System LED Drivers for Mobile Phones 7x17(Max.) Dot Matrix LED Display Driver BD26503GUL ●Description BD26503GUL is “Matrix LED Driver” that is the most suitable for the cellular phone. It can control 7x17(119 dot) LED Matrix by internal 7-channel PMOS SWs and 17-channel LED drivers. It can control the luminance and firefly lighting of the LED matrix by the setting of the internal register. It supports SPI and I2C interface. VCSP50L3 (3.6mm□0.55mm height max), small and thin type chip size package. It adopts the very thin CSP package that is the most suitable for the slim phone. ●Features 1) LED Matrix driver (7x17) ・It has 7-channel PMOS SWs and 17-channel current drivers with 1/7 timing driven sequentially. ・Put ON/OFF(for every dot). ・The current drivers can drive 0-20.00mA current with 16 step(for every dot). ・64 steps of the luminance control by PWM (common setting for all dots) ・Continuous (TDMA off ) lighting function for LED14-LED17 ・Easy register setting by A/B 2-side map for each dot. 2) Automatic Slope function ・Cycle time, Slope time can be set for each dot. 3) 8-direction automatic scroll function. 4) Interface 2 ・SPI and I C BUS FS mode(max 400kHz)Compatibility 2 2 ・For I C mode, I C Device address is selectable (74h or 75h) 5) Thermal shutdown 6) Small and thin CSP package ・48pin VCSP50L3 (3.6mm□ 0.55mm height max) 0.5mm ball pitch *This chip is not designed to protect itself against radioactive rays. *This material may be changed on its way to designing. *This material is not the official specification. o ●Absolute Maximum Ratings (Ta=25 C) Parameter Symbol Ratings Unit Maximum voltage (note2) VMAX 7 V Maximum voltage (note1) VIOMAX 4.5 V Power Dissipation (note3) Pd 1550 mW Operating Temperature Range Topr -40 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +150 ℃ note1) note2) note3) VIO,RESETB,CE,SDA,SCL,IFMODE,SYNC,CLKIN,CLKOUT,TEST1,TEST2,TEST3,TESTO, DO terminal Except the above Power dissipation deleting is 12.4mW/ oC , when it’s used in over 25 oC. (ROHM’s standard board has been mounted.) The power dissipation of the IC has to be less than the one of the package. ●Operating Conditions (VBAT≥VIO, VINSW≥VBAT, Ta=-40~85 oC) Parameter Symbol VBAT input voltage VINSW input voltage VIO pin voltage www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. Limits Unit VBAT 2.7 ~ 5.5 V VINSW 2.7 ~ 5.5 V VIO 1.65 ~ 5.5 V 1/40 2013.02 - Rev.A Technical Note BD26503GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V) Limit Parameter Symbol Unit Condition Min. Typ. Max. [ Circuit Current ] VBAT Circuit current 1 IBAT1 - 0 3.0 μA RESETB=0V, VIO=0V VBAT Circuit current 2 IBAT2 - 0.8 5.0 μA RESETB=0V, VIO=1.8V VBAT Circuit current 3 IBAT3 - 2.0 3.5 mA When LED1-17 are active with default settings. UVLO Threshold VUVLO - 2.1 2.5 V UVLO Hysteresis VHYUVLO 50 - - mV ILEDMax1 - 20.00 - mA ILEDMax2 - 30.00 - mA [ UVLO ] VBAT falling [ LED Driver ] (LED1-17) LED1-17 ,ISET=100kΩ Maximum output current Output current LED current Matching LED1-17 ,ISET=68kΩ I=10.67mA setting, VLED=1V, ISET = 100k Ω ILEDMT= (ILEDMax-ILEDMin)/(ILEDMax+ILEDMin) I=10.67mA setting, VLED=1V ISET = 100k Ω ILED -7.0% 10.67 +7.0% mA ILEDMT - - 5 % VLED1 0.2 - VBAT-1.4 V LED1-17 ,ISET=100kΩ VLED2 0.3 - VBAT-1.4 V LED1-17 ,ISET=68kΩ ILKLED - - 1.0 μA ILEAKP - - 1.0 μA RonP - 1.0 - Ω fosc 0.96 1.2 1.44 MHz Driver pin voltage range LED OFF Leak current [ PMOS switch ] Leak current at OFF Resistor at ON Isw=170mA, VINSW=4.5V [ OSC ] OSC frequency [ CE, SYNC, CLKIN, IFMODE ] L level input voltage VIL1 -0.3 - 0.25 x VIO V H level input voltage VIH1 0.75 x VIO - VIO +0.3 V L level input current Iin1 - 0 1 μA L level input voltage VIL2 -0.3 - 0.25 x VIO V H level input voltage VIH2 0.75 x VIO - VIO +0.3 V Input hysteresis Vhys 0.05 x VIO - - V L level output voltage (for SDA pin) VOL2 0 - 0.3 V At 3mA sink current Iin2 -3 - 3 μA Input voltage = from (0.1 x VIO) to (0.9 x VIO) L level input voltage VIL3 -0.3 - 0.25 x VIO V H level input voltage VIH3 0.75 x VIO - VIO +0.3 V Input current Iin3 - 0 1 μA Input voltage = from (0.1 x VIO) to (0.9 x VIO) L level output voltage VOL1 - - 0.4 V IOL=2mA H level output voltage VOH1 0.75 x VIO - - V IOH=-2mA Input voltage = from (0.1 x VIO) to (0.9 x VIO) [ SDA, SCL ] Input current [ RESETB ] [ CLKOUT ] www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 2/40 2013.02 - Rev.A Technical Note BD26503GUL ●Power Dissipation (on the ROHM’s Standard Board) 1.8 1550mW 1.6 Power Dissipation Pd (W) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 150 Ta(℃) Fig.1 Information of the ROHM’s standard board Material: glass-epoxy th Size : 50mm×58mm×1.75mm(8 layer) Wiring pattern figure Refer to after page. , www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 3/40 2013.02 - Rev.A Technical Note BD26503GUL ●Block Diagram / Application Circuit Example 1 VBAT VINSW VBAT1 VBAT2 10μF VBAT3 VINSW1 VINSW2 10µF VINSW3 SW7 T06 VREF SW6 T05 OSC SW5 T04 ISET Logic TDMA IREF SW4 T03 100kΩ SW3 T02 SW2 T01 SW1 T00 20.00mA/ch 1.33mA step TDMA VIO Enable LED17 LED16 TDMA 1µF TDMA RESETB LED15 LED14 TDMA CE I2C or SPI selectable SDA I/O SCL Level SPI / I2C interface TDMA Shift Digital Control TDMA LED13 LED12 IFMODE TDMA SYNC TDMA LED11 LED10 LED9 CLKIN TDMA CLKOUT LED8 TDMA LED7 TDMA LED6 TDMA LED5 GND1 TDMA GND2 LED4 GND3 TDMA GND4 LED3 GND5 TDMA GND6 LED2 GND7 TDMA GND8 LED1 GND9 TDMA GND10 GND11 7×17 Dot Matrix Unit LEDGND4 LEDGND3 LEDGND2 LEDGND1 DO TESTO TEST5 TEST4 TEST3 TEST2 TEST1 PWM Fig.2 Block Diagram / Application Circuit example 1 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 4/40 2013.02 - Rev.A Technical Note BD26503GUL ●Block Diagram / Application Circuit Example 2 VBAT VINSW VBAT1 VBAT2 10μF VBAT3 VINSW1 VINSW2 10µF VINSW3 SW7 T06 VREF SW6 T05 OSC SW5 T04 ISET Logic TDMA IREF SW4 T03 100kΩ SW3 T02 SW2 T01 SW1 T00 20.00mA/ch 1.33mA step TDMA VIO Enable LED16 TDMA 1µF TDMA TDMA CE SDA LED15 LED14 RESETB I2C or SPI selectable LED17 I/O SCL Level SPI / I2C interface TDMA Shift Digital Control TDMA LED13 LED12 IFMODE TDMA SYNC TDMA LED11 LED10 LED9 CLKIN TDMA CLKOUT LED8 TDMA LED7 TDMA LED6 TDMA LED5 GND1 TDMA GND2 LED4 GND3 TDMA GND4 LED3 GND5 TDMA GND6 LED2 GND7 TDMA GND8 LED1 GND9 TDMA GND10 GND11 7×13 Dot Matrix Unit LEDGND4 LEDGND3 LEDGND2 LEDGND1 DO TESTO TEST5 TEST4 TEST3 TEST2 TEST1 PWM Fig.3 Block Diagram / Application Circuit example 2 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 5/40 2013.02 - Rev.A Technical Note BD26503GUL ●Pin Arrangement [Bottom View] TEST4 VBAT1 LED11 ISET GND1 LED10 LED8 LED9 LED6 LED7 LED4 LED3 LED2 LED1 TEST5 SW1 LED13 LED15 LED17 TEST1 LED12 LED16 CLKOUT TESTO LEDGND2 TEST2 LED14 SDA CE LED5 LEDGND1 RESETB SCL VIO SW4 SYNC IFMODE CLKIN SW2 VINSW1 SW6 DO VBAT2 SW3 VINSW2 SW5 SW7 TEST3 6 7 G F E D C B A 1 2 3 4 5 Index Total 48Balls www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 6/40 2013.02 - Rev.A Technical Note BD26503GUL ●Package 48Pin VCSP50L3 CSP small package SIZE : 3.60mm□ A ball pitch : 0.5mm Height : 0.55mm max *INDEX POST has No Solder Ball www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 7/40 2013.02 - Rev.A Technical Note BD26503GUL ●Pin Functions No 1 Ball No. A7 Pin Name TEST3 I/O I Pull down Unused processing setting For Power For Ground 94kohm GND VIO GND Test input pin 3 I K ESD Diode Functions Equivalent Circuit E 2 A1 TEST5 O - GND VINSW GND Test input pin 5 3 B1 LED2 O - GND - GND LED2 driver output 4 B2 LED1 O - GND - GND LED1 driver output K 5 B5 