the masked bits for sensors 8 through 15 (if they
are needed), and so on. This byte array contains as many elements as are necessary to contain all the
placed sensors. The value of a bit is 1 if the button is on and 0 if the button is off. The
Document Number: 001-56927 Rev. *C
Page 19 of 35
Autotuning CapSense Sigma-Delta
CSDAUTO_baSnsOnMask[] data is updated by CSDAUTO_blsSensorActive(BYTE bSensnor) function or
CSDAUTO_bIsAnySensorActive() routines.
CSDAUTO_Start
Description:
Initializes registers and starts the user module. This function should be called before calling any other
user module functions.
C Prototype:
void
CSDAUTO_Start()
Assembly:
lcall
CSDAUTO_Start
Parameters:
None
Return Value:
None
Side Effects:
**
CSDAUTO_Stop
Description:
Stops the sensor scanner, disables internal interrupts, and calls CSDAUTO_ClearSensors() to reset
all sen-sors to an inactive state.
C Prototype:
void
CSDAUTO_Stop()
Assembly:
lcall
CSDAUTO_Stop
Parameters:
None
Return Value:
None
Side Effects:
**
CSDAUTO_ScanSensor
Description:
Scans the selected sensor. Each sensor has a unique number within the sensor array. This number
is assigned by the CSDAUTO Wizard in sequence. Sw0 is sensor 0, Sw1 is sensor 1, and so on.
Document Number: 001-56927 Rev. *C
Page 20 of 35
Autotuning CapSense Sigma-Delta
C Prototype:
void CSDAUTO_ScanSensor(BYTE bSensor);
Assembly:
mov A, bSensor
lcall CSDAUTO_ScanSensor
Parameters:
A => Sensor Number
Return Value:
None
Side Effects
**
CSDAUTO_UpdateSensorBaseline
Description:
The historical count value, calculated independently for each sensor, is called the sensor's baseline.
This baseline is updated using the Bucket Method.
The Bucket Method uses the following algorithm.
1. Each time CSDAUTO_UpdateSensorBaseline() is called, a difference count is calculated by subtracting the previous baseline from the raw count value. This difference is stored in the
CSDAUTO_waSnsDiff[] array and is provided to you.
2. If Sensors Autoreset is disabled, each time CSDAUTO_UpdateSensorBaseline() is called the difference count is compared to the noise threshold. If the difference is below the noise threshold, it is
accumu-lated into a virtual bucket. If the difference is above the noise threshold, the bucket is not
updated. If Sensors Autoreset is enabled, the difference is accumulated into a virtual bucket regardless of the noise threshold parameter.
3. Once the accumulated difference counts in the virtual bucket has reached the BaselineUpdateTh-reshold, the baseline is incremented by one and the bucket is reset to 0.
4. If the difference count is below the noise threshold, the value held in the waSnsDiff[] array is reset to 0.
Therefore, this array does not contain elements with values greater than 0 but below the NoiseThreshold.
C Prototype:
void CSDAUTO_UpdateSensorBaseline(BYTE bSensor)
Assembly:
mov
A,
bSensor
lcall CSDAUTO_UpdateSensorBaseline
Parameter:
A => Sensor Number
Return Value:
None
Side Effects:
**
Document Number: 001-56927 Rev. *C
Page 21 of 35
Autotuning CapSense Sigma-Delta
CSDAUTO_bIsSensorActive
Description:
Checks the difference count array for the given sensor compared to its finger threshold. Hysteresis is
taken into account. The Hysteresis value is added or subtracted from the finger threshold based on
whether the sensor is currently on. If it is active, the threshold is lowered. If it is inactive, the threshold
is raised. This function also updates the sensor's bit in the CSDAUTO_baSnsOnMask[] array.
C Prototype:
BYTE
CSDAUTO_bIsSensorActive(BYTE bSensor)
Assembly:
mov A, bSensor
lcall CSDAUTO_bIsSensorActive
Parameters:
bSensor A => Sensor Number
Return Value:
Return value of 1 if active, 0 if not active
