Rohm BD9007F Flexible step-down switching regulators with built-in power mosfet Datasheet

Single-chip Type with built-in FET Switching Regulator Series
Flexible Step-down
Switching Regulators
with Built-in Power MOSFET
BD9006F/HFP, BD9007F/HFP, BD9009HFP
No.12027ECT35
●Overview
The high-accuracy frequency flexible step-down switching regulator is a switching regulator with built-in POWER MOS FET,
which withstands high pressure. The operational frequency is freely configurable with external resistance. It features a wide
input voltage range (7V~35V) and a high frequency accuracy of ±5% (BD9006F/HFP,BD9009HFP, f=200~500kHz),
Furthermore, an external synchronization input pin enables synchronous operation with external clock.
●Features
1) Minimal external components
2) Wide input voltage range: 7V~35V
3) Frequency voltage accuracy: ±5%(BD9006F/HFP,BD9009HFP, f=200~500kHz)
±20%(BD9007F/HFP)
4) Built-in P-ch POWER MOS FET
5) Output voltage setting enabled with external resistor: 0.8V~VIN
6) Reference voltage accuracy: 0.8V±2%
7) Wide operating temperature range: -40℃~+105℃
8) Low dropout: 100% ON duty cycle
9) Standby mode supply current: 0µA (Typ.)
10) Oscillation frequency variable with external resistor: 50~500kHz
11) External synchronization enabled
12) Soft start function: soft start time fixed to 5ms (Typ.)
13) Built-in overcurrent protection circuit
14) Built-in thermal shutdown protection circuit
15) High-power HRP7 package mounted (BD9006HFP,BD9007HFP,BD9009HFP)
16) Compact SOP8 package mounted (BD9006F,BD9007F)
●Applications
All fields of industrial equipment, such as Flat TV, printer, DVD, car audio, car navigation,
and communication such as ETC, AV, and OA.
●Product lineup
Item
Output Current
Input Range
Oscillation Frequency Range
Oscillation Frequency Accuracy
External Synchronous Function
Standby Function
Operating Temperature
Package
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
BD9006F/HFP
2A
7V~35V
50~500kHz
±5%
Provided
Provided
-40℃~+105℃
SOP8/HRP7
BD9007F/HFP
2A
7V~35V
50~500kHz
±20%
Provided
Provided
-40℃~+105℃
SOP8/HRP7
1/18
BD9009HFP
4A
7V~35V
50~500kHz
±5%
Provided
Provided
-40℃~+105℃
HRP7
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Absolute Maximum Ratings (Ta=25oC)
Parameter
Power Supply Voltage
Output Switch Pin Voltage
BD9006F/HFP,BD9007F/HFP
Output Switch Current
BD9009HFP
EN/SYNC Pin Voltage
RT, FB, INV Pin Voltage
HRP7
Power Dissipation
SOP8
Operating Temperature Range
Storage Temperature Range
Maximum Junction Temperature
Symbol
VIN
VSW
ISW
VEN/SYNC
VRT,VFB,VINV
Pd
Topr
Tstg
Tjmax
Limits
36
VIN
*1
2
*1
4
VIN
7
*2
5.5
*3
0.69
-40~+105
-55~+150
150
Unit
V
V
A
V
W
W
℃
℃
℃
*1 Should not exceed Pd-value.
3
*2 Reduce by 44mW/℃ over 25℃,when mounted on 2-layerPCB of 70×70×1.6mm
2
(PCB incorporates thermal via. Copper foil area on the reverse side of PCB: 10.5×10.5mm
2
Copper foil area on the reverse side of PCB: 70×70mm
3
*3 Reduce by 5.52mW/℃ over 25℃,when mounted on 2-layer PCB of 70×70×1.6mm
●Recommended Operating Range
Parameter
Operating Power Supply Voltage
Output Switch Current
Output Voltage (min pulse width)
Oscillation Frequency
Oscillation Frequency set Resistance
BD9006F/HFP
7~35
~2
250
50~500
27~360
BD9007F/HFP
7~35
~2
250
50~500
27~360
BD9009HFP
7~35
~4
360
50~500
27~360
Unit
V
A
ns
kHz
kΩ
●Possible Operating Range
Parameter
Operating Power Supply Voltage
BD9006F/HFP
5~35
BD9007F/HFP
5~35
BD9009HFP
5~35
Unit
V
●Electrical Characteristics
◎BD9006F/HFP (Unless otherwise specified, Ta=25℃, VIN=13.2V, VEN/SYNC=5V)
Spec Values
Parameter
Symbol
Unit
Min.
Typ.
Max.
Standby Circuit Current
ISTB
0
10
µA
Circuit Current
IQ
4
6.5
mA
【SW Block】
POWER MOS FET ON Resistance
RON
0.3
0.6
Ω
Operating Output Current
IOLIMIT
2
4
A
Of Overcurrent Protection
Output Leak Current
IOLEAK
0
30
µA
【Error Amp Block】
Reference Voltage 1
VREF1
0.784
0.800
0.816
V
Reference Voltage 2
VREF2
0.780
0.800
0.820
V
Reference Voltage Input Regulation
∆VREF
0.5
%
Input Bias Current
IB
-1
µA
Maximum FB Voltage
VFBH
2.2
2.4
V
Minimum FB Voltage
VFBL
0.5
0.6
V
FB Sink Current
IFBSINK
-0.47
-1.16
-2.45
mA
FB Source Current
IFBSOURCE
1
5
15
mA
Soft Start Time
TSS
3
5
9
mS
【Oscillator Block】
Oscillation Frequency
FOSC
285
300
315
kHz
Frequency Input Regulation
∆FOSC
0.5
%
【Enable/Sync Input Block】
Output ON Voltage
VENON
2.6
V
Output OFF Voltage
VENOFF
0.8
V
Sink Current
IEN/SYNC
35
90
µA
External Sync Frequency
FSYNC
495
500
505
kHz
Conditions
VEN/SYNC=0V
IO=0A,RT=51kΩ,VINV=0.7V
ISW=50mA
VIN=35V, VEN/SYNC=0V
VFB=VINV
VIN=10~16V,VFB=VINV
VINV=0.6V
VINV=0V
VINV=2V
VFB=1V,VINV=1V
VFB=1V,VINV=0.6V
Ta=-40~105℃
VIN=7V,RT=51kΩ
VIN=7~16V
VEN/SYNC Sweep Up,Ta=-40~105℃
VEN/SYNC Sweep Down,Ta=-40~105℃
RT=51kΩ,EN/SYNC=500kHz,Duty 50%
*Not designed to be radiation resistant.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
2/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
◎BD9007F/HFP (Unless otherwise specified, Ta=25℃, VIN=13.2V, VEN/SYNC=5V)
Spec Values
Parameter
Symbol
Unit
Min.
Typ.
Max.
