Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture • • • • • • • – 131 Powerful Instructions – Most Single-clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier Non-volatile Program and Data Memories – 16K Bytes of In-System Self-programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 1K Bytes Internal SRAM – Up to 64K Bytes Optional External Memory Space – Programming Lock for Software Security JTAG (IEEE std. 1149.1 Compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – Two 16-bit Timer/Counters with Separate Prescalers, Compare Modes, and Capture Modes – Real Time Counter with Separate Oscillator – Six PWM Channels – Dual Programmable Serial USARTs – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby I/O and Packages – 35 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, and 44-pad MLF Operating Voltages – 1.8 - 5.5V for ATmega162V – 2.7 - 5.5V for ATmega162 Speed Grades – 0 - 8 MHz for ATmega162V (see Figure 113 on page 265) – 0 - 16 MHz for ATmega162 (see Figure 114 on page 265) 8-bit Microcontroller with 16K Bytes In-System Programmable Flash ATmega162 ATmega162V Summary 2513IS–AVR–02/07 Note: This is a summary document. A complete document is available on our Web site at www.atmel.com. Pin Configurations Figure 1. Pinout ATmega162 PDIP (OC0/T0) PB0 (OC2/T1) PB1 (RXD1/AIN0) PB2 (TXD1/AIN1) PB3 (SS/OC3B) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET (RXD0) PD0 (TXD0) PD1 (INT0/XCK1) PD2 (INT1/ICP3) PD3 (TOSC1/XCK0/OC3A) PD4 (OC1A/TOSC2) PD5 (WR) PD6 (RD) PD7 XTAL2 XTAL1 GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC PA0 (AD0/PCINT0) PA1 (AD1/PCINT1) PA2 (AD2/PCINT2) PA3 (AD3/PCINT3) PA4 (AD4/PCINT4) PA5 (AD5/PCINT5) PA6 (AD6/PCINT6) PA7 (AD7/PCINT7) PE0 (ICP1/INT2) PE1 (ALE) PE2 (OC1B) PC7 (A15/TDI/PCINT15) PC6 (A14/TDO/PCINT14) PC5 (A13/TMS/PCINT13) PC4 (A12/TCK/PCINT12) PC3 (A11/PCINT11) PC2 (A10/PCINT10) PC1 (A9/PCINT9) PC0 (A8/PCINT8) PB4 (SS/OC3B) PB3 (TXD1/AIN1) PB2 (RXD1/AIN0) PB1 (OC2/T1) PB0 (OC0/T0) GND VCC PA0 (AD0/PCINT0) PA1 (AD1/PCINT1) PA2 (AD2/PCINT2) PA3 (AD3/PCINT3) TQFP/MLF NOTE: MLF bottom pad should be soldered to ground. Disclaimer 2 44 42 40 38 36 34 43 41 39 37 35 33 1 32 2 31 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 13 15 17 19 21 12 14 16 18 20 22 PA4 (AD4/PCINT4) PA5 (AD5/PCINT5) PA6 (AD6/PCINT6) PA7 (AD7/PCINT7) PE0 (ICP1/INT2) GND PE1 (ALE) PE2 (OC1B) PC7 (A15/TDI/PCINT15) PC6 (A14/TDO/PCINT14) PC5 (A13/TMS/PCINT13) (WR) PD6 (RD) PD7 XTAL2 XTAL1 GND VCC (A8/PCINT8) PC0 (A9/PCINT9) PC1 (A10/PCINT10) PC2 (A11/PCINT11) PC3 (TCK/A12/PCINT12) PC4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET (RXD0) PD0 VCC (TXD0) PD1 (INT0/XCK1) PD2 (INT1/ICP3) PD3 (TOSC1/XCK0/OC3A) PD4 (OC1A/TOSC2) PD5 Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. ATmega162/V 2513IS–AVR–02/07 ATmega162/V Overview The ATmega162 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega162 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram PA0 - PA7 PE0 - PE2 PC0 - PC7 PORTA DRIVERS/BUFFERS PORTE DRIVERS/ BUFFERS PORTC DRIVERS/BUFFERS PORTA DIGITAL INTERFACE PORTE DIGITAL INTERFACE PORTC DIGITAL INTERFACE VCC GND PROGRAM COUNTER STACK POINTER INTERNAL OSCILLATOR XTAL1 PROGRAM FLASH SRAM WATCHDOG TIMER OSCILLATOR XTAL2 INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS MCU CTRL. & TIMING X INSTRUCTION DECODER Y INTERRUPT UNIT INTERNAL CALIBRATED OSCILLATOR TIMERS/ COUNTERS OSCILLATOR Z CONTROL LINES ALU AVR CPU STATUS REGISTER EEPROM PROGRAMMING LOGIC SPI USART0 COMP. INTERFACE USART1 + - RESET PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PB0 - PB7 PD0 - PD7 3 2513IS–AVR–02/07 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega162 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K bytes SRAM, an external memory interface, 35 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, four flexible Timer/Counters with compare modes, internal and external interrupts, two serial programmable USARTs, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot Program running on the AVR core. The Boot Program can use any interface to download the Application