ATMEL AT49BV8192AT-90CI

Features
•
•
•
•
•
•
•
•
•
•
Single-voltage Read/Write Operation: 2.7V to 3.6V (BV), 3.0V to 3.6V (LV)
Fast Read Access Time – 90 ns
Internal Erase/Program Control
Sector Architecture
– One 8K Word (16K Bytes) Boot Block with Programming Lockout
– Two 4K Word (8K Bytes) Parameter Blocks
– One 496K Word (992K Bytes) Main Memory Array Block
Fast Sector Erase Time – 10 seconds
Byte-by-byte or Word-by-word Programming – 30 µs Typical
Hardware Data Protection
Data Polling for End of Program Detection
Low Power Dissipation
– 25 mA Active Current
– 50 µA CMOS Standby Current
Typical 10,000 Write Cycles
Description
The AT49BV008A(T) and AT49BV8192A(T) are 3-volt, 8-megabit Flash memories
organized as 1,048,576 words of 8 bits each or 512K words of 16 bits each. Manufactured with Atmel’s advanced nonvolatile CMOS technology, the devices offer access
times to 90 ns with power dissipation of just 67 mW at 2.7V read. When deselected,
the CMOS standby current is less than 50 µA.
The device contains a user-enabled “boot block” protection feature. Two versions of
the feature are available: the AT49BV008A/8192A locates the boot block at lowest
order addresses (“bottom boot”); the AT49BV008AT/8192AT locates it at highest
order addresses (“top boot”).
To allow for simple in-system reprogrammability, the AT49BV008A(T)/8192A(T) does
not require high input voltages for programming. Reading data out of the device is
similar to reading from an EPROM; it has standard CE, OE and WE inputs to avoid
(continued)
8-megabit
(1M x 8/
512K x 16)
Flash Memory
AT49BV008A
AT49BV008AT
AT49BV8192A
AT49BV8192AT
AT49LV8192A
Pin Configurations
Pin Name
Function
A0 - A18
Addresses
CE
Chip Enable
OE
Output Enable
WE
Write Enable
RESET
Reset
RDY/BUSY
Ready/Busy Output
VPP
VPP can be left unconnected or
connected to VCC, GND, 5V or 12V.
The input has no effect on the
operation of the device.
I/O0 - I/O14
Data Inputs/Outputs
I/O15 (A-1)
I/O15 (Data Input/Output, Word Mode)
A-1 (LSB Address Input, Byte Mode)
BYTE
Selects Byte or Word Mode
NC
No Connect
Rev. 1049I–03/01
1
AT49BV8192A(T) TSOP Top View
Type 1
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
WE
RESET
VPP
NC
NC
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
2
5
6
7
8
A8 VPP NC
NC
A7
A4
3
4
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
5
6
7
8
A8 VPP NC
NC
A7
A4
A14 A10 WE RST A18 A17
A5
A2
1
2
3
4
B
A14 A10 WE RST A18 A17
A5
A2
A15 A12
A3
A1
A16 I/O14 I/O5 I/O11 I/O2 I/O8 CE
A0
C
A9
NC
NC
A6
D
E
BYTE I/O15 I/O6 I/O12 I/O3 I/O9 I/O0 GND
F
GND I/O7 I/O13 I/O4 VCC I/O10 I/O1 OE
AT49BV008A(T) TSOP Top View
Type 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A16
A15
A14
A13
A12
A11
A9
A8
WE
RESET
VPP
RDY/BUSY
A18
A7
A6
A5
A4
A3
A2
A1
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
A17
GND
NC
A-1
A10
I/O7
I/O6
I/O5
I/O4
VCC
VCC
NC
I/O3
I/O2
I/O1
I/O0
OE
GND
CE
A0
AT49BV008A(T) Alternate Pin Definition
CBGA Top View (Ball Down)
1
2
5
6
7
8
A8 VPP NC
3
4
A
A
A13 A11
A13 A11
A14 A12
NC
A7
A4
A15 A10 WE RST A19 A18
A5
A2
A16 A13
A6
A3
A1
A17 NC I/O5 NC I/O2 NC
CE
A0
B
B
C
C
A15 A12
A9
NC
NC
A6
A3
A1
D
A9
NC
NC
D
A16 NC I/O5 NC I/O2 NC
CE
A0
E
NC
A-1 I/O6 NC I/O3 NC I/O0 GND
F
GND I/O7 NC I/O4 VCC NC I/O1 OE
E
NC
A11 I/O6 NC I/O3 NC I/O0 GND
F
GND I/O7 NC I/O4 VCC NC I/O1 OE
“•” denotes a white dot on the package.
bus contention. Reprogramming the AT49BV008A(T)/
8192A(T) is performed by first erasing a block of data and
then by programming on a byte-by-byte or word-by-word
basis.