Standby Circuit Current
ISTB
0
10
µA
Circuit Current
IQ
4
6.5
mA
【SW Block】
POWER MOS FET ON Resistance
RON
0.3
0.6
Ω
Operating Output Current
IOLIMIT
2
4
A
Of Overcurrent Protection
Output Leak Current
IOLEAK
0
30
µA
【Error Amp Block】
Reference Voltage 1
VREF1
0.784
0.800
0.816
V
Reference Voltage 2
VREF2
0.780
0.800
0.820
V
Reference Voltage Input Regulation
∆VREF
0.5
%
Input Bias Current
IB
-1
µA
Maximum FB Voltage
VFBH
2.2
2.4
V
Minimum FB Voltage
VFBL
0.5
0.6
V
FB Sink Current
IFBSINK
-0.47
-1.16
-2.45
mA
FB Source Current
IFBSOURCE
1
5
15
mA
Soft Start Time
TSS
3
5
9
mS
【Oscillator Block】
Oscillation Frequency
FOSC
240
300
360
kHz
Frequency Input Regulation
∆FOSC
0.5
%
【Enable/Sync Input Block】
Output ON Voltage
VENON
2.6
V
Output OFF Voltage
VENOFF
0.8
V
Sink Current
IEN/SYNC
35
90
µA
External Sync Frequency
FSYNC
495
500
505
kHz
Conditions
VEN/SYNC=0V
IO=0A,RT=51kΩ,VINV=0.7V
ISW=50mA
VIN=35V, VEN/SYNC=0V
VFB=VINV
VIN=10~16V,VFB=VINV
VINV=0.6V
VINV=0V
VINV=2V
VFB=1V,VINV=1V
VFB=1V,VINV=0.6V
Ta=-40~105℃
VIN=7V,RT=51kΩ
VIN=7~16V
VEN/SYNC Sweep Up,a=-40~105℃
VEN/SYNC Sweep,own,Ta=-40~105℃
RT=51kΩ,
EN/SYNC=500kHz,Duty 50%
*Not designed to be radiation resistant.
◎BD9009HFP (Unless otherwise specified, Ta=25℃, VIN=13.2V, VEN/SYNC=5V)
Spec Values
Parameter
Symbol
Unit
Min.
Typ.
Max.
Standby Circuit Current
ISTB
0
10
µA
Circuit Current
IQ
4.2
6.5
mA
【SW Block】
POWER MOS FET ON Resistance
RON
0.24
0.5
Ω
Operating Output Current
IOLIMIT
4
7
A
Of Overcurrent Protection
Output Leak Current
IOLEAK
0
30
µA
【Error Amp Block】
Reference Voltage 1
VREF1
0.784
0.800
0.816
V
Reference Voltage 2
VREF2
0.780
0.800
0.820
V
Reference Voltage Input Regulation
∆VREF
0.5
%
Input Bias Current
IB
-1
µA
Maximum FB Voltage
VFBH
2.2
2.4
V
Minimum FB Voltage
VFBL
0.5
0.6
V
FB Sink Current
IFBSINK
-0.47
-1.16
-2.45
mA
FB Source Current
IFBSOURCE
1
5
15
mA
Soft Start Time
TSS
3
5
9
mS
【Oscillator Block】
Oscillation Frequency
FOSC
285
300
315
kHz
Frequency Input Regulation
∆FOSC
0.5
%
【Enable/Sync Input Block】
Output ON Voltage
VENON
2.6
V
Output OFF Voltage
VENOFF
0.8
V
Sink Current
IEN/SYNC
35
90
µA
External Sync Frequency
FSYNC
495
500
505
kHz
Conditions
VEN/SYNC=0V
IO=0A,RT=51kΩ,VINV=0.7V
ISW=50mA
VIN=35V, VEN/SYNC=0V
VFB=VINV
VIN=10~16V,VFB=VINV
VINV=0.6V
VINV=0V
VINV=2V
VFB=1V,VINV=1V
VFB=1V,VINV=0.6V
Ta=-40~105℃
VIN=7V,RT=51kΩ
VIN=7~16V
VEN/SYNC Sweep Up,Ta=-40~105℃
VEN/SYNC Sweep Down,Ta=-40~105℃
RT=51kΩ,EN/SYNC=500kHz,Duty 50%
*Not designed to be radiation resistant.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
3/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Reference Data
105
0.812
0.808
0.804
0.800
0.796
0.792
0.788
52.0
51.5
51.0
50.5
50.0
RT=330kΩ
49.5
49.0
48.5
48.0
-25
0
25
50
75
100
102
101
100
98
97
96
-25
0
25
50
75
100 125
-50
AMBIENT TEMPERATURE:Ta[℃]
Fig.1 Output reference voltage vs. Ambient
temperature (All series)
OSCILATING FREQUENCY:fosc[kHz
312
309
306
303
RT=51kΩ
297
294
291
288
10
520
9
515
510
505
500
495
RT=30kΩ
485
480
-50
-25
0
25
50
75
AMBIENT TEMPERATURE:Ta[℃]
-25
0
25
50
75
100
Ta=-40℃
6
5
4
3
2
1
0
5
10
15
20
25
30
35
Ta=105℃
4
3
1.4
Inflection Point
From Top: VEN=7V (Ta=105℃)
VEN=6.8V (Ta=25℃)
VEN=6.4V(Ta=-40℃)
1.2
1.0
0.8
0.6
0.4
0.2
40
0.0
5
10
15
20
25
30
35
0.0
40
Fig.8 EN/SYNC Input Current
(All series)
From Top: Ta=105℃
Ta=25℃
Ta=-40℃
0.8
0.6
0.4
0.2
0.5
1.0
1.5
2.0
OUTPUT CURRENT:Io[A]
Fig.10 ON Resistance VIN=13.2V
(BD9006F/HFP, BD9007F/HFP)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
1.5
2.0
80
70
60
50
40
30
From
Top: 5.0V
output
5.0V出力
上から
3.3V output
3.3V出力
2.5V output
2.5V出力
1.5V
output
1.5V出力
20
10
0.0
0.0
1.0
Fig.9 ON Resistance VIN=7V
(BD9006F/HFP, BD9007F/HFP)
CONVERSION EFFICIENCY [%]
FET ON RESISTANCE:RON[Ω]
1.2
1.0
0.5
OUTPUT CURRENT:Io[A]
90
0.0
40
0.4
100
0.2
35
0.6
1.4
0.4
30
0.8
1.4
0.6
25
From Top: Ta=105℃
Ta=25℃
Ta=-40℃
1.0
1.6
0.8
20
1.2
1.6
From Top: Ta=105℃
Ta=25℃
Ta=-40℃
15
1.4
INPUT VOLTAGE:VEN/SYNC[V]
1.2
10
0.2
0
Fig.7 Circuit Current
(BD9006F/HFP, BD9007F/HFP)
5
1.6
INPUT VOLTAGE: VIN[V]
1.0
Ta=25℃,-40℃
2
Fig.6 Standby Current
(BD9006F/HFP, BD9007F/HFP)
0.0
0
5
INPUT VOLTAGE:VIN[V]
FET ON RESISTANCE:RON[Ω]
EN/SYNC INPUT CURRENT:[mA]
7
125
6
0
1.6
Ta=105℃
From
Top: Ta=105℃
上から
Ta=25℃
Ta=25℃
Ta=-40℃
100
7
125