A => 1 – Selected sensor is active, 0 – Selected sensor is not active.
Side Effects:
**
CSDAUTO_bIsAnySensorActive
Description:
Checks the difference count array for all sensors compared to their finger threshold. Calls
CSDAUTO_bIsSensorActive() for each sensor so the CSDAUTO_baSnsOnMask[] array is up to date
after calling this function.
C Prototype:
BYTE
CSDAUTO_bIsAnySensorActive()
Assembly:
lcall CSDAUTO_bIsAnySensorActive
Parameters:
None
Return Value:
Return value of 1 if active, 0 if not active
A => 1 – One or more sensors are active, 0 – No sensors are active.
Side Effects:
**
Document Number: 001-56927 Rev. *C
Page 22 of 35
Autotuning CapSense Sigma-Delta
CSDAUTO_wGetCentroidPos
Description:
Checks a difference array for a centroid. If one exists, the offset and length are stored in temporary
variables and the centroid position is calculated to the resolution specified in the CSDAUTO Wizard.
This function is available only if slider is defined by the CSDAUTO Wizard.
C Prototype:
WORD
CSDAUTO_wGetCentroidPos(BYTE bSnsGroup)
Assembly:
mov A, bSnsGroup
lcall CSDAUTO_wGetCentroidPos
Parameters:
bSnsGroup A => Group Number
This parameter is a reference to a specific group of sensors used as a slider. Group 0 is for buttons.
Sliders are contained in group 1 and higher.
Return Value:
Position value of the slider, LSB in A and MSB in X.
Side Effects:
This routine modifies the difference counts by subtracting the noise threshold value. The routine
should be called only once after each scan to avoid getting negative difference values. If your application monitors difference count signals, call this routine after difference count data transmission.
If any slider sensor is active, the function returns values from zero to the Resolution value set in the
CSDAUTO Wizard. If no sensors are active, the function returns –1 (FFFFh). If an error occurs during
execu-tion of the centroid/diplexing algorithm, the function returns –1 (FFFFh). You can use the
CSDAUTO_blsSensorActive() routine to determine which slider segments are touched, if required.
Note: If noise counts on the slider segments are greater than the noise threshold, this subroutine may
generate a false centroid result. The noise threshold should be set carefully (high enough above the
noise level) so that noise does not generate a false centroid.
CSDAUTO_wGetRadialPos
Description:
Checks a difference array for a centroid. If one exists, the centroid position is calculated to the resolution specified in the CSDAUTO Wizard. This function is available only for radial slider that is defined
by the CSDAUTO Wizard.
C Prototype:
WORD
CSDAUTO_wGetRadialPos(BYTE bSnsGroup)
Assembly:
mov A, bSnsGroup
lcall CSDAUTO_wGetRadialPos
Document Number: 001-56927 Rev. *C
Page 23 of 35
Autotuning CapSense Sigma-Delta
Parameters:
bSnsGroup A => Group Number
This parameter is a number of radial slider you are working with. You can get its number through
CSDAUTO user module wizard on the left hand of radial slider representation (for example, s2, the
radial slider number is 2).
Return Value:
Position value of the radial slider, LSB in A and MSB in X.
Side Effects:
The routine should be called only once after each scan to avoid getting negative difference values and
baseline update. If your application monitors difference count signals, call this routine after difference
count data transmission.
If any slider sensor is active, the function returns values from zero to the Resolution value set in the
CSD Wizard. If no sensors are active, the function returns -1 (FFFFh).
Note If noise counts on the slider segments are greater than the noise threshold, this subroutine may