The device is erased by executing the Erase command
sequence; the device internally controls the erase operation. The memory is divided into four blocks for erase operations. There are two 4K word parameter block sections,
the boot block, and the main memory array block. The typical number of program and erase cycles is in excess of
10,000 cycles.
The optional 8K word boot block section includes a reprogramming lock out feature to provide data integrity. This
feature is enabled by a command sequence. Once the boot
2
RESET
WE
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE
GND
I/O15
I/O7
I/O14
I/O6
I/O13
I/O5
I/O12
I/O4
VCC
AT49BV008A(T) Standard Pin Definition
CBGA Top View (Ball Down)
A
Note:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
VPP
A18
A17
A7
A6
A5
A4
A3
A2
A1
A0
CE
GND
OE
I/O0
I/O8
I/O1
I/O9
I/O2
I/O10
I/O3
I/O11
A16
BYTE
GND
I/O15 / A-1
I/O7
I/O14
I/O6
I/O13
I/O5
I/O12
I/O4
VCC
I/O11
I/O3
I/O10
I/O2
I/O9
I/O1
I/O8
I/O0
OE
GND
CE
A0
AT49BV8192A(T)
CBGA Top View (Ball Down)
1
AT49BV8192A(T) SOIC (SOP) Top View
AT49BV008A(T)/8192A(T)
block programming lockout feature is enabled, the data in
the boot block cannot be changed when input levels of 5.5
volts or less are used. The boot sector is designed to contain user secure code.
For the AT49BV8192A(T), the BYTE pin controls whether
the device data I/O pins operate in the byte or word configuration. If the BYTE pin is set at a logic “1” or left open, the
device is in word configuration, I/O0 - I/O15 are active and
controlled by CE and OE.
If the BYTE pin is set at logic “0”, the device is in byte configuration, and only data I/O pins I/O0 - I/O7 are active and
controlled by CE and OE. The data I/O pins I/O8 - I/O14
are tri-stated and the I/O15 pin is used as an input for the
LSB (A-1) address function.
AT49BV008A(T)/8192A(T)
AT49BV008A(T) Block Diagram
AT49BV008A
VCC
VPP
GND
OE
WE
CE
RESET
CONTROL
LOGIC
Y DECODER
ADDRESS
INPUTS
X DECODER
AT49BV008AT
DATA INPUTS/OUTPUTS
I/O0 - I/O7
DATA INPUTS/OUTPUTS
I/O0 - I/O7
INPUT/OUTPUT
BUFFERS
INPUT/OUTPUT
BUFFERS
PROGRAM DATA
LATCHES
PROGRAM DATA
LATCHES
Y-GATING
MAIN MEMORY
(992K BYTES)
PARAMETER
BLOCK 2
8K BYTES
PARAMETER
BLOCK 1
8K BYTES
BOOT BLOCK
16K BYTES
Y-GATING
FFFFF
08000
07FFF
06000
05FFF
04000
03FFF
00000
BOOT BLOCK
16K BYTES
PARAMETER
BLOCK 1
8K BYTES
PARAMETER
BLOCK 2
8K BYTES
MAIN MEMORY
(992K BYTES)
FFFFF
FC000
FBFFF
FA000
F9FFF
F8000
F7FFF
00000
AT49BV8192A(T) Block Diagram
AT49BV8192A
VCC
VPP
GND
OE
WE
CE
RESET
CONTROL
LOGIC
Y DECODER
ADDRESS
INPUTS
X DECODER
AT49BV8192AT
DATA INPUTS/OUTPUTS
I/O0 - I/O15
DATA INPUTS/OUTPUTS
I/O0 - I/O15
INPUT/OUTPUT
BUFFERS
INPUT/OUTPUT
BUFFERS
PROGRAM DATA
LATCHES
PROGRAM DATA
LATCHES
Y-GATING
MAIN MEMORY
(496K WORDS)
PARAMETER
BLOCK 2
4K WORDS
PARAMETER
BLOCK 1
4K WORDS
BOOT BLOCK
8K WORDS
Y-GATING
7FFFF
04000
03FFF
03000
02FFF
02000
01FFF
00000
BOOT BLOCK
8K WORDS
PARAMETER
BLOCK 1
4K WORDS
PARAMETER
BLOCK 2
4K WORDS
MAIN MEMORY
(496K WORDS)
7FFFF
7E000
7DFFF
7D000
7CFFF
7C000
7BFFF
00000
Device Operation
READ: The AT49BV008A(T)/8192A(T) is accessed like an
EPROM. When CE and OE are low and WE is high, the
data stored at the memory location determined by the
address pins is asserted on the outputs. The outputs are
put in the high-impedance state whenever CE or OE is
high. This dual-line control gives designers flexibility in preventing bus contention.