Fig.5 Frequency vs. Ambient
temperature (All series)
8
75
8
AMBIENT TEMPERATURE:Ta[℃]
Fig.4 Frequency vs. Ambient
temperature (All series)
50
0
-50
100 125
25
1
475
285
0
Fig.3 Frequency vs. Ambient
temperature (All series)
525
490
-25
AMBIENT TEMPERATURE:Ta[℃]
Fig.2 Frequency vs. Ambient
temperature (All series)
315
300
RT=160kΩ
99
95
-50
125
AMBIENT TEMPERATURE:Ta[℃]
OSCILATING FREQUENCY:fosc[kHz]
103
STAND-BY CURRENT:ISTB [μA]
-50
CIRCUIT CURRENT: ICC[mA]
104
47.5
0.784
FET ON RESISTANCE:RON[Ω]
OSCILATING FREQUENCY:fosc[kHz]
52.5
OSCILATING FREQUENCY:fosc[kHz]
REFERENCE VOLTAGE:VREF[V]
0.816
VIN=13.2V
f=100kHz
Ta=25℃
0
0.0
0.5
1.0
1.5
2.0
OUTPUT CURRENT:Io[A]
Fig.11 ON Resistance VIN=35V
(BD9006F/HFP, BD9007F/HFP)
4/18
0.0
0.5
1.0
1.5
2.0
OUTPUT CURRENT:Io[A]
Fig.12 Efficiency f=100kHz
(BD9006F/HFP, BD9007F/HFP)
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
90
CONVERSION EFFICIENCY [%]
100
90
70
60
50
From Top: 5.0V output
3.3V output
2.5V output
1.5V output
40
30
VIN=13.2V
f=300kHz
Ta=25℃
20
10
80
70
60
50
From Top: 5.0V output
3.3V output
2.5V output
1.5V output
40
30
VIN=13.2V
f=500kHz
Ta=25℃
20
10
0
0.5
1.0
1.5
2.0
1.0
1.5
0
2.0
7
6
6
6
4
3
Vo=5V
f=300kHz
Ta=-40℃
1
5
4
3
2
Vo=5V
f=300kHz
Ta=25℃
1
0
0.5
1.0
1.5
2.0
0.5
1.0
1.5
Fig.16 The lowest voltage of
possible operation Ta=-40℃
(BD9006F/HFP, BD9007F/HFP)
Fig.17 The lowest voltage of
possible operation Ta=25℃
(BD9006F/HFP, BD9007F/HFP)
4
3
2
1
0
0.6
0.7
0.5
0.4
0.3
0.2
0.1
10
15
20
25
30
VIN[V] :VIN[V]
INPUT VOLTAGE
35
40
Fig.19 Circuit Current
(BD9009HFP)
0.6
CONVERSION
EFFICIENCY[%]
FET ON RESISTANCE[Ω]
上から
Ta=105℃
FROM TOP:
Ta=105℃
Ta=25℃
Ta=25℃
Ta=-40℃
Ta=-40℃
0.7
0.5
0.4
0.3
0.2
0.1
0
1
2
3
OUTPUT CURRENT:Io[A]
1
2
3
OUTPUT CURRENT:Io[A]
4
Fig.22 ON Resistance VIN=35V
(BD9009HFP)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
2.0
Ta=-40℃
0.5
0.4
0.3
0.2
4
0
100
90
90
80
70
60
上から 5.0V出力
5.0V OUTPUT
3.3V出力
3.3V
OUTPUT
2.5V OUTPUT
2.5V出力
1.5V
OUTPUT
1.5V出力
FROM TOP:
40
30
20
10
VIN=13.2V
f=100kHz
Ta=25℃
1
2
3
OUTPUT CURRENT:Io[A]
Fig.23 Efficiency f=100kHz
(BD9009HFP)
5/18
3
4
80
70
60
50
上から
FROM
TOP:
40
30
20
10
0
0
2
Fig.21 ON Resistance VIN=13.2V
(BD9009HFP)
100
50
1
OUTPUT CURRENT:Io[A]
0
0
1.5
FROM
TOP:
Ta=105℃
上から
Ta=105℃
Ta=25℃
Ta=25℃
Ta=-40℃
0.6
Fig.20 ON Resistance VIN=7V
(BD9009HFP)
0.8
1.0
0
0
CONVERSION
CONVERSIONEFFICIENCY[%]
EFFICIENCY[%]
5
0.5
0.1
0
0
Vo=5V
f=300kHz
Ta=105℃
Fig.18 The lowest voltage of
possible operation Ta=105℃
(BD9006F/HFP, BD9007F/HFP)
FET ON RESISTANCE[Ω]
5
2
0.8
FROM TOP:
Ta=105℃
上から
Ta=105℃
Ta=25℃
Ta=25℃
Ta=-40℃
Ta=-40℃
0.7
FET ON RESISTANCE:RON[Ω]
6
3
OUTPUT CURRENT:Io[A]
0.8
Ta=105℃
Ta=25℃
Ta=-40℃
4
0.0
OUTPUT CURRENT:Io[A]
FROM TOP:
5
5
2.0
OUTPUT CURRENT:Io[A]
7
4
0
0.0
8
3
1
0
0.0
2
Fig.15 Over-current Protection Operation
Current (BD9006F/HFP, BD9007F/HFP)
7
5
1
OUTPUT CURRENT:Io[A]
Fig.14 Efficiency f=500kHz
(BD9006F/HFP, BD9007F/HFP)
INPUT VOLTAGE VIN [V]
INPUT VOLTAGE VIN [V]
0.5
7
2
VIN=13.2V
f=300kHz
Vo=5V
2
OUTPUT CURRENT:Io[A]
Fig.13 Efficiency f=300kHz
(BD9006F/HFP, BD9007F/HFP)
CIRCUIT CURRENT:ICC[mA]
4
0
0.0
OUTPUT CURRENT:Io[A]
FET ON RESISTANCE[Ω]
6
0
0.0
From Left: Ta=105℃
Ta=-40℃
Ta=25℃
8
OUTPUT VPLTAGE:Vo [V]
80
10
INPUT VOLTAGE VIN [V]
CONVERSION EFFICIENCY [%]
100
4
0
5.0V出力
5.0V OUTPUT
3.3V OUTPUT
3.3V出力
2.5V OUTPUT
1.5V OUTPUT
2.5V出力
1.5V出力
VIN=13.2V
f=300kHz
Ta=25℃
1
2
OUTPUT CURRENT:Io[A]
3
4
Fig.24 Efficiency f=300kHz
(BD9009HFP)
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
9
80
8
70
60
50
上から 5.0V出力
FROM TOP: 5.0V OUTPUT
3.3V OUTPUT
3.3V出力
2.5V OUTPUT
2.5V出力
1.5V OUTPUT
1.5V出力
40
30
20
10
VIN=13.2V
f=500kHz
Ta=25℃
1
2
3
OUTPUT CURRENT:Io[A]
Ta=-40℃
7
6
5
4
3
6
INPUT VOLTAGE
VIN[V] :VIN[V]
INPUT VOLTAGE
VIN[V] :VIN[V]
7
5
4
3
Vo=5V
f=300kHz
Ta=25℃
1
1
2
3
4
5
6
OUTPUT CURRENT:Io[A]
7
8
Fig.26 Over-current Protection
Operation Current (BD9009HFP)
6
3
2
Vo=5V
f=300kHz
Ta=-40℃
0
0
7
4
0
0
4
5
1
2
Fig.25 Efficiency f=500kHz
(BD9009HFP)
2
6
Ta=105℃
FROM左から
LEFT: Ta=105℃
Ta=25℃
Ta=25℃
Ta=-40℃
1
0
0
7
INPUT VOLTAGE
VIN[V] :VIN[V]
90
OUTPUT VOLTAGE:Vo[V]
10
CONVERSION EFFICIENCY[%]
100
1
2
3
OUTPUTSW[A]
CURRENT :Io[A]
4
Fig.27 The lowest voltage of
possible operation Ta=-40℃
(BD9009HFP)
5
4
3
2
Vo=5V
f=300kHz
Ta=105℃
1
0
0
0
1
2
3
OUTPUT CURRENT
:Io[A]
