Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet PIN CONFIGURATIONS High slew rate: 20 V/μs Fast settling time Low offset voltage: 1.70 mV maximum Bias current: 40 pA maximum ±4 V to ±18 V operation Low voltage noise: 16 nV/Hz Unity gain stable Common-mode voltage includes +VS Wide bandwidth: 5 MHz OUT 1 V– 2 ADA4000-1 5 V+ 4 –IN TOP VIEW (Not to Scale) +IN 3 05791-001 FEATURES 8 NC –IN 2 NC 1 ADA4000-1 7 V+ +IN 3 TOP VIEW (Not to Scale) 6 OUT 5 NC V– 4 APPLICATIONS NC = NO CONNECT Reference gain/buffers Level shift/driving Active filters Power line monitoring/control Current/voltage sense or monitoring Data acquisition Sample-and-hold circuits Integrators 05791-002 Figure 1. 5-Lead TSOT (UJ-5) OUT A 1 8 +V –IN A 2 ADA4000-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B –V 4 05791-027 Figure 2. 8-Lead SOIC (R-8) OUT A 1 Additional applications for the ADA4000-1/ADA4000-2/ ADA4000-4 include electronic instruments, automated test equipment (ATE) amplification, buffering, integrator circuits, instrumentation-quality photodiode amplification, and fast precision filters (including phase-locked loop filters). The devices also include utility functions, such as reference buffering, level shifting, control input/output interface, power supply control, and monitoring functions. –V 4 +V ADA4000-2 7 OUT B TOP VIEW (Not to Scale) 6 –IN B 5 +IN B Figure 4. 8-Lead MSOP (RM-8) OUT A 1 14 OUT D –IN A 2 13 –IN D ADA4000-4 12 +IN D TOP VIEW (Not to Scale) 11 –V 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C +IN A 3 +V 4 +IN B 5 05791-029 The ADA4000-1/ADA4000-2/ADA4000-4 are junction field effect transistor (JFET) input operational amplifiers featuring precision, very low bias current, and low power. Combining high input impedance, low input bias current, wide bandwidth, fast slew rate, and fast settling time, the ADA4000-1/ADA40002/ADA4000-4 are ideal amplifiers for driving analog-to-digital inputs and buffering digital-to-analog converter outputs. The input common-mode voltage includes the positive power supply, which makes the device an excellent choice for high-side signal conditioning. +IN A 3 8 Figure 5. 14-Lead SOIC (R-14) 14 OUT D OUT A 1 –IN A 2 +IN A 3 +V 4 +IN B 5 13 –IN D ADA4000-4 TOP VIEW (Not to Scale) 12 +IN D 11 –V 10 +IN C –IN B 6 9 –IN C 7 8 OUT C OUT B 05791-030 GENERAL DESCRIPTION –IN A 2 05791-028 Figure 3. 8-Lead SOIC (R-8) Figure 6. 14-Lead TSSOP (RU-14) Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2007–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Power Sequencing .........................................................................5 Applications ....................................................................................... 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................6 Pin Configurations ........................................................................... 1 Applications Information .............................................................. 10 Revision History ............................................................................... 2 Output Phase Reversal and Input Noise ................................. 10 Specifications..................................................................................... 3 Capacitive Load Drive ............................................................... 10 Electrical Characteristics ............................................................. 3 Settling Time ............................................................................... 11 Absolute Maximum Ratings............................................................ 