Cirrus CS4362 114 db, 192 khz 6-channel d/a converter Datasheet

CS4362
114 dB, 192 kHz 6-Channel D/A Converter
Features
Description
 24-bit Conversion
The CS4362 is a complete 6-channel digital-to-analog
system including digital interpolation, fifth-order deltasigma digital-to-analog conversion, digital de-emphasis, volume control and analog filtering. The advantages
of this architecture include: ideal differential linearity, no
distortion mechanisms due to resistor matching errors,
no linearity drift over time and temperature and a high
tolerance to clock jitter.
 Up to 192 kHz Sample Rates
 114 dB Dynamic Range
 -100 dB THD+N
 Supports PCM or DSD Data Formats
 Selectable Digital Filters
The CS4362 is available in a 48-pin LQFP package in
Commercial grade (-10°C to +70°C). The CDB4362
Customer Demonstration Board is also available for device evaluation and implementation suggestions.
Please see “Ordering Information” on page 42 for complete details.
 Volume Control with Soft Ramp
–
–
1 dB Step Size
Zero Crossing Click-free Transitions
 Dedicated DSD Inputs
The CS4362 accepts PCM data at sample rates from
4 kHz to 192 kHz, DSD audio data, and operates over a
wide power supply range. These features are ideal for
multi-channel audio systems including DVD players.
SACD players, A/V receivers, digital TV’s, mixing consoles, and effects processors.
 Low Clock Jitter Sensitivity
 Simultaneous Support for Two Synchronous
Sample Rates for DVD Audio
 μC or Stand-Alone Operation
I
M1/SCL/CCLK
M3/DSD_SCLK
M 2/SDA/CDIN
M 0/AD0/CS VLC
MUTEC[1:6]
6
RST
Control Port/M ode Select
V olu m e C o ntro l
VLS
E xt e rn a l
M u t e C o n tr ol
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T A1+
A O U T A1-
S CLK1
Mixer
LRCK1
V olu m e C o nt r o l
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T B1+
A O U T B1-
V olu m e C o nt r o l
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T A2+
A O U T A2-
V olu m e C o ntro l
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T B2+
A O U T B2-
V olu m e C o nt r o l
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T A3+
A O U T A3-
I n t e r p o la t i o n F i lt e r
ΔΣ D A C
A n a lo g F i lt e r
A O U T B3+
A O U T B3-
S e ri a l P o r t
S C LK 2
L RCK 2
SD I N1
SD I N2
Mixer
SD I N3
Mixer
M CLK
V olu m e C o ntro l
÷2
DSDxx
VQ
6
FILT+
VD
http://www.cirrus.com
GND
GND
VA
Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
FEB '08
DS257F2
CS4362
TABLE OF CONTENTS
1. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5
ANALOG CHARACTERISTICS............................................................................................................. 5
ANALOG CHARACTERISTICS............................................................................................................. 6
POWER AND THERMAL CHARACTERISTICS ................................................................................... 6
ANALOG FILTER RESPONSE ............................................................................................................. 7
DIGITAL CHARACTERISTICS.............................................................................................................. 8
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 8
RECOMMENDED OPERATING CONDITIONS .................................................................................... 8
SWITCHING CHARACTERISTICS ....................................................................................................... 9
DSD - SWITCHING CHARACTERISTICS .......................................................................................... 10
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C® FORMAT ........................................... 11
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT......................................... 12
2. TYPICAL CONNECTION DIAGRAM ............................................................................................... 13
3. REGISTER QUICK REFERENCE ....................................................................................................... 15
4. REGISTER DESCRIPTION ................................................................................................................. 16
4.1 Mode Control 1 (address 01h) ...................................................................................................... 16
4.1.1 Control Port Enable (CPEN) ............................................................................................ 16
4.1.2 Freeze Controls (FREEZE) .............................................................................................. 16
4.1.3 Master Clock Divide Enable (MCLKDIV) ......................................................................... 16
4.1.4 DAC Pair Disable (DACx_DIS) ........................................................................................ 16
4.1.5 Power Down (PDN) .......................................................................................................... 17
4.2 Mode Control 2 (address 02h) ...................................................................................................... 17
4.2.1 Digital Interface Format (DIF) .......................................................................................... 17
4.2.2 Serial Audio Data Clock Source (SDINXCLK) ................................................................. 18
4.3 Mode Control 3 (address 03h) ...................................................................................................... 18
4.3.1 Soft Ramp and Zero Cross Control (SZC) ....................................................................... 18
4.3.2 Single Volume Control (SNGLVOL) ................................................................................. 19
4.3.3 Soft Volume Ramp-Up After Error (RMP_UP) ................................................................. 19
4.3.4 MUTEC Polarity (MUTEC+/-) ........................................................................................... 19
4.3.5 Auto-Mute (AMUTE) ........................................................................................................ 20
4.3.6 Mute Pin Control (MUTEC1, MUTEC0) ........................................................................... 20
4.4 Filter Control (address 04h) .......................................................................................................... 20
4.4.1 Interpolation Filter Select (FILT_SEL) .............................................................................. 20
4.4.2 De-Emphasis Control (DEM) ........................................................................................... 20
4.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) ............................................... 21
4.5 Invert Control (address 05h) ......................................................................................................... 21
4.5.1 Invert Signal Polarity (Inv_Xx) .......................................................................................... 21
4.6 Mixing Control Pair 1 (Channels A1 & B1)(address 06h)
Mixing Control Pair 2 (Channels A2 & B2)(address 09h)
Mixing Control Pair 3 (Channels A3 & B3)(address 0Ch)
21
4.6.1 Channel A Volume = Channel B Volume (A=B) ............................................................... 21
4.6.2 ATAPI Channel Mixing and Muting (ATAPI) .................................................................... 22
4.6.3 Functional Mode (FM) ...................................................................................................... 23
4.7 Volume Control (addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh) ....................................................... 23
4.7.1 Mute (MUTE) ................................................................................................................... 23
4.7.2 Volume Control (xx_VOL) ................................................................................................ 23
4.8 Chip Revision (address 12h) ........................................................................................................ 24
4.8.1 Part Number ID (PART) [Read Only] ............................................................................... 24
5. PIN DESCRIPTION .............................................................................................................................. 25
6. APPLICATIONS .................................................................................................................................. 28
6.1 Grounding and Power Supply Decoupling .................................................................................... 28
2
DS257F2
CS4362
6.2 PCM Mode Select ......................................................................................................................... 28
6.3 Recommended Power-Up Sequence ........................................................................................... 28
6.4 Analog Output and Filtering .......................................................................................................... 28
6.5 Interpolation Filter ......................................................................................................................... 28
6.6 Clock Source Selection ................................................................................................................ 29
6.7 Using DSD Mode .......................................................................................................................... 29
6.8 Recommended Procedure for Switching Operational Modes ....................................................... 29
7. CONTROL PORT INTERFACE ........................................................................................................... 30
7.1 Enabling the Control Port ............................................................................................................. 30
7.2 Format Selection .......................................................................................................................... 30
7.3 I²C Format .................................................................................................................................... 30
7.3.1 Writing in I²C Format ........................................................................................................ 30
7.3.2 Reading in I²C Format ...................................................................................................... 30
7.4 SPI Format ................................................................................................................................... 31
7.4.1 Writing in SPI ................................................................................................................... 31
7.5 Memory Address Pointer (MAP) ................................................................................................... 32
7.5.1 INCR (Auto Map Increment Enable) ................................................................................ 32