Program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega162 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega162 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits. ATmega161 and ATmega162 Compatibility 4 The ATmega162 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure backward compatibility with the ATmega161, all I/O locations present in ATmega161 have the same locations in ATmega162. Some additional I/O locations are added in an Extended I/O space starting from 0x60 to 0xFF, (i.e., in the ATmega162 internal RAM space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega161 users. Also, the increased number of Interrupt Vectors might be a problem if the code uses absolute addresses. To solve these problems, an ATmega161 compatibility mode can be selected by programming the fuse M161C. In this mode, none of the functions in the Extended I/O space are in use, so the internal RAM is located as in ATmega161. Also, the Extended Interrupt Vectors are removed. The ATmega162 is 100% pin compatible with ATmega161, and can replace the ATmega161 on current Printed Circuit Boards. However, the location of Fuse bits and the electrical characteristics differs between the two devices. ATmega162/V 2513IS–AVR–02/07 ATmega162/V ATmega161 Compatibility Mode Programming the M161C will change the following functionality: • The extended I/O map will be configured as internal RAM once the M161C Fuse is programmed. • The timed sequence for changing the Watchdog Time-out period is disabled. See “Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 55 for details. • The double buffering of the USART Receive Registers is disabled. See “AVR USART vs. AVR UART – Compatibility” on page 167 for details. • Pin change interrupts are not supported (Control Registers are located in Extended I/O). • One 16 bits Timer/Counter (Timer/Counter1) only. Timer/Counter3 is not accessible. Note that the shared UBRRHI Register in ATmega161 is split into two separate registers in ATmega162, UBRR0H and UBRR1H. The location of these registers will not be affected by the ATmega161 compatibility fuse. Pin Descriptions VCC Digital supply voltage GND Ground Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega162 as listed on page 71. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega162 as listed on page 71. Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC7(TDI), PC5(TMS) and PC4(TCK) will be activated even if a Reset occurs. Port C also serves the functions of the JTAG interface and other special features of the ATmega162 as listed on page 74. 5 2513IS–AVR–02/07 Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega162 as listed on page 77. Port E(PE2..PE0) Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega162 as listed on page 80. RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 18 on page 47. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the Inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the Inverting Oscillator amplifier. 6 ATmega162/V 2513IS–AVR–02/07 ATmega162/V Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xFF) Reserved – – – – – – – – Page .. Reserved – – – – – – – – (0x9E) Reserved – – – – – – – – (0x9D) Reserved – – – – – – – – (0x9C) Reserved – – – – – – – – (0x9B) Reserved – – – – – – – – (0x9A) Reserved – – – – – – – – (0x99) Reserved – – – – – – – – (0x98) Reserved – – – – – – – – (0x97) Reserved – – – – – – – – (0x96) Reserved – – – – – – – – (0x95) Reserved – – – – – – – – (0x94) Reserved – – – – – – – – (0x93) Reserved – – – – – – – – (0x92) Reserved – – – – – – – – (0x91) Reserved – – – – – – – – (0x90) Reserved – – – – – – – – (0x8F) Reserved – – – – – – – – (0x8E) Reserved – – – – – – – – (0x8D) Reserved – – – – – – – – (0x8C) Reserved – – – – – – – – (0x8B) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 FOC3A FOC3B WGM31 WGM30 130 (0x8A) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 127 (0x89) TCNT3H Timer/Counter3 – Counter Register High Byte 132 (0x88) TCNT3L Timer/Counter3 – Counter Register Low Byte 132 (0x87) OCR3AH Timer/Counter3 – Output Compare Register A High Byte 132 (0x86) OCR3AL Timer/Counter3 – Output Compare Register A Low Byte 132 (0x85) OCR3BH Timer/Counter3 – Output Compare Register B High Byte 132 (0x84) OCR3BL Timer/Counter3 – Output Compare Register B Low Byte (0x83) Reserved – – – (0x82) Reserved – – – (0x81) ICR3H Timer/Counter3 – Input Capture Register High Byte (0x80) ICR3L Timer/Counter3 – Input Capture Register Low Byte (0x7F) Reserved – – – 132 – – – – – – – – – – – – 133 133 – – – (0x7E) Reserved – – – – – – – – (0x7D) ETIMSK – – TICIE3 OCIE3A OCIE3B TOIE3 – – 134 (0x7C) ETIFR – – ICF3 OCF3A OCF3B TOV3 – – 135 (0x7B) Reserved – – – – – – – – (0x7A) Reserved – – – – – – – – (0x79) Reserved – – – – – – – – (0x78) Reserved – – – – – – – – (0x77) Reserved – – – – – – – – (0x76) Reserved – – – – – – – – (0x75) Reserved – – – – – – – – (0x74) Reserved – – – – – – – – (0x73) Reserved – – – – – – – – (0x72) Reserved – – – – – – – – (0x71) Reserved – – – – – – – – (0x70) Reserved – – – – – – – – (0x6F) Reserved – – – – – – – – (0x6E) Reserved – – – – – – – – (0x6D) Reserved – – – – – – – – (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 87 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 87 (0x6A) Reserved – – – – – – – – (0x69) Reserved – – – – – – – – (0x68) Reserved – – – – – – – – (0x67) Reserved – – – – – – – – (0x66) Reserved – – – – – – – – (0x65) Reserved – – – – – – – – (0x64) Reserved – – – – – – – – (0x63) Reserved – – – – – – – – (0x62) Reserved – – – – – – – – (0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 39 7 2513IS–AVR–02/07 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x60) Reserved – – – – – – – – 0x3F (0x5F) SREG I T H S V N Z C 8 0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 11 SP6 SP5 SP4 SP3 SP2 SP1 UBRR1[11:8] SP0 0x3D (0x5D) (2) (2) 0x3C (0x5C) 0x3B (0x5B) SPL SP7 UBRR1H URSEL1 11 UCSR1C URSEL1 UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 188 GICR INT1 INT0 INT2 PCIE1 PCIE0 – IVSEL IVCE 60, 85 189 0x3A (0x5A) GIFR INTF1 INTF0 INTF2 PCIF1 PCIF0 – – – 86 0x39 (0x59) TIMSK TOIE1 OCIE1A OCIE1B OCIE2 TICIE1 TOIE2 TOIE0 OCIE0 101, 133, 154 102, 135, 155 0x38 (0x58) TIFR TOV1 OCF1A OCF1B OCF2 ICF1 TOV2 TOV0 OCF0 0x37 (0x57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 220 0x36 (0x56) EMCUCR SM0 SRL2 SRL1 SRL0 SRW01 SRW00 SRW11 ISC2 28,42,84 0x35 (0x55) MCUCR SRE SRW10 SE SM1 ISC11 ISC10 ISC01 ISC00 28,41,83 0x34 (0x54) MCUCSR JTD – SM2 JTRF WDRF BORF EXTRF PORF 41,50,206 0x33 (0x53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 0x32 (0x52) 0x31 (0x51) TCNT0 0x30 (0x50) SFIOR TSM XMBK XMM2 XMM1 Timer/Counter0 (8 Bits) OCR0 99 101 Timer/Counter0 Output Compare Register 101 XMM0 PUD PSR2 PSR310 30,69,104,156 0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 127 0x2E (0x4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 130 0x2D (0x4D) TCNT1H Timer/Counter1 – Counter Register High Byte 132 0x2C (0x4C) TCNT1L Timer/Counter1 – Counter Register Low Byte 132 0x2B (0x4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte 132 0x2A (0x4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 132 0x29 (0x49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 132 0x28 (0x48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 0x27 (0x47) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 148 0x26 (0x46) ASSR – – – – AS2 TCON2UB OCR2UB TCR2UB 152 0x25 (0x45) ICR1H Timer/Counter1 – Input Capture Register High Byte 133 0x24 (0x44) ICR1L Timer/Counter1 – Input Capture Register Low Byte 133 0x23 (0x43) TCNT2 Timer/Counter2 (8 Bits) 151 0x22 (0x42) OCR2 Timer/Counter2 Output Compare Register 0x21 (0x41) WDTCR – – – WDCE UBRR0H URSEL0 – – – (2) 0x20 (0x40) (2) WDE 132 151 WDP2 WDP1 WDP0 UBRR0[11:8] 52 189 UCSR0C URSEL0 UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 188 0x1F (0x3F) EEARH – – – – – – – EEAR8 18 0x1E (0x3E) EEARL EEPROM Address Register Low Byte 0x1D (0x3D) EEDR EEPROM Data Register 0x1C (0x3C) EECR – – – – EERIE EEMWE EEWE EERE 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 81 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 81 18 19 19 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 