SW6 O - VINSW VINSW GND P-MOS SW6 output C 6 A6 SW7 O - VINSW VINSW GND P-MOS SW7 output C GND LED3 driver output K Ground B 7 C2 LED3 O - GND - 8 D4 LEDGND1 - - - VBAT - 9 E4 TEST2 I 94kohm GND VIO GND Test input pin 2 E 10 A5 SW5 O - VINSW VINSW GND P-MOS SW5 output C 11 C4 SW4 O - VINSW VINSW GND P-MOS SW4 output C 12 D3 LED5 O - GND - GND LED5 driver output K K 13 D1 LED6 O - GND - GND LED6 driver output 14 C1 LED4 O - GND - GND LED4 driver output K 15 A3 GND P-MOS SW3 output C C C SW3 O - VINSW VINSW 16 B3 SW2 O - VINSW VINSW GND P-MOS SW2 output 17 A2 SW1 O - VINSW VINSW GND P-MOS SW1output Power supply for SW1-7 A Ground B LED7 driver output K 18 B4 VINSW1 - - - - GND 19 E3 LEDGND2 - - - VBAT - 20 D2 LED7 O - GND - GND 21 G2 VBAT1 - - - - GND 22 D5 RESETB I - Battery is connected A GND Reset input pin (L: reset, H: reset cancel) VIO GND External CLK input pin D VIO GND External synchronous input pin D OPEN VIO GND Test output pin2 G GND - GND LED8 driver output K J A GND 23 C7 CLKIN I - GND 24 C5 SYNC I - GND 25 B6 DO O - 26 E1 LED8 O - VIO D 27 F1 ISET I - - VBAT GND LED Constant Current Driver Current setting pin 28 A4 VINSW2 - - - - GND Power supply for SW1-7 29 G7 TEST1 I 94kohm GND VIO GND Test input pin 1 30 C6 IFMODE I - GND VIO GND I C/SPI select pin (L: I C, H: SPI) 31 D6 SCL I - - VIO GND SPI, I C CLK input pin A E 2 2 D 2 D 32 D7 VIO - - - - GND I/O Power supply is connected 33 E2 LED9 O - GND - GND LED9 driver output K 34 F3 LED10 O - GND - GND LED10 driver output K 35 G4 LED13 O - GND - GND LED13 driver output K K 36 E5 LED14 O - GND - GND LED14 driver output 37 F6 CLKOUT O - OPEN VIO GND Reference CLK output pin G 38 E7 CE I - GND VIO GND SPI enable pin(H;Enable), or 2 I C slave address selection (L: 74h, H: 75h) D 2 39 E6 SDA I/O - - VIO GND SPI DATA input / I C DATA input-output pin F 40 G1 TEST4 O - GND VBAT GND Test input pin 4 H 41 G3 LED11 O - GND - GND LED11 driver output K 42 F4 LED12 O - GND - GND LED12 driver output K 43 F2 GND1 - - - VBAT - Ground B GND LED15 driver output K GND LED16 driver output K K G 44 G5 LED15 O - GND - 45 F5 LED16 O - GND - 46 G6 LED17 O - GND - GND LED17 driver output 47 F7 TESTO O - OPEN VIO GND Test output pin1 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 8/40 2013.02 - Rev.A Technical Note BD26503GUL 48 VBAT2 B7 - - - - GND Battery is connected A * Please connect the unused LED pins to the ground. * It is prohibition to set the registers for unused LED. Total 48 pins ●Equivalent Circuit A E I B VIO VIO F VIO VINSW J VBAT www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. VBAT C VIO G VINSW VIO VINSW VIO D H VIO VIO VBAT K 9/40 2013.02 - Rev.A Technical Note BD26503GUL ●Serial Interface 1. SPI format ・When IFMODE is set to “H”, it can interface with SPI format. ・The serial interface is four terminals (serial clock terminal (SCL), serial data input terminal (SDA), and chip selection input terminal (CE)). (1)Write operation ・Data is taken into an internal shift register with rising edge of CLK. (Max of the frequency is 13MHz.) ・The receive data becomes enable in the “H” section of CE. (Active “H”.) ・The transmit data is forwarded (with MSB-First) in the order of write command “0”(1bit), the control register address (7bit) and data (8bit). CE SCL W SDA A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Fig.4 Writing format (2)Timing diagram tcgh CE tcss tscyc tcsw SCL twhc twlc SDA tss tsh Fig.5 Timing diagram (SPI format) (3) Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V) Condition Limit Sym Parameter Unit bol Min Typ Max SCL cycle time tscyc 76 - - ns H period of SCL cycle L period of SCL cycle SDA setup time SDA hold time Twhc Twlc Tss Tsh 35 35 38 38 - - ns ns ns ns 38 - - ns Tcsw 2.1 ECLK x 2 55 48 - - μs s ns ns Write interval Write interval (after A or B RAM accsess) CE setup time Tcss CE hold time Tcgh *1 When it used internal clock. *2 When it used external clock. (ECLK means the cycle of external clock.) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 10/40 *1 *2 2013.02 - Rev.A Technical Note BD26503GUL 2. I2C BUS format 2 When IFMODE is set to “L”, it can interface with I C BUS format. (1) Slave address CE A7 A6 A5 A4 A3 A2 A1 L 1 1 1 0 1 0 0 H 1 1 1 0 1 0 1 R/W 0 (2) Bit Transfer SCL transfers 1-bit data during H. During H of SCL, SDA cannot be changed at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL SDA a state of stability: SDA It can change Data are effective Fig.6 Bit transfer (I2C format) (3) START and STOP condition When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P STOP condition START condition Fig.7 START/STOP condition (I2C format) (4) Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL 1 2 8 9 S clock pulse for acknowledgement START condition Fig.8 Acknowledge (I2C format) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 11/40 2013.02 - Rev.A Technical Note BD26503GUL (5) Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address (77h), it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address *1 D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=0(write) register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing from master to slave from slave to master (6) Timing diagram SDA t BUF t SU;DAT t LOW t HD;STA SCL t HD;STA S t SU;STO t SU;STA t HD;DAT Sr t HIGH P S Fig.9 Timing diagram (I2C format) o (7) Electrical Characteristics(Unless otherwise specified, Ta=25 C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V) Standard-mode Fast-mode Parameter Symbol Min. Typ. Max. Min. Typ. Max. 【I2C BUS format】 SCL clock frequency fSCL 0 100 0 400 LOW period of the SCL clock tLOW 4.7 1.3 HIGH period of the SCL clock tHIGH 4.0 0.6 Hold time (repeated) START condition After this period, the first clock is generated Set-up time for a repeated START condition Data hold time Data set-up time Set-up time for STOP condition Bus free time between a STOP and START condition www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. Unit kHz μs μs tHD;STA 4.0 - - 0.6 - - μs tSU;STA 4.7 - - 0.6 - - μs tHD;DAT tSU;DAT tSU;STO 0 250 4.0 - 3.45 - 0 100 0.6 - 0.9 - μs ns μs tBUF 4.7 - - 1.3 - - μs 12/40 2013.02 - Rev.A Technical Note BD26503GUL ●Register List * Please be sure to write “0” in the register which is not assigned. * It is prohibition to write data to the address which is not assigned. Control register Address Default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 00h 00h - - - - - - - SFTRST RESET W Software Reset 01h 00h - - - - OSCEN - - - OSC W OSC ON/OFF control 11h 00h - - LED6ON LED5ON LED4ON LED3ON LED2ON LED1ON W LED1-6 Enable 12h 00h - - LED12ON LED11ON LED10ON LED9ON LED8ON LED7ON W LED7-12 Enable 13h 00h - - - W LED13-17 Enable 17h 0Fh - - - W LED14-17 TDMA Enable 20h 00h - - PWM W LED1-17PWM DutySetting 21h 00h - - - - CLK W CLK selection, SYNC operation control 2Dh 00h - - - - - PWMEN SLPEN SCLEN W PWM,SLOPE,SCROLL ON/OFF setting 2Eh 00h - - - - - - - SCLRST W Reset SCROLL 2Fh 00h - UP DOWN RIGHT LEFT W SCROLL Setting 30h 00h - - - - - - - START W LED matrix control 31h 00h - - - - - - CLRB CLRA W Matrix data clear 7Fh 00h - - - - - IAB OAB RMCG W Resister map change LED17ON LED16ON LED15ON LED14ON LED13ON - LED17 LED16 LED15 LED14 TDMAON TDMAON TDMAON TDMAON PWMSET[5:0] SCLSPEED[2:0] www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. LED driver SYNCACT SYNCON CLKOUT 13/40 CLKIN MATRIX RMAP 2013.02 - Rev.A Technical Note BD26503GUL A-pattern register Address