7.5.2 MAP4-0 (Memory Address Pointer) ................................................................................. 32
8. FILTER PLOTS
........................................................................................................................... 33
9. DIAGRAMS
...................................................................................................................... 37
10. PARAMETER DEFINITIONS ............................................................................................................. 40
11. REFERENCES ................................................................................................................................... 40
12. PACKAGE DIMENSIONS ................................................................................................................. 41
13. ORDERING INFORMATION ............................................................................................................ 42
14. REVISION HISTORY ........................................................................................................................ 42
LIST OF FIGURES
Figure 1. Serial Mode Input Timing .............................................................................................................. 9
Figure 2. Direct Stream Digital - Serial Audio Input Timing........................................................................ 10
Figure 3. Control Port Timing - I²C Format................................................................................................. 11
Figure 4. Control Port Timing - SPI Format................................................................................................ 12
Figure 5. Typical Connection Diagram Control Port................................................................................... 13
Figure 6. Typical Connection Diagram Stand-Alone .................................................................................. 14
Figure 7. Control Port Timing, I²C Format.................................................................................................. 31
Figure 8. Control Port Timing, SPI Format................................................................................................. 31
Figure 9. Single-Speed (fast) Stopband Rejection..................................................................................... 33
Figure 10. Single-Speed (fast) Transition Band ......................................................................................... 33
Figure 11. Single-Speed (fast) Transition Band (detail) .......................................................................... 33
Figure 12. Single-Speed (fast) Passband Ripple ....................................................................................... 33
Figure 13. Single-Speed (slow) Stopband Rejection ................................................................................. 33
Figure 14. Single-Speed (slow) Transition Band........................................................................................ 33
Figure 15. Single-Speed (slow) Transition Band (detail)........................................................................... 34
Figure 16. Single-Speed (slow) Passband Ripple...................................................................................... 34
Figure 17. Double-Speed (fast) Stopband Rejection ................................................................................. 34
Figure 18. Double-Speed (fast) Transition Band........................................................................................ 34
Figure 19. Double-Speed (fast) Transition Band (detail)............................................................................ 34
Figure 20. Double-Speed (fast) Passband Ripple...................................................................................... 34
Figure 21. Double-Speed (slow) Stopband Rejection ................................................................................ 35
Figure 22. Double-Speed (slow) Transition Band ...................................................................................... 35
Figure 23. Double-Speed (slow) Transition Band (detail) .......................................................................... 35
Figure 24. Double-Speed (slow) Passband Ripple .................................................................................... 35
Figure 25. Quad-Speed (fast) Stopband Rejection .................................................................................... 35
Figure 26. Quad-Speed (fast) Transition Band .......................................................................................... 35
DS257F2
3
CS4362
Figure 27. Quad-Speed (fast) Transition Band .......................................................................................... 36
Figure 28. Quad-Speed (fast) Passband Ripple ........................................................................................ 36
Figure 29. Quad-Speed (slow) Stopband Rejection................................................................................... 36
Figure 30. Quad-Speed (slow) Transition Band......................................................................................... 36
Figure 31. Quad-Speed (slow) Transition Band (detail).......................................................................... 36
Figure 32. Quad-Speed (slow) Passband Ripple....................................................................................... 36
Figure 33. Format 0 - Left Justified up to 24-bit Data................................................................................. 37
Figure 34. Format 1 - I²S up to 24-bit Data ................................................................................................ 37
Figure 35. Format 2 - Right Justified 16-bit Data ....................................................................................... 37
Figure 36. Format 3 - Right Justified 24-bit Data ....................................................................................... 37
Figure 37. Format 4 - Right Justified 20-bit Data ....................................................................................... 38
Figure 38. Format 5 - Right Justified 18-bit Data ....................................................................................... 38
Figure 39. De-Emphasis Curve.................................................................................................................. 38
Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, or 3) .................................................... 39
Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, or 3) ................................................................... 39
Figure 42. Recommended Output Filter..................................................................................................... 39
LIST OF TABLES
Table 1. Digital Interface Formats - PCM Mode......................................................................................... 17
Table 2. Digital Interface Formats - DSD Mode ......................................................................................... 18
Table 3. ATAPI Decode ............................................................................................................................. 22
Table 4. Example Digital Volume Settings ................................................................................................. 23
Table 5. Common Clock Frequencies........................................................................................................ 27
Table 6. Digital Interface Format, Stand-Alone Mode Options................................................................... 27
Table 7. Mode Selection, Stand-Alone Mode Options ............................................................................... 27
Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options ............................................................ 27
4
DS257F2
CS4362
1. CHARACTERISTICS AND SPECIFICATIONS
ANALOG CHARACTERISTICS
(Full-Scale Output Sine Wave, 997 Hz; Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Test
load RL = 3 kΩ, CL = 100 pF, VA = 5 V, VD = 3.3 V (see Figure 5)
For Single-Speed Mode, Fs = 48 kHz, SCLK = 3.072 MHz, MCLK = 12.288 MHz;
For Double-Speed Mode, Fs = 96 kHz, SCLK = 6.144 MHz, MCLK = 12.288 MHz;
For Quad-Speed Mode, Fs = 192 kHz, SCLK = 12.288 MHz, MCLK = 24.576 MHz;
For Direct Stream Digital Mode, Fs = 128 x 48 kHz, DSD_SCLK = 6.144 MHz, MCLK = 12.288 MHz).
Parameters
Symbol
Min
Typ
Max
Unit
CS4362-KQZ Dynamic Performance - All PCM modes and DSD (Note 1)
Specified Temperature Range
Dynamic Range (Note 2)
Total Harmonic Distortion + Noise
TA
24-bit
unweighted
A-Weighted
16-bit unweighted
(Note 3) A-Weighted
(Note 2) THD+N
0 dB
-20 dB
-60 dB
16-bit
0 dB
(Note 3) -20 dB
-60 dB
24-bit
Idle Channel Noise / Signal-to-noise ratio
Interchannel Isolation
(1 kHz)
-10
-
70
°C
105
108
-
111
114
94
97
-
dB
dB
dB
dB
-
-100
-91
-51
-94
-74
-34
-94
-
dB
dB
dB
dB
dB
dB
-
114
-
dB
-
90
-
dB
Notes:
1. CS4362-KQZ parts are tested at 25°C.
2. One-half LSB of triangular PDF dither is added to data.
3. Performance limited by 16-bit quantization noise.
DS257F2
5
CS4362
ANALOG CHARACTERISTICS
(Continued)
Parameters
Analog Output - All PCM modes and DSD
Full Scale Differential Output Voltage
Quiescent Voltage
Max Current from VQ
Interchannel Gain Mismatch
Gain Drift
Output Impedance
AC-Load Resistance
Load Capacitance
(Note 4)
(Note 4)
Symbol
Min
Typ
Max
Units
VFS
VQ
IQMAX
86% VA
-
91% VA
50% VA
1
96% VA
-
Vpp
VDC
μA
ZOUT
RL
CL
3
-
0.1
100
100
-
100
dB
ppm/°C
Ω
kΩ
pF
POWER AND THERMAL CHARACTERISTICS
Parameters
Symbol
Min
Typ
Max
Units
normal operation, VA= 5 V
VD= 5 V
VD= 3.3 V
Interface current, VLC=5 V (Notes 6, 7)
VLS=5 V
power-down state (all supplies) (Note 8)
Power Dissipation
(Note 5)
VA = 5 V, VD = 3.3 V
normal operation
power-down (Note 8)
VA = 5 V, VD = 5 V
normal operation
power-down (Note 8)
Package Thermal Resistance
multi-layer
dual-layer
IA
ID
ID
ILC
ILS
Ipd
-
50
38
25
2
84
200
55
60
40
-
mA
mA
mA
μA
μA
μA
-
335
1
440
1
48
65
15
60
40
410
575
-
mW
mW
mW
mW
°C/Watt
°C/Watt
°C/Watt
dB
dB
Power Supplies
Power Supply Current
(Note 5)
Power Supply Rejection Ratio (Note 9)
(1 kHz)
(60 Hz)
θJA
θJA
θJC
PSRR
Notes:
4. VFS is tested under load RL and includes attenuation due to ZOUT
5. Current consumption increases with increasing FS within a given speed mode and is signal dependant.
Max values are based on highest FS and highest MCLK.
6. ILC measured with no external loading on the SDA pin.
7. This specification is violated when the VLC supply is greater than VD and when pin 16 (M1/SDA) is tied
or pulled low. Logic tied to pin 16 needs to be able to sink this current.
8. Power Down Mode is defined as RST pin = Low with all clock and data lines held static.
9. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 5 and 6.