5 Outline Dimensions ....................................................................... 12 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 14 REVISION HISTORY 3/16—Rev. A to Rev. B Change to Figure 12 Caption .......................................................... 6 Changes to Output Phase Reversal and Input Noise Section and Capacitive Load Drive Section .............................................. 10 Updated Outline Dimensions ....................................................... 13 3/09—Rev. 0 to Rev. A Changes to Input Voltage Range Parameter ................................. 4 Changes to Common-Mode Rejection Ration Parameter .......... 4 Updated Outline Dimensions ....................................................... 12 Changes to Ordering Guide .......................................................... 14 5/07—Revision 0: Initial Version Rev. B | Page 2 of 16 Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = ±15.0 V, VCM = VS/2 V, TA = 25°C, unless otherwise specified. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments Min VOS Typ Max Unit 0.2 1.70 3.0 40 170 4.5 40 80 500 +15 mV mV pA pA nA pA pA pA V dB dB dB µV/°C −40°C ≤ TA ≤ +125°C Input Bias Current IB 5 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS 2 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio Open-Loop Gain Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier IVR CMRR AVO ΔVOS/ΔT VOH VOL −11 V ≤ VCM ≤ +15 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, VO = ±10 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 2 kΩ to ground −40°C ≤ TA ≤ +125°C −11 80 100 13.60 13.40 13.90 −13.4 ISC PSRR ISY 100 100 110 2 ±28 VS = ±4.0 V to ±18.0 V 82 92 1.35 −40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density INPUT IMPEDANCE Differential Mode Common Mode −13.0 −12.80 1.65 1.80 V V V V mA dB mA mA SR GBP ΦM VI = 10 V, RL = 2 kΩ 20 5 60 V/µs MHz Degrees en p-p en in 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 1 16 0.01 µV p-p nV/√Hz pA/√Hz 10||4 103||5.5 GΩ||pF GΩ||pF (R||C)IN-DIFF (R||C)INCM Rev. B | Page 3 of 16 ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet VS = ±5 V, VCM = VS/2 V, TA = 25°C, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments Min VOS Typ Max Unit 0.20 1.70 3.0 40 170 3 40 80 500 +5.0 mV mV pA pA nA pA pA pA V dB dB dB µV/°C −40°C ≤ TA ≤ +125°C Input Bias Current IB 5 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS 2 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio Open-Loop Gain Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Supply Current/Amplifier IVR CMRR AVO ΔVOS/ΔT VOH VOL −1.0 V ≤ VCM ≤ +5.0 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, VO = ±2.5 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 2 kΩ to ground −40°C ≤ TA ≤ +125°C ISC −1.0 72 106 4.0 3.80 80 80 114 2 4.20 −3.45 ±28 ISY 1.25 −40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density INPUT IMPEDANCE Differential Mode Common Mode −3.20 −3.00 1.65 1.80 V V V V mA mA mA SR GBP ΦM VI = 10 V, RL = 2 kΩ 20 5 55 V/µs MHz Degrees en p-p en in 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 1 16 0.01 µV p-p nV/√Hz pA/√Hz 10||4 103||5.5 GΩ||pF GΩ||pF (R||C)IN-DIFF (R||C)INCM Rev. B | Page 4 of 16 Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 10 sec) Rating ±18 V ±V supply ±V supply Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type 5-Lead TSOT (UJ-5) 8-Lead SOIC (R-8) 8-Lead MSOP (RM-8) 14-Lead SOIC (R-14) 14-Lead TSSOP (RU-14) θJA 172.92 112.38 141.9 88.2 114 θJC 61.76 61.6 43.7 56.3 23.3 Unit °C/W °C/W °C/W °C/W °C/W POWER SEQUENCING The operational