generate a false centroid result. The noise threshold should be set carefully (high enough above the
noise level) so that noise does not generate a false centroid.
CSDAUTO_wGetRadialInc
Description:
Returns actual finger shift, the difference between current and previous finger positions. This function
works in pair with CSDAUTO_wGetRadialPos() and takes data generated by the latter (data is saved
in internal variables).
C Prototype:
WORD
CSDAUTO_wGetRadialInc(BYTE bSnsGroup)
Assembly:
mov A, bSnsGroup
lcall CSDAUTO_wGetRadialInc
Parameters:
bSnsGroup A => Group Number
This parameter is a number of radial slider you are working with. You can get its number through
CSDAUTO user module wizard on the left hand of radial slider representation (for example, s2, the
radial slider number is 2).
Return Value:
Finger shift value, positive if clockwise and negative if anti-clockwise, LSB in A and MSB in X.
Finger shift value is the difference between current and previous finger positions. If there was no touch
during previous scan (the last but one time CSDAUTO_wGetRadialPos() returned -1 (FFFFh)) or
there is no touch at the moment (this time CSDAUTO_wGetRadialPos() returned -1 (FFFFh))
Document Number: 001-56927 Rev. *C
Page 24 of 35
Autotuning CapSense Sigma-Delta
Side Effects:
The routine should be called only after CSDAUTO_wGetRadialPos() API. Because it uses internal
data CSDAUTO_waSliderPrevPos and CSDAUTO_waSliderCurrPos that are set by the
CSDAUTO_wGetRadialPos().
CSDAUTO_InitializeSensorBaseline
Description:
Loads the CSDAUTO_waSnsBaseline[bSensor] array element with an initial value by scanning the
selected sensor. The raw count value is copied in to the baseline array element for the selected
sensor. This function can be used for resetting the baseline of an individual sensor.
C Prototype:
void CSDAUTO_InitializeSensorBaseline(BYTE bSensor)
Assembly:
mov A, bSensor
lcall CSDAUTO_InitializeSensorBaseline
Parameters:
A => Sensor Number
Return Value:
None
Side Effects:
**
CSDAUTO_InitializeBaselines
Description:
Loads the CSDAUTO_waSnsBaseline[] array with initial values by scanning each sensor. The raw
count val-ues are copied in to baseline array for each sensor.
C Prototype:
void CSDAUTO_InitializeBaselines()
Assembly:
lcall CSDAUTO_InitializeBaselines
Parameters:
None
Document Number: 001-56927 Rev. *C
Page 25 of 35
Autotuning CapSense Sigma-Delta
Return Value:
None
Side Effects:
**
CSDAUTO_SetScanMode
Description:
Sets scanning speed and resolution. This function can be called at runtime to change the scanning
speed and resolution. This function is effective when some sensors need to be scanned with different
scanning speed and resolution, for example, regular buttons and a proximity detector. The regular
buttons can be scanned with 9-bit res-olution. The proximity detector can be scanned less often with
16-bit resolution and longer scanning time for long-range detection. This function can be used in
conjunction with CSDAUTO_ScanSensor() func-tion.
C Prototype:
void CSDAUTO_SetScanMode(BYTE bSpeed, BYTE bResolution);
Assembly:
mov
mov
lcall
A, bSpeed
X, bResolution
CSDAUTO_SetScanMode
Parameters:
bSpeed, bResolution
Return Value:
None
Side Effects:
**
CSDAUTO_SetIdacValue
Description:
This function sets the iDAC current value. Use it if some sensors need to be scanned with different
iDAC setting. This function can be used in conjunction with CSDAUTO_ScanSensor().
C Prototype:
void CSDAUTO_SetIdacValue(BYTE bRefValue);
Assembly:
mov
lcall
A, bIdacValue
CSDAUTO_SetIdacValue
Parameters:
bIdacValue – Sets the iDAC value. Accepted values are 1.. 255.
Return Value:
None
Document Number: 001-56927 Rev. *C
Page 26 of 35
Autotuning CapSense Sigma-Delta