6
DS257F2
CS4362
ANALOG FILTER RESPONSE
Fast Roll-Off
Slow Roll-Off (Note 10)
Parameter
Min
Typ
Max
Min
Typ
Max
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode (Note 11)
Passband (Note 12)
to -0.01 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 13)
Group Delay
Passband Group Delay Deviation
0 - 20 kHz
De-emphasis Error (Note 14)
Fs = 32 kHz
(Relative to 1 kHz)
Fs = 44.1 kHz
Fs = 48 kHz
Combined Digital and On-chip Analog Filter
Passband (Note 12)
to -0.01 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 13)
Group Delay
Passband Group Delay Deviation
0 - 20 kHz
Combined Digital and On-chip Analog Filter
Passband (Note 12)
to -0.01 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 13)
Group Delay
Passband Group Delay Deviation
0 - 20 kHz
Combined Digital and On-chip Analog Filter
Passband (Note 12)
to -0.1 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
0
0
-0.01
.547
90
-
12/Fs
-
.454
.499
+0.01
±0.41/Fs
±0.23
±0.14
±0.09
0
0
-0.01
.583
64
-
0.417
0.499
+0.01
6.5/Fs
±0.14/Fs
±0.23
±0.14
±0.09
Response - Double-Speed Mode - 96 kHz (Note 11)
0
.430
0
.296
0
.499
0
.499
-0.01
0.01
-0.01
0.01
.583
.792
80
70
4.6/Fs
3.9/Fs
±0.03/Fs
±0.01/Fs
Response - Quad-Speed Mode - 192 kHz (Note 11)
0
.105
0
.104
0
.490
0
.481
-0.01
0.01
-0.01
0.01
.635
.868
90
75
4.7/Fs
4.2/Fs
±0.01/Fs
±0.01/Fs
Response - DSD Mode (Note 11)
0
20
0
120
-.01
0.1
Unit
Fs
Fs
dB
Fs
dB
s
s
dB
dB
dB
Fs
Fs
dB
Fs
dB
s
s
Fs
Fs
dB
Fs
dB
s
s
kHz
kHz
dB
Notes:
10. Slow Roll-Off interpolation filter is only available in Control Port Mode.
11. Filter response is not tested but is guaranteed by design.
12. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 9 to 32) have
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
13. Single- and Double-Speed Mode Measurement Bandwidth is from stopband to 3 Fs.
Quad-Speed Mode Measurement Bandwidth is from stopband to 1.34 Fs.
14. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in StandAlone Mode.
DS257F2
7
CS4362
DIGITAL CHARACTERISTICS
(For KQZ TA = -10°C to +70°C; VLC = VLS = 1.8 V to 5.5 V)
Parameters
High-Level Input Voltage
Serial Data Port
Control Port
Serial Data Port
Control Port
(Note 7)
Low-Level Input Voltage
Input Leakage Current
Input Capacitance
Maximum MUTEC Drive Current
MUTEC High-Level Output Voltage
MUTEC Low-Level Output Voltage
Symbol
Min
Typ
Max
Units
VIH
VIH
VIL
VIL
Iin
70% VLS
70% VLC
-
8
3
VA
0
20% VLS
20% VLC
±10
-
V
V
V
V
μA
pF
mA
V
V
VOH
VOL
ABSOLUTE MAXIMUM RATINGS
(GND = 0 V; all voltages with respect to ground.)
Parameters
Symbol
Min
Max
Units
Analog power
Digital internal power
Serial data port interface power
Control port interface power
Input Current, Any Pin Except Supplies
Digital Input Voltage
Serial data port interface
Control port interface
Ambient Operating Temperature (power applied)
Storage Temperature
VA
VD
VLS
VLC
Iin
VIND-S
VIND-C
TA
Tstg
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-55
-65
6.0
6.0
6.0
6.0
±10
VLS+ 0.4
VLC+ 0.4
125
150
V
V
V
V
mA
V
V
°C
°C
DC Power Supply
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS
(GND = 0 V; all voltages with respect to ground.)
Parameters
DC Power Supply
8
Analog power
Digital internal power
Serial data port interface power
Control port interface power
Symbol
Min
Typ
Max
Units
VA
VD
VLS
VLC
4.5
3.0
1.8
1.8
5.0
3.3
5.0
5.0
5.5
5.5
5.5
5.5
V
V
V
V
DS257F2
CS4362
SWITCHING CHARACTERISTICS
(For KQZ TA = -10°C to +70°C; VLS = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 30 pF)
Parameters
Symbol
Min
Typ
Max
Units
1.024
-
51.2
MHz
Double-Speed Mode
6.400
-
51.2
MHz
Quad-Speed Mode
6.400
-
51.2
MHz
40
50
60
%
4
50
100
-
50
100
200
kHz
kHz
kHz
45
50
55
%
MCLK Frequency
(Note 15)
Single-Speed Mode
MCLK Duty Cycle
Input Sample Rate
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
LRCK Duty Cycle
SCLK Pulse Width Low
tsclkl
20
-
-
ns
SCLK Pulse Width High
tsclkh
20
-
-
ns
SCLK Period
tsclkw
2
----------------MCLK
-
-
ns
tsclkw
4
----------------MCLK
-
-
ns
tslrd
20
-
-
ns
SCLK rising to LRCK edge setup time
tslrs
20
-
-
ns
SDATA valid to SCLK rising setup time
tsdlrs
20
-
-
ns
ns
(Note 16)
SCLK rising to LRCK edge delay
SCLK rising to SDATA hold time
tsdh
LRCK1 to LRCK2 frequency ratio
(Note 17)
20
-
-
0.25
1.00
4.00
Notes:
15. See Table 5 on page 27 for suggested MCLK frequencies
16. This serial clock is available only in Control Port Mode when the MCLK Divide bit is enabled.
17. The higher frequency LRCK must be an exact integer multiple (1, 2, or 4) of the lower frequency LRCK
.
LRCK
t sclkh
t slrs
t slrd
t sclkl
SCLK
t sdlrs
t sdh
SDATA
Figure 1. Serial Mode Input Timing
DS257F2
9
CS4362
DSD - SWITCHING CHARACTERISTICS
(TA= -10°C to 70°C; Logic 0 = GND; VLS = 1.8 V to 5.5 V; Logic 1 = VLS Volts; CL = 30 pF)
Parameter
Master Clock Frequency
MCLK Duty Cycle
modes)
DSD_SCLK Pulse Width Low
DSD_SCLK Pulse Width High
DSD_SCLK Frequency
pled)
Symbol
Min
Typ
Max
Unit
4.096
40
50
38.4
60
MHz
%
tsclkl
tsclkh
20
20
1.024
2.048
-
3.2
6.4
ns
ns
MHz
MHz
tsdlrs
tsdh
20
20
-
-
ns
ns
(Note 18)
(All DSD
(64x Oversam-
(128x Oversampled)
DSD_L / _R valid to DSD_SCLK rising setup time
DSD_SCLK rising to DSD_L or DSD_R hold time
Note:
18. Min is 4 times 64x DSD or 2 times 128x DSD, and Max is 12 times 64x DSD or 6 times 128x DSD. The
proper MCLK to DSD_SCLK ratio must be set either by the DIF registers or the M0:2 pins
t sclkh
t sclkl
DSD_SCLK
t sdlrs
t sdh
DSD_L, DSD_R
Figure 2. Direct Stream Digital - Serial Audio Input Timing
10
DS257F2
CS4362
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C® FORMAT
(For KQZ TA = -10°C to +70°C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)
Symbol
Min
Max
Unit
SCL Clock Frequency
Parameter
fscl
-
100
kHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
tsud
250
-
ns
Rise Time of SCL and SDA
trc, trc
-
1
µs
Fall Time SCL and SDA
tfc, tfc
-
300
ns
tsusp
4.7
-
µs
tack
-
(Note 21)
ns
SDA Hold Time from SCL Falling
(Note 19)
SDA Setup time to SCL Rising
Setup Time for Stop Condition
Acknowledge Delay from SCL Falling
(Note 20)
Notes:
19. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
20. The acknowledge delay is based on MCLK and can limit the maximum transaction speed.
21.
15 15
15
-------------------for Single-Speed Mode, --------------------- for Double-Speed Mode, ------------------ for Quad-Speed Mode.
256 × Fs
128 × Fs
64 × Fs
RST
t
irs
R e p e a te d
Stop
S t a rt
Stop
S t a rt
t
t
rd
fd
SDA
t buf
t
t
hdst
t
high
t
hdst
fc
t susp
SCL
t
lo w
t
hdd
t sud
t ack
t sust
t
rc
Figure 3. Control Port Timing - I²C Format
DS257F2
11
CS4362
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT
(For KQZ TA = -10°C to +70°C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
-
MCLK
----------------2
MHz
CCLK Clock Frequency
fsclk
RST Rising Edge to CS Falling
tsrs
500
-
ns
tspi
500
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
µs
CS Falling to CCLK Edge
tcss
20
-
ns
CCLK Low Time
tscl
1
----------------MCLK
-
ns
tsch
1
----------------MCLK
-
ns
CCLK Edge to CS Falling
(Note 22)
CCLK High Time
tdsu
40
-
ns
CCLK Rising to DATA Hold Time
CDIN to CCLK Rising Setup Time
(Note 23)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 24)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 24)
tf2
-
100
ns
Notes:
22. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
23. Data must be held for sufficient time to bridge the transition time of CCLK.
24. For FSCK < 1 MHz.
RST
t srs
CS
t spi t css
t scl
t sch
t csh
CCLK
t r2
t f2
CDIN
t dsu t
dh
Figure 4. Control Port Timing - SPI Format
12
DS257F2
CS4362
2. TYPICAL CONNECTION DIAGRAM
+5 V
+3.3 V to +5 V
1 µF
+
0.1 µF
0.1 µF
4
VD
6
7
9
PCM
D igital
A udio
S ource
10
12
8
11
13
+1.8 V to +5 V
M C LK
LRC K 1
S C LK 1
A O U TA 1+
LRC K 2
A O U TA 1-
S C LK 2
S D IN1
A O U TB 1+
S D IN2
A O U TB 1-
A O U TA 2-
V LS
C S 4362
A O U TB 2+
A O U TB 2-
2
1
DSD
A udio
S ource
48
47
46
42
19
15
M icroController
16
DSDA1
A O U TA 3+
DSDB1
A O U TA 3-
38
37
A nalog Conditioning
and M uting
A nalog Conditioning
and M uting
35
36
A nalog Conditioning
and M uting
34
33
29
30
A nalog Conditioning
and M uting
A nalog Conditioning
and M uting
DSDA2
DSDB2
A O U TB 3+
D S DA 3
A O U TB 3-
28
27
A nalog Conditioning
and M uting
D S DB 3
D S D _S CLK
M UTE C 1
41
M UTE C 2 26
25
M UTE C 3
24
M UTE C 4
23
M UTE C 5
M UTE C 6 22
RST
S C L/C C LK
M ute
D rive
S D A /C D IN
A D O /C S
N ote*
+1.8 V to +5 V
40
2 KΩ
2 KΩ
17
39
S D IN3
0.1 µF
3
1 µF
32
VA
A O U TA 2+
43
+
18
FILT+ 20
V LC
CM O UT
0.1 µF
Note*: Necessary for I 2 C
control port operation
+
21
0.1 µ F + 1 µF
G ND
5
0.1 µ F
47 µF
G ND
31
Figure 5. Typical Connection Diagram Control Port
DS257F2
13
CS4362
+3.3 V to +5 V
+5 V
+
1 µF
4
VD
VLS
Note DSD
+
0.1 µF
0.1 µF
1 µF
32
VA
47 K Ω
6
7
9
P CM
Digital
Audio
S ource
10
12
8
11
13
M CLK
LRCK1
S CLK1
AO UTA 1+
LRCK2
A O UTA1-
S CLK2
M UTEC1
S DIN1
43
AO UTB 1+
S DIN3
M UTEC2
V LS
AO UTA 2+
A O UTA23
2
1
48
47
46
DSDA1
M UTEC3
AO UTB 2+
DSDB2
A O UTB2-
DS DA3
M UTEC4
A O UTA3M UTEC5
42
15
16
17
19
Note
M3(DS D_SCLK )
M2
AO UTB 3+
A O UTB3-
M1
26
Analog Conditioning
and M uting
M UTEC6
RST
36
25
Analog Conditioning
and M uting
34
33
24
Analog Conditioning
and M uting
29
30
23
Analog Conditioning
and M uting
28
27
22
Analog Conditioning
and M uting
FILT+ 20
CM O UT
18
35
M0
VLC
+1.8 V to +5 V
37
DS DB3
AO UTA 3+
S tand-A lone
Mode
Configuration
38
DSDB1
DSDA 2
Note DSD
47 K Ω
41
Analog Conditioning
and M uting
CS4362
0.1 µF
DSD
A udio
Source
40
S DIN2
A O UTB1-
+1.8 V to +5 V
39
+
21
0.1 µ F + 1 µF
V LC
0.1 µ F
47 µF
0.1 µF
Note VLC : If series resistors are
used they m ust be <1k O hm . If
possible tie V LC to the V D supply
to reduce possible excess current
consum ption from V LC.
G ND
5
G ND
31
Note DSD : For DS D operation:
1) LRCK 1 m ust be tied to V LS and
rem ain static high.
2) M 3 PCM stand-alone configuration
pin becom es DSD_SCLK
Figure 6. Typical Connection Diagram Stand-Alone
14
DS257F2
CS4362
3. REGISTER QUICK REFERENCE
Addr
Function
01h
Mode Control 1
02h
Mode Control 2
03h
Mode Control 3
04h
Filter Control
05h
Invert Control
06h
Mixing Control
Pair 1 (AOUTx1)
07h
Vol. Control A1
08h
Vol. Control B1
default
default
default
default
default
default
default
default
09h
Mixing Control
Pair 2 (AOUTx2)
default
0Ah Vol. Control A2
default
0Bh Vol. Control B2
default
0Ch Mixing Control
Pair 3 (AOUTx3)
default
0Dh Vol. Control A3
default
0Eh Vol. Control B3
default
12h
Chip Revision
default
DS257F2
7
6
5
4
CPEN
FREEZE
MCLKDIV
Reserved
3
2
1
DAC3_DIS DAC2_DIS DAC1_DIS
0
0
0
0
0
Reserved
DIF2
DIF1
DIF0
Reserved
0
0
0
PDN
1
SDIN3CLK SDIN2CLK SDIN1CLK
0
0
0
0
0
0
0
0
SZC1
SZC0
SNGLVOL
RMP_UP
MUTEC+/-
AMUTE
MUTEC1
MUTEC0
1
0
0
0
0
1
0
0
Reserved
Reserved
Reserved
FILT_SEL
Reserved
DEM1
DEM0
RMP_DN
0
0
0
0
0
0
0
0
Reserved
Reserved
INV_B3
INV_A3
INV_B2
INV_A2
INV_B1
INV_A1
0
0
0
0
0
0
0
0
P1_A=B
P1ATAPI4
P1ATAPI3
P1ATAPI2
P1ATAPI1
P1ATAPI0
P1FM1
P1FM0
0
0
1
0
0
1
0
0
A1_MUTE
A1_VOL6
A1_VOL5
A1_VOL4
A1_VOL3
A1_VOL2
A1_VOL1
A1_VOL0
0
0
0
0
0
0
0
0
B1_MUTE
B1_VOL6
B1_VOL5
B1_VOL4
B1_VOL3
B1_VOL2
B1_VOL1
B1_VOL0
0
0
0
0
0
0
0
0
P2_A=B
P2ATAPI4
P2ATAPI3
P2ATAPI2
P2ATAPI1
P2ATAPI0
P2FM1
P2FM0
0
0
1
0
0
1
0
0
A2_MUTE
A2_VOL6
A2_VOL5
A2_VOL4
A2_VOL3
A2_VOL2
A2_VOL1
A2_VOL0
0
0
0
0
0
0
0
0
B2_MUTE
B2_VOL6
B2_VOL5
B2_VOL4
B2_VOL3
B2_VOL2
B2_VOL1
B2_VOL0
0
0
0
0
0
0
0
0
P3_A=B
P3ATAPI4
P3ATAPI3
P3ATAPI2
P3ATAPI1
P3ATAPI0
P3FM1
P3FM0
0
0
1
0
0
1
0
0
A3_MUTE
A3_VOL6
A3_VOL5
A3_VOL4
A3_VOL3
A3_VOL2
A3_VOL1
A3_VOL0
0
0
0
0
0
0
0
0
B3_MUTE
B3_VOL6
B3_VOL5
B3_VOL4
B3_VOL3
B3_VOL2
B3_VOL1
B3_VOL0
0
0
0
0
0
0
0
0
PART3
PART2
PART1
PART0
Reserved
Reserved
Reserved
Reserved
1
1
1
0
-
-
-
-
15
CS4362
4. REGISTER DESCRIPTION
Note:
All registers are read/write in I²C Mode and write-only in SPI, unless otherwise noted.
4.1
Mode Control 1 (address 01h)
7
CPEN
0
4.1.1
6
FREEZE
0
5
MCLKDIV
0
4
Reserved
0
3
DAC3_DIS
0
2
DAC2_DIS
0
1
DAC1_DIS
0
0
PDN
1
Control Port Enable (CPEN)
Default = 0
0 - Disabled
1 - Enabled
Function:
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the registers and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user
should write this bit within 10 ms following the release of Reset.
4.1.2
Freeze Controls (FREEZE)
Default = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,
enable the FREEZE bit, make all register changes, then Disable the FREEZE bit.
4.1.3
Master Clock Divide Enable (MCLKDIV)
Default = 0
0 - Disabled
1 - Enabled
Function:
The MCLKDIV bit enables a circuit that divides the externally applied MCLK signal by 2 prior to all other
internal circuitry.
4.1.4
DAC Pair Disable (DACx_DIS)
Default = 0
0 - DAC Pair x Enabled
1 - DAC Pair x Disabled
Function:
When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate
the possibility of audible artifacts.