amplifier supply voltages must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA. ESD CAUTION Rev. B | Page 5 of 16 ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS 50 VS = ±15V TA = 25°C VCM = 0V 45 NUMBER OF AMPLIFIERS 40 35 30 25 20 15 35 30 25 20 15 10 10 5 5 0 –2.0 –1.5 –1.0 –0.5 0 0.5 OFFSET VOLTAGE (mV) 1.0 1.5 2.0 0 –2.0 05791-003 NUMBER OF AMPLIFIERS 40 VS = ±5V TA = 25°C VCM = 0V 45 –1.5 –1.0 0.5 –0.5 0 OFFSET VOLTAGE (mV) 1.0 Figure 10. Input Offset Voltage Distribution, VS = ±5 V Figure 7. Input Offset Voltage Distribution, VS = ±15 V 14 18 VS = ±5V VS = ±15V 16 12 NUMBER OF AMPLIFIERS 14 NUMBER OF AMPLIFIERS 2.0 1.5 05791-018 50 12 10 8 6 10 8 6 4 4 2 6 8 10 12 TCVOS (µV/°C) 14 16 18 20 0 2 4 6 8 10 12 TCVOS (µV/°C) 14 16 18 20 Figure 11. Offset Voltage Drift Distribution, VS = ±5 V Figure 8. Offset Voltage Drift Distribution, VS = ±15 V 80 60 135 60 135 40 90 40 90 45 20 60° 100k 1M FREQUENCY (Hz) 10M –45 100M 20 180 45 0 –20 1k 05791-010 10k VS = ±5V TA = 25°C CL = 35pF 55° 0 0 –20 1k GAIN (dB) VS = ±15V TA = 25°C CL = 35pF PHASE MARGIN (Degrees) 180 80 GAIN (dB) 0 Figure 9. Open-Loop Gain and Phase Margin vs. Frequency, VS = ±15 V PHASE MARGIN (Degrees) 4 2 0 10k 100k 1M FREQUENCY (Hz) 10M –45 100M 05791-020 0 05791-004 0 05791-019 2 Figure 12. Open-Loop Gain and Phase Margin vs. Frequency, VS = ±5 V Rev. B | Page 6 of 16 Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 120 100 VS = ±15V TA = 25°C VS = ±5V TA = 25°C 100 80 CMRR (dB) CMRR (dB) 80 60 60 40 1k 10k 100k 10M 1M FREQUENCY (Hz) Figure 13. Common-Mode Rejection Ratio vs. Frequency, VS = ±15 V 15 20 1k 05791-013 20 100 1M 10M Figure 16. Common-Mode Rejection Ratio vs. Frequency, VS = ±5 V 4 3 2 VOLTAGE (V) 5 VOLTAGE (V) 100k FREQUENCY (Hz) VS = ±15V AV = +1 RL = 2kΩ TA = 25°C 10 10k 05791-021 40 0 1 VS = ±5V AV = –1 RL = 2kΩ TA = 25°C 0 –1 –5 –2 –10 –15 TIME (1µs/DIV) 05791-023 05791-015 –3 –4 TIME (1µs/DIV) Figure 17. Large Signal Transient Response, VS = ±5 V Figure 14. Large Signal Transient Response, VS = ±15 V VS = ±5V CL = 300pF AV = +1 TA = 25°C TIME (2µs/DIV) Figure 18. Small Signal Transient Response, VS = ±5 V Figure 15. Small Signal Transient Response, VS = ±15 V Rev. B | Page 7 of 16 05791-024 TIME (2µs/DIV) 05791-016 VOLTAGE (20mV/DIV) VOLTAGE (20mV/DIV) VS = ±15V CL = 300pF AV = +1 TA = 25°C ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet 1.40 3.5 TA = 25°C TA = 25°C NO LOAD 1.35 SUPPLY CURRENT (mA) 2.5 2.0 1.5 1.25 1.20 1.15 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15 SUPPLY VOLTAGE (V) 1.10 ±4 05791-006 1.0 ±5 1.30 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15 SUPPLY VOLTAGE (V) 05791-008 INPUT BIAS CURRENT (pA) 3.0 Figure 22. Supply Current vs. Supply Voltage Figure 19. Input Bias Current vs. Supply Voltage 16 10000 14 |VOL| VS = ±15V 12 VOH OUTPUT VOLTAGE (V) 100 10 VS = ±15V 1 8 6 4 |VOL| 2 VOH –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 LOAD CURRENT (mA) Figure 23. Output Voltage vs. Load Current Figure 20. Input Bias Current vs. Temperature 120 1.44 VS = ±5V, ±15V 100 1.40 80 VS = ±15V PSRR– PSRR (dB) 1.36 1.32 60 PSRR+ 40 1.28 20 VS = ±5V 1.24 –25 –10 5 20 35 50 65 80 95 TEMPERATURE (°C) 110 125 Figure 21. Supply Current vs. Temperature –20 100 1k 10k 100k FREQUENCY (Hz) Figure 24. PSRR vs. Frequency Rev. B | Page 8 of 16 1M 10M 05791-014 1.20 –40 0 05791-012 SUPPLY CURRENT (mA) VS = ±5V 05791-009 0.1 –40 10 VS = ±5V 05791-005 INPUT BIAS CURRENT (pA) 1000 Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 0.6 VS = ±5V, ±15V TA = 25°C VS = ±5V, ±15V 0.4 V p-p (µV) 0.2 10 0 –0.2 1 100 10 1 1k 10k FREQUENCY (Hz) –0.6 –5 0 1 2 3 4 5 Figure 28. 