Side Effects:
**
CSDAUTO_SetPrescaler
Description:
This function sets the Prescaler value. Use it if some sensors need to be scanned with Prescaler
setting. This function can be used in conjunction with CSDAUTO_ScanSensor().
C Prototype:
void CSDAUTO_SetPrescaler(BYTE bPrescaler);
Assembly:
mov
lcall
A, bPrescaler
CSDAUTO_SetPrescaler
Parameters:
bPrescaler – Sets the Prescaler value. Accepted values are listed in the following table:
Name
Value
Prescaler
CSDAUTO_PRESCALER_1
0x00
1
CSDAUTO_PRESCALER_2
0x01
2
CSDAUTO_PRESCALER_4
0x02
4
CSDAUTO_PRESCALER_8
0x03
8
CSDAUTO_PRESCALER_16
0x04
16
CSDAUTO_PRESCALER_32
0x05
32
CSDAUTO_PRESCALER_64
0x06
64
CSDAUTO_PRESCALER_128
0x07
128
CSDAUTO_PRESCALER_256
0x08
256
Return Value:
None
Side Effects:
**
CSDAUTO_ClearSensors
Description:
Clears all sensors to the nonsampling state by sequentially calling CSDAUTO_wGetPortPin() and
CSDAUTO_DisableSensor() for each of the sensors.
C Prototype:
void
CSDAUTO_ClearSensors()
Document Number: 001-56927 Rev. *C
Page 27 of 35
Autotuning CapSense Sigma-Delta
Assembly:
lcall
CSDAUTO_ClearSensors
Parameters:
None
Return Value:
None
Side Effects:
**
CSDAUTO_wReadSensor
Description:
Returns the key Raw scan value in A (LSB) and X (MSB).
C Prototype:
WORD
CSDAUTO_wReadSensor(BYTE bSensor)
Assembly:
mov A, bSensor
lcall CSDAUTO_wReadSensor
Parameters:
A => Sensor Number
Return Value:
Scan value of sensor, LSB in A and MSB in X.
Side Effects:
**
Document Number: 001-56927 Rev. *C
Page 28 of 35
Autotuning CapSense Sigma-Delta
CSDAUTO_wGetPortPin
Description:
Returns the port number and pin mask for a given sensor. The passed parameter indexes and selects
the data from the CSDAUTO_Sensor_Table[]. The return value can be passed to the
CSDAUTO_EnableSensor(), CSDAUTO_DisableSensor().
C Prototype:
WORD
CSDAUTO_wGetPortPin(BYTE bSensorNum)
Assembly:
mov A,
lcall
bSensorNumber
CSDAUTO_wGetPortPin
Parameters:
bSensorNumber – The range is 0 to (n – 1) where n is the total of the number of sensors set in the
CSDAUTO Wizard plus the number of sensors included in sliders. The sensor number is used by
CSDAUTO_wGetPortPin() to determine port and bit mask for the selected active sensor.
Return Value:
A =>
Sensor Bitmap
X =>
Port Number
Side Effects:
**
CSDAUTO_EnableSensor
Description:
Configures the selected sensor to measure during the next measurement cycle. The port and sensor
can be selected using the CSDAUTO_wGetPortPin() function, with the port number and sensor
bitmask loaded into X and A, respectively. Drive modes are modified to place the selected port and
pin into Analog High-Z mode and to enable the correct Analog Mux Bus input. This also enables the
compara-tor function.
C Prototype:
void
CSDAUTO_EnableSensor(BYTE bMask, BYTE bPort)
Assembly:
mov X, bPort
mov A, bMask
lcall CSDAUTO_EnableSensor
Parameters:
A
=> Sensor Bitmap
X
=> Port Number
Return Value:
None
Document Number: 001-56927 Rev. *C
Page 29 of 35
Autotuning CapSense Sigma-Delta
Side Effects:
**
CSDAUTO_DisableSensor
Description:
Disables the sensor selected by the CSDAUTO_wGetPortPin() function. The drive mode is changed
to Strong (001) and set to zero. This effectively grounds the sensor. The connection from the port pin
to the AnalogMuxBus is turned off. The function parameters are returned by
CSDAUTO_wGetPortPin() func-tion.
C Prototype:
void
CSDAUTO_DisableSensor(BYTE bMask, BYTE bPort)
Assembly:
mov X, bPort
mov A, bMask
lcall CSDAUTO_DisableSensor
Parameters:
A
=> Sensor Bitmap
X
=> Port Number
Return Value:
None
Side Effects:
**
Sample Firmware Source Code
This code starts the user module and continuously scans the sensors. The communication section can be
used to communicate values to a PC charting tool.