SW[A]
Fig.28 The lowest voltage of
possible operation Ta=25℃
(BD9009HFP)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
4
0
1
2
3
OUTPUT CURRENT
:Io[A]
SW[A]
4
Fig.29 The lowest voltage of
possible operation Ta=105℃
(BD9009HFP)
6/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Block Diagrams / Application circuit / PIN assignment
(BD9006F/BD9007F)
(BD9006HFP/BD9007HFP)
PVIN
1
VIN
5
8
+
VIN
EN/SYNC
VREG
220μF 2 μ F
7
EN/SYNC
Vref
220μ F 2 μ F
Internal
Bias
SOFT
START
1
+
Internal
Bias
SYNC
SOFT
START
5V
SYNC
5V
+
+
INV
PWM
COMPARATOR
ERROR AMP
4
-
+
+
-
CURRENT LIMIT
SDWN
5
DRV
0.8V
22000pF
DRIVER
CURRENT LIMIT
COMPARATOR
SDWN
+
+
-
Reset
+
Set
Slope
ERROR AMP
INV
Reset
+
GND EN/SYNC
VIN RT
-
PWM
33 μH
SW
2
SDWN
Vo
UVLO/
TSD
DRV
0.8V
22000pF
PVIN
33 μH
2
Vo
+
UVLO/
TSD
330μ F
330μF
OSC
7
INV
FB
SW
SDWN
30 K Ω
SW
DRIVER
Set
S lope
+
VIN FB INV EN/SYNC
SW GND RT
GND
FB
47 kΩ
3
30 K Ω
OSC
GND
4
47 K Ω
FB
3
6
RT
6
RT
51 K Ω
15 K Ω
51 K Ω
15 K Ω
Fig.30
Fig.31
No.
Pin name
1
PVIN
2
SW
3
FB
4
INV
Output voltage feedback
5
Function
No.
Pin name
1
VIN
Output
2
SW
Output
Error Amp output
3
FB
Error Amp output
4
GND
Ground
5
INV
Output voltage feedback
6
RT
Frequency setting resistor connection
Power system power supply input
EN/SYNC Enable/Synchronizing pulse input
6
RT
7
GND
8
VIN
Frequency setting resistor connection
Ground
7
Power supply input
FIN
Function
Power supply input
EN/SYNC Enable/Synchronizing pulse input
-
Ground
*VIN and PVIN must be shorted before use
(BD9009HFP)
V IN
+
1
7
EN/SYNC
Vref
220μF 2 μF
Internal
Bias
SYNC
SOFT
START
5V
+
INV
PWM
COMP
ERROR AMP
5
-
+
+
SDWN
+
DRV
0.8V
22000pF
CURRENT
LIMIT
Reset
DRIVER
Set
Slope
SDWN
2
SW 33μ H
Vo
+
UVLO/
UVLO/
TSD
TSD
330μ F
30 K Ω
OSC
4
3
47 K Ω
COUNTER
TIMER
FB
6
VIN FB INV EN/SYNC
SW GND RT
GND
RT
51 K Ω
15 K Ω
Fig.32
No.
Pin name
Function
1
VIN
Power supply input
2
SW
Output
3
FB
Error Amp output
4
GND
Ground
5
INV
Output voltage feedback
RT
Frequency setting resistor connection
6
7
FIN
EN/SYNC Enable/Synchronizing pulse input
-
Ground
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
7/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Description of operations
・ERROR AMP
The ERROR AMP block is an error amplifier used to input the reference voltage (0.8V Typ.) and the INV pin voltage. The output FB pin
controls the switching duty and output voltage Vo. These INV and FB pins are externally mounted to facilitate phase compensation.
Inserting a capacitor and resistor between these pins enables adjustment of phase margin. (Refer to recommended examples on pages
13~15.)
・SOFT START
The SOFT START block provides a function to prevent the overshoot of the output voltage Vo through gradually increasing the normal
rotation input of the error amplifier when power supply turns ON to gradually increase the switching Duty. The soft start time is set to
5msec (Typ.).
・SYNC
By making the “EN/SYNC” terminal less than 0.8V, the circuit can be shut down.
Furthermore, by applying pulse with higher frequency than the configured oscillation frequency to the “EN/SYNC” terminal, external
sync is possible. (Sync possible with double the configured frequency-configured frequency or 500kHz)
・OSC(Oscillator)
This circuit generates the pulse wave to be input to the slope, and by connecting resistance to “RT”, 50~500kHz oscillating frequency
can be configured. (Refer to p.13 Fig.40)
・slope
This block generates saw tooth waves from the clock generated by the OSC. The generated saw tooth waves are sent to PWM
COMPARATOR.
・PWM COMPARATOR
The PWM COMPARATOR block is a comparator to make comparison between the FB pin and internal saw tooth wave and output a
switching pulse.
The switching pulse duty varies with the FB value.
min Duty width : 250ns(BD9006F/HFP,BD9007HFP)
min Duty width : 360ns(BD9009HFP)
・TSD (Thermal Shut Down)
In order to prevent thermal destruction/thermal runaway of the IC, the TSD block will turn OFF the output when the chip temperature
reaches approximately 150℃ or more. When the chip temperature falls to a specified level, the output will be reset. However, since the
TSD is designed to protect the IC, the chip junction temperature should be provided with the thermal shutdown detection temperature of
less than approximately.150℃.