COMMAND SEQUENCES: When the device is first powered on it will be reset to the read or standby mode
depending upon the state of the control line inputs. In order
to perform other device functions, a series of command
sequences are entered into the device. The command
sequences are shown in the Command Definitions table
(I/O8 - I/O15 are don’t care inputs for the command codes).
The command sequences are written by applying a low
pulse on the WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the falling
edge of CE or WE, whichever occurs last. The data is
latched by the first rising edge of CE or WE. Standard
microprocessor write timings are used. The address locations used in the command sequences are not affected by
entering the command sequences.
3
RESET: A RESET input pin is provided to ease some system applications. When RESET is at a logic high level, the
device is in its standard operating mode. A low level on the
RESET input halts the present device operation and puts
the outputs of the device in a high-impedance state. When
a high level is reasserted on the RESET pin, the device
returns to the read or standby mode, depending upon the
state of the control inputs. By applying a 12V ± 0.5V input
signal to the RESET pin the boot block array can be reprogrammed even if the boot block program lockout feature
has been enabled (see Boot Block Programming Lockout
Override section).
ERASURE: Before a byte or word can be reprogrammed, it
must be erased. The erased state of memory bits is a logic
“1”. The entire device can be erased by using the Chip
Erase command or individual sectors can be erased by
using the Sector Erase commands.
CHIP ERASE: The entire device can be erased at one time
by using the 6-byte chip erase software code. After the chip
erase has been initiated, the device will internally time the
erase operation so that no external clocks are required.
The maximum time to erase the chip is tEC.
If the boot block lockout has been enabled, the chip erase
will not erase the data in the boot block; it will erase the
main memory block and the parameter blocks only. After
the chip erase, the device will return to the read or standby
mode.
SECTOR ERASE: As an alternative to a full chip erase, the
device is organized into four sectors that can be individually
erased. There are two 4K word parameter block sections,
one boot block, and the main memory array block. The
Sector Erase command is a six-bus cycle operation. The
sector address is latched on the falling WE edge of the
sixth cycle while the 30H data input command is latched at
the rising edge of WE. The sector erase starts after the rising edge of WE of the sixth cycle. The erase operation is
internally controlled; it will automatically time to completion.
Whenever the main memory block is erased and reprogrammed, the two parameter blocks should be erased and
reprogrammed before the main memory block is erased
again. Whenever a parameter block is erased and reprogrammed, the other parameter block should be erased and
reprogrammed before the first parameter block is erased
again. Whenever the boot block is erased and reprogrammed, the main memory block and the parameter block
should be erased and reprogrammed before the boot block
is erased again.
BYTE/WORD PROGRAMMING: Once a memory block is
erased, it is programmed (to a logic “0”) on a byte-by-byte
or word-by-word basis. Programming is accomplished via
the internal device command register and is a four-bus
cycle operation. The device will automatically generate the
required internal program pulses.
4
AT49BV008A(T)/8192A(T)
Any commands written to the chip during the embedded
programming cycle will be ignored. If a hardware reset happens during programming, the data at the location being
programmed will be corrupted. Please note that a data “0”
cannot be programmed back to a “1”; only erase operations
can convert “0”s to “1”s. Programming is completed after
the specified tBP cycle time. The Data Polling feature may
also be used to indicate the end of a program cycle.
BOOT BLOCK PROGRAMMING LOCKOUT: The device
has one designated block that has a programming lockout
feature. This feature prevents programming of data in the
designated block once the feature has been enabled. The
size of the block is 8K words. This block, referred to as the
boot block, can contain secure code that is used to bring up
the system. Enabling the lockout feature will allow the boot
code to stay in the device while data in the rest of the
device is updated. This feature does not have to be activated; the boot block’s usage as a write protected region is
optional to the user. The address range of the boot block is
00000H to 03FFFH for the AT49BV008A; FC000H to
FFFFFH for the AT49BV008AT; 00000H to 01FFFH for the
AT49BV8192A; and 7E000H to 7FFFFH for the
AT49BV8192AT.