//---// Sample C code for the CSDAUTO module
// Scanning all sensors continuously
//---#include <m8c.h>
#include "PSoCAPI.h"
// part specific constants and macros
// PSoC API definitions for all User Modules
void main(void)
{
BYTE bIndex;
M8C_EnableGInt;
CSDAUTO_Start();
CSDAUTO_InitializeBaselines() ; //Scan all sensors first time, init baseline
while (1) {
//Loop forever
Document Number: 001-56927 Rev. *C
Page 30 of 35
Autotuning CapSense Sigma-Delta
for(bIndex=0; bIndex < CSDAUTO_TotalSensorCount; bIndex++) //Loop through all
sensors
{
CSDAUTO_ScanSensor(bIndex);
// Scan Sensors
CSDAUTO_UpdateSensorBaseline(bIndex); // Run baseline filter
}
//detect if any sensor is pressed
if(CSDAUTO_bIsAnySensorActive())
{
// Add user code here to process the sensor touching
}
// now we are ready to send all status variables to chart program
// communication here
//
// OUTPUT CSDAUTO_waSnsResult[x] <- Raw Counts
// OUTPUT CSDAUTO_waSnsDiff[x] <- Difference
// OUTPUT CSDAUTO_waSnsBaseline[x] <- Baseline
// OUTPUT CSDAUTO_baSnsOnMask[x] <- Sensor On/Off
}
}
Configuration Registers
Table 4.
Block CapSense, Register: CS_CR0
Bit
Value
Table 5.
7
0
0
5
4
CSDAUTO 0
_PRSCLK
3
1
2
0
1
0
0
EN
Block CapSense, Register: CS_CR1
Bit
Value
6
7
1
6
5
Scan Speed
4
0
3
0
2
0
1
0
0
0
Power: 0x01 Turns on power to analog block. 0x00 Turns off power to analog block.
Table 6.
Block CapSense, Register: CS_CR2
Bit
Value
Table 7.
7
1
0
5
0
4
0
3
0
2
1
1
0
0
0
Block CapSense, Register: CS_CR3
Mode/Bit
Value
6
7
0
6
1
Document Number: 001-56927 Rev. *C
5
1
4
1
3
0
2
0
1
0
0
0
Page 31 of 35
Autotuning CapSense Sigma-Delta
Table 8.
Block CapSense, Register: CS_CNTH
Bit
7
6
5
4
3
2
1
0
4
3
2
1
0
4
3
2
1
0
Data Out MSB
Table 9.
Block CapSense, Register: CS_CNTL
Bit
7
6
5
Data Out LSB
Table 10.
Block CapSense, Register: PRS_CR
Mode/Bit
Value
7
1
6
0
5
8/12 bit
1
Prescaler
Appendices
The following sections contain information beyond what is usually included in user module data sheets.
The detailed information was developed by Cypress engineers to help you successfully design CapSense
applications. Some of this information may be moved into application notes in the future.
Interaction of CSDAUTO Parameters
The following figures illustrate the baseline update and decision logic operation and can be useful for
better understanding how to set user module parameters for optimum performance. The first figure
illustrates system operation when the Sensors Autoreset parameter is set to Disabled. The second
illustrates the Sensors Autoreset parameter Enabled. The Finger Threshold, Noise Threshold, Hysteresis,
and Negative Noise Threshold are shown together with Difference signal (Raw Count – Baseline). Data
was collected during some artificial tests that demonstrate system operation at both slow and rapid
Document Number: 001-56927 Rev. *C
Page 32 of 35
Autotuning CapSense Sigma-Delta
rawcount changes.The slow changes can be caused by temperature or humidity variations and the rapid
changes can be triggered by a sensor touch, an ESD event, or the influence of a strong RF field.
Figure 8.
Example of Raw Counts, Baseline, Difference Signals Change With SensorsAutoreset Set to Disabled
At t0 the raw counts are close to the baseline level and start to drop slowly because of humidity or
temperature changes. Because the raw count change between two successive conversions does not
exceed the NegativeNoiseThreshold parameter (by absolute value), the baseline is updated by tracking
the Raw Count minimum value, holding the lower value of raw count signal.
At t1 the raw count drops sharply and the negative difference exceeds the NegativeNoiseThreshold. This