81 0x18 (0x38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 81 0x17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 81 0x16 (0x36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 81 0x15 (0x35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 81 0x14 (0x34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 81 0x13 (0x33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 82 0x12 (0x32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 82 0x11 (0x31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 82 0x10 (0x30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 0x0F (0x2F) SPDR SPI Data Register 82 163 0x0E (0x2E) SPSR SPIF WCOL – – – – – SPI2X 163 0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 161 0x0C (0x2C) UDR0 0x0B (0x2B) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 185 0x0A (0x2A) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 186 0x09 (0x29) UBRR0L 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 194 0x07 (0x27) PORTE – – – – – PORTE2 PORTE1 PORTE0 82 0x06 (0x26) DDRE – – – – – DDE2 DDE1 DDE0 82 0x05 (0x25) PINE – – – – – PINE2 PINE1 PINE0 82 OSCCAL – CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 37 0x04(1) (0x24)(1) 8 Page USART0 I/O Data Register 185 USART0 Baud Rate Register Low Byte OCDR On-chip Debug Register 0x03 (0x23) UDR1 USART1 I/O Data Register 0x02 (0x22) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 189 201 185 UPE1 U2X1 MPCM1 185 ATmega162/V 2513IS–AVR–02/07 ATmega162/V Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x01 (0x21) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 186 0x00 (0x20) UBRR1L Notes: USART1 Baud Rate Register Low Byte 189 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register. 2. Refer to the USART description for details on how to access UBRRH and UCSRC. 3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 9 2513IS–AVR–02/07 Instruction Set Summary Mnemonics Operands Description Flags Operation #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 R1:R0 ← (Rd x Rr) << 1 R1:R0 ← (Rd x Rr) << 1 Z,C 2 Z,C 2 Z,C 2 2 FMULS Rd, Rr Fractional Multiply Signed FMULSU Rd, Rr Fractional Multiply Signed with Unsigned BRANCH INSTRUCTIONS RJMP k IJMP Relative Jump PC ← PC + k + 1 None Indirect Jump to (Z) PC ← Z None 2 JMP k Direct Jump PC ← k None 3 RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3 Indirect Call to (Z) PC ← Z None 3 Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 ICALL CALL k CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 1/2/3 1 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 10 ATmega162/V 2513IS–AVR–02/07 ATmega162/V Mnemonics Operands Description Operation Flags #Clocks BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2 Rd ← Rr Rd+1:Rd ← Rr+1:Rr None 1 None 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word LDI Rd, K Load Immediate Rd ← K None LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 Load Program Memory R0 ← (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 Store Program Memory (Z) ← R1:R0 None - IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 SPM BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C←1 C 1 CLC Clear Carry C←0 C 1 SEN Set Negative Flag N←1 N 1 CLN Clear Negative Flag N←0 N 1 SEZ Set Zero Flag Z←1 Z 1 CLZ Clear Zero Flag Z←0 Z 1 SEI Global Interrupt Enable I←1 I 1 CLI Global Interrupt Disable I←0 I 1 SES Set Signed Test Flag S←1 S 1 CLS Clear Signed Test Flag S←0 S 1 SEV Set Twos Complement Overflow. V←1 V 1 CLV Clear Twos Complement Overflow V←0 V 1 SET Set T in SREG T←1 T 1 CLT Clear T in SREG T←0 T 1 SEH Set Half Carry Flag in SREG H←1 H 1 11 2513IS–AVR–02/07 Mnemonics Operands CLH Description Operation Clear Half Carry Flag in SREG H←0 Flags #Clocks H 1 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1 BREAK Break For On-chip Debug Only None N/A 12 ATmega162/V 2513IS–AVR–02/07 ATmega162/V Ordering Information Speed (MHz) 8(3) 16(4) Notes: Ordering Code Package(1) Operation Range 1.8 - 5.5V ATmega162V-8AI ATmega162V-8PI ATmega162V-8MI ATmega162V-8AU(2) ATmega162V-8PU(2) ATmega162V-8MU(2) 44A 40P6 44M1 44A 40P6 44M1 Industrial (-40°C to 85°C) 2.7 - 5.5V ATmega162-16AI ATmega162-16PI ATmega162-16MI ATmega162-16AU(2) ATmega162-16PU(2) ATmega162-16MU(2) 44A 40P6 44M1 44A 40P6 44M1 Industrial (-40°C to 85°C) Power Supply 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green. 