16
DS257F2
CS4362
4.1.5
Power Down (PDN)
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be
disabled before normal operation in Control Port Mode can occur.
4.2
Mode Control 2 (address 02h)
7
Reserved
0
4.2.1
6
DIF2
0
5
DIF1
0
4
DIF0
0
3
Reserved
0
2
SDIN3CLK
0
1
SDIN2CLK
0
0
SDIN1CLK
0
Digital Interface Format (DIF)
Default = 000 - Format 0 (Left Justified, up to 24-bit data)
Function:
These bits select the interface format for the serial audio input. The Functional Mode bits determine
whether PCM or DSD Mode is selected.
PCM Mode: The required relationship between the Left/Right clock, serial clock and serial data is defined
by the Digital Interface Format and the options are detailed in Figures 33 to 38.
Note: While in PCM Mode, the DIF bits should only be changed when the power-down (PDN) bit is set
to ensure proper switching from one mode to another.
DIF2
DIF1
DIF0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DESCRIPTION
Left Justified, up to 24-bit data
I²S, up to 24-bit data
Right Justified, 16-bit data
Right Justified, 24-bit data
Right Justified, 20-bit data
Right Justified, 18-bit data
Reserved
Reserved
Format
FIGURE
0
1
2
3
4
5
33
34
35
36
37
38
Table 1. Digital Interface Formats - PCM Mode
DS257F2
17
CS4362
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required
Master clock to DSD data rate is defined by the Digital Interface Format pins. An additional write of 99h
to register 00h and 80h to register 1Ah is required to access the modes denoted with *.
DIF2
0
0
0
0
1
1
1
1
DIF1
0
0
1
1
0
0
1
1
DIFO
0
1
0
1
0
1
0
1
DESCRIPTION
64x oversampled DSD data with a 4x MCLK to DSD data rate
64x oversampled DSD data with a 6x MCLK to DSD data rate
64x oversampled DSD data with a 8x MCLK to DSD data rate
64x oversampled DSD data with a 12x MCLK to DSD data rate
128x oversampled DSD data with a 2x MCLK to DSD data rate
128x oversampled DSD data with a 3x MCLK to DSD data rate
128x oversampled DSD data with a 4x MCLK to DSD data rate
128x oversampled DSD data with a 6x MCLK to DSD data rate
Note
*
*
*
*
*
*
Table 2. Digital Interface Formats - DSD Mode
4.2.2
Serial Audio Data Clock Source (SDINXCLK)
Default = 0
0 - SDINx clocked by SCLK1 and LRCK1
1 - SDINx clocked by SCLK2 and LRCK2
Function:
The SDINxCLK bit specifies which SCLK/LRCK input pair is used to clock in the data on the given SDINx
line. For more details see “Clock Source Selection” on page 29.
4.3
Mode Control 3 (address 03h)
7
SZC1
1
4.3.1
6
SZC0
0
5
SNGLVOL
0
4
RMP_UP
0
3
Reserved
0
2
AMUTE
1
1
MUTEC1
0
0
MUTEC0
0
Soft Ramp and Zero Cross Control (SZC)
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Change
When Immediate Change is selected all level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel.
18
DS257F2
CS4362
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
Soft Ramp on Zero Crossing
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change
will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently
monitored and implemented for each channel.
4.3.2
Single Volume Control (SNGLVOL)
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
4.3.3
Soft Volume Ramp-Up After Error (RMP_UP)
Default = 0
0 - Disabled
1 - Enabled
Function:
An un-mute will be performed after executing a filter mode change, after a LRCK/MCLK ratio change or
error, and after changing the Functional Mode. When this feature is enabled, this un-mute is effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 register. When disabled,
an immediate un-mute is performed in these instances.
Note:
4.3.4
For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.
MUTEC Polarity (MUTEC+/-)
Default = 0
0 - Active High
1 - Active Low
Function:
The active polarity of the MUTEC pin(s) is determined by this register. When set to 0 (default) the MUTEC
pins are high when active. When set to 1 the MUTEC pin(s) are low when active.
Note: When the on board mute circuitry is designed for active low, the MUTEC outputs will be high (unmuted) for the period of time during reset and before this bit is enabled to 1.
DS257F2
19
CS4362
4.3.5
Auto-Mute (AMUTE)
Default = 1
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is
done independently for each channel. The quiescent voltage on the output will be retained and the Mute
Control pin will go active during the mute period. The muting function is affected, similar to volume control
changes, by the Soft and Zero Cross bits in the Mode Control 3 register.
4.3.6
Mute Pin Control (MUTEC1, MUTEC0)
Default = 00
00 - Six mute control signals
01, 10 - One mute control signal
11 - Three mute control signals
Function:
Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on
MUTEC2, etc. When set to either ‘01’ or ‘10’, there is a single mute control signal on the MUTEC1 pin.
When set to ‘11’, there are three mute control signals, one for each stereo pair: AOUT1A and AOUT1B
on MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.
4.4
Filter Control (address 04h)
7
Reserved
0
4.4.1
6
Reserved
0
5
Reserved
0
4
FILT_SEL
0
3
Reserved
0
2
DEM1
0
1
DEM0
0
0
RMP_DN
0
Interpolation Filter Select (FILT_SEL)
Default = 0
0 - Fast roll-off
1 - Slow roll-off
Function:
This Function allows the user to select whether the interpolation filter has a fast or slow roll off. For filter
characteristics please see Section 1. Characteristics and Specifications.
4.4.2
De-Emphasis Control (DEM)
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
20
DS257F2
CS4362
Selects the appropriate digital filter to maintain the standard 15 μs/50 μs digital de-emphasis filter response at 32, 44.1 or 48 kHz sample rates. (see Figure 39)
De-emphasis is only available in Single-Speed Mode.
4.4.3
Soft Ramp-Down Before Filter Mode Change (RMP_DN)
Default = 0
0 - Disabled
1 - Enabled
Function:
A mute will be performed prior to executing a filter mode change. When this feature is enabled, this mute
is effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 register.
When disabled, an immediate mute is performed prior to executing a filter mode change.
Note:
4.5
For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.
Invert Control (address 05h)
7
Reserved
0
4.5.1
6
Reserved
0
5
INV_B3
0
4
INV_A3
0
3
INV_B2
0
2
INV_A2
0
1
INV_B1
0
0
INV_A1
0
Invert Signal Polarity (Inv_Xx)
Default = 0
0 - Disabled
1 - Enabled
Function:
When enabled, these bits will invert the signal polarity of their respective channels.
4.6
Mixing Control Pair 1 (Channels A1 & B1)(address 06h)
Mixing Control Pair 2 (Channels A2 & B2)(address 09h)
Mixing Control Pair 3 (Channels A3 & B3)(address 0Ch)
7
Px_A=B
0
4.6.1
6
PxATAPI4
0
5
PxATAPI3
1
4
PxATAPI2
0
3
PxATAPI1
0
2
PxATAPI0
1
1
PxFM1
0
0
PxFM0
0
Channel A Volume = Channel B Volume (A=B)
Default = 0
0 - Disabled
1 - Enabled
Function:
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Volume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are determined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes
are ignored when this function is enabled.
DS257F2
21
CS4362
4.6.2
ATAPI Channel Mixing and Muting (ATAPI)
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)
Function:
The CS4362 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 3 and Figure 41 for additional information.
ATAPI4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ATAPI3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
ATAPI2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
ATAPI1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
ATAPI0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AOUTAx
MUTE
MUTE
MUTE
MUTE
aR
aR
aR
aR
aL
aL
aL
aL
a[(L+R)/2]
a[(L+R)/2]
a[(L+R)/2]
a[(L+R)/2]
MUTE
MUTE
MUTE
MUTE
aR
aR
aR
aR
aL
aL
aL
aL
[(aL+bR)/2]
[(aL+bR)/2]
[(bL+aR)/2]
[(aL+bR)/2]
AOUTBx
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
b[(L+R)/2]
MUTE
bR
bL
[(aL+bR)/2]
MUTE
bR
bL
[(bL+aR)/2]
MUTE
bR
bL
[(aL+bR)/2]
MUTE
bR
bL
[(aL+bR)/2]
Table 3. ATAPI Decode
22
DS257F2
CS4362
4.6.3
Functional Mode (FM)
Default = 00
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
11 - Direct Stream Digital Mode
Function:
Selects the required range of input sample rates or DSD Mode. All DAC pairs set to the same SCLK/LRCK
pair (Section 4.2.2) are required to be set to the same functional mode setting before a speed mode
change is accepted. When DSD Mode is selected for any channel pair then all pairs will switch to DSD
Mode.