Once the feature is enabled, the data in the boot block can
no longer be erased or programmed when input levels of
5.5V or less are used. Data in the main memory block can
still be changed through the regular programming method.
To activate the lockout feature, a series of six program
commands to specific addresses with specific data must be
performed. Please refer to the Command Definitions table.
BOOT BLOCK LOCKOUT DETECTION: A software
method is available to determine if programming of the boot
block section is locked out. When the device is in the software product identification mode (see Software Product
Identification Entry and Exit sections) a read from the following address location will show if programming the boot
block is locked out – 00002H for the AT49BV008A and
AT49BV8192A; FC002H for the AT49BV008AT; and
7E002H for the AT49BV8192AT. If the data on I/O0 is low,
the boot block can be programmed; if the data on I/O0 is
high, the program lockout feature has been enabled and
the block cannot be programmed. The software product
identification exit code should be used to return to standard
operation.
BOOT BLOCK PROGRAMMING LOCKOUT OVERRIDE:
The user can override the boot block programming lockout
by taking the RESET pin to 12 volts during the entire chip
erase, sector erase or word programming operation. When
the RESET pin is brought back to TTL levels the boot block
programming lockout feature is again active.
PRODUCT IDENTIFICATION: The product identification
mode identifies the device and manufacturer as Atmel. It
may be accessed by hardware or software operation. The
AT49BV008A(T)/8192A(T)
hardware operation mode can be used by an external programmer to identify the correct programming algorithm for
the Atmel product.
For details, see “Operating Modes” on page 8 (for hardware operation) or “Software Product Identification
Entry/Exit” on page 13. The manufacturer and device code
is the same for both modes.
DATA POLLING: The AT49BV008A(T)/8192A(T) features
Data Polling to indicate the end of a program cycle. During
a program cycle an attempted read of the last byte loaded
will result in the complement of the loaded data on I/O7.
Once the program cycle has been completed, true data is
valid on all outputs and the next cycle may begin. During a
chip or sector erase operation, an attempt to read the
device will give a “0” on I/O7. Once the program or erase
cycle has completed, true data will be read from the device.
Data Polling may begin at any time during the program
cycle.
TOGGLE BIT: In addition to Data Polling, the
AT49BV008A(T)/8192A(T) provides another method for
determining the end of a program or erase cycle. During a
program or erase operation, successive attempts to read
data from the device will result in I/O6 toggling between
one and zero. Once the program cycle has completed, I/O6
will stop toggling and valid data will be read. Examining the
toggle bit may begin at any time during a program cycle.
READY/BUSY: For the AT49BV008A(T), pin 12 is an
open-drain Ready/Busy output pin that provides another
method of detecting the end of a program or erase operation. RDY/BUSY is actively pulled low during the internal
program and erase cycles and it is released at the completion of the cycle. The open-drain connection allows for ORtying of several devices to the same RDY/BUSY line.
HARDWARE DATA PROTECTION: Hardware features
protect against inadvertent programs to the
AT49BV008A(T)/8192A(T) in the following ways: (a) VCC
sense: if VCC is below 1.8V (typical), the program function
is inhibited. (b) VCC power on delay: once VCC has reached
the VCC sense level, the device will automatically time-out
10 ms (typical) before programming. (c) Program inhibit:
holding any one of OE low, CE high or WE high inhibits
program cycles. (d) Noise filter: pulses of less than 15 ns
(typical) on the WE or CE inputs will not initiate a program
cycle.
INPUT LEVELS: While operating with a 2.7V to 3.6V
power supply, the address inputs and control inputs (OE,
CE and WE) may be driven from 0 to 5.5V without
adversely affecting the operation of the device. The I/O
lines can only be driven from 0 to VCC + 0.6V.
AT49BV008A(T) ALTERNATE PIN DEFINITION: Two
AT49BV008A(T) BGA pin definitions are shown. The standard pin definition allows use of the JEDEC standard programming algorithm. If the alternate pin definition is used,
the programming algorithm must be modified as shown in
the Command Definition for Alternate Pin Definition table
on page 7.