・CURRENT LIMIT
While the output POWER P-ch MOS FET is ON, if the voltage between drain and source (ON resistance×load current) exceeds the
reference voltage internally set with the IC, this block will turn OFF the output to latch. The overcurrent protection detection values
have been set as shown below:
BD9009/HFP ・・・ 7A (Typ.)
BD9006F/HFP, BD9007F/HFP ・・・ 4A (Typ.)
Furthermore, since BD9006F/HFP,BD9007F/HFP overcurrent protection is an automatically reset, after the output is turned OFF and
latched, the latch will be reset with the RESET signal output by each oscillation frequency.
When BD9009HFP over current protection circuit operates, output is turned off immediately, and then this IC restart to operate after
4096/fosc sec.
However, this protection circuit is only effective in preventing destruction from sudden accident. It does not support for the continuous
operation of the protection circuit (e.g. if a load, which significantly exceeds the output current capacitance, is normally connected).
Furthermore, since the overcurrent protection detection value has negative temperature characteristics, consider thermal design.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
8/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Timing Chart
(All series)
・Basic Operation
VIN
Internal
slope
FB
SW
VEN/SYNC
Fig.33
・Over Current Protection Operation
SW
SW
Over Current
Detect Level
検出レベル
IL
IL
Vo
Vo
FB
FB
INTERNAL
slope
内部 slope
Internal
内部 SOFT START
*tOFF
terminal
*tOFF
区間
について
<BD9009HFP>
COUNTER TIMER動作あり
tOFF= 4096/ fosc[s]
Ex:
fosc=300kHz,tOFF=13.65ms
例 )When
fosc=300kHz時、t
=13.65ms
<BD9006F/HFP, BD9007F/ HFP>
tOFF*
tOFF*
tOFF*
過電流保護
自己復帰
Auto
reset
Output
Voltage
出力電圧Vo
(再Start
ソフトスタート
)
検出 Short
(Soft
Operation)
GNDショート
自己復帰
自己復帰
Auto
reset
Auto
reset
(再Start
ソフトスタート
)
(再Start
ソフトスタート
)
(Soft
Operation)
(Soft
Operation)
Fig.34
COUNTER
TIMER
Not
Operation
COUNTER
TIMER
動作なし
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
9/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●External synchronizing function
In order to activate the external synchronizing function, connect the frequency setting resistor to the RT pin and then input a
synchronizing signal to the EN/SYNC pin. As the synchronizing signal, input a pulse wave higher than a frequency
determined with the setting resistor (RT).
However, the external sync frequency should be configured at less than double the configured frequency.
(ex.) When the configured frequency is 100kHz, the external sync frequency should be less than 200kHz.
Furthermore, the pulse wave’s LOW voltage should be under 0.8V and the HIGH voltage over 2.6V (when the HIGH voltage
is over 6V the EN/SYNC input current increases [see p.4 Fig.8]), the through rate of stand-up (and stand-down) under 20V/
μS.
BD9006HFP
BD9007HFP
BD9009HFP
1
2
3
4
5
6
7
VIN
VIN =13.2V
VIN
SW
FB
G ND
I NV
RT
EN/ S YNC
C28
CIN
220μF
2μF
SW
33μH
L1
REG
GND
GND
Ven/sync=0~5V
C3
RT
open
51kΩ
D1
C2
open
R3
30kΩ
R1
C0
47kΩ
330μF
f=450kHz
SR=20V/μs
Duty=50%
C1
22000pF
R2
15kΩ
GND
Fig.35 External Sync Sample Circuit
(Vo=3.3V, Io=1A, f=300kHz, EN/SYNC=450kHz)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
10/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Description of external components
L1
VIN
VIN
+
C28
Vo
SW
+
CIN
D1
Co
R1
RT
INV
RT
R2
FB
EN/SYNC
GND
R3
C1
Fig.36
Design Procedure
Sample Calculations
Vo=Output voltage, VIN (Max.)=Maximum input voltage
Io (Max.)=Maximum load current, f=Oscillation frequency
When Vo=3.3V, VIN (Typ.)=13.2V
Io(Max.)=1A and f=300kHz
1. Setting or output voltage
Output voltage can be obtained by the formula shown below:
When VO=3.3V and R2=15kΩ
Vo=0.8×(1+R1/R2)
3.3=0.8×(1+R1/15kΩ)
R1=46.875kΩ≒47kΩ
Use the formula to select the R1 and R2.
Furthermore, set the R2 to 30kΩ or less.
Select the current passing through the R1 and R2 to be small
enough for the output current.
R1=47kΩ
2. Selection of coil (L1)
When VIN=13.2V, Vo=3.3V, Io=1A and f=300kHz,
The value of the coil can be obtained by the formula shown
L1=(13.2-3.3)×3.3/{13.2×300k×(1×0.3)}
below:
=27.5µH≒33µH
L1=(VIN-Vo)×Vo / (VIN×f×∆Io)
∆Io: Output ripple current
∆Io should typically be approximately 20 to 30% of Io.
If this coil is not set to the optimum value, normal (continuous)
L1=33µH
Oscillation may not be achieved. Furthermore, set the value of
the coil with an adequate margin so that the peak current
passing through the coil will not exceed the rated current of the
coil.
3. Selection of output capacitor (Co)
VIN=13.2V, Vo=3.3V, L=33µH, f=300kHz
The output capacitor can be determined according to the output ∆IL=(13.2-3.3)×3.3/(33×10-6×300×103×13.2)
ripple voltage ∆Vo(p-p) required. Obtain the required ESR value
=0.25
by the formula shown below and then select the capacitance.
∆IL=0.25A
∆IL=(VIN-Vo)×Vo/(L×f×VIN)
∆Vpp=∆IL×ESR+(∆IL×Vo)/(2×Co×f×VIN)
Set the rating of the capacitor with an adequate margin to the
output voltage. Also, set the maximum allowable ripple current
with an adequate margin to ∆IL. Furthermore, the output rise
time should be shorter than the soft start time. Select the output When ILIMIT: 2A, Io(Max)=1A, Vo=3.3V
capacitor having a value smaller than that obtained by the
formula shown below.
CMAX =3.0m×(2-1)/3.3
3.0m×(ILIMIT-Io(Max))
≒910µ
CMAX =
Vo
ILIMIT:2A (BD9006F/HFP, BD9007F/HFP),4A (BD9009HFP)
If this capacitances is not optimum, faulty startup may result.
CMAX=910µF
(※3.0m is soft start time(min).)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
11/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
Design Method
4. Selection of diode (D1)
Set diode rating with an adequate margin to the maximum
load current. Also, make setting of the rated inverse voltage
with an adequate margin to the maximum input voltage.
A diode with a low forward voltage and short reverse
recovery time will provide high efficiency.