4.7
Volume Control (addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh)
7
xx_MUTE
0
4.7.1
6
xx_VOL6
0
5
xx_VOL5
0
4
xx_VOL4
0
3
xx_VOL3
0
2
xx_VOL2
0
1
xx_VOL1
0
0
xx_VOL0
0
Mute (MUTE)
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is effected, similar to attenuation changes, by the Soft and Zero Cross
bits. The MUTE pins will go active during the mute period according to the MUTEC bits.
4.7.2
Volume Control (xx_VOL)
Default = 0 (No attenuation)
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments
from 0 to -127 dB. Volume settings are decoded as shown in Table 4. The volume changes are implemented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent
to enabling the MUTE bit.
Binary Code
0000000
0010100
0101000
0111100
1011010
Decimal Value
0
20
40
60
90
Volume Setting
0 dB
-20 dB
-40 dB
-60 dB
-90 dB
Table 4. Example Digital Volume Settings
DS257F2
23
CS4362
4.8
Chip Revision (address 12h)
7
PART3
1
4.8.1
6
PART2
1
5
PART1
1
4
PART0
0
3
Reserved
-
2
Reserved
-
1
Reserved
-
0
Reserved
-
Part Number ID (PART) [Read Only]
1110 - CS4362
Function:
This read-only register can be used to identify the model number of the device.
24
DS257F2
CS4362
AOUTB1-
AOUTB1+
AOUTA1+
AOUTA1-
M UTEC1
VLS
M 3(DSD_SCLK)
TST
TST
DSDB3
DSDA3
DSDB2
5. PIN DESCRIPTION
48 47 46 45 44 43 42 41 40 39 38 37
DSDA2
1
36
AOUTA2-
DSDB1
2
35
AOUTA2+
DSDA1
3
34
AOUTB2+
VD
4
33
AOUTB2-
GND
5
32
VA
MCLK
6
31
GND
LRCK1(DSD_EN)
7
30
AOUTA3-
SDIN1
8
29
AOUTA3+
SCLK1
9
28
AOUTB3+
LRCK2
10
27
AOUTB3-
SDIN2
11
26
MUTEC2
SCLK2
12
25
MUTEC3
CS4362
Pin Name
#
MUTEC4
M UTEC5
MUTEC6
VQ
FILT+
RST
VLC
M0(AD0/CS)
M 1(SDA/CDIN)
M 2(SCL/CCLK)
TST
SDIN3
13 14 15 16 17 18 19 20 21 22 23 24
Pin Description
VD
4
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recommended Operating Conditions for appropriate voltages.
GND
5
31
Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK
6
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 5
illustrates several standard audio sample rates and the required master clock frequencies.
LRCK1
LRCK2
7
10
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the
serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
SDIN1
SDIN2
SDIN3
8
11
13
Serial Data Input (Input) - Input for two’s complement serial audio data.
SCLK1
SCLK2
9
12
Serial Clock (Input) - Serial clocks for the serial audio interface.
TST
14
44
45
Test - These pins need to be tied to analog ground.
RST
19
Reset (Input) - The device enters a low power mode and all internal registers are reset to their
default settings when low.
VA
32
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended Operating Conditions for appropriate voltages.
VLS
43
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio
interface. Refer to the Recommended Operating Conditions for appropriate voltages.
VLC
18
Control Port Power (Input) - Determines the required signal level for the control port and
stand- alone configuration pins. Refer to the Recommended Operating Conditions for appropriate voltages.
DS257F2
25
CS4362
Pin Name
#
Pin Description
VQ
21
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nominal voltage level is specified in the Analog Characteristics and Specifications section. VQ presents an appreciable source impedance and any current drawn from this pin will alter device
performance. However, VQ can be used to bias the analog circuitry assuming there is no AC
signal component and the DC current is less then the maximum specified in the Analog Characteristics and Specifications section.
FILT+
20
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection
Diagram.
AOUTA1 +,AOUTB1 +,AOUTA2 +,AOUTB2 +,AOUTA3 +,AOUTB3 +,MUTEC1
MUTEC2
MUTEC3
MUTEC4
MUTEC5
MUTEC6
39,40
38,37
35,36 Differential Analog Output (Output) - The full-scale differential analog output level is specified
34,33 in the Analog Characteristics specification table.
29,30
28,27
41
26
25
24
23
22
Mute Control (Output) - The Mute Control pins go high during power-up initialization, reset,
muting, power-down or if the master clock to left/right clock frequency ratio is incorrect. These
pins are intended to be used as a control for external mute circuits on the line outputs to prevent
the clicks and pops that can occur in any single supply system. Use of Mute Control is not mandatory but recommended for designs requiring the absolute minimum in extraneous clicks and
pops.
Stand-Alone Definitions
M0
M1
M2
M3
17
16
15
42
Mode Selection (Input) - Determines the operational mode of the device as detailed in Tables 6
and 7.
Control Port Definitions
SCL/CCLK
15
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external
pull-up resistor to the logic interface voltage in I²C Mode as shown in the Typical Connection
Diagram.
SDA/CDIN
16
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Connection Diagram; CDIN is the input data line for the control port interface in SPI Mode.
AD0/CS
17
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
Mode; CS is the chip select signal for SPI Mode.
DSDA1
DSDB1
DSDA2
DSDB2
DSDA3
DSDB3
3
2
1
48
47
46
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
DSD_SCLK
42
DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.
DSD_EN
7
DSD Enable (Input) - When held at logic ‘1’ the device will enter DSD Mode (Stand-Alone Mode
only).
DSD Definitions
26
DS257F2
CS4362
Sample
Rate
(kHz)
Mode
(sample-rate range)
MCLK Ratio
Single-Speed
(4 to 50 kHz)
256x
8.1920
11.2896
12.2880
128x
8.1920
11.2896
12.2880
64x
11.2896
12.2880
32
44.1
48
MCLK Ratio
Double-Speed
(50 to 100 kHz)
Control Port
Only Modes
MCLK (MHz)
64
88.2
96
MCLK Ratio
176.4
Quad-Speed
(100 to 200 kHz)
192
384x
12.2880
16.9344
18.4320
192x
12.2880
16.9344
18.4320
96x
16.9344
18.4320
512x
16.3840
22.5792
24.5760
256x
16.3840
22.5792
24.5760
128x
22.5792
24.5760
768x
24.5760
33.8688
36.8640
384x
24.5760
33.8688
36.8640
192x
33.8688
36.8640
1024x*
32.7680
45.1584
49.1520
512x*
32.7680
45.1584
49.1520
256x*
45.1584
49.1520
Table 5. Common Clock Frequencies
*Note: These modes are only available in Control Port Mode by setting the MCLKDIV bit = 1.
M1
(DIF1)
0
0
M0
(DIF0)
0
1
1
1
0
1
DESCRIPTION
FORMAT
FIGURE
0
1
33
34
2
3
35
36
Left Justified, up to 24-bit data
I2S, up to 24-bit data
Right Justified, 16-bit Data
Right Justified, 24-bit Data
Table 6. Digital Interface Format, Stand-Alone Mode Options
M3
0
0
1
1
M2
(DEM)
0
1
0
1
DESCRIPTION
Single-Speed without De-Emphasis (4 to 50 kHz sample rates)
Single-Speed with 44.1 kHz De-Emphasis; see Figure 39
Double-Speed (50 to 100 kHz sample rates)
Quad-Speed (100 to 200 kHz sample rates)
Table 7. Mode Selection, Stand-Alone Mode Options
DSD_Mode
(LRCK1)
1
1
1
1
1
1
1
1
M2
M1
M0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DESCRIPTION
64x oversampled DSD data with a 4x MCLK to DSD data rate
Reserved
Reserved
Reserved
128x oversampled DSD data with a 2x MCLK to DSD data rate
Reserved
Reserved
Reserved
Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options
DS257F2
27
CS4362
6. APPLICATIONS
6.1
Grounding and Power Supply Decoupling
As with any high resolution converter, the CS4362 requires careful attention to power supply and grounding
arrangements to optimize performance. Figures 5 and 6 show the recommended power arrangement with
VA, VD, VLS and VLC connected to clean supplies. Decoupling capacitors should be located as close to
the device package as possible. If desired, all supply pins may be connected to the same supply, but a decoupling capacitor should still be placed on each supply pin (see Characteristics and Specifications for recommended voltages).
6.2
PCM Mode Select
The CS4362 operates in one of three PCM oversampling modes based on the input sample rate. Mode selection is determined by the M3 and M2 pins in Stand-Alone Mode or the FM bits in Control Port Mode. Single-Speed Mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. DoubleSpeed Mode supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. QuadSpeed Mode supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x. The PCM
digital interface format is determined by the M1 and M0 pins in Stand-Alone Mode or the DIF bits in Control
Port Mode.