0.1 Hz to 10 Hz Input Voltage Noise 50 VS = ±15V TA = 25°C VS = ±5V, ±15V AV = +100 40 CLOSED-LOOP GAIN (dB) 100 80 ZOUT (Ω) –1 –2 TIME (Seconds) Figure 25. Voltage Noise Density vs. Frequency 120 –3 –4 05791-025 –0.4 05791-026 VOLTAGE NOISE DENSITY (nV/√Hz) 100 60 40 Av = +100 30 AV = +10 20 10 AV = +1 0 –10 20 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 26. Output Impedance vs. Frequency VIN = 100mV p-p VS = ±5V, ±15V RL = 0 AV = +1 +OVERSHOOT 30 –OVERSHOOT 20 10 0 200 400 600 800 LOAD CAPACITANCE (pF) 1000 05791-022 OVERSHOOT (%) 40 0 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 29. Closed-Loop Gain vs. Frequency 60 50 –30 100 Figure 27. Overshoot vs. Load Capacitance Rev. B | Page 9 of 16 100M 05791-011 0 1k –20 Av = +1 05791-017 Av = +10 ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet APPLICATIONS INFORMATION Phase reversal is a change of polarity in the transfer function of the amplifier. This can occur when the voltage applied at the input of the amplifier exceeds the maximum common-mode voltage. Phase reversal happens when the device is configured in the gain of 1. Most JFET amplifiers invert the phase of the input signal if the input exceeds the common-mode input. Phase reversal is a temporary behavior of the ADA4000-1/ADA4000-2/ADA4000-4 family. Each device returns to normal operation by bringing back the common-mode voltage. The cause of this effect is saturation of the input stage, which leads to the forward-biasing of a draingate diode. In noninverting applications, a simple fix for this is to insert a series resistor between the input signal and the noninverting terminal of the amplifier. The value of the resistor depends on the application, because adding a resistor adds to the total input noise of the amplifier. The total noise density of the circuit is The advantage of this compensation method is that the swing at the output is not reduced because RS is out of the feedback network, and the gain accuracy does not change. Depending on the capacitive loading of the circuit, the values of RS and CS change, and the optimum value can be determined empirically. In Figure 31, the oscilloscope image shows the output of the ADA4000-1/ADA4000-2/ADA4000-4 family in response to a 400 mV pulse. The circuit is configured in the unity gain configuration with 500 pF in parallel with 10 kΩ of load capacitive. INPUT SIGNAL VOLTAGE (200mV/DIV) OUTPUT PHASE REVERSAL AND INPUT NOISE enTOTAL en in RS 4kTRS OUTPUT SIGNAL where: en is the input voltage noise density of the device. in is the input current noise density of the device. RS is the source resistance at the noninverting terminal. k is Boltzmann’s constant (1.38 × 10−23 J/K). T is the ambient temperature in Kelvin (T = 273 + °C). TIME (1µs/DIV) Figure 31. Capacitive Load Drive Without Snubber Network In general, it is good practice to limit the input current to less than 5 mA to avoid driving a great deal of current into the amplifier inputs. When the snubber circuit is used, the overshoot is reduced from 30% to 6% with the same load capacitance. Ringing is virtually eliminated, as shown in Figure 32. In this circuit, RS is 41 Ω and CS is 10 nF. CAPACITIVE LOAD DRIVE OUTPUT SIGNAL +15V TIME (1µs/DIV) U1 Figure 32. Capacitive Load with Snubber Network V+ ADA4000-1 2 V– –15V 1 RS CS CL 500pF 0 RL 10kΩ 05791-031 V1 400mV p-p 0 SNUBBER NETWORK Figure 30. Snubber Network Configuration Rev. B | Page 10 of 16 05791-033 However, as with most amplifiers, driving larger capacitive loads in a unity gain configuration can cause excessive overshoot and ringing. A simple solution to this problem is to use a snubber network (see Figure 30). VOLTAGE (200mV/DIV) INPUT SIGNAL The ADA4000-1/ADA4000-2/ADA4000-4 are stable at all gains in both inverting and noninverting configurations. The devices are capable of driving up to 1000 pF of capacitive loads without oscillations in unity gain configurations. 