5. Selection of input capacitor (CIN, C28)
Two capacitors, ceramic capacitor CIN and bypass
capacitor C28 should be inserted between the VIN and
GND. Be sure to insert a ceramic capacitor of 2 to 10µF for
the CIN. The capacitor C28 should have a low ESR and a
significantly large ripple current. The ripple current IRMS can
be obtained by the following formula:
Sample Calculations
When
VIN(max.)=35V
Io(max.)=2A
Diode ratings must include:
Current over 2A
Withstand minimum 35V
When VIN=13.2V, Vo=3.3V and Io=1A:
2
IRMS=1×√ 3.3×(13.2-3.3)/(13.2)
IRMS=0.433A
2
IRMS=Io×√ Vo×(VIN-Vo)/VIN
Select capacitors that can accept this ripple current.
If the capacitance of CIN and C28 is not optimum, the IC
may malfunction.
6. Setting of oscillating frequency
Referring Fig.40 on the following page, select R for the
oscillating frequency to be used.
7. Setting of phase compensation (R3 and C1)
The phase margin can be set through inserting a capacitor or
a capacitor and resistor between the INV pin and the FB pin.
Each set value varies with the output coil, capacitance, I/O
voltage, and load. Therefore, set the phase compensation to
the optimum value according to these conditions. (For details,
refer to Application circuit on page.13~)
If this setting is not optimum, output oscillation may result.
When f=300kHz
From p.13 Fig.40, a resistance of RT=51kΩ is selected.
RT=51kΩ
※Please contact us if there are any questions regarding
phase compensation configuration.
※The set values listed above are all reference values. On the actual mounting of the IC, the characteristics may vary with the
routing of wirings and the types of parts in use. In the connection, it is recommended to thoroughly verify these values on the
actual system prior to use.
●Directions for pattern layout of PCB
GND
①
RT
R3
EN
③
C3
⑧
C1
②
C28
RT
INV
GND
FB
SW
VIN
BD9006HFP
BD9007HFP
BD9009HFP
SIGNAL GND
L1
CIN
⑧
R1
D1
POWER
GND
L
O
A
D
R2
C2 ④
① Arrange the wirings shown by heavy lines as short as possible in
a broad pattern.
② Locate the input ceramic capacitor CIN as close to the VIN-GND
pin as possible.
③ Locate the RT as close to the GND pin as possible.
④ Locate the R1 and R2 as close to the INV pin as possible, and
provide the shortest wiring from the R1 and R2 to the INV pin.
⑤ Locate the R1 and R2 as far away from the L1 as possible.
⑥ Separate POWER GND (Schottky diode, I/O capacitor’s GND)
and SIGNAL GND (RT, GND), so that SW noise doesn’t have an
effect on SIGNAL GND at all.
⑦ Design the POWER wire line as wide and short as possible.
⑧ Additional pattern for C2 and C3 expand compensation flexibility.
⑤
⑥
Fig.37
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
12/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
D1
CIN
C3
RT
Fig.24
R3
L1
C28
C28
CIN
R4
R2
RT
C2
R1
R3
L1
C2
R1
R4
Co
C1
C3
D1
C1
R2
Co
Fig.38 BD9006F,BD9007F
Reference Layout Pattern
Fig.39 BD9006HFP,BD9007HFP,BD9009HFP
Reference Layout Pattern
※As shown above ,design the GND pattern as large as possible within inner layer.
※Gray zones indicate GND.
500
RT[kΩ]
27
30
33
36
39
43
47
51
56
62
68
75
82
91
OSCILATION FREQUENCY:fosc[kHz]
450
400
350
300
250
200
150
100
50
0
100
200
OSCILATING FREQUENCY SETTEING
RESISTANCE:RT[kΩ]
Fig.40 RT Resistance Values vs.
Oscillating Frequency
fosc[kHz]
537
489
449
415
386
353
324
300
275
250
229
209
192
174
RT[kΩ]
100
110
120
130
150
160
180
200
220
240
270
300
330
360
fosc[kHz]
160
146
134
124
108
102
91
82
75
69
61
55
50
46
300
※The values in the graph for oscillating frequency are Typical values, and variance of±5% for
BD9006F/HFP,BD9009HFP and ±20% for BD9007F/HFP should be considered.
●Phase Compensation setting procedure
1. Application stability conditions
The following section describes the stability conditions of the negative feedback system.
Since the DC/DC converter application is sampled according to the switching frequency, GBW (frequency at 0-dB gain) of the overall
system should be set to 1/10 or less of the switching frequency. The following section summarizes the targeted characteristics of this
application.
・At a 1 (0-dB) gain, the phase delay is 150˚ or less (i.e. the phase margin is 30˚ or more).
・The GBW for this occasion is 1/10 or less of the switching frequency.
Responsiveness is determined with restrictions on the GBW. To improve responsiveness, higher switching frequency should be provided.
Replace a secondary phase delay (-180˚) with a secondary phase lead by inserting two-phase leads, to ensure the stability through the
phase compensation. Furthermore, the GBW (i.e., frequency at 0-dB gain) is determined according to phase compensation capacitance
provided for the error amplifier. Consequently, in order to reduce the GBW, increase the capacitance value.
(1) Typical integrator (low pass filter)
FB
フィード
feedback
バック
(2) Open loop characteristics of integrator
R
A
A
Gain
[dB]
(a)
-20dB/decade
GBW(b)
0
1
Point (a) fa= 2πRCA
[Hz]
f
0
Phase
[ °] 90
C
-180
-90°
位相マージン
Phase
margin
Point (b) fb=GBW=
-180°
f
1
[Hz]
2πRC
Since the error amplifier is provided with (1) or (2) phase compensation, the low pass filter is applied. In the case of the DC/DC converter
application, the R becomes a parallel resistance of the feedback resistance.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
13/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
2. For output capacitors having high ESR, such as electrolyte capacitor
For output capacitors that have high ESR (i.e., several Ω), the phase compensation setting procedure becomes comparatively
simple. Since the DC/DC converter application has a LC resonant circuit attached to the output, a -180˚ phase-delay occurs in that
area. If ESR component is present, however a +90˚ phase-lead occurs to shift the phase delay to -90˚. Since the phase delay
should be set within 150˚, it is a very effective method but tends to increase the ripple component of the output voltage.
(1) LC resonant circuit
(2) With ESR provided
Vcc
Vcc
L
C
Vo
+
RESR
C
1
2π√LC
fr =
L
Vo
1
[Hz]: Resonance
2π√LC
1
fESR =
[Hz]: Phase lead
2πRESRC
[Hz]
fr =
At this resonance point, a-180˚
phase-delay occurs.
A -90˚ phase-delay occurs.
According to changes in phase characteristics, due to the ESR, only one phase lead should be inserted. For this phase lead, select
either of the methods shows below:
(3) Insert Feedback Resistance in the C.
(4) Insert the R3 in integrator.
Vo
Vo
C1
R3
C2
C2
R1
R1
INV
A
INV
FB
Phase lead fz =
1
2πC1R1
FB
A
R2
R2
Phase lead fz =
[Hz]
1
2πC2R3
[Hz]
To cancel the LC resonance, the frequency to insert the phase lead should be set close to the LC resonant frequency.