default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 01h 08h SCYCA00[1:0] SDLYA00[1:0] ILEDA00SET[3:0] W Data for Matrix 00(DA00) 02h 08h SCYCA01[1:0] SDLYA01[1:0] ILEDA01SET[3:0] W Data for Matrix 01(DA01) 03h 08h SCYCA02[1:0] SDLYA02[1:0] ILEDA02SET[3:0] W Data for Matrix 02(DA02) 04h 08h SCYCA03[1:0] SDLYA03[1:0] ILEDA03SET[3:0] W Data for Matrix 03(DA03) 05h 08h SCYCA04[1:0] SDLYA04[1:0] ILEDA04SET[3:0] W Data for Matrix 04(DA04) 06h 08h SCYCA05[1:0] SDLYA05[1:0] ILEDA05SET[3:0] W Data for Matrix 05(DA05) 07h 08h SCYCA06[1:0] SDLYA06[1:0] ILEDA06SET[3:0] W Data for Matrix 06(DA06) 08h 08h SCYCA10[1:0] SDLYA10[1:0] ILEDA10SET[3:0] W Data for Matrix 10(DA10) 09h 08h SCYCA11[1:0] SDLYA11[1:0] ILEDA11SET[3:0] W Data for Matrix 11(DA11) 0Ah 08h SCYCA12[1:0] SDLYA12[1:0] ILEDA12SET[3:0] W Data for Matrix 12(DA12) 0Bh 08h SCYCA13[1:0] SDLYA13[1:0] ILEDA13SET[3:0] W Data for Matrix 13(DA13) 0Ch 08h SCYCA14[1:0] SDLYA14[1:0] ILEDA14SET[3:0] W Data for Matrix 14(DA14) 0Dh 08h SCYCA15[1:0] SDLYA15[1:0] ILEDA15SET[3:0] W Data for Matrix 15(DA15) 0Eh 08h SCYCA16[1:0] SDLYA16[1:0] ILEDA16SET[3:0] W Data for Matrix 16(DA16) 0Fh 08h SCYCA20[1:0] SDLYA20[1:0] ILEDA20SET[3:0] W Data for Matrix 20(DA20) 10h 08h SCYCA21[1:0] SDLYA21[1:0] ILEDA21SET[3:0] W Data for Matrix 21(DA21) 11h 08h SCYCA22[1:0] SDLYA22[1:0] ILEDA22SET[3:0] W Data for Matrix 22(DA22) 12h 08h SCYCA23[1:0] SDLYA23[1:0] ILEDA23SET[3:0] W Data for Matrix 23(DA23) 13h 08h SCYCA24[1:0] SDLYA24[1:0] ILEDA24SET[3:0] W Data for Matrix 24(DA24) 14h 08h SCYCA25[1:0] SDLYA25[1:0] ILEDA25SET[3:0] W Data for Matrix 25(DA25) 15h 08h SCYCA26[1:0] SDLYA26[1:0] ILEDA26SET[3:0] W Data for Matrix 26(DA26) 16h 08h SCYCA30[1:0] SDLYA30[1:0] ILEDA30SET[3:0] W Data for Matrix 30(DA30) 17h 08h SCYCA31[1:0] SDLYA31[1:0] ILEDA31SET[3:0] W Data for Matrix 31(DA31) 18h 08h SCYCA32[1:0] SDLYA32[1:0] ILEDA32SET[3:0] Data for Matrix 32(DA32) 19h 08h SCYCA33[1:0] SDLYA33[1:0] ILEDA33SET[3:0] MATRIX W Data W 1Ah 08h SCYCA34[1:0] SDLYA34[1:0] ILEDA34SET[3:0] W Data for Matrix 34(DA34) 1Bh 08h SCYCA35[1:0] SDLYA35[1:0] ILEDA35SET[3:0] W Data for Matrix 35(DA35) 1Ch 08h SCYCA36[1:0] SDLYA36[1:0] ILEDA36SET[3:0] W Data for Matrix 36(DA36) 1Dh 08h SCYCA40[1:0] SDLYA40[1:0] ILEDA40SET[3:0] W Data for Matrix 40(DA40) 1Eh 08h SCYCA41[1:0] SDLYA41[1:0] ILEDA41SET[3:0] W Data for Matrix 41(DA41) 1Fh 08h SCYCA42[1:0] SDLYA42[1:0] ILEDA42SET[3:0] W Data for Matrix 42(DA42) 20h 08h SCYCA43[1:0] SDLYA43[1:0] ILEDA43SET[3:0] W Data for Matrix 43(DA43) 21h 08h SCYCA44[1:0] SDLYA44[1:0] ILEDA44SET[3:0] W Data for Matrix 44(DA44) 22h 08h SCYCA45[1:0] SDLYA45[1:0] ILEDA45SET[3:0] W Data for Matrix 45(DA45) 23h 08h SCYCA46[1:0] SDLYA46[1:0] ILEDA46SET[3:0] W Data for Matrix 46(DA46) 24h 08h SCYCA50[1:0] SDLYA50[1:0] ILEDA50SET[3:0] W Data for Matrix 50(DA50) 25h 08h SCYCA51[1:0] SDLYA51[1:0] ILEDA51SET[3:0] W Data for Matrix 51(DA51) 26h 08h SCYCA52[1:0] SDLYA52[1:0] ILEDA52SET[3:0] W Data for Matrix 52(DA52) 27h 08h SCYCA53[1:0] SDLYA53[1:0] ILEDA53SET[3:0] W Data for Matrix 53(DA53) 28h 08h SCYCA54[1:0] SDLYA54[1:0] ILEDA54SET[3:0] W Data for Matrix 54(DA54) 29h 08h SCYCA55[1:0] SDLYA55[1:0] ILEDA55SET[3:0] W Data for Matrix 55(DA55) 2Ah 08h SCYCA56[1:0] SDLYA56[1:0] ILEDA56SET[3:0] W Data for Matrix 56(DA56) 2Bh 08h SCYCA60[1:0] SDLYA60[1:0] ILEDA60SET[3:0] W Data for Matrix 60(DA60) 2Ch 08h SCYCA61[1:0] SDLYA61[1:0] ILEDA61SET[3:0] W Data for Matrix 61(DA61) 2Dh 08h SCYCA62[1:0] SDLYA62[1:0] ILEDA62SET[3:0] W Data for Matrix 62(DA62) 2Eh 08h SCYCA63[1:0] SDLYA63[1:0] ILEDA63SET[3:0] W Data for Matrix 63(DA63) 2Fh 08h SCYCA64[1:0] SDLYA64[1:0] ILEDA64SET[3:0] W Data for Matrix 64(DA64) 30h 08h SCYCA65[1:0] SDLYA65[1:0] ILEDA65SET[3:0] W Data for Matrix 65(DA65) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 14/40 Data for Matrix 33(DA33) 2013.02 - Rev.A Technical Note BD26503GUL Address default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 31h 08h SCYCA66[1:0] SDLYA66[1:0] ILEDA66SET[3:0] W Data for Matrix 66(DA66) 32h 08h SCYCA70[1:0] SDLYA70[1:0] ILEDA70SET[3:0] W Data for Matrix 70(DA70) 33h 08h SCYCA71[1:0] SDLYA71[1:0] ILEDA71SET[3:0] W Data for Matrix 71(DA71) 34h 08h SCYCA72[1:0] SDLYA72[1:0] ILEDA72SET[3:0] W Data for Matrix 72(DA72) 35h 08h SCYCA73[1:0] SDLYA73[1:0] ILEDA73SET[3:0] W Data for Matrix 73(DA73) 36h 08h SCYCA74[1:0] SDLYA74[1:0] ILEDA74SET[3:0] W Data for Matrix 74(DA74) 37h 08h SCYCA75[1:0] SDLYA75[1:0] ILEDA75SET[3:0] W Data for Matrix 75(DA75) 38h 08h SCYCA76[1:0] SDLYA76[1:0] ILEDA76SET[3:0] W Data for Matrix 76(DA76) 39h 08h SCYCA80[1:0] SDLYA80[1:0] ILEDA80SET[3:0] W Data for Matrix 80(DA80) 3Ah 08h SCYCA81[1:0] SDLYA81[1:0] ILEDA81SET[3:0] W Data for Matrix 81(DA81) 3Bh 08h SCYCA82[1:0] SDLYA82[1:0] ILEDA82SET[3:0] W Data for Matrix 82(DA82) 3Ch 08h SCYCA83[1:0] SDLYA83[1:0] ILEDA83SET[3:0] W Data for Matrix 83(DA83) 3Dh 08h SCYCA84[1:0] SDLYA84[1:0] ILEDA84SET[3:0] W Data for Matrix 84(DA84) 3Eh 08h SCYCA85[1:0] SDLYA85[1:0] ILEDA85SET[3:0] W Data for Matrix 85(DA85) 3Fh 08h SCYCA86[1:0] SDLYA86[1:0] ILEDA86SET[3:0] W Data for Matrix 86(DA86) 40h 08h SCYCA90[1:0] SDLYA90[1:0] ILEDA90SET[3:0] W Data for Matrix 90(DA90) 41h 08h SCYCA91[1:0] SDLYA91[1:0] ILEDA91SET[3:0] W Data for Matrix 91(DA91) 42h 08h SCYCA92[1:0] SDLYA92[1:0] ILEDA92SET[3:0] W Data for Matrix 92(DA92) 43h 08h SCYCA93[1:0] SDLYA93[1:0] ILEDA93SET[3:0] W Data for Matrix 93(DA93) 44h 08h SCYCA94[1:0] SDLYA94[1:0] ILEDA94SET[3:0] W Data for Matrix 94(DA94) 45h 08h SCYCA95[1:0] SDLYA95[1:0] ILEDA95SET[3:0] W Data for Matrix 95(DA95) 46h 08h SCYCA96[1:0] SDLYA96[1:0] ILEDA96SET[3:0] W Data for Matrix 96(DA96) 47h 08h SCYCAA0[1:0] SDLYAA0[1:0] ILEDAA0SET[3:0] W Data for Matrix A0(DAA0) 48h 08h SCYCAA1[1:0] SDLYAA1[1:0] ILEDAA1SET[3:0] 08h SCYCAA2[1:0] SDLYAA2[1:0] ILEDAA2SET[3:0] MATRIX W Data W Data for Matrix A1(DAA1) 49h 4Ah 08h SCYCAA3[1:0] SDLYAA3[1:0] ILEDAA3SET[3:0] W Data for Matrix A3(DAA3) 4Bh 08h SCYCAA4[1:0] SDLYAA4[1:0] ILEDAA4SET[3:0] W Data for Matrix A4(DAA4) 4Ch 08h SCYCAA5[1:0] SDLYAA5[1:0] ILEDAA5SET[3:0] W Data for Matrix A5(DAA5) Data for Matrix A2(DAA2) 4Dh 08h SCYCAA6[1:0] SDLYAA6[1:0] ILEDAA6SET[3:0] W Data for Matrix A6(DAA6) 4Eh 08h SCYCAB0[1:0] SDLYAB0[1:0] ILEDAB0SET[3:0] W Data for Matrix B0(DAB0) 4Fh 08h SCYCAB1[1:0] SDLYAB1[1:0] ILEDAB1SET[3:0] W Data for Matrix B1(DAB1) 50h 08h SCYCAB2[1:0] SDLYAB2[1:0] ILEDAB2SET[3:0] W Data for Matrix B2(DAB2) 51h 08h SCYCAB3[1:0] SDLYAB3[1:0] ILEDAB3SET[3:0] W Data for Matrix B3(DAB3) 52h 08h SCYCAB4[1:0] SDLYAB4[1:0] ILEDAB4SET[3:0] W Data for Matrix B4(DAB4) 53h 08h SCYCAB5[1:0] SDLYAB5[1:0] ILEDAB5SET[3:0] W Data for Matrix B5(DAB5) 54h 08h SCYCAB6[1:0] SDLYAB6[1:0] ILEDAB6SET[3:0] W Data for Matrix B6(DAB6) 55h 08h SCYCAC0[1:0] SDLYAC0[1:0] ILEDAC0SET[3:0] W Data for Matrix C0(DAC0) 56h 08h SCYCAC1[1:0] SDLYAC1[1:0] ILEDAC1SET[3:0] W Data for Matrix C1(DAC1) 57h 08h SCYCAC2[1:0] SDLYAC2[1:0] ILEDAC2SET[3:0] W Data for Matrix C2(DAC2) 58h 08h SCYCAC3[1:0] SDLYAC3[1:0] ILEDAC3SET[3:0] W Data for Matrix C3(DAC3) 59h 08h SCYCAC4[1:0] SDLYAC4[1:0] ILEDAC4SET[3:0] W Data for Matrix C4(DAC4) 5Ah 08h SCYCAC5[1:0] SDLYAC5[1:0] ILEDAC5SET[3:0] W Data for Matrix C5(DAC5) 5Bh 08h SCYCAC6[1:0] SDLYAC6[1:0] ILEDAC6SET[3:0] W Data for Matrix C6(DAC6) 5Ch 08h SCYCAD0[1:0] SDLYAD0[1:0] ILEDAD0SET[3:0] W Data for Matrix D0(DAD0) 5Dh 08h SCYCAD1[1:0] SDLYAD1[1:0] ILEDAD1SET[3:0] W Data for Matrix D1(DAD1) 5Eh 08h SCYCAD2[1:0] SDLYAD2[1:0] ILEDAD2SET[3:0] W Data for Matrix D2(DAD2) 5Fh 08h