5
Command Definition in Hex(1)
Command
Sequence
1st Bus
Cycle
Bus
Cycles
Addr
Data
Read
1
Addr
DOUT
Chip Erase
6
5555
AA
2nd Bus
Cycle
3rd Bus
Cycle
4th Bus
Cycle
Data
Addr
Data
Addr
Data
Addr
Data
Addr
Data
2AAA
55
5555
80
5555
AA
2AAA
55
5555
10
2AAA
55
(4)
SA
30
2AAA
55
5555
40
6
5555
AA
2AAA
55
5555
80
5555
AA
Byte/Word Program
4
5555
AA
2AAA
55
5555
A0
Addr
DIN
Boot Block Lockout(2)
6
5555
AA
2AAA
55
5555
80
5555
AA
Product ID Entry
3
5555
AA
2AAA
55
5555
90
(3)
3
5555
AA
2AAA
55
5555
F0
(3)
1
xxxx
F0
Product ID Exit
Notes:
6th Bus
Cycle
Addr
Sector Erase
Product ID Exit
5th Bus
Cycle
1. The DATA FORMAT in each bus cycle is as follows: I/O15 - I/O8 (Don’t Care); I/O7 - I/O0 (Hex)
The ADDRESS FORMAT in each bus cycle is as follows: A15 - A0 (Hex), A-1, and A15 - A18 (Don’t Care)
2. The boot sector has the address range 00000H to 03FFFH for the AT49BV008A; FC000H to FFFFFH for the
AT49BV008AT; 00000H to 01FFFH for the AT49BV8192A; and 7E000H to 7FFFFH for the AT49BV8192AT.
3. Either one of the Product ID Exit commands can be used.
4. SA = sector addresses: (A0 - A18)
For the AT49BV008A/8192A
SA = 01XXX for BOOT BLOCK
SA = 02XXX for PARAMETER BLOCK 1
SA = 03XXX for PARAMETER BLOCK 2
SA = 7FXXX for MAIN MEMORY ARRAY
For the AT49BV008AT/8192AT
SA = 7FXXX for BOOT BLOCK
SA = 7DXXX for PARAMETER BLOCK 1
SA = 7CXXX for PARAMETER BLOCK 2
SA = 7BXXX for MAIN MEMORY ARRAY
Absolute Maximum Ratings*
Temperature under Bias ................................ -55°C to +125°C
Storage Temperature ..................................... -65°C to +150°C
All Input Voltages
(including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to VCC + 0.6V
Voltage on RESET
with Respect to Ground ...................................-0.6V to +13.5V
6
AT49BV008A(T)/8192A(T)
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
AT49BV008A(T)/8192A(T)
Command Definition (in Hex) for Alternate Pin Definition of AT49BV008A(T)(1)
Command
Sequence
1st Bus
Cycle
Bus
Cycles
Addr
Data
Read
1
Addr
DOUT
Chip Erase
6
A555
AA
2nd Bus
Cycle
3rd Bus
Cycle
4th Bus
Cycle
Data
Addr
Data
Addr
Data
Addr
Data
Addr
Data
5AAA
55
A555
80
A555
AA
5AAA
55
A555
10
5AAA
55
(4)
SA
30
5AAA
55
A555
40
6
A555
AA
5AAA
55
A555
80
A555
AA
Byte/Word Program
4
A555
AA
5AAA
55
A555
A0
Addr
DIN
Boot Block Lockout(2)
6
A555
AA
5AAA
55
A555
80
A555
AA
Product ID Entry
3
A555
AA
5AAA
55
A555
90
(3)
3
A555
AA
5AAA
55
A555
F0
(3)
1
xxxx
F0
Product ID Exit
Notes:
6th Bus
Cycle
Addr
Sector Erase
Product ID Exit
5th Bus
Cycle
1. The DATA FORMAT in each bus cycle is as follows: I/O15 - I/O8 (Don’t Care); I/O7 - I/O0 (Hex)
The ADDRESS FORMAT in each bus cycle is as follows: A15 - A0 (Hex), A-1, and A15 - A18 (Don’t Care)
2. The boot sector has the address range 00000H to 03FFFH for the AT49BV008A; FC000H to FFFFFH for the
AT49BV008AT.