The setting above have is estimated. Consequently, the setting may be adjusted on the actual system. Furthermore, since
these characteristics vary with the layout of PCB loading conditions, precise calculations should be made on the actual
system.
3.For output capacitors having low ESR, such as low impedance electrolyte capacitor or OS-CON
In order to use capacitors with low ESR (i.e., several tens of mΩ), two phase-leads should be inserted so that a -180˚phase-delay,
due to LC resonance, will be compensated. The following section shows a typical phase compensation procedure.
(1) Phase compensation with secondary phase lead
Vo
C1
R3
=
1
2πR1C1
[Hz]
Phase lead:fz2
=
1
2πR3C2
[Hz]
=
1
2π√LC
[Hz]
C2
R1
INV
Phase lead:fz1
A
FB
LC resonant:fr
R2
frequency
To set phase lead frequency, insert both of the phase leads close to the LC resonant frequency. According to empirical rule, setting the
phase lead frequency fZ2 with R3 and C2 lower than the LC resonant frequency fr, and the phase lead frequency fZ1 with the R1 and
C1 higher than the LC resonant frequency fr, will provide stable application conditions.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
14/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
<Reference> Measurement of open loop of the DC/DC converter
To measure the open loop of the DC/DC converter, use the gain phase analyzer or FRA to measure the frequency characteristics.
VO
DC/DC converter
controller
+
+
①
②
<Procedure>
1. Check to ensure output causes no oscillation at the maximum load in
closed loop.
2.
Isolate ① and ② and insert Vm (with amplitude of
approximately.
100mVpp).
3. Measure (probe) the oscillation of ① to that of ②.
①
RL
②
Vm
Maximum load
Load
0
0
Inadequate phase margin
Output
voltage
Adequate phase margin
t
Furthermore, the phase margin can also be measured with the load responsiveness.
Measure variations in the output voltage when instantaneously changing the load
from no load to the maximum load. Even though ringing phenomenon is caused,
due to low phase margin, no ringing takes place. Phase margin is provided.
However, no specific phase margin can be probed.
※Please contact us if you have any questions regarding phase compensation.
●Heat Loss
For thermal design, be sure to operate the IC within the following conditions.
(Since the temperatures described hereunder are all guaranteed temperature, take margin into account.)
1. The ambient temperature Ta is to be 105℃ or less.
2. The chip junction temperature Tj is to be 150℃ or less.
The chip junction temperature Tj can be considered in the following two patterns:
To obtain Tj from the IC surface temperature TC
in actual use state,
Tj=TC+θj-c×W
< Reference value > θj-c : HRP7 7℃/W
SOP8
32.5℃/W
To obtain Tj from the ambient temperature Ta
Tj=Ta+θj-a×W
< Reference. value > θj-a : HRP7 89.3℃/W Single piece of IC
54.3℃/W 2-layer PCB (Copper foil area on the
2
front side of PCB: 15×15mm )
22.7℃/W 2-layer PCB (Copper foil area on
2
the front side of PCB: 70×70mm )
3
PCB size: 70×70×1.6mm
(PCB incorporates thermal via.)
Copper foil area on the front side of PCB:
2
10.5×10.5mm
SOP8 222.2℃/W Single piece of IC
181.8℃/W 1-layer PCB
3
PCB size: 70×70×1.6mm
The heat loss W of the IC can be obtained by the formula shown below:
Vo
2
+ VIN × Icc + Tr × VIN × Io × f
W = Ron × Io ×
VIN
Ron: ON resistance of IC (refer to page.4,5) Io: Load current
Vo: Output voltage
VIN: Input voltage
ICC: Circuit current (refer to page.2,3)
Tr: Switching rise/fall time (approximately 20nsec)
f: Oscillation frequency
1
Tr
VIN
2
① Ron × Io
② 2×
SW wave from
GN
1
× Tr ×
2
1
× VIN × Io
T
=Tr × VIN × Io× f
2
T=
1
f
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
15/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
SW
RT
VIN
INV
Internal Power
Internal Power
VIN
VIN
VIN
SW
INV
RT
1kΩ
167kΩ
EN/SYNC
FB
Internal Power
Internal Power
VIN
EN/
SYNC
VIN
20Ω
60kΩ
FB
222
kΩ
221
kΩ
145
kΩ
139
kΩ
1kΩ
1kΩ
Fig.41 Equivalent circuit
●Cautions on use
1. Absolute maximum ratings
If excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down
the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will
expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.
2. GND potential
Ground-GND potential should maintain at the minimum ground voltage level. Furthermore, no terminals should be lower than the
GND potential voltage including electric transients.
3. Thermal design
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
4. Inter-pin shorts and mounting errors
When attaching to the set substrate, pay special attention to the direction and proper placement of the IC. If the IC is attached
incorrectly, it may be destroyed.
Furthermore, when using the IC with VIN and EN/SYNC terminals shorted, and the 5-pin (SOP8 package) or 7-pin (HRP7
package) EN/SYNC terminal and 6-pin RT terminal are shorted, the IC may also be damaged when VIN>7V.
5. Operation in strong electromagnetic field
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
6. Inspection with set printed circuit board
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always
discharge capacitors after each process or step. Always turn the IC’s power supply off before connecting it to, or removing it from a
jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution
when transporting and storing the IC.
7. IC pin input (Fig. 42)
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions
are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic, creating a parasitic diode
or transistor. For example, the relation between each potential is as follows:
・When GND>pin A and GND>pin B, the P-N junction operates as a parasitic diode.
・When pin B >GND>pin A, the P-N junction operates as a parasitic transistor. Parasitic diodes can occur inevitably in the structure
of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage.
Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate)
voltage to an input pin, should not be used.
Resistor
Transistor (NPN)
(Terminal A)
(Terminal A)
Parasitic Element
(Terminal B)
(Terminal B)
P Substrate
Parasitic Element
P Substrate
Parasitic Element
Parasitic Element
Fig.42 Typical simple construction of monolithic IC
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
16/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
8. GND wiring pattern
It is recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at
the reference point of the set PCB, so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause
on fluctuations in voltages of the small-signal GND. Prevent fluctuations in the GND wiring pattern of external parts.
9. Temperature protection (thermal shut down) circuit
This IC has a built-in temperature protection circuit to prevent the thermal destruction of the IC. As described above, be sure to use
this IC within the power dissipation range. Should a condition exceeding the power dissipation range continue, the chip
temperature Tj will rise to activate the temperature protection circuit, thus turning OFF the output power element. Then, when the
tip temperature Tj falls, the circuit will be automatically reset. Furthermore, if the temperature protection circuit is activated under the
condition exceeding the absolute maximum ratings, do not attempt to use the temperature protection circuit for set design.
10. On the application shown below, if there is a mode in which VIN and each pin potential are inverted, for example, if the VIN is shortcircuited to the Ground with external diode charged, internal circuits may be damaged. To avoid damage, it is recommended to
insert a backflow prevention diode in the series with VIN or a bypass diode between each pin and VIN.