In Stand-Alone Mode, the states of these pins are continually scanned for any changes; however, the mode
should only be changed while the device is in reset (RST pin low) to ensure proper switching from one mode
to another.
6.3
Recommended Power-Up Sequence
1. Hold RST low until the power supply, master, and left/right clocks are stable. In this state, the control
port is reset to its default settings and VQ will remain low.
2. Bring RST high. The device will remain in a low power state with VQ low and will initiate the Stand-Alone
power-up sequence. The control port will be accessible at this time. If Control Port operation is desired,
write the CPEN bit prior to the completion of the Stand-Alone power-up sequence, approximately 512
LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles
in Quad-Speed Mode). Writing this bit will halt the Stand-Alone power-up sequence and initialize the
control port to its default settings. The desired register settings can be loaded while keeping the PDN
bit set to 1.
3. If Control Port Mode is selected via the CPEN bit, set the RMP_UP and RMP_DN bits in registers 03h
and 04h to 1, set the format and mode control bits to the desired settings, and then set the PDN bit to
0 which will initiate the power-up sequence.
6.4
Analog Output and Filtering
The application note “Design Notes for a 2-Pole Filter with Differential Input” discusses the second-order
Butterworth filter and differential to single-ended converter which was implemented on the CS4362 evaluation board, CDB4362, as seen in Figure 42. The CS4362 does not include phase or amplitude compensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on
the external analog circuitry.
6.5
Interpolation Filter
To accommodate the increasingly complex requirements of digital audio systems, the CS4362 incorporates
selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in
each of Single-, Double-, and Quad-Speed Modes. These filters have been designed to accommodate a
28
DS257F2
CS4362
variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the control
port section for more details).
When in Stand-Alone Mode, only the “fast” roll-off filter is available.
Filter specifications can be found in Section 1, and filter response plots can be found in Figures 9 to 32.
6.6
Clock Source Selection
The CS4362 has two serial clock and two left/right clock inputs. The SDINxCLK bits in the control port allow
the user to set which SCLK/LRCK pair is used to latch the data for each SDINx pin. The clocks applied to
LRCK1 and LRCK2 must be derived from the same MCLK and must be exact frequency multiples of each
other as specified in the “Switching Characteristics” on page 9. When using both SCLK1/LRCK1 and
SCLK2/LRCK2, if either SCLK/LRCK pair loses synchronization then both SCLK/LRCK pairs will go through
a retime period where the device is re-evaluating clock ratios. During the retime period, all DAC pairs are
temporarily inactive, outputs are muted, and the mute control pins will go active according to the MUTEC
bits.
If unused, SCLK2 and LRCK2 should be tied static low and SDINx bits should all be set to SCLK1/LRCK1.
In Stand-Alone Mode, all DAC pairs use SCLK1 and LRCK1 for timing and SCLK2/LRCK2 should be tied
to ground.
6.7
Using DSD Mode
In Stand-Alone Mode, DSD operation is selected by holding DSD_EN(LRCK1) high and applying the DSD
data and clocks to the appropriate pins. The M2:0 pins set the expected DSD rate and MCLK ratio.
In Control-Port Mode, the FM bits set the device into DSD Mode (DSD_EN pin is not required to be held
high). The DIF register then controls the expected DSD rate and MCLK ratio. To access the full range of
DSD clocking modes (other than 64x DSD 4x MCLK and 128x DSD 2x MCLK), the following additional register sequence needs to be written:
99h to register 00h
80h to register 1Ah
00h to register 00h
When exiting DSD Mode the following additional sequence needs to be written:
99h to register 00h
00h to register 1Ah
00h to register 00h
During DSD operation, the PCM related pins should either be tied low or remain active with clocks (except
LRCK1 in Stand-Alone Mode). When the DSD related pins are not being used, they should either be tied
static low or remain active with clocks (except M3 in Stand-Alone Mode).
6.8
Recommended Procedure for Switching Operational Modes
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).
The mute bits may then be released after clocks have settled and the proper CS4362 modes have been set.
It is required that the CS4362 be held in reset if the minimum high/low time specs of MCLK can not be met
during clock source changes.
DS257F2
29
CS4362
7. CONTROL PORT INTERFACE
The control port is used to load all the internal settings. The operation of the control port may be completely asynchronous with the audio sample rate. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The CS4362 has MAP auto increment capability, enabled by the INCR bit in the MAP register, which is the MSB. If
INCR is 0, then the MAP will stay constant for successive writes. If INCR is set to 1, then MAP will auto increment
after each byte is written from register 01h to 08h and then from 09h and 11h, allowing block reads or writes of successive registers in two separate sections (the counter will not auto-increment to register 09h from register 08h).
7.1
Enabling the Control Port
On the CS4362 the control port pins are shared with stand-alone configuration pins. To enable the control
port, the user must set the CPEN bit. This is done by performing a I²C or SPI write. Once the control port is
enabled, these pins are dedicated to control port functionality.
To prevent audible artifacts the CPEN bit (see Section 4.1.1) should be set prior to the completion of the
Stand-Alone power-up sequence, approximately 1024 LRCK cycles. Writing this bit will halt the Stand-Alone
power-up sequence and initialize the control port to its default settings. Note, the CP_EN bit can be set any
time after RST goes high; however, setting this bit after the Stand-Alone power-up sequence has completed
can cause audible artifacts.
7.2
Format Selection
The control port has 2 formats: SPI and I²C, with the CS4362 operating as a slave device.
If I²C operation is desired, AD0/CS should be tied to VLC or GND. If the CS4362 ever detects a high to low
transition on AD0/CS after power-up and after the control port is activated, SPI format will be selected.
7.3
I²C Format
In I²C Format, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL,
with a clock to data relationship as shown in Figure Figure 7. The receiving device should send an acknowledge (ACK) after each byte received. There is no CS pin. Pin AD0 forms the partial chip address and should
be tied to VLC or GND as required. The upper 6 bits of the 7 bit address field must be 001100.
Note:
7.3.1
MCLK is required during all I²C transactions. Please see “References” on page 40 to obtain additional information on the I²C Bus specification or visit http://www.semiconductors.philips.com.
Writing in I²C Format
To communicate with the CS4362, initiate a START condition of the bus. Next, send the chip address.
The eighth bit of the address byte is the R/W bit (low for a write). The next byte is the Memory Address
Pointer, MAP, which selects the register to be read or written. The MAP is then followed by the data to be
written. To write multiple registers, continue providing a clock and data, waiting for the CS4362 to acknowledge between each byte. To end the transaction, send a STOP condition.
7.3.2
Reading in I²C Format
To communicate with the CS4362, initiate a START condition of the bus. Next, send the chip address.
The eighth bit of the address byte is the R/W bit (high for a read). The contents of the register pointed to
by the MAP will be output after the chip address. To read multiple registers, continue providing a clock
and issue an ACK after each byte. To end the transaction, send a STOP condition.
30
DS257F2
CS4362
7.4
SPI Format
In SPI format, CS is the CS4362 chip select signal, CCLK is the control port bit clock, CDIN is the input data
line from the microcontroller and the chip address is 0011000. CS, CCLK and CDIN are all inputs and data
is clocked in on the rising edge of CCLK.
Note:
7.4.1
The CS4362 is write-only when in SPI format.
Writing in SPI
Figure 8 shows the operation of the control port in SPI format. To write to a register, bring CS low. The
first 7 bits on CDIN form the chip address and must be 0011000. The eighth bit is a read/write indicator
(R/W), which must be low to write. The next 8 bits form the Memory Address Pointer (MAP), which is set
to the address of the register that is to be updated. The next 8 bits are the data which will be placed into
register designated by the MAP. To write multiple registers, keep CS low and continue providing clocks
on CCLK. End the read transaction by setting CS high.
N o te 1
SDA
001100
ADDR
AD0
R /W
ACK
DATA
1 -8
ACK
DATA
1 -8
ACK
SCL
S to p
S ta rt
N o te : If o p e r a tio n is a w r ite , th is b y te c o n ta in s th e M e m o ry A d d r e s s P o in te r , M A P .