3. Either one of the Product ID Exit commands can be used.
4. SA = sector addresses: (A0 - A18)
For the AT49BV008A
SA = 02XXX for BOOT BLOCK
SA = 04XXX for PARAMETER BLOCK 1
SA = 06XXX for PARAMETER BLOCK 2
SA = FEXXX for MAIN MEMORY ARRAY
For the AT49BV008AT
SA = FEXXX for BOOT BLOCK
SA = FAXXX for PARAMETER BLOCK 1
SA = F8XXX for PARAMETER BLOCK 2
SA = F6XXX for MAIN MEMORY ARRAY
Absolute Maximum Ratings*
Temperature under Bias ................................ -55°C to +125°C
Storage Temperature ..................................... -65°C to +150°C
All Input Voltages
(including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to VCC + 0.6V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Voltage on RESET
with Respect to Ground ...................................-0.6V to +13.5V
7
DC and AC Operating Range
AT49BV008AT/LV8192A-90
Operating
Temperature (Case)
AT49BV8192A-10
AT49BV8192A(T)-11
AT49BV008A(T)-12
-40°C - 85°C
-40°C - 85°C
-40°C - 85°C
-40°C - 85°C
2.7V to 3.6V/3.0V to 3.6V
2.7V to 3.6V
2.7V to 3.6V
2.7V to 3.6V
0°C - 70°C
Com.
Ind.
VCC Power Supply
Operating Modes
Mode
CE
OE
WE
RESET
VPP
Ai
I/O
VIL
VIL
VIH
VIH
X
Ai
DOUT
VIL
VIH
VIL
VIH
X
Ai
DIN
VIH
X(1)
X
VIH
X
X
High-Z
Program Inhibit
X
X
VIH
VIH
X
Program Inhibit
X
VIL
X
VIH
X
Output Disable
X
VIH
X
VIH
X
Reset
X
X
X
VIL
X
Read
Program/Erase
(2)
Standby/Program
Inhibit
High-Z
X
High-Z
Product Identification
Hardware
VIL
VIL
VIH
Software(5)
Notes:
VIH
A1 - A18 = VIL, A9 = VH,(3)
A0 = VIL
Manufacturer Code(4)
A1 - A18 = VIL, A9 = VH,(3)
A0 = VIH
Device Code(4)
VIH
A0 = VIL, A1 - A18 = VIL
Manufacturer Code(4)
A0 = VIH, A1 - A18 = VIL
Device Code(4)
1. X can be VIL or VIH.
2. Refer to AC programming waveforms.
3. VH = 12.0V ± 0.5V.
4. Manufacturer Code: 001FH
Device Code: 22H (AT49BV008A); 00A0H (AT49BV8192A); 21H (AT49BV008AT); 00A3H (AT49BV8192AT)
5. See details under “Software Product Identification Entry/Exit” on page 13.
DC Characteristics
Symbol
Parameter
Condition
ILI
Input Load Current
ILO
Max
Units
VIN = 0V to VCC
10.0
µA
Output Leakage Current
VI/O = 0V to VCC
10.0
µA
ISB1
VCC Standby Current CMOS
CE = VCC - 0.3V to VCC
50.0
µA
ISB2
VCC Standby Current TTL
CE = 2.0V to VCC
0.5
mA
ICC(1)
VCC Active Current
f = 5 MHz; IOUT = 0 mA
25.0
mA
VIL
Input Low Voltage
0.6
V
VIH
Input High Voltage
VOL
Output Low Voltage
IOL = 2.1 mA
VOH
Output High Voltage
IOH = -400 µA
Note:
8
Min
2.0
1. In the erase mode, ICC is 50 mA.
AT49BV008A(T)/8192A(T)
V
0.45
2.4
V
V
AT49BV008A(T)/8192A(T)
AC Read Characteristics
AT49BV008A(T)/8192A(T)
-90
-10
-11
-12
Symbo
l
Parameter
tACC
Address to Output Delay
90
100
tCE(1)
CE to Output Delay
90
100
tOE(2)
OE to Output Delay
45
45
0
50
tDF(3)(4)
CE or OE to Output Float
30
30
0
30
tOH
Output Hold from OE, CE or Address,
whichever occurred first
tRO
RESET to Output Delay
Min
AC Read Waveforms
Max
0
Min
Max
Min
0
Max
Max
Units
110
120
ns
110
120
ns
0
50
ns
0
30
ns
0
800
800
Min
0
800
ns
800
ns
(1)(2)(3)(4)
ADDRESS
ADDRESS VALID
CE
t
CE
t
OE
OE
t
DF
t
t
OH
ACC
t
RO
RESET
OUTPUT
Notes:
HIGH Z
OUTPUT
VALID
1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC.
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change
without impact on tACC.
3. tDF is specified from OE or CE whichever occurs first (CL = 5 pF).