SCYCAD3[1:0] SDLYAD3[1:0] ILEDAD3SET[3:0] W Data for Matrix D3(DAD3) 60h 08h SCYCAD4[1:0] SDLYAD4[1:0] ILEDAD4SET[3:0] W Data for Matrix D4(DAD4) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 15/40 2013.02 - Rev.A Technical Note BD26503GUL Address default R/W Remark 61h 08h SCYCAD5[1:0] SDLYAD5[1:0] D7 D6 D5 D4 D3 ILEDAD5SET[3:0] D2 D1 D0 Block W Data for Matrix D5(DAD5) 62h 08h SCYCAD6[1:0] SDLYAD6[1:0] ILEDAD6SET[3:0] W Data for Matrix D6(DAD6) 63h 08h SCYCAE0[1:0] SDLYAE0[1:0] ILEDAE0SET[3:0] W Data for Matrix E0(DAE0) 64h 08h SCYCAE1[1:0] SDLYAE1[1:0] ILEDAE1SET[3:0] W Data for Matrix E1(DAE1) 65h 08h SCYCAE2[1:0] SDLYAE2[1:0] ILEDAE2SET[3:0] W Data for Matrix E2(DAE2) 66h 08h SCYCAE3[1:0] SDLYAE3[1:0] ILEDAE3SET[3:0] W Data for Matrix E3(DAE3) 67h 08h SCYCAE4[1:0] SDLYAE4[1:0] ILEDAE4SET[3:0] W Data for Matrix E4(DAE4) 68h 08h SCYCAE5[1:0] SDLYAE5[1:0] ILEDAE5SET[3:0] W Data for Matrix E5(DAE5) 69h 08h SCYCAE6[1:0] SDLYAE6[1:0] ILEDAE6SET[3:0] W Data for Matrix E6(DAE6) 6Ah 08h SCYCAF0[1:0] SDLYAF0[1:0] ILEDAF0SET[3:0] W Data for Matrix F0(DAF0) 6Bh 08h SCYCAF1[1:0] SDLYAF1[1:0] ILEDAF1SET[3:0] W Data for Matrix F1(DAF1) 6Dh 08h SCYCAF3[1:0] SDLYAF3[1:0] ILEDAF3SET[3:0] MATRIX W Data W 6Eh 08h SCYCAF4[1:0] SDLYAF4[1:0] ILEDAF4SET[3:0] W 6Ch 08h SCYCAF2[1:0] SDLYAF2[1:0] ILEDAF2SET[3:0] Data for Matrix F2(DAF2) Data for Matrix F3(DAF3) Data for Matrix F4(DAF4) 6Fh 08h SCYCAF5[1:0] SDLYAF5[1:0] ILEDAF5SET[3:0] W Data for Matrix F5(DAF5) 70h 08h SCYCAF6[1:0] SDLYAF6[1:0] ILEDAF6SET[3:0] W Data for Matrix F6(DAF6) 71h 08h SCYCAG0[1:0] SDLYAG0[1:0] ILEDAG0SET[3:0] W Data for Matrix G0(DAG0) 72h 08h SCYCAG1[1:0] SDLYAG1[1:0] ILEDAG1SET[3:0] W Data for Matrix G1(DAG1) 73h 08h SCYCAG2[1:0] SDLYAG2[1:0] ILEDAG2SET[3:0] W Data for Matrix G2(DAG2) 74h 08h SCYCAG3[1:0] SDLYAG3[1:0] ILEDAG3SET[3:0] W Data for Matrix G3(DAG3) 75h 08h SCYCAG4[1:0] SDLYAG4[1:0] ILEDAG4SET[3:0] W Data for Matrix G4(DAG4) 76h 08h SCYCAG5[1:0] SDLYAG5[1:0] ILEDAG5SET[3:0] W Data for Matrix G5(DAG5) 77h 08h SCYCAG6[1:0] SDLYAG6[1:0] ILEDAG6SET[3:0] W Data for Matrix G6(DAG6) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 16/40 2013.02 - Rev.A Technical Note BD26503GUL B-pattern register Address default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 01h 08h SCYCB00[1:0] SDLYB00[1:0] ILEDB00SET[3:0] W Data for Matrix 00(DB00) 02h 08h SCYCB01[1:0] SDLYB01[1:0] ILEDB01SET[3:0] W Data for Matrix 01(DB01) 03h 08h SCYCB02[1:0] SDLYB02[1:0] ILEDB02SET[3:0] W Data for Matrix 02(DB02) 04h 08h SCYCB03[1:0] SDLYB03[1:0] ILEDB03SET[3:0] W Data for Matrix 03(DB03) 05h 08h SCYCB04[1:0] SDLYB04[1:0] ILEDB04SET[3:0] W Data for Matrix 04(DB04) 06h 08h SCYCB05[1:0] SDLYB05[1:0] ILEDB05SET[3:0] W Data for Matrix 05(DB05) 07h 08h SCYCB06[1:0] SDLYB06[1:0] ILEDB06SET[3:0] W Data for Matrix 06(DB06) 08h 08h SCYCB10[1:0] SDLYB10[1:0] ILEDB10SET[3:0] W Data for Matrix 10(DB10) 09h 08h SCYCB11[1:0] SDLYB11[1:0] ILEDB11SET[3:0] W Data for Matrix 11(DB11) 0Ah 08h SCYCB12[1:0] SDLYB12[1:0] ILEDB12SET[3:0] W Data for Matrix 12(DB12) 0Bh 08h SCYCB13[1:0] SDLYB13[1:0] ILEDB13SET[3:0] W Data for Matrix 13(DB13) 0Ch 08h SCYCB14[1:0] SDLYB14[1:0] ILEDB14SET[3:0] W Data for Matrix 14(DB14) 0Dh 08h SCYCB15[1:0] SDLYB15[1:0] ILEDB15SET[3:0] W Data for Matrix 15(DB15) 0Eh 08h SCYCB16[1:0] SDLYB16[1:0] ILEDB16SET[3:0] W Data for Matrix 16(DB16) 0Fh 08h SCYCB20[1:0] SDLYB20[1:0] ILEDB20SET[3:0] W Data for Matrix 20(DB20) 10h 08h SCYCB21[1:0] SDLYB21[1:0] ILEDB21SET[3:0] W Data for Matrix 21(DB21) 11h 08h SCYCB22[1:0] SDLYB22[1:0] ILEDB22SET[3:0] W Data for Matrix 22(DB22) 12h 08h SCYCB23[1:0] SDLYB23[1:0] ILEDB23SET[3:0] W Data for Matrix 23(DB23) 13h 08h SCYCB24[1:0] SDLYB24[1:0] ILEDB24SET[3:0] W Data for Matrix 24(DB24) 14h 08h SCYCB25[1:0] SDLYB25[1:0] ILEDB25SET[3:0] W Data for Matrix 25(DB25) 15h 08h SCYCB26[1:0] SDLYB26[1:0] ILEDB26SET[3:0] W Data for Matrix 26(DB26) 16h 08h SCYCB30[1:0] SDLYB30[1:0] ILEDB30SET[3:0] W Data for Matrix 30(DB30) 17h 08h SCYCB31[1:0] SDLYB31[1:0] ILEDB31SET[3:0] W Data for Matrix 31(DB31) 18h 08h SCYCB32[1:0] SDLYB32[1:0] ILEDB32SET[3:0] Data for Matrix 32(DB32) 19h 08h SCYCB33[1:0] SDLYB33[1:0] ILEDB33SET[3:0] MATRIX W Data W 1Ah 08h SCYCB34[1:0] SDLYB34[1:0] ILEDB34SET[3:0] W Data for Matrix 34(DB34) 1Bh 08h SCYCB35[1:0] SDLYB35[1:0] ILEDB35SET[3:0] W Data for Matrix 35(DB35) 1Ch 08h SCYCB36[1:0] SDLYB36[1:0] ILEDB36SET[3:0] W Data for Matrix 36(DB36) 1Dh 08h SCYCB40[1:0] SDLYB40[1:0] ILEDB40SET[3:0] W Data for Matrix 40(DB40) 1Eh 08h SCYCB41[1:0] SDLYB41[1:0] ILEDB41SET[3:0] W Data for Matrix 41(DB41) 1Fh 08h SCYCB42[1:0] SDLYB42[1:0] ILEDB42SET[3:0] W Data for Matrix 42(DB42) 20h 08h SCYCB43[1:0] SDLYB43[1:0] ILEDB43SET[3:0] W Data for Matrix 43(DB43) 21h 08h SCYCB44[1:0] SDLYB44[1:0] ILEDB44SET[3:0] W Data for Matrix 44(DB44) 22h 08h SCYCB45[1:0] SDLYB45[1:0] ILEDB45SET[3:0] W Data for Matrix 45(DB45) 23h 08h SCYCB46[1:0] SDLYB46[1:0] ILEDB46SET[3:0] W Data for Matrix 46(DB46) 24h 08h SCYCB50[1:0] SDLYB50[1:0] ILEDB50SET[3:0] W Data for Matrix 50(DB50) 25h 08h SCYCB51[1:0] SDLYB51[1:0] ILEDB51SET[3:0] W Data for Matrix 51(DB51) 26h 08h SCYCB52[1:0] SDLYB52[1:0] ILEDB52SET[3:0] W Data for Matrix 52(DB52) 27h 08h SCYCB53[1:0] SDLYB53[1:0] ILEDB53SET[3:0] W Data for Matrix 53(DB53) 28h 08h SCYCB54[1:0] SDLYB54[1:0] ILEDB54SET[3:0] W Data for Matrix 54(DB54) 29h 08h SCYCB55[1:0] SDLYB55[1:0] ILEDB55SET[3:0] W Data for Matrix 55(DB55) 2Ah 08h SCYCB56[1:0] SDLYB56[1:0] ILEDB56SET[3:0] W Data for Matrix 56(DB56) 2Bh 08h SCYCB60[1:0] SDLYB60[1:0] ILEDB60SET[3:0] W Data for Matrix 60(DB60) 2Ch 08h SCYCB61[1:0] SDLYB61[1:0] ILEDB61SET[3:0] W Data for Matrix 61(DB61) Data for Matrix 33(DB33) 2Dh 08h SCYCB62[1:0] SDLYB62[1:0] ILEDB62SET[3:0] W Data for Matrix 62(DB62) 2Eh 08h SCYCB63[1:0] SDLYB63[1:0] ILEDB63SET[3:0] W Data for Matrix 63(DB63) 2Fh 08h SCYCB64[1:0] SDLYB64[1:0] ILEDB64SET[3:0] W Data for Matrix 64(DB64) 30h 08h SCYCB65[1:0] SDLYB65[1:0] ILEDB65SET[3:0] W Data for Matrix 65(DB65) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 17/40 2013.02 - Rev.A Technical Note BD26503GUL Address default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 31h 08h SCYCB66[1:0] SDLYB66[1:0] ILEDB66SET[3:0] W Data for Matrix 66(DB66) 32h 08h SCYCB70[1:0] SDLYB70[1:0] ILEDB70SET[3:0] W Data for Matrix 70(DB70) 33h 08h SCYCB71[1:0] SDLYB71[1:0] ILEDB71SET[3:0] W Data for Matrix 71(DB71) 34h 08h SCYCB72[1:0] SDLYB72[1:0] ILEDB72SET[3:0] W Data for Matrix 72(DB72) 35h 08h SCYCB73[1:0] SDLYB73[1:0] ILEDB73SET[3:0] W Data for Matrix 73(DB73) 36h 08h SCYCB74[1:0] SDLYB74[1:0] ILEDB74SET[3:0] W Data for Matrix 74(DB74) 37h 08h SCYCB75[1:0] SDLYB75[1:0] ILEDB75SET[3:0] W Data for Matrix 75(DB75) 38h 08h SCYCB76[1:0] SDLYB76[1:0] ILEDB76SET[3:0] W Data for Matrix 76(DB76) 39h 08h SCYCB80[1:0] SDLYB80[1:0] ILEDB80SET[3:0] W Data for Matrix 80(DB80) 3Ah 08h SCYCB81[1:0] SDLYB81[1:0] ILEDB81SET[3:0] W Data for Matrix 81(DB81) 3Bh 08h SCYCB82[1:0] SDLYB82[1:0] ILEDB82SET[3:0] W Data for Matrix 82(DB82) 3Ch 08h SCYCB83[1:0] SDLYB83[1:0] ILEDB83SET[3:0] W Data for Matrix 83(DB83) 3Dh 08h SCYCB84[1:0] SDLYB84[1:0] ILEDB84SET[3:0] W Data for Matrix 84(DB84) 3Eh 08h SCYCB85[1:0] SDLYB85[1:0] ILEDB85SET[3:0] W Data for Matrix 85(DB85) 3Fh 08h SCYCB86[1:0] SDLYB86[1:0] ILEDB86SET[3:0] W Data for Matrix 86(DB86) 40h 08h SCYCB90[1:0] SDLYB90[1:0] ILEDB90SET[3:0] W Data for Matrix 90(DB90) 41h 08h SCYCB91[1:0] SDLYB91[1:0] ILEDB91SET[3:0] W Data for Matrix 91(DB91) 42h 08h