situation can happen if the device is powered on when a finger is on the sensor and then the finger is
removed after a period of time. At this time the baseline update mechanism is frozen and an internal
timeout counter is activated. The baseline is reset when the difference signal is below the
NegativeNoiseThreshold for LowBaselineReset samples. This happens at t2.
The second large negative difference signal spike happens at t3, this spike may have been triggered by an
ESD event for example. Because the spike duration in the sample count is less than the
LowBaselineReset parameter, the baseline is kept on hold and the spike is filtered. This prevents a false
baseline reset and the resulting false touch detection.
The sensor is touched at t4. When the difference signal exceeds the FingerThreshold + Hysteresis value,
the internal debounce counter is activated. If the signal exceeds this value for more than Debounce
samples, the sensor state is set to on. This happens at t5. The sensor state reverts back to the off state
immediately when the difference signal drops below the FingerThreshold – Hysteresis level at t7. The
Document Number: 001-56927 Rev. *C
Page 33 of 35
Autotuning CapSense Sigma-Delta
short positive spike at t9 is filtered by the debounce counter because the spike duration in sample units
does not exceed the Debounce value.
The raw count drifts up slowly between t7 and t10. The baseline is updated using the bucket algorithm
when the difference signal is below the NoiseThreshold (SensorsAutoreset is set to Disabled), the
difference signal is proportional to the drift rate. It is possible to control the baseline update speed using
the BaselineUpdate Threshold parameter. Lower parameter values provide faster baseline update
speeds.
Figure 9.
Example of Raw Counts, Baseline, Difference Signals Change With SensorsAutoreset Set to Enabled
The system operation in the previous figure is similar to the operation in the previous case, except for the
following differences:
„ The touch duration is decreased because of the active baseline update algorithm while the sensor is
touched, t6.
„ After the finger is removed, the baseline is reset after LowBaselineReset samples (t8), which blocks
touch detection for a short time. This serves as an additional debounce mechanism.
Document Number: 001-56927 Rev. *C
Page 34 of 35
Autotuning CapSense Sigma-Delta
Version History
Version
1.0
Originator
DHA
Description
1. Updated Radial Slider Position when no Linear Slider is present. The resolution
maximum is now 3000.
2. Removed 0.5 shift and added compensation for negative values.
3. Added capability to add additional slider.
4. Moved ModCap selection from User Module parameter to Wizard Setting section.
5. Added new parameter "Sensor Sensitivity".
6. Added CSD and CSDAUTO support for TMA3xx series chips.
Note
PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.
Document Number: 001-56927 Rev. *C
Revised November 25, 2014
Page 35 of 35
Copyright © 2009-2014 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										DelSig_001-13432.pdf

	

										DELSIG11_001-13433.pdf

	

										ADCINC_001-13251.pdf

	

										CYPRESS CY8C20111-SX1I

	

										CYPRESS CY8C20121

	

										CSD_001-13535.pdf

	

										调制数据表 - 赛普拉斯

	

										CSD_001-13536.pdf

	

										CSD_001-56928.pdf

	

										CapSense® Sigma-Delta 数据表，CSD V 1.4 (CY8C21x34) - CH

	

										ICHAUS IC-TW4QFN24

	

										CYPRESS CY8CTMG200A

	

										AN76000 CY8CMBR2110 CapSense® Design Guide.pdf

	

										001-56927_CSDAUTO.pdf

	

										001-56927_CSDAUTO.pdf

	

										001-58486_CSA.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