3 05791-032 2 2 Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 SETTLING TIME Settling time is the amount of time it takes the amplifier output to reach and remain within a percentage of the final value. This is an important parameter in data acquisition systems. Because most bipolar DAC converters have current output, an external operational amplifier is required to convert the current to voltage. Therefore, the amplifier settling time plays a role in the total settling time of the output signal. A good approximation for the total settling time is 5V/DIV 200mV/DIV The ADA4000-1/ADA4000-2/ADA4000-4 settle to within 0.1% of their final value in less than 1.2 μs. The settling time has been tested by using the configuration circuit in Figure 34. 05791-035 t S Total (t S DAC)2 (t S AMP )2 200ns/DIV Figure 33. Settling Time Measurement Using the False Summing Node Method The input signal is a 10 V pulse and the output is the error signal for the settling time shown in Figure 33. +15V +15V 3 V+ 10kΩ ADA4000-1 2 1 8 V+ 10kΩ AD828 V– 10V p-p –15V 10kΩ VOUT V– 4 V1 –15V 10kΩ 20kΩ 1kΩ Figure 34. Settling Time Test Circuit Rev. B | Page 11 of 16 05791-034 0 ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 5 1 6.20 (0.2441) 5.80 (0.2284) 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 0.50 (0.0196) 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 8° 0° 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 SEATING PLANE 45° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 012407-A 8 4.00 (0.1574) 3.80 (0.1497) Figure 35. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 0.95 BSC 1.90 BSC *0.90 MAX 0.70 MIN 0.10 MAX 0.50 0.30 0.20 0.08 SEATING PLANE 8° 4° 0° 0.60 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 36. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters Rev. B | Page 12 of 16 100708-A *1.00 MAX Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 37. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.20 MAX 0.15 0.05 COPLANARITY 0.10 0.20 0.09 0.30 0.19 0.75 0.60 0.45 8° 0° SEATING PLANE 061908-A 1.05 1.00 0.80 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 38. 14-Lead Standard Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 8.75 (0.3445) 8.55 (0.3366) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 39. 14-Lead Standard Small Outline Package [SOIC_N] (R-14) Dimensions shown in millimeters Rev. B | Page 13 of 16 060606-A 4.00 (0.1575) 3.80 (0.1496) ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet ORDERING GUIDE Model 1 ADA4000-1ARZ ADA4000-1ARZ-R7 ADA4000-1ARZ-RL ADA4000-1AUJZ-R2 ADA4000-1AUJZ-R7 ADA4000-1AUJZ-RL ADA4000-2ARZ ADA4000-2ARZ-R7 ADA4000-2ARZ-RL ADA4000-2ARMZ ADA4000-2ARMZ-RL ADA4000-4ARZ ADA4000-4ARZ-R7 ADA4000-4ARZ-RL ADA4000-4ARUZ ADA4000-4ARUZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP Z = RoHS Compliant Part. Rev. B | Page 14 of 16 Package Option R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 R-8 R-8 R-8 RM-8 RM-8 R-14 R-14 R-14 RU-14 RU-14 Branding A14 A14 A14 A1H A1H Data Sheet ADA4000-1/ADA4000-2/ADA4000-4 NOTES Rev. B | Page 15 of 16 ADA4000-1/ADA4000-2/ADA4000-4 Data Sheet NOTES ©2007–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05791-0-3/16(B) Rev. B | Page 16 of 16