4. This parameter is characterized and is not 100% tested.
Input Test Waveforms and
Measurement Level
Output Test Load
tR, tF < 5 ns
Pin Capacitance
f = 1 MHz, T = 25°C(1)
Symbol
CIN
COUT
Note:
Typ
Max
Units
Conditions
4
6
pF
VIN = 0V
8
12
pF
VOUT = 0V
1. This parameter is characterized and is not 100% tested.
9
AC Word Load Characteristics
Symbol
Parameter
Min
tAS, tOES
Address, OE Setup Time
10
ns
tAH
Address Hold Time
70
ns
tCS
Chip Select Setup Time
0
ns
tCH
Chip Select Hold Time
0
ns
tWP
Write Pulse Width (WE or CE)
70
ns
tDS
Data Setup Time
70
ns
tDH, tOEH
Data, OE Hold Time
10
ns
tWPH
Write Pulse Width High
50
ns
AC Byte/Word Load Waveforms
WE Controlled
CE Controlled
10
AT49BV008A(T)/8192A(T)
Max
Units
AT49BV008A(T)/8192A(T)
Program Cycle Characteristics
Symbol
Parameter
Min
Typ
Max
tBP
Byte/Word Programming Time
tAS
Address Setup Time
0
ns
tAH
Address Hold Time
70
ns
tDS
Data Setup Time
70
ns
tDH
Data Hold Time
0
ns
tWP
Write Pulse Width
70
ns
tWPH
Write Pulse Width High
50
ns
tEC
Erase Cycle Time
30
Units
µs
10
seconds
Program Cycle Waveforms
PROGRAM CYCLE
OE
CE
t WP
t BP
t WPH
WE
t
AS
A0-A18
t DH
t AH
5555
5555
2AAA
5555
ADDRESS
t DS
55
AA
DATA
A0
AA
INPUT DATA
Sector or Chip Erase Cycle Waveforms
OE
(1)
CE
t WP
t WPH
WE
t AS
A0-A18
t DH
t AH
5555
5555
5555
2AAA
Note 2
2AAA
t EC
t DS
DATA
AA
BYTE/
WORD 0
Notes:
55
BYTE/
WORD 1
80
BYTE/
WORD 2
AA
BYTE/
WORD 3
55
Note 3
BYTE/
WORD 4
BYTE/
WORD 5
1.
OE must be high only when WE and CE are both low.
2.
For chip erase, the address should be 5555. For sector erase, the address depends on what sector is to be erased.
(See note 4 under Command Definitions.)
3.
For chip erase, the data should be 10H, and for sector erase, the data should be 30H.
11
Data Polling Characteristics(1)
Symbol
Parameter
Min
tDH
Data Hold Time
10
ns
tOEH
OE Hold Time
10
ns
Max
(2)
tOE
OE to Output Delay
tWR
Write Recovery Time
Notes:
Typ
Units
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See tOE spec in AC Read Characteristics.
Data Polling Waveforms
Toggle Bit Characteristics(1)
Symbol
Parameter
Min
tDH
Data Hold Time
10
ns
tOEH
OE Hold Time
10
ns
(2)
tOE
OE to Output Delay
tOEHP
OE High Pulse
tWR
Notes:
Write Recovery Time
Typ
Max
Units
ns
150
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See tOE spec in AC Read Characteristics.
Toggle Bit Waveforms(1)(2)(3)
Notes:
12
1.
Toggling either OE or CE or both OE and CE will operate toggle bit. The tOEHP specification must be met by the toggling
input(s).
2.
Beginning and ending state of I/O6 will vary.
3.
Any address location may be used but the address should not vary.
AT49BV008A(T)/8192A(T)
AT49BV008A(T)/8192A(T)
Software Product Identification Entry(1)
LOAD DATA AA
TO
ADDRESS 5555(7)
Boot Block Lockout Enable
Algorithm(1)
LOAD DATA AA
TO
ADDRESS 5555(3)
LOAD DATA 55
TO
ADDRESS 2AAA(7)
LOAD DATA 55
TO
ADDRESS 2AAA(3)
LOAD DATA 90
TO
ADDRESS 5555(7)
LOAD DATA 80
TO
ADDRESS 5555(3)
ENTER PRODUCT
IDENTIFICATION
MODE(2)(3)(5)
LOAD DATA AA
TO
ADDRESS 5555(3)
Software Product Identification Exit(1)(6)
LOAD DATA AA
TO
ADDRESS 5555(7)
LOAD DATA 55
TO
ADDRESS 2AAA(7)
OR
LOAD DATA F0
TO
ANY ADDRESS
LOAD DATA 55
TO
ADDRESS 2AAA(3)
EXIT PRODUCT
IDENTIFICATION
MODE(4)
LOAD DATA 40
TO
ADDRESS 5555(3)
LOAD DATA F0
TO
ADDRESS 5555(7)
PAUSE 1 second(2)
Notes:
EXIT PRODUCT
IDENTIFICATION
MODE(4)
Notes:
1.