Bypass diode
Backflow prevention diode
Vcc
Pin
Fig.43
11. This IC is designed that over current protection circuit operates at start up and normal operation. Therefore at start up when this
IC’s total load current (sum of load current and charge current to output capacitor) is exceeded 2A(BD9006F/HFP,BD9007F/HFP
Minimum load current ability),4A(BD9009HFP Minimum load current ability), over current protection circuit operates, and this
IC’s start up times are excessive time.If this case is occurred, output capacitor is recommended to change small value.
12. When this IC starts up with output-GND short, SW output current is exceeded 2A(BD9006F/HFP,BD9007F/HFP),.
4A(BD9009HFP), and this IC may be destroyed. When VIN input voltage is under 7V with output-GND short, over
current protection may don’t operates.Please don’t use this IC in these cases.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
17/18
2012.03 - Rev.C
Technical Note
BD9006F/HFP, BD9007F/HFP, BD9009HFP
●Thermal reduction characteristics
HRP7
SOP8
0.8
9
8
POWER DISSIPATION:PD [W]
POWER DISSIPATION:PD [W]
10
④7.3W
7
6
③5.5W
5
4
3
②2.3W
2
1
①1.4W
0
0.7
0.6
②0.69W
①0.56W
0.5
0.4
0.3
0.2
0.1
0
25
50
75
100
125
150
25
AMBIENT TEMPERATURE:Ta [℃]
50
75
100
125
150
AMBIENT TEMPERATURE:Ta [℃]
① Single piece of IC
① Single piece of IC
3
② When mounted on ROHM standard PCB
PCB Size: 70×70×1.6mm (PCB incorporates thermal via)
2
Copper foil area on the front side of PCB: 10.5×10.5mm
(Glass epoxy PCB of 70mm×70mm×1.6mm)
2
② 2-layer PCB (Copper foil area on the reverse side of PCB: 15×15mm )
2
③ 2-layer PCB (Copper foil area on the reverse side of PCB: 70×70mm )
2
④ 4-layer PCB (Copper foil area on the reverse side of PCB: 70×70mm )
Fig.44
Fig.45
●Ordering Name Selection
B
D
Rohm Model Name
9
0
0
6
H
Item Number
9006=36V/2A
9007=36V/2A
9009=36V/4A
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
F
Package Type
F=SOP8
HFP=HRP7
18/18
P
-
T
R
Taping Style Name
E2=Reel type embossed taping(SOP8)
TR=Reel type embossed taping(HRP7)
2012.03 - Rev.C
Datasheet
ご注意
ローム製品取扱い上の注意事項
1.
本製品は一般的な電子機器(AV 機器、OA 機器、通信機器、家電製品、アミューズメント機器等)への使用を
意図して設計・製造されております。従いまして、極めて高度な信頼性が要求され、その故障や誤動作が人の生命、
身体への危険若しくは損害、又はその他の重大な損害の発生に関わるような機器又は装置(医療機器(Note 1)、輸送機器、
交通機器、航空宇宙機器、原子力制御装置、燃料制御、カーアクセサリを含む車載機器、各種安全装置等)(以下「特
定用途」という)への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致し
ます。ロームの文書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生
じた損害等に関し、ロームは一切その責任を負いません。
(Note 1) 特定用途となる医療機器分類
日本
USA
EU
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅣ
CLASSⅢ
中国
Ⅲ類
2.
半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、かかる誤動作や故障が生じた場合で
あっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において
次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
3.
本製品は、一般的な電子機器に標準的な用途で使用されることを意図して設計・製造されており、下記に例示するよう
な特殊環境での使用を配慮した設計はなされておりません。従いまして、下記のような特殊環境での本製品のご使用に
関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれ
まして十分に性能、信頼性等をご確認ください。
①水・油・薬液・有機溶剤等の液体中でのご使用
②直射日光・屋外暴露、塵埃中でのご使用
③潮風、Cl2、H2S、NH3、SO2、NO2 等の腐食性ガスの多い場所でのご使用
④静電気や電磁波の強い環境でのご使用
⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合。
⑥本製品を樹脂等で封止、コーティングしてのご使用。
⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用された場合も、残渣の洗浄は確実に
行うことをお薦め致します)、又ははんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合。
⑧本製品が結露するような場所でのご使用。
4.
本製品は耐放射線設計はなされておりません。
5.
本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に
実装された状態での評価及び確認をお願い致します。
6.
パルス等の過渡的な負荷(短時間での大きな負荷)が加わる場合は、お客様製品に本製品を実装した状態で必ず
その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、
本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
7.
許容損失(Pd)は周囲温度(Ta)に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、
必ず温度測定を行い、ディレーティングカーブ範囲内であることをご確認ください。
8.
使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
9.
本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは
一切その責任を負いません。
実装及び基板設計上の注意事項
1.
ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能
又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
2.
はんだ付けはリフローはんだを原則とさせて頂きます。なお、フロー方法でのご使用につきましては別途ロームまで
お問い合わせください。
詳細な実装及び基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
応用回路、外付け回路等に関する注意事項
1.
本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品の
バラツキ等を考慮して十分なマージンをみて決定してください。
2.
本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、
実際に使用する機器での動作を保証するものではありません。従いまして、お客様の機器の設計において、回路や
その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って
ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。
静電気に対する注意事項
本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、
保管時において静電気対策を実施の上、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥
環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。
(人体及び設備のアース、帯電物からの
隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)
保管・運搬上の注意事項
1.
本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります
のでこのような環境及び条件での保管は避けてください。
①潮風、Cl2、H2S、NH3、SO2、NO2 等の腐食性ガスの多い場所での保管
②推奨温度、湿度以外での保管
③直射日光や結露する場所での保管
④強い静電気が発生している場所での保管
2.
ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性が
あります。推奨保管期限を経過した製品は、はんだ付け性を確認した上でご使用頂くことを推奨します。
3.
本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が
遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する
危険があります。
4.
防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行った上でご使用
ください。
製品ラベルに関する注意事項
本製品に貼付されている製品ラベルに QR コードが印字されていますが、QR コードはロームの社内管理のみを目的と
したものです。
製品廃棄上の注意事項
本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。
外国為替及び外国貿易法に関する注意事項
本製品は外国為替及び外国貿易法に定める規制貨物等に該当するおそれがありますので輸出する場合には、ロームに
お問い合わせください。
知的財産権に関する注意事項
1.
本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに
関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。従いまして、
上記第三者の知的財産権侵害の責任、及び本製品の使用により発生するその他の責任に関し、ロームは一切その責任を
負いません。
2.
ロームは、本製品又は本資料に記載された情報について、ローム若しくは第三者が所有又は管理している知的財産権
その他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。
その他の注意事項
1.
本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
2.
本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
3.
本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で
使用しないでください。
4.
本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社若しくは第三者の商標又は登録商標
です。
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
一般的な注意事項
1.
本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載
される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切
その責任を負いませんのでご注意願います。
2.
本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及び
ご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
3.
ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された
情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。
Notice – WE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.001
Similar pages