3. See Figure 113 on page 265. 4. See Figure 114 on page 265. Package Type 44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) 40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP) 44M1 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Micro Lead Frame Package (QFN/MLF) 13 2513IS–AVR–02/07 Packaging Information 44A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0˚~7˚ A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. SYMBOL MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 11.75 12.00 12.25 D1 9.90 10.00 10.10 E 11.75 12.00 12.25 E1 9.90 10.00 10.10 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e NOTE Note 2 Note 2 0.80 TYP 10/5/2001 R 14 2325 Orchard Parkway San Jose, CA 95131 TITLE 44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 44A B ATmega162/V 2513IS–AVR–02/07 ATmega162/V 40P6 D PIN 1 E1 A SEATING PLANE A1 L B B1 e E 0º ~ 15º C COMMON DIMENSIONS (Unit of Measure = mm) REF MIN NOM MAX A – – 4.826 A1 0.381 – – D 52.070 – 52.578 E 15.240 – 15.875 E1 13.462 – 13.970 B 0.356 – 0.559 B1 1.041 – 1.651 SYMBOL eB Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC. 2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010"). L 3.048 – 3.556 C 0.203 – 0.381 eB 15.494 – 17.526 e NOTE Note 2 Note 2 2.540 TYP 09/28/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. 40P6 REV. B 15 2513IS–AVR–02/07 44M1 D Marked Pin# 1 ID E SEATING PLANE A1 TOP VIEW A3 A K L Pin #1 Corner D2 1 2 3 Option A SIDE VIEW Pin #1 Triangle COMMON DIMENSIONS (Unit of Measure = mm) E2 Option B Pin #1 Chamfer (C 0.30) SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 – 0.02 0.05 A3 K Option C e b Pin #1 Notch (0.20 R) BOTTOM VIEW 0.25 REF b 0.18 0.23 0.30 D 6.90 7.00 7.10 D2 5.00 5.20 5.40 E 6.90 7.00 7.10 E2 5.00 5.20 5.40 e Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3. NOTE 0.50 BSC L 0.59 0.64 0.69 K 0.20 0.26 0.41 5/27/06 R 16 2325 Orchard Parkway San Jose, CA 95131 TITLE 44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.20 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 44M1 REV. G ATmega162/V 2513IS–AVR–02/07 ATmega162/V Erratas The revision letter in this section refers to the revision of the ATmega162 device. ATmega162, all rev. There are no errata for this revision of ATmega162. However, a proposal for solving problems regarding the JTAG instruction IDCODE is presented below. IDCODE masks data from TDI input The public but optional JTAG instruction IDCODE is not implemented correctly according to IEEE1149.1; a logic one is scanned into the shift register instead of the TDI input while shifting the Device ID Register. Hence, captured data from the preceding devices in the boundary scan chain are lost and replaced by all-ones, and data to succeeding devices are replaced by all-ones during Update-DR. If ATmega162 is the only device in the scan chain, the problem is not visible. Problem Fix/ Workaround Select the Device ID Register of the ATmega162 (Either by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller) to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Note that data to succeeding devices cannot be entered during this scan, but data to preceding devices can. Issue the BYPASS instruction to the ATmega162 to select its Bypass Register while reading the Device ID Registers of preceding devices of the boundary scan chain. Never read data from succeeding devices in the boundary scan chain or upload data to the succeeding devices while the Device ID Register is selected for the ATmega162. Note that the IDCODE instruction is the default instruction selected by the Test-Logic-Reset state of the TAP-controller. Alternative Problem Fix/ Workaround If the Device IDs of all devices in the boundary scan chain must be captured simultaneously (for instance if blind interrogation is used), the boundary scan chain can be connected in such way that the ATmega162 is the fist device in the chain. Update-DR will still not work for the succeeding devices in the boundary scan chain as long as IDCODE is present in the JTAG Instruction Register, but the Device ID registered cannot be uploaded in any case. 17 2513IS–AVR–02/07 Datasheet Revision History Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision. Changes from Rev. 2513H-04/06 to Rev. 2513I-02/07 1. Updated “Using all 64KB Locations of External Memory” on page 34. 