SCYCB92[1:0] SDLYB92[1:0] ILEDB92SET[3:0] W Data for Matrix 92(DB92) 43h 08h SCYCB93[1:0] SDLYB93[1:0] ILEDB93SET[3:0] W Data for Matrix 93(DB93) 44h 08h SCYCB94[1:0] SDLYB94[1:0] ILEDB94SET[3:0] W Data for Matrix 94(DB94) 45h 08h SCYCB95[1:0] SDLYB95[1:0] ILEDB95SET[3:0] W Data for Matrix 95(DB95) 46h 08h SCYCB96[1:0] SDLYB96[1:0] ILEDB96SET[3:0] W Data for Matrix 96(DB96) 47h 08h SCYCBA0[1:0] SDLYBA0[1:0] ILEDBA0SET[3:0] W Data for Matrix A0(DBA0) 48h 08h SCYCBA1[1:0] SDLYBA1[1:0] ILEDBA1SET[3:0] Data for Matrix A1(DBA1) 49h 08h SCYCBA2[1:0] SDLYBA2[1:0] ILEDBA2SET[3:0] MATRIX W Data W 4Ah 08h SCYCBA3[1:0] SDLYBA3[1:0] ILEDBA3SET[3:0] W Data for Matrix A3(DBA3) 4Bh 08h SCYCBA4[1:0] SDLYBA4[1:0] ILEDBA4SET[3:0] W Data for Matrix A4(DBA4) 4Ch 08h SCYCBA5[1:0] SDLYBA5[1:0] ILEDBA5SET[3:0] W Data for Matrix A5(DBA5) 4Dh 08h SCYCBA6[1:0] SDLYBA6[1:0] ILEDBA6SET[3:0] W Data for Matrix A6(DBA6) 4Eh 08h SCYCBB0[1:0] SDLYBB0[1:0] ILEDBB0SET[3:0] W Data for Matrix B0(DBB0) 4Fh 08h SCYCBB1[1:0] SDLYBB1[1:0] ILEDBB1SET[3:0] W Data for Matrix B1(DBB1) 50h 08h SCYCBB2[1:0] SDLYBB2[1:0] ILEDBB2SET[3:0] W Data for Matrix B2(DBB2) 51h 08h SCYCBB3[1:0] SDLYBB3[1:0] ILEDBB3SET[3:0] W Data for Matrix B3(DBB3) 52h 08h SCYCBB4[1:0] SDLYBB4[1:0] ILEDBB4SET[3:0] W Data for Matrix B4(DBB4) 53h 08h SCYCBB5[1:0] SDLYBB5[1:0] ILEDBB5SET[3:0] W Data for Matrix B5(DBB5) 54h 08h SCYCBB6[1:0] SDLYBB6[1:0] ILEDBB6SET[3:0] W Data for Matrix B6(DBB6) 55h 08h SCYCBC0[1:0] SDLYBC0[1:0] ILEDBC0SET[3:0] W Data for Matrix C0(DBC0) 56h 08h SCYCBC1[1:0] SDLYBC1[1:0] ILEDBC1SET[3:0] W Data for Matrix C1(DBC1) 57h 08h SCYCBC2[1:0] SDLYBC2[1:0] ILEDBC2SET[3:0] W Data for Matrix C2(DBC2) 58h 08h SCYCBC3[1:0] SDLYBC3[1:0] ILEDBC3SET[3:0] W Data for Matrix C3(DBC3) 59h 08h SCYCBC4[1:0] SDLYBC4[1:0] ILEDBC4SET[3:0] W Data for Matrix C4(DBC4) 5Ah 08h SCYCBC5[1:0] SDLYBC5[1:0] ILEDBC5SET[3:0] W Data for Matrix C5(DBC5) 5Bh 08h SCYCBC6[1:0] SDLYBC6[1:0] ILEDBC6SET[3:0] W Data for Matrix C6(DBC6) 5Ch 08h SCYCBD0[1:0] SDLYBD0[1:0] ILEDBD0SET[3:0] W Data for Matrix D0(DBD0) Data for Matrix A2(DBA2) 5Dh 08h SCYCBD1[1:0] SDLYBD1[1:0] ILEDBD1SET[3:0] W Data for Matrix D1(DBD1) 5Eh 08h SCYCBD2[1:0] SDLYBD2[1:0] ILEDBD2SET[3:0] W Data for Matrix D2(DBD2) 5Fh 08h SCYCBD3[1:0] SDLYBD3[1:0] ILEDBD3SET[3:0] W Data for Matrix D3(DBD3) 60h 08h SCYCBD4[1:0] SDLYBD4[1:0] ILEDBD4SET[3:0] W Data for Matrix D4(DBD4) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 18/40 2013.02 - Rev.A Technical Note BD26503GUL Address default D7 D6 D5 D4 D3 D2 D1 D0 Block R/W Remark 61h 08h SCYCBD5[1:0] SDLYBD5[1:0] ILEDBD5SET[3:0] W Data for Matrix D5(DBD5) 62h 08h SCYCBD6[1:0] SDLYBD6[1:0] ILEDBD6SET[3:0] W Data for Matrix D6(DBD6) 63h 08h SCYCBE0[1:0] SDLYBE0[1:0] ILEDBE0SET[3:0] W Data for Matrix E0(DBE0) 64h 08h SCYCBE1[1:0] SDLYBE1[1:0] ILEDBE1SET[3:0] W Data for Matrix E1(DBE1) 65h 08h SCYCBE2[1:0] SDLYBE2[1:0] ILEDBE2SET[3:0] W Data for Matrix E2(DBE2) 66h 08h SCYCBE3[1:0] SDLYBE3[1:0] ILEDBE3SET[3:0] W Data for Matrix E3(DBE3) 67h 08h SCYCBE4[1:0] SDLYBE4[1:0] ILEDBE4SET[3:0] W Data for Matrix E4(DBE4) 68h 08h SCYCBE5[1:0] SDLYBE5[1:0] ILEDBE5SET[3:0] W Data for Matrix E5(DBE5) 69h 08h SCYCBE6[1:0] SDLYBE6[1:0] ILEDBE6SET[3:0] W Data for Matrix E6(DBE6) 6Ah 08h SCYCBF0[1:0] SDLYBF0[1:0] ILEDBF0SET[3:0] W Data for Matrix F0(DBF0) 6Bh 08h SCYCBF1[1:0] SDLYBF1[1:0] ILEDBF1SET[3:0] W Data for Matrix F1(DBF1) 6Ch 08h SCYCBF2[1:0] SDLYBF2[1:0] ILEDBF2SET[3:0] 6Dh 08h SCYCBF3[1:0] SDLYBF3[1:0] ILEDBF3SET[3:0] MATRIX W Data W 6Eh 08h SCYCBF4[1:0] SDLYBF4[1:0] ILEDBF4SET[3:0] W Data for Matrix F2(DBF2) Data for Matrix F3(DBF3) Data for Matrix F4(DBF4) 6Fh 08h SCYCBF5[1:0] SDLYBF5[1:0] ILEDBF5SET[3:0] W Data for Matrix F5(DBF5) 70h 08h SCYCBF6[1:0] SDLYBF6[1:0] ILEDBF6SET[3:0] W Data for Matrix F6(DBF6) 71h 08h SCYCBG0[1:0] SDLYBG0[1:0] ILEDBG0SET[3:0] W Data for Matrix G0(DBG0) 72h 08h SCYCBG1[1:0] SDLYBG1[1:0] ILEDBG1SET[3:0] W Data for Matrix G1(DBG1) 73h 08h SCYCBG2[1:0] SDLYBG2[1:0] ILEDBG2SET[3:0] W Data for Matrix G2(DBG2) 74h 08h SCYCBG3[1:0] SDLYBG3[1:0] ILEDBG3SET[3:0] W Data for Matrix G3(DBG3) 75h 08h SCYCBG4[1:0] SDLYBG4[1:0] ILEDBG4SET[3:0] W Data for Matrix G4(DBG4) 76h 08h SCYCBG5[1:0] SDLYBG5[1:0] ILEDBG5SET[3:0] W Data for Matrix G5(DBG5) 77h 08h SCYCBG6[1:0] SDLYBG6[1:0] ILEDBG6SET[3:0] W Data for Matrix G6(DBG6) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 19/40 2013.02 - Rev.A Technical Note BD26503GUL ●Register Map Address 00H < Software Reset > Address R/W Bit7 (Index) 00H W Initial value 00H - Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - - - - SFTRST - - - - - - 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - OSCEN - - - 0 0 0 0 0 0 0 Bit 0 : SFTRST Software Reset “0” : Reset cancel “1” : Reset(All register initializing) *SFTRST register return to 0 automatically. Address 01H <OSC control > Address R/W Bit7 (Index) 01H W Initial value 00H 0 Bit 3 : OSCEN OSC block ON/OFF control “0” : OFF(Initial) “1” : ON This register should not change into “1 “→” 0” at the time of START (30h, D0) register =“1” setup (under lighting operation). This register must be set to “0” after LED putting out lights (“START register = 0”), and please surely stop an internal oscillation circuit. Address 11H < LED1-6 Enable > Address R/W Bit7 (Index) 11H W Initial value 00H 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - LED6ON LED5ON LED4ON LED3ON LED2ON LED1ON 0 0 0 0 0 0 0 Bit 0 : LED1ON LED1 ON/OFF setting “0” : LED1 OFF(initial) “1” : LED1 ON Bit 1 : LED2ON LED2 ON/OFF setting “0” : LED2 OFF(initial) “1” : LED2 ON Bit 2 : LED3ON LED3 ON/OFF setting “0” : LED3 OFF(initial) “1” : LED3 ON Bit 3 : LED4ON LED4 ON/OFF setting “0” : LED4 OFF(initial) “1” : LED4 ON Bit 4 : LED5ON LED5 ON/OFF setting “0” : LED5 OFF(initial) “1” : LED5 ON Bit 5 : LED6ON LED6 ON/OFF setting “0” : LED6 OFF(initial) “1” : LED6 ON * Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 20/40 2013.02 - Rev.A Technical Note BD26503GUL Address 12H < LED7-12 Enable > Address R/W Bit7 (Index) 12H W Initial value 00H 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - LED12ON LED11ON LED10ON LED9ON LED8ON LED7ON 0 0 0 0 0 0 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - LED17ON LED16ON LED15ON LED14ON LED13ON 0 0 0 0 0 0 Bit 0 : LED7ON LED7 ON/OFF setting “0” : LED7 OFF(initial) “1” : LED7 ON Bit 1 : LED8ON LED8 ON/OFF setting “0” : LED8 OFF(initial) “1” : LED8 ON Bit 2 : LED9ON LED9 ON/OFF setting “0” : LED9 OFF(initial) “1” : LED9 ON Bit 3 : LED10ON LED10 ON/OFF setting “0” : LED10 OFF(initial) “1” : LED10 ON Bit 4 : LED11ON LED11 ON/OFF setting “0” : LED11 OFF(initial) “1” : LED11 ON Bit 5 : LED12ON LED12 ON/OFF setting “0” : LED12 OFF(initial) “1” : LED12 ON * Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register. Address 13H < LED13-17 Enable > Address R/W Bit7 Bit6 (Index) 13H W Initial value 00H 0 0 Bit 0 : LED13ON LED13 ON/OFF setting “0” : LED13 OFF(initial) “1” : LED13 ON Bit 1 : LED14ON LED14 ON/OFF setting “0” : LED14 OFF(initial) “1” : LED14 ON Bit 2 : LED15ON LED15 ON/OFF setting “0” : LED15 OFF(initial) “1” : LED15 ON Bit 3 : LED16ON LED16 ON/OFF setting “0” : LED16 OFF(initial) “1” : LED16 ON Bit 4 : LED17ON LED17 ON/OFF setting “0” : LED17 OFF(initial) “1” : LED17 ON * Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 21/40 2013.02 - Rev.A Technical Note BD26503GUL Address 17H < LED14-17 TDMA Enable > Address R/W Bit7 Bit6 (Index) Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 17H W - - - - LED17 TDMAON