Data Format: I/O15 - I/O8 (Don’t Care); I/O7 - I/O0 (Hex)
Address Format: A15 - A0 (Hex), A-1, and A15 - A18
(Don’t Care).
2.
A1 - A18 = VIL.
Manufacturer Code is read for A0 = VIL;
Device Code is read for A0 = VIH.
3.
The device does not remain in identification mode if powered down.
4.
The device returns to standard operation mode.
5.
Manufacturer Code: 001FH
Device Code: 22H (AT49BV008A);
00A0H (AT49BV8192A); 21H (AT49BV008AT);
00A3H (AT49BV8192AT)
6.
Either one of the Product ID Exit commands can be used.
7.
If the alternate pin definition is used,
5555 should be replaced with A555,
2AAA should be replaced with 5AAA.
1.
Data Format: I/O15 - I/O8 (Don’t Care); I/O7 - I/O0 (Hex)
Address Format: A15 - A0 (Hex), A-1, and A15 - A18
(Don’t Care).
2.
Boot Block Lockout feature enabled.
3.
If the alternate pin definition is used,
5555 should be replaced with A555,
2AAA should be replaced with 5AAA.
13
AT49BV008A(T) Ordering Information
tACC
(ns)
ICC (mA)
Standby
Active
Ordering Code
Package
120
25
0.05
AT49BV008A-12TI
40T
Operation Range
Industrial
(-40° to 85°C)
90
25
0.05
AT49BV008AT-90CI
48C1
Industrial
(-40° to 85°C)
120
25
0.05
AT49BV008AT-12CI
48C1
Industrial
(-40° to 85°C)
AT49BV8192A(T) Ordering Information
ICC (mA)
tACC
(ns)
Active
Standby
90
25
0.05
Ordering Code
Package
AT49LV8192A-90TC
48T
AT49BV8192AT-90CI
48C1
Industrial
(-40° to 85°C)
Commercial
(0° to 70°C)
100
25
0.05
AT49BV8192A-10CI
48C1
Industrial
(-40° to 85°C)
110
25
0.05
AT49BV8192A-11CI
48C1
Industrial
(-40° to 85°C)
AT49BV8192A-11TI
48T
Industrial
(-40° to 85°C)
AT49BV8192AT-11CI
48C1
Industrial
(-40° to 85°C)
AT49BV8192AT-11TI
48T
Industrial
(-40° to 85°C)
110
25
0.05
Package Type
48C1
48-ball, Chip-scale Ball Grid Array Package (CBGA)
40T
40-lead, Plastic Thin Small Outline Package (TSOP)
48T
48-lead, Plastic Thin Small Outline Package (TSOP)
14
Operation Range
AT49BV008A(T)/8192A(T)
AT49BV008A(T)/8192A(T)
Packaging Information
48C1, 48-ball, Chip-scale Ball Grid Array Package
(CBGA)
Dimensions in Millimeters and (Inches)*
40T, 40-lead, Plastic Thin Small Outline Package
(TSOP)
Dimensions in Millimeters and (Inches)*
7.2 (0.283)
6.8 (0.268)
7.2 (0.283)
6.8 (0.268)
0.25 (0.010)
1.25 (0.049) MAX
1.0 (0.040)
0.74 (0.029)
1.75 (0.69)
1.48 (0.58)
5.25 (0.207)
8
7
6
5
4
3
2
1
A
B
C
3.75 (0.148)
D
E
F
0.75 (0.030) BSC
NON-ACCUMULATIVE
0.30 (0.012)
DIA BALL TYP
*Controlling dimension: millimeters
*Controlling dimension: millimeters
48T, 48-lead, Plastic Thin Small Outline Package
(TSOP)
Dimensions in Millimeters and (Inches)*
JEDEC OUTLINE MO-142 D
*Controlling dimension: millimeters
15
Atmel Headquarters
Atmel Operations
Corporate Headquarters
Atmel Colorado Springs
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600
Europe
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001
Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743
Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Fax-on-Demand
e-mail
North America:
1-(800) 292-8635
[email protected]
International:
1-(408) 441-0732
http://www.atmel.com
Web Site
BBS
1-(408) 436-4309
© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.
Marks bearing
®
and/or
™
are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.
1049I–03/01/xM