2. Updated “Bit 6 – ACBG: Analog Comparator Bandgap Select” on page 197. 3. Updated VOH conditions in“DC Characteristics” on page 266. Changes from Rev. 2513G-03/05 to Rev. 2513H-04/06 1. Added “Resources” on page 7. 2. Updated “Calibrated Internal RC Oscillator” on page 38. 3. Updated note for Table 19 on page 51. 4. Updated “Serial Peripheral Interface – SPI” on page 159. Changes from Rev. 2513F-09/03 to Rev. 2513G-03/05 1. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF”. 2. Updated “Electrical Characteristics” on page 263 3. Updated “Ordering Information” on page 13 Changes from Rev. 2513D-04/03 to Rev. 2513E-09/03 1. Removed “Preliminary” from the datasheet. 2. Added note on Figure 1 on page 2. 3. Renamed and updated “On-chip Debug System” to “JTAG Interface and On-chip Debug System” on page 44. 4. Updated Table 18 on page 47 and Table 19 on page 49. 5. Updated “Test Access Port – TAP” on page 196 regarding JTAGEN. 6. Updated description for the JTD bit on page 206. 7. Added note on JTAGEN in Table 100 on page 232. 8. Updated Absolute Maximum Ratings* and DC Characteristics in “Electrical Characteristics” on page 263. 9. Added a proposal for solving problems regarding the JTAG instruction IDCODE in “Erratas” on page 17. Changes from Rev. 2513C-09/02 to Rev. 2513D-04/03 1. Updated the “Ordering Information” on page 13 and “Packaging Information” on page 14. 2. Updated “Features” on page 1. 3. Added characterization plots under “ATmega162 Typical Characteristics” on page 274. 18 ATmega162/V 2513IS–AVR–02/07 ATmega162/V 4. Added Chip Erase as a first step under “Programming the Flash” on page 259 and “Programming the EEPROM” on page 261. 5. Changed CAL7, the highest bit in the OSCCAL Register, to a reserved bit on page 37 and in “Register Summary” on page 7. 6. Changed CPCE to CLKPCE on page 39. 7. Corrected code examples on page 54. 8. Corrected OCn waveforms in Figure 52 on page 119. 9. Various minor Timer1 corrections. 10. Added note under “Filling the Temporary Buffer (Page Loading)” on page 223 about writing to the EEPROM during an SPM Page Load. 11. Added section “EEPROM Write During Power-down Sleep Mode” on page 22. 12. Added information about PWM symmetry for Timer0 on page 97 and Timer2 on page 146. 13. Updated Table 18 on page 47, Table 20 on page 49, Table 36 on page 76, Table 83 on page 204, Table 110 on page 246, Table 113 on page 266, and Table 114 on page 267. 14. Added Figures for “Absolute Maximum Frequency as a function of VCC, ATmega162” on page 265. 15. Updated Figure 29 on page 63, Figure 32 on page 67, and Figure 88 on page 209. 16. Removed Table 114, “External RC Oscillator, Typical Frequencies(1),” on page 265. 17. Updated “Electrical Characteristics” on page 263. Changes from Rev. 2513B-09/02 to Rev. 2513C-09/02 1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles. Changes from Rev. 2513A-05/02 to Rev. 2513B-09/02 1. Added information for ATmega162U. Information about ATmega162U included in “Features” on page 1, Table 19, “BODLEVEL Fuse Coding,” on page 49, and “Ordering Information” on page 13. 19 2513IS–AVR–02/07 Headquarters Operations Atmel Corporation Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 Microcontrollers International Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3 France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France Tel: (33) 4-76-58-47-50 Fax: (33) 4-76-58-47-60 Zone Industrielle 13106 Rousset Cedex France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio ® and others are registered trademarks and trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 2513IS–AVR–02/07