LED16 TDMAON LED15 TDMAON LED14 TDMAON Initial value 0FH 0 0 0 0 1 1 1 1 Bit 0 : LED14TDMAON TDMA control Enable setting for LED14 “0” : TDMA control for LED14 is OFF LED current value is set by ILEDAD0SET[3:0] or ILEDBD0SET[3:0] (it changes by the OAB [7Fh, D1] register). It becomes the setting value of ILEDAD0SET [3:0] until scroll reset is carried out by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling. “1” : TDMA control for LED14 is ON (initial) Bit 1 : LED15TDMAON TDMA control Enable setting for LED15 “0” : TDMA control for LED15 is OFF LED current value is set by ILEDAE0SET[3:0] or ILEDBE0SET[3:0]. (it changes by the OAB [7Fh, D1] register). It becomes the setting value of ILEDAE0SET [3:0] until scroll reset is carried out by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling. “1” : TDMA control for LED15 is ON (initial) Bit 2 : LED16TDMAON TDMA control Enable setting for LED16 “0” : TDMA control for LED16 is OFF LED current value is set by ILEDAF0SET[3:0] or ILEDBF0SET[3:0]. (it changes by the OAB [7Fh, D1] register). It becomes the setting value of ILEDAF0SET [3:0] until scroll reset is carried out by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling. “1” : TDMA control for LED16 is ON (initial) Bit 3 : LED17TDMAON TDMA control Enable setting for LED17 “0” : TDMA control for LED17 is OFF LED current value is set by ILEDAG0SET[3:0] or ILEDBG0SET[3:0]. (it changes by the OAB [7Fh, D1] register). It becomes the setting value of ILEDAG0SET [3:0] until scroll reset is carried out by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling. “1” : TDMA control for LED17 is ON (initial) * The setting change at the time of START (30h, D0) register =“1” of this register is prohibition. * LED, which is set to “0”(TDMA off), is put on and not controlled by SYNC terminal however SYNCON (21h,D2) register is set to “1”. * Please use this register only in the following combination. LED17TDMAON LED16TDMAON LED15TDMAON LED14TDMAON 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 Except the above: Prohibition www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 22/40 2013.02 - Rev.A Technical Note BD26503GUL Address 20H < LED1-17 PWM setting > Address R/W Bit7 Bit6 (Index) 20H W Initial value 00H 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 PWMSET [5:0] 0 0 0 0 0 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 - - SYNCACT SYNCON CLKOUT CLKIN 0 0 0 0 0 0 Bit 5-0 : PWMSET[5:0] LED1-17 PWM DUTY setting “000000” : 0/63=0%(initial) “000001” : 1/63=1.59% : : “100000” : 32/63=50.8% : : “111110” : 62/63=98.4% “111111” : 63/63=100% *Please refer to Description of operation, chapter 2 Address 21H < SYNC operation control > Address R/W Bit7 Bit6 (Index) 21H W Initial value 00H 0 Bit5 0 Bit 0 : CLKIN Selection CLK for PWM control “0” : Internal OSC (initial) “1” : External CLK input Bit 1 : CLKOUT Output CLK enable “0” : CLK is not output (initial) “1” : Output selected CLK from CLKOUT pin As for CLKIN & CLKOUT, setting change is forbidden under OSCEN (01h, D3) register =“1” and also under clock input to CLKIN terminal. Bit 2 : SYNCON SYNC operation enable “0” : Disable SYNC operation (initial) “1” : SYNC pin control LED driver ON/OFF Bit 3 : SYNCACT SYNC operation setting “0” : When SYNC pin is “L”, LED drivers are ON (initial) “1” : When SYNC pin is “H”, LED drivers are ON Address 2DH < PWM, SLOPE, SCROLL ON/OFF setting > Address R/W Bit7 Bit6 Bit5 (Index) 2DH W Initial value 00H 0 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 - - PWMEN SLPEN SCLEN 0 0 0 0 0 Bit 0 : SCLEN SCROLL operation ON/OFF setting “0” : SCROL operation OFF(initial value) “1” : SCROL operation ON Bit 1 : SLPEN SLOPE operation ON/OFF setting “0” : SLOPE operation OFF(initial value) “1” : SLOPE operation ON Bit 2 : PWMEN PWM control at LED1-17 ON/OFF setting “0” : PWM operation is invalid(initial value) “1” : PWM operation is valid *Please refer to Description of operation, chapter 2 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 23/40 2013.02 - Rev.A Technical Note BD26503GUL Address 2EH < Reset scroll > Address R/W Bit7 (Index) 2EH W Initial value 00H 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - - - - SCLRST 0 0 0 0 0 0 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 UP DOWN RIGHT LEFT 0 0 0 0 Bit 0 : SCLRST Reset scroll state “0” : Not reset(initial value) “1” : Reset scroll state * SCLRST register return to 0 automatically Address 2FH < Scroll setting > Address R/W Bit7 (Index) 2FH W Initial value 00H 0 SCLSPEED [2:0] 0 0 0 Bit 0 : LEFT Setting the scroll operation from right to left “0” : Scroll operation OFF (initial value) “1” : Scroll operation ON Bit 1 : RIGHT Setting the scroll operation from left to right “0” : Scroll operation OFF (initial value) “1” : Scroll operation ON *When LEFT operation is valid, RIGHT setting is ignored. Bit 2 : DOWN Setting the scroll operation from top to bottom “0” : Scroll operation OFF (initial value) “1” : Scroll operation ON Bit 3 : UP Setting the scroll operation from bottom to top “0” : Scroll operation OFF (initial value) “1” : Scroll operation ON *When UP operation is valid, DOWN setting is ignored. Bit 6-4 : SCLSPEED[2:0] Setting the scroll speed “000” : 0.1s (initial value) “001” : 0.2s “010” : 0.3s “011” : 0.4s “100” : 0.5s “101” : 0.6s “110” : 0.7s “111” : 0.8s *Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz). *Setting time changes on CLKIN terminal input frequency at the external clock operation. Example) CLKIN input frequency=1.2MHz→”000”: 0.1sec (it is the same as the above) CLKIN input frequency=2.4MHz→”000”: 0.05sec CLKIN input frequency= 0.6MHz→”000”: 0.2sec Address 30H < LED Matrix control > Address R/W Bit7 Bit6 (Index) 30H W Initial value 00H 0 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - - - START 0 0 0 0 0 0 Bit 0 : START Lighting/turning off bit of MATRIX LED(LED1-17) “0” : MATRIX LED(LED1-17) Lights out “1” : MATRIX LED(LED1-17) Lighting, SLOPE and SCROLL sequence start www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 24/40 2013.02 - Rev.A Technical Note BD26503GUL Address 31H < Matrix data clear > Address R/W Bit7 (Index) 31H W Initial value 00H 0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - - - CLRB CLRA 0 0 0 0 0 0 0 Bit 0 : CLRA Reset A-pattern register “0” : A-pattern register is not reset and writable(initial value) “1” : A-pattern register is reset Bit 0 : CLRB Reset B-pattern register “0” : B-pattern register is not reset and writable(initial value) “1” : B-pattern register is reset *CLRA and CLRB register return to 0 automatically. Address 7FH < Register map change > Address R/W Bit7 Bit6 (Index) 7FH W Initial value 00H 0 0 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - - - IAB OAB RMCG 0 0 0 0 0 0 Bit 0 : RMCG Change register map “0” : Control register is selected(initial value) “1” : A-pattern register or B-pattern register is selected Bit 1 : OAB Select register to output for matrix “0” : A-pattern register is selected(initial value) “1” : B-pattern register is selected Bit 2 : IAB Select register to write matrix data “0” : A-pattern register is selected(initial value) “1” : B-pattern register is selected * It is prohibition to write A-pattern data when A-pattern is displaying (OAB=0). Also, it is prohibition to write B-pattern data when B-pattern is displaying (OAB=1). Change of a display picture should be done by change of the OAB register, after updating of a non-displaying pattern register. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 25/40 2013.02 - Rev.A Technical Note BD26503GUL Address 01H-77H < A-pattern register data > Address R/W Bit7 Bit6 (Index) 01-77H W SCYCAXX [1:0] Initial value 08H 0 0 Bit5 Bit4 Bit3 SDLYAXX [1:0] 0 0 Bit2 Bit1 Bit0 ILEDAXXSET [3:0] 1 0 0 0 Bit 3-0 : ILEDAXXSET[3:0] LED output current setting for A-pattern matrix data “0000” : 0.00mA “0001” : 1.33mA “0010” : 2.67mA “0011” : 4.00mA “0100” : 5.33mA “0101” : 6.67mA “0110” : 8.00mA “0111” : 9.33mA “1000” : 10.67mA(initial value) “1001” : 12.00mA “1010” : 13.33mA “1011” : 14.67mA “1100” : 16.00mA “1101” : 17.33mA “1110” : 18.67mA “1111” : 20.00mA Bit 5-4 : SDLYAXX[1:0] SLOPE delay setting for A-pattern matrix “00” : No delay(initial value) “01” : 1/4x(slope cycle time) “10” : 1/2x(slope cycle time) “11” : 3/4x(slope cycle time) Bit 7-6 : SCYCAXX[1:0] SLOPE cycle time setting for A-pattern matrix “00” : No SLOPE control(initial value) “01” : 1s(=slope cycle time) “10” : 2s(=slope cycle time) “11” : 3s(=slope cycle time) * The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate. *Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz). *Setting time changes on CLKIN terminal input frequency at the external clock operation. Example) CLKIN input frequency=1.2MHz→”01”: Slope cycle =1sec (it is the same as the above) CLKIN input frequency=2.4MHz→”01”: Slope cycle =0.5sec CLKIN input frequency=0.6MHz→”01”: Slope cycle =2sec www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 26/40 2013.02 - Rev.A Technical Note BD26503GUL Address 01H-77H < B-pattern register data > Address R/W Bit7 Bit6 (Index) 01-77H W SCYCBXX[1:0] Initial value 08H 0 0 Bit5 Bit4 Bit3 SDLYBXX[1:0] 0 0 Bit2 Bit1 Bit0 ILEDBXXSET[3:0] 1 0 0 0 Bit 3-0 : ILEDBXXSET[3:0] LED output current setting for B-pattern matrix data “0000” : 0.00mA “0001” : 1.33mA “0010” : 2.67mA “0011” : 4.00mA “0100” : 5.33mA “0101” : 6.67mA “0110” : 8.00mA “0111” : 9.33mA “1000” : 10.67mA(initial value) “1001” : 12.00mA “1010” : 13.33mA “1011” : 14.67mA “1100” : 16.00mA “1101” : 17.33mA “1110” : 18.67mA “1111” : 20.00mA Bit 5-4 : SDLYBXX[1:0] SLOPE delay setting for B-pattern matrix “00” : No delay(initial value) “01” : 1/4x(slope cycle time) “10” : 1/2x(slope cycle time) “11” : 3/4x(slope cycle time) Bit 7-6 : SCYCBXX[1:0] SLOPE cycle time setting for B-pattern matrix “00” : No SLOPE control(initial value) “01” : 1s(=slope cycle time) “10” : 2s(=slope cycle time) “11” : 3s(=slope cycle time) * The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate. *Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz). *Setting time changes on CLKIN terminal input frequency at the external clock operation. Example) CLKIN input frequency=1.2MHz→”01”: Slope cycle =1sec (it is the same as the above) CLKIN input frequency=2.4MHz→”01”: Slope cycle =0.5sec CLKIN input frequency=0.6MHz→”01”: Slope cycle =2sec www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 27/40 2013.02 - Rev.A Technical Note BD26503GUL ●Description of operation 1. LED Matrix 1-1. Lighting method of dot Matrix It can control 7 x 17 Matrix. VINSW SW 1 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 G0 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1 G1 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 G2 03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3 G3 04 14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 E4 F4 G4 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 G5 06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6 G6 SW 4 SW 5 TDMA LED17 LED16 TDMA LED15 TDMA LED14 TDMA TDMA LED13 LED12 TDMA TDMA LED11 LED10 TDMA TDMA LED9 LED8 LED4 TDMA LED3 LED2 TDMA TDMA LED1 T06 TDMA SW 7 LED7 SW 6 TDMA T05 30 LED6 T04 20 TDMA T03 10 LED5 T02 SW 3 00 TDMA T01 SW 2 TDMA T00 Fig.10 7 x 17 LED Matrix coordinate The SW1 – SW7 is turned on by serial. LED is driven one by one within the ON period. SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 LED1 ・・ ・ ・・ DA00 DA01 DA02 DA03 DA04 DA05 DA06 DA00 DA02 DA03 DAG0 DAG1 DAG2 DAG3 DAG4 DAG5 DAG6 DAG0 DAG2 DAG3 LED17 PW M period= 635clk(@ 1.2MHz、529.2us) 1/7TDMA period= 680clk(@ 1.2MHz、566.67us) Duty is variable 0/63 and between 1/63 and 63/63 of PW M period. TDMA period= 4760clk(@ 1.2MHz、3.97m s) Fig.11 SW timing www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 28/40 2013.02 - Rev.A Technical Note BD26503GUL 1-2. LED lighting example The firefly lighting example. The following command set is the example of LED matrix firefly lighting. It can control the turn on/off time in detail by SLOPE setting registers. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 7FH 21H 01H 11H 12H 13H 20H 1FH 01-77H 7FH 2DH 30H 30H 00000000 00000000 00001000 00111111 00111111 00011111 00111111 00000001 xxxxxxxx 00000000 00000100 00000001 00000000 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. Select control register Select internal OSC for CLK Start OSC Set LED1-6 enable Set LED7-12 enable Set LED13-17 enable Set Max Duty at Slope Select A-pattern or B-pattern register, Select A-pattern register to write matrix data Write A-pattern data Select control register, Select A-pattern register to output for matrix Set SLOPE control enable Start SLOPE sequence Lights out 29/40 2013.02 - Rev.A Technical Note BD26503GUL 2. LED Driver Current, SLOPE and SCROLL Sequence Control 2-1. LED driver current control It can be controlled PWM Duty and DC current for LED driver current. Item Control object Setting Registers Control detail Name * Bits (A) PWM Duty Whole matrix 0/63~63/63 (64 step) PWMSET 6 (B) DC current Each matrix dot 0~20.00mA (16 step) ILEDAXXSET ILEDBXXSET 4 * The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate. Minimum width=5clk Duty is variable by PWMSET[5:0] or slope control between 0/63 and 63/63. (Duty 1/63=10clk) (A) PWM Duty LED Drive Internal enable signal OFF Clk (ex.1.2MHz at internal OSC) ~ ~ ~ ~ 680clk = 1/7TDMA Fig.12 LED output current timing and PWM cycle 635clk of PWM period is set in the 1/7 TDMA period (680clk). PWM is operated 63 steps of 10clk. TDMA period is 3.97s (@1.2MHz). Moreover, it has the starting waiting time of a constant current driver by 5clk(s). PWM”H” time turns into ON time after waiting 5 clk. (However, LED driver is set “OFF” compulsorily at PWM=0% setting.) 5clk wait LED Drive OFF Internal enable signal PWM = 0/63 setting 0mA PWM = 1/63 setting 5clk 1/63 = 10clk PWM = 2/63 setting 5clk Fig.13 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 2/63 = 20clk LED output current timing and a PWM cycle 30/40 2013.02 - Rev.A Technical Note BD26503GUL 2-2. SLOPE control It can be controlled Delay and SLOPE cycle time for LED driver current. Item Control object Setting Registers Control detail (A) Delay Each matrix dot 0~3/4 x slope cycle time (4 step) (B) SLOPE cycle time Each matrix dot 0~3sec (4 step) Name * SDLYAXX SDLYBXX SCYCAXX SCYCBXX Bits 2 2 * The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate. PWM Duty 1/4 of SLOPE cycle time 100% 0% Time SLOPE 1 (A) Delay SLOPE 2 SLOPE 3 SLOPE 4 Repeat SLOPE 1-4 (B) SLOPE cycle time START Fig.14 SLOPE operation When SLPEN=“1” and PWMEN=SCLEN=“0”, SLOPE operation starts (like upper figure). After “Delay” time SLOPE1-4 operation repeat. Each period of SLOPE1-4 is 1/4 of SLOPE cycle time. SLOPE 1: 1 step is 1/63 of SLOPE 1 period. Duty is increased 1.587% step by step. SLOPE 2: Duty is fixed at 100%. SLOPE 3: 1 step is 1/63 of SLOPE 1 period. Duty is decreased 1.587% step by step. SLOPE 4: Duty is fixed at 0%. