Bulletin PD-20743 rev. A 07/01 208CNQ060 SCHOTTKY RECTIFIER 200 Amp TO-244AB Major Ratings and Characteristics Characteristics Description/Features 208CNQ... Units IF(AV) Rectangular 200 A VRRM range 60 V 16,000 A 0.59 V - 55 to 150 °C waveform IFSM @ tp = 5 µs sine VF @ 100Apk, TJ=125°C TJ range (per leg) 80.01 [3.150] 40.26 [1.585] 39.75 [1.565] COMMON CATHODE 2X Ø 7.49 [.295] 6.99 [.275] 150 °C TJ operation Center tap module High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance Low forward voltage drop High frequency operation Guard ring for enhanced ruggedness and long term reliability Ø 10.41 [.410] 9.65 [.380] 20.32 [.800] 17.78 [.700] 34.925 [1.375] REF. 63.50 [2.500] 60.96 [2.400] 23.55 [.927] 20.42 [.804] Ø LUG TERMINAL ANODE 1 LUG TERMINAL ANODE 2 4.95 [.195] 4.70 [.185] 1/4-20 SLOTTED HEX BASE COMMON CATHODE 15.75 [.620] 14.99 [.590] 92.71 [3.650] 90.17 [3.550] NOTES: 1. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 2. CONTROLLING DIMENSION: MILLIMETER www.irf.com The 208CNQ center tap Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, free-wheeling diodes, welding, and reverse battery protection. 3.35 [.132] 3.02 [.119] Modified JEDEC Outline TO-244AB Dimensions in millimeters and (inches) 1 208CNQ060 Bulletin PD-20743 rev. A 07/01 Voltage Ratings Part number 208CNQ060 VR Max. DC Reverse Voltage (V) VRWM Max. Working Peak Reverse Voltage (V) 60 Absolute Maximum Ratings Parameters IF(AV) Max. Average Forward Current IFSM EAS IAR * See Fig. 5 208CNQ Units Conditions (Per Leg) 100 (Per Device) 200 Max. Peak One Cycle Non-Repetitive 16,000 Surge Current (Per Leg) * See Fig. 7 2,100 Non-Repetitive Avalanche Energy (Per Leg) Repetitive Avalanche Current (Per Leg) A 50% duty cycle @ TC = 115 °C, rectangular wave form A Following any rated load condition and with 10ms Sine or 6ms Rect. pulse rated VRRM applied 15 mJ 1 A 5µs Sine or 3µs Rect. pulse TJ = 25 °C, IAS = 1 Amps, L = 30 mH Current decaying linearly to zero in 1 µsec Frequency limited by TJ max. VA = 1.5 x VR typical Electrical Specifications Parameters VFM IRM 208CNQ Units Conditions Max. Forward Voltage Drop (Per Leg) * See Fig. 1 (1) 0.68 0.83 0.59 V V V @ 100A @ 200A @ 100A 0.75 V @ 200A Max. Reverse Leakage Current 1.1 mA TJ = 25 °C (Per Leg) * See Fig. 2 300 mA TJ = 125 °C 0.32 V TJ = TJ max. 2.1 mΩ (1) VF(TO) Threshold Voltage TJ = 25 °C TJ = 125 °C VR = rated VR rt Forward Slope Resistance CT Max. Junction Capacitance (Per Leg) 6000 pF VR = 5VDC, (test signal range 100Khz to 1Mhz) 25°C LS Typical Series Inductance (Per Leg) 7.0 nH From top of terminal hole to mounting plane 10000 V/ µs dv/dt Max. Voltage Rate of Change (Rated VR) (1) Pulse Width < 300µs, Duty Cycle <2% Thermal-Mechanical Specifications Parameters 208CNQ Units Conditions TJ Max. Junction Temperature Range -55 to 150 Tstg Max. Storage Temperature Range -55 to 150 RthJC Max. Thermal Resistance Junction to Case (Per Leg) RthJC Max. Thermal Resistance Junction to Case (Per Package) RthCS Typical Thermal Resistance, Case to Heatsink wt Approximate Weight T Mounting Torque Min. Max. Mounting Torque Center Hole Typ. Terminal Torque Min. Max. Case Style 2 °C °C 0.40 °C/W DC operation * See Fig. 4 0.20 °C/W DC operation 0.10 °C/W Mounting surface , smooth and greased 79 (2.80) g (oz.) 24 (20) Kg-cm (Ibf-in) 35 (30) 13.5 (12) 35 (30) 46 (40) TO - 244AB Modified JEDEC www.irf.com 208CNQ060 Bulletin PD-20743 rev. A 07/01 1000 Reverse Current - I R (mA) 100 TJ = 150˚C 125˚C 100 100˚C 75˚C 10 50˚C 1 25˚C 0.1 0.01 0 10 20 30 40 50 60 Reverse Voltage - V R (V) Fig. 2 - Typical Values Of Reverse Current Vs. Reverse Voltage T J = 150˚C T = 125˚C J 100000 T = 25˚C J Junction Capacitance - C T (pF) Instantaneous Forward Current - I F (A) 1000 10 T = 25˚C J 10000 1000 1 0 0.2 0.4 0.6 0.8 1 Forward Voltage Drop - V FM (V) 0 1.2 10 20 30 40 50 60 Reverse Voltage - V R (V) Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage Fig. 1 - Max. Forward Voltage Drop Characteristics Thermal Impedance Z thJC (°C/W) 1 D = 0.75 0.1 D = 0.50 D = 0.33 D = 0.25 D = 0.20 0.01 PDM t1 Single Pulse (Thermal Resistance) t2 Notes: 1. Duty factor D = t1/ t2 2. Peak Tj = Pdm x ZthJC + Tc 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1, Rectangular Pulse Duration (Seconds) Fig. 4 - Max. Thermal Impedance Z thJC Characteristics (Per Leg) www.irf.com 3 208CNQ060 Bulletin PD-20743 rev. A 07/01 100 Average Power Loss (Watts) Allowable Case Temperature (°C) 150 140 130 DC 120 Square wave (D = 0.50) 110 80% Rated Vr applied 100 D = 0.75 D = 0.50 D = 0.33 D = 0.25 D = 0.20 80 60 RMS Limit DC 40 20 see note (2) 0 90 0 0 20 40 60 80 100 120 140 160 Average Forward Current - I F(AV) (A) Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current Non-Repetitive Surge Current - I FSM (A) 30 60 90 120 150 Average Forward Current - I F(AV) (A) Fig. 6 - Forward Power Loss Characteristics 100000 At Any Rated Load Condition And With Rated Vrrm Applied Following Surge 10000 1000 10 100 1000 10000 Square Wave Pulse Duration - t p (microsec) Fig. 7 - Max. Non-Repetitive Surge Current L IRFP460 D UT Rg = 25 ohm C UR RE N T M O N ITO R H IG H -SPE ED SW ITC H FREE-W HE EL D IO D E + V d = 25 V olt 40H FL40S02 Fig. 8 - Unclamped Inductive Test Circuit (2) Formula used: TC = TJ - (Pd + PdREV) x RthJC ; Pd = Forward Power Loss = IF(AV) x VFM @ (IF(AV) / D) (see Fig. 6); PdREV = Inverse Power Loss = VR1 x IR (1 - D); IR @ VR1 = 80% rated VR 4 www.irf.com 208CNQ060 Bulletin PD-20743 rev. A 07/01 Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/01 www.irf.com 5