Figure 7. Control Port Timing, I²C Format
C S
C C LK
C H IP
A D D R E S S
C D IN
0011000
M A P
R /W
D A TA
M S B
b y te 1
LSB
b y te n
M A P = M e m o r y A d d r e s s P o in te r
Figure 8. Control Port Timing, SPI Format
DS257F2
31
CS4362
7.5
Memory Address Pointer (MAP)
7
INCR
0
7.5.1
6
Reserved
0
5
Reserved
0
4
MAP4
0
3
MAP3
0
2
MAP2
0
1
MAP1
0
0
MAP0
0
INCR (Auto Map Increment Enable)
Default = ‘0’
0 - Disabled
1 - Enabled
Note:
When Auto Map Increment is enabled, the register must be written it two separate blocks: from
register 01h to 08h and then from 09h and 11h. The counter will not auto-increment to register 09h from
register 08h
7.5.2
MAP4-0 (Memory Address Pointer)
Default = ‘00000’
32
DS257F2
CS4362
8. FILTER PLOTS
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0
60
60
80
80
100
100
120
120
0.4
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
1
Figure 9. Single-Speed (fast) Stopband Rejection
0.4
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 10. Single-Speed (fast) Transition Band
0.02
0
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.02
0.55
Figure 11. Single-Speed (fast) Transition Band
(detail)
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0.05
Figure 12. Single-Speed (fast) Passband Ripple
0
60
80
60
80
100
120
0
100
0.4
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
1
Figure 13. Single-Speed (slow) Stopband Rejection
DS257F2
120
0.4
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 14. Single-Speed (slow) Transition Band
33
CS4362
0.02
0
1
0.015
2
0.01
3
Amplitude (dB)
Amplitude (dB)
0.005
4
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.02
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 15. Single-Speed (slow) Transition Band
(detail)
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0.05
Figure 16. Single-Speed (slow) Passband Ripple
0
60
60
80
80
100
100
120
0
120
0.4
0.5
0.6
0.7
0.8
Frequency(normalized to Fs)
0.9
1
Figure 17. Double-Speed (fast) Stopband Rejection
0.4
0.42
0.44
0.46
0.48
0.5
0.52
Frequency(normalized to Fs)
0.54
0.56
0.58
0.6
Figure 18. Double-Speed (fast) Transition Band
0
0.02
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 19. Double-Speed (fast) Transition Band
(detail)
34
0.02
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency(normalized to Fs)
0.35
0.4
0.45
0.5
Figure 20. Double-Speed (fast) Passband Ripple
DS257F2
CS4362
0
20
20
40
40
Amplitude (dB)
Amplitude (dB)
0
60
60
80
80
100
100
120
120
0.2
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 21. Double-Speed (slow) Stopband Rejection
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
Figure 22. Double-Speed (slow) Transition Band
0.02
0
1
0.015
2
0.01
3
Amplitude (dB)
Amplitude (dB)
0.005
4
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.02
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 23. Double-Speed (slow) Transition Band
(detail)
40
40
Amplitude (dB)
Amplitude (dB)
20
60
0.15
0.2
Frequency(normalized to Fs)
0.25
0.3
0.35
60
80
80
100
100
120
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 25. Quad-Speed (fast) Stopband Rejection
DS257F2
0.1
0
20
0.2
0.05
Figure 24. Double-Speed (slow) Passband Ripple
0
120
0
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
Figure 26. Quad-Speed (fast) Transition Band
35
CS4362
0.2
0
1
0.15
2
0.1
3
Amplitude (dB)
Amplitude (dB)
0.05
4
5
6
0
0.05
7
0.1
8
0.15
9
10
0.45
0.2
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 27. Quad-Speed (fast) Transition Band
0
0.05
0.1
0.15
Frequency(normalized to Fs)
0.2
0.25
Figure 28. Quad-Speed (fast) Passband Ripple
0
0
20
40
40
Amplitude (dB)
Amplitude (dB)
20
60
60
80
80
100
100
120
120
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
1
Figure 29. Quad-Speed (slow) Stopband Rejection
0.1
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
0.9
Figure 30. Quad-Speed (slow) Transition Band
0.02
0
1
0.015
2
0.01
0.005
4
Amplitude (dB)
Amplitude (dB)
3
5
6
0
0.005
7
0.01
8
0.015
9
10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency(normalized to Fs)
0.52
0.53
0.54
0.55
Figure 31. Quad-Speed (slow) Transition Band
(detail)
36
0.02
0
0.02
0.04
0.06
0.08
Frequency(normalized to Fs)
0.1
0.12
Figure 32. Quad-Speed (slow) Passband Ripple
DS257F2
CS4362
9. DIAGRAMS
Left Channel
LRCK
Right Channel
SCLK
SDINx
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1
LSB
Figure 33. Format 0 - Left Justified up to 24-bit Data
Left Channel
LRCK
Right Channel
SCLK
SDINx
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1
LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Figure 34. Format 1 - I²S up to 24-bit Data
LRCK
Right Channel
Left Channel
SCLK
SDINx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 clocks
Figure 35. Format 2 - Right Justified 16-bit Data
LRCK
Right Channel
Left Channel
SCLK
SDINx
0
23 22 21 20 19 18
7 6 5 4 3 2 1 0
23 22 21 20 19 18
7 6 5 4 3 2 1 0
32 clocks
Figure 36. Format 3 - Right Justified 24-bit Data
DS257F2
37
CS4362
LRCK
Right Channel
Left Channel
SCLK
SDINx
1 0
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 clocks
Figure 37. Format 4 - Right Justified 20-bit Data
LRCK
Right Channel
Left Channel
SCLK
SDINx
1 0
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 clocks
Figure 38. Format 5 - Right Justified 18-bit Data
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
F2
Frequency
10.61 kHz
Figure 39. De-Emphasis Curve
38
DS257F2
CS4362
L
AOUTAx+
AOUTAx-
DAC
Channel
Pair x
Control
SDINx
R
AOUTBx+
DAC
AOUTBx-
Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, or 3)
A Channel
Volume
Control
Left Channel
Audio Data
Σ
SDINx
Right Channel
Audio Data
MUTE
Aout Ax
MUTE
AoutBx
Σ
B Channel
Volume
Control
Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, or 3)
Figure 42. Recommended Output Filter
DS257F2
39
CS4362
10.PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full
scale. This technique ensures that the distortion components are below the noise level and do not effect the
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES171991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full scale analog output for a full scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
11.REFERENCES
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters by Steven Harris. Paper
presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4362 Evaluation Board Data Sheet, available at http:www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input by Steven Green. Cirrus Logic Application Note AN48,
available at http:www.cirrus.com.
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com
40
DS257F2
CS4362
12.PACKAGE DIMENSIONS
48L LQFP PACKAGE DRAWING
E
E1
D D1
1
e
B
∝
A
A1
L
DIM
A
A1
B
D
D1
E
E1
e*
L
∝
MIN
--0.002
0.007
0.343
0.272
0.343
0.272
0.016
0.018
0.000°
INCHES
NOM
0.055
0.004
0.009
0.354
0.28
0.354
0.28
0.020
0.24
4°
MAX
0.063
0.006
0.011
0.366
0.280
0.366
0.280
0.024
0.030
7.000°
MIN
--0.05
0.17
8.70
6.90
8.70
6.90
0.40
0.45
0.00°
MILLIMETERS
NOM
1.40
0.10
0.22
9.0 BSC
7.0 BSC
9.0 BSC
7.0 BSC
0.50 BSC
0.60
4°
MAX
1.60
0.15
0.27
9.30
7.10
9.30
7.10
0.60
0.75
7.00°
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
DS257F2
41
CS4362
13. ORDERING INFORMATION
Product
Description
Package Pb-Free
114 dB, 192 kHz 648-pin
CS4362
channel D/A Converter
LQFP
CDB4362
CS4362 Evaluation Board
YES
-
Grade
Temp Range
Commercial -10°C to +70°C
-
-
Container
Order #
Tray
Tape and Reel
-
CS4362-KQZ
CS4362-KQZR
CDB4362
14.REVISION HISTORY
Release
F1
F2
Changes
Removed -BQ ordering option
Corrected specifications for Full-Scale Differential Output Voltage
Updated legal text
Incorporated changes outlined in ER257B3 and ER257F1:
Corrected pin order for analog outputs in the pin description
Corrected mute pin decode in Section 4.3.6
Updated description for Section 4.6.3
Updated description for 3) in Section 6.3
Added Section 6.8
Updated Table 2 on page 18
Updated Section 6.7 “Using DSD Mode” on page 29
Corrected DAC Pair Disable register description in Section 4.1.4
Added note to Digital Interface Format in Section 4.2.1
Added PCM mode format changeable in reset only to Section 6.2
Updated Package Thermal Resistance in “Power and Thermal Characteristics” on page 6
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.
SPI is a trademark of Motorola, Inc.
42
DS257F2
Similar pages