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 31/40 2013.02 - Rev.A Technical Note BD26503GUL 2-3. SCROLL control 2-3-1 Normal operation A-pattern data B-pattern data LEFT scroll RIGHT scroll UP scroll DOWN scroll 2-3-2 Operation at TDMA off setting (The following is the matrix arrangement which has not assigned LED16-LED17.) A-pattern data LEFT scroll TDMA off B-pattern data RIGHT scroll www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TDMA off UP scroll 32/40 DOWN scroll 2013.02 - Rev.A Technical Note BD26503GUL 2-4. Relation of PWM, SLOPE and SCROLL control Register of condition and enable PWM Condition PWMSET [5:0] Enable SLOPE SCYCXXX [1:0] SDLYXXX [1:0] SCROLL SCLSPEED [2:0] UP/DOWN/RIGHT/LEFT SLPEN SCLEN PWMEN Combination of command Operation PWMEN SLPEN SCLEN 1 OFF OFF OFF 2 ON OFF OFF 3 OFF ON OFF 4 ON ON OFF 5 OFF OFF ON ON OFF ON OFF ON ON ON ON ON Do not use this combination PW M D uty 100% Operation 1 0% Tim e S TA RT PW M D uty 100% Operation 2 D uty set at PW M SE T[5:0]( 0/63~ 63/63) 0% Tim e S TA RT PW M D uty D elay S LO P E cyc le tim e 100% Operation 3 0% Tim e S TA RT PW M D uty D elay S LO P E cyc le tim e 100% D uty s et at PW M S E T[5:0] ( 0/63~ 63/63) Operation 4 0% Tim e S TA RT PWM Duty Operation 5 100% 0% Time START www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 33/40 2013.02 - Rev.A Technical Note BD26503GUL 3. Power up sequence VBAT 2.5V T VBATO N =m in 0m s T VBATO FF2 =m in 0m s 2.5V VINSW T VINSW ON =m in 0m s T VINSW O FF =m in 0.1m s T VIOO N =m in 0.5m s T VIO O FF =m in 1m s 1.55V VIO 0.4V RESETB T RSTB =m in 0.1m s COM MAND Inhibit Possible T RST =m in 0m s Inhibit Fig.15 Power up sequence Please take sufficient wait time for each Power/Control signal. However, if VBAT<2.1V(typ) or Ta >TTSD(typ:175℃), the command input is not effective because of the protection operation Please rise VIO voltage after VBAT voltage raise more 2.5V, and fall VIO voltage after VBAT voltage fall less 0.4V. 4. Reset There are two kinds of reset, software reset and hardware reset (1)Software reset ・All the registers are initialized by SFTRST=“1”. ・SFTRST is an automatically returned to “0”. (Auto Return 0). (2)Hardware reset ・It shifts to hardware reset by changing RESETB pin “H” → “L”. ・The condition of all the registers under hardware reset pin is returned to the Initial Value and it stops accepting all address.all LED driver turn off. ・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”. RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. 5. Thermal shutdown A thermal shutdown function is effective at all blocks of those other than VREF. Return to the state before detection automatically at the time of release. The thermal shutdown function is detection temperature that it works is about 175℃ Detection temperature has a hysteresis, and detection release temperature is about 150℃(Design reference value) 6. UVLO Function (VBAT Voltage Low-Voltage Detection) UVLO function is effective at all blocks of those other than VREF, and when detected, those blocks function is stopped. Return to the state before detection automatically at the time of release. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 34/40 2013.02 - Rev.A Technical Note BD26503GUL 7. I/O When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power. VBAT VIO RESETB=L, Output “H” SCL (SDA) Level Shift EN LOGIC RESETB Fig.16 Input disabling by RESETB 8. Standard Clock Input and Output It is possible to carry out synchronous operation of two or more ICs using the input-and-output function of a standard clock. CLKOUT PMOS Register : CLKOUT TDMA CLKIN Switch LED Matrix Controller SEL OSC LED Driver Register : CLKIN SYNC Register: SYNCON Fig.17 I/O part equivalent circuit diagram ・When a clock is supplied from the exterior Inputting an external standard clock from CLKIN and setting register CLKIN=1, IC operates with the clock inputted from CLKIN as a standard clock. ・When the built-in oscillation circuit of one IC is used When a clock cannot be supplied from the exterior, it is possible to synchronize between ICs by the connection as the following figure. When a clock is strung IC1 IC2 IC3 OSC CLKIN OSC CLKOUT CLKIN OSC CLKOUT CLKIN CLKOUT When a clock is supplied from IC1 IC1 IC2 IC3 OSC CLKIN Fig.18 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. OSC CLKOUT CLKIN OSC CLKOUT CLKIN CLKOUT It is an example of application for the usage of two or more. 35/40 2013.02 - Rev.A Technical Note BD26503GUL 9. External ON/OFF Synchronization (SYNC Terminal) Lighting of LED that synchronized with the external signal is possible. By setting H/L of SYNC terminal, LED drivers output is set ON/OFF. It’s asynchronous operation with the internal TDMA control. CLKOUT PMOS Register : CLKOUT TDMA CLKIN Switch LED Matrix Controller SEL OSC LED Driver Register : CLKIN SYNC Register : SYNCON Fig.19 I/O part equivalent circuit diagram 10. About terminal processing of the function which is not used Please set up a test terminal and the unused terminal as the following table. Especially, if an input terminal is not fixed, it may occur the unstable state of a device and the unexpected internal current. Terminal name Processing Reason SYNC GND Short The input terminal CLKIN GND Short The input terminal CLKOUT Open The output terminal TEST1 – TEST5 GND Short The input terminal for a test TESTO Open The output terminal for a test DO Open The output terminal LED Terminal GND Short In order to avoid an unfixed state. (A register setup in connection with LED terminal that is not used is forbidden.) SW Terminal VINSW Short In order to avoid an unfixed state. (A register setup in connection with SW terminal that is not used is forbidden.) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 36/40 2013.02 - Rev.A Technical Note BD26503GUL 11.About the prevention of a little lighting LED from SW pin’s parasitic capacitance The LED little light up by SW pin’s parastic capacitance maybe that it depends on LED’s sensitivity of current though LED current setting is 0mA. It improves this problem that the register (reference value: 1MΩ) is set up between SW pin and GND pin. Fig.20 example: A little lighting LED Matrix: SW1-LED1=0mA, SW2-LED1=20mA www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 37/40 2013.02 - Rev.A Technical Note BD26503GUL ●PCB pattern of the Power dissipation measuring board 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 8th layer(solder) 38/40 2013.02 - Rev.A Technical Note BD26503GUL ●Notes for use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal shutdown circuit (TSD) This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (11) About the rush current For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring. (12) About the function description or application note or more. The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. (13) SW1-7 don’t have short protection. When need protection, please use fuse element. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 39/40 2013.02 - Rev.A Technical Note BD26503GUL ●Ordering part number B D Part No. 2 6 5 Part No. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. 0 3 G U L Package GUL : VCSP50L3 40/40 - E 2 Packaging and forming specification E2: Embossed tape and reel 2013.02 - Rev.A Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet BD26503GUL - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS BD26503GUL VCSP50L3 2500 2500 Taping inquiry Yes