ETC1 A54SX08P-2PQ208M 54sx family fpgas Datasheet

v3.1
54SX Family FPGAs
Le a di ng E dg e P er f or m a nc e
F ea t u r es
• 320 MHz Internal Performance
• 66 MHz PCI
• 3.7 ns Clock-to-Out (Pin-to-Pin)
• CPLD and FPGA Integration
• 0.1 ns Input Set-Up
• Single Chip Solution
• 0.25 ns Clock Skew
• 100% Resource Utilization with 100% Pin Locking
Sp e ci f ic at ion s
• 3.3V Operation with 5.0V Input Tolerance
• 12,000 to 48,000 System Gates
• Very Low Power Consumption
• Up to 249 User-Programmable I/O Pins
• Deterministic, User-Controllable Timing
• Up to 1080 Flip-Flops
• Unique In-System Diagnostic and Debug capability with
Silicon Explorer II
• 0.35µ CMOS
• Boundary Scan Testing in Compliance with IEEE Standard
1149.1 (JTAG)
• Secure Programming Technology Prevents Reverse
Engineering and Design Theft
S X P r od u c t P ro fi l e
A54SX08
A54SX16
A54SX16P
A54SX32
8,000
12,000
16,000
24,000
16,000
24,000
32,000
48,000
Logic Modules
Combinatorial Cells
768
512
1,452
924
1,452
924
2,880
1800
Register Cells (Dedicated Flip-Flops)
256
528
528
1,080
Maximum User I/Os
130
175
175
249
3
3
3
3
Yes
Yes
Yes
Yes
—
—
Yes
—
Clock-to-Out
3.7 ns
3.9 ns
4.4 ns
4.6 ns
Input Set-Up (External)
0.8 ns
0.5 ns
0.5 ns
0.1 ns
Std, –1, –2, –3
Std, –1, –2, –3
Std, –1, –2, –3
Std, –1, –2, –3
C, I, M
C, I, M
C, I, M
C, I, M
84
208
100
144, 176
—
144
—
208
100
176
—
—
—
208
100
144, 176
—
—
—
208
—
144, 176
313, 329
—
Capacity
Typical Gates
System Gates
Clocks
JTAG
PCI
Speed Grades
Temperature Grades
Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
PBGA
FBGA
June 2003
© 2003 Actel Corporation
1
54SX Family FPGAs
G e n e ra l D e s cr i p t i o n
Actel’s SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other FPGA
architecture. SX devices greatly simplify design time, enable
dramatic reductions in design costs and power
consumption, and further decrease time to market for
performance-intensive applications.
machines, and datapath logic. The general system of
segmented routing tracks allows any logic module in the
array to be connected to any other logic or I/O module.
Within this system, propagation delay is minimized by
limiting the number of antifuse interconnect elements to
five (90 percent of connections typically use only three
antifuses). The unique local and general routing structure
featured in SX devices gives fast and predictable
performance, allows 100 percent pin-locking with full logic
utilization, enables concurrent PCB development, reduces
design time, and allows designers to achieve performance
goals with minimum effort.
Actel’s SX architecture features two types of logic modules,
the combinatorial cell (C-cell) and the register cell (R-cell),
each optimized for fast and efficient mapping of synthesized
logic functions. The routing and interconnect resources are
in the metal layers above the logic modules, providing
optimal use of silicon. This enables the entire floor of the
device to be spanned with an uninterrupted grid of
fine-grained, synthesis-friendly logic modules (or
“sea-of-modules”), which reduces the distance signals have
to travel between logic modules. To minimize signal
propagation delay, SX devices employ both local and general
routing resources. The high-speed local routing resources
(DirectConnect and FastConnect) enable very fast local
signal propagation that is optimal for fast counters, state
Further complementing SX’s flexible routing structure is a
hard-wired, constantly loaded clock network that has been
tuned to provide fast clock propagation with minimal clock
skew. Additionally, the high performance of the internal
logic has eliminated the need to embed latches or flip-flops
in the I/O cells to achieve fast clock-to-out or fast input
set-up times. SX devices have easy-to-use I/O cells that do
not require HDL instantiation, facilitating design re-use and
reducing design and verification time.
O r d er i n g In f or m a t i o n
A54SX16
P
–
2
PQ
208
Application (Temperature Range)
Blank = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
PP = Pre-production
Package Lead Count
Package Type
BG = Ball Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
FG = Fine Pitch Ball Grid Array (1.0 mm)
Speed Grade
Blank = Standard Speed
–1 = Approximately 15% Faster than Standard
–2 = Approximately 25% Faster than Standard
–3 = Approximately 35% Faster than Standard
Blank = Not PCI Compliant
P = PCI Compliant
Part Number
A54SX08
A54SX16
A54SX16P
A54SX32
2
=
=
=
=
12,000 System Gates
24,000 System Gates
24,000 System Gates
48,000 System Gates
v3.1
5 4 S X F a m i l y F PG A s
P ro d u ct P l a n
Speed Grade*
Application
Std
–1
–2
–3
C
I†
M•
84-Pin Plastic Leaded Chip Carrier (PLCC)
✔
✔
✔
✔
✔
✔
—
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)
✔
✔
✔
✔
✔
✔
—
144-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
—
144-Pin Fine Pitch Ball Grid Array (FBGA)
✔
✔
✔
✔
✔
✔
—
176-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
—
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
✔
✔
—
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)
✔
✔
✔
✔
✔
✔
P
176-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
P
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
✔
✔
P
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)
✔
✔
✔
✔
✔
✔
—
144-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
—
176-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
—
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
✔
✔
—
144-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
P
176-Pin Thin Quad Flat Pack (TQFP)
✔
✔
✔
✔
✔
✔
P
208-Pin Plastic Quad Flat Pack (PQFP)
✔
✔
✔
✔
✔
✔
P
313-Pin Plastic Ball Grid Array (PBGA)
✔
✔
✔
✔
✔
✔
—
329-Pin Plastic Ball Grid Array (PBGA)
✔
✔
✔
✔
✔
✔
—
A54SX08 Device
A54SX16 Device
A54SX16P Device
A54SX32 Device
Contact your Actel sales representative for product availability.
Applications:C = CommercialAvailability:✔
= Available*Speed Grade:–1
I
= Industrial
P
= Planned
–2
M
= Military
—
= Not Planned
–3
† Only Std, –1, –2 Speed Grade
• Only Std, –1 Speed Grade
= Approx. 15% faster than Standard
= Approx. 25% faster than Standard
= Approx. 35% faster than Standard
P l a s t i c D e v i c e R e s ou r c es
User I/Os (including clock buffers)
PLCC
84-Pin
VQFP
100-Pin
PQFP
208-Pin
TQFP
144-Pin
TQFP
176-Pin
PBGA
313-Pin
PBGA
329-Pin
FBGA
144-Pin
A54SX08
69
81
130
113
128
—
—
111
A54SX16
—
81
175
—
147
—
—
—
A54SX16P
—
81
175
113
147
—
—
—
A54SX32
—
—
174
113
147
249
249
—
Device
Package Definitions (Consult your local Actel sales representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack,
PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch (1.0 mm) Ball Grid Array
v3.1
3
54SX Family FPGAs
S X F a m i l y A r ch i t e c tu r e
The SX family architecture was designed to satisfy
next-generation performance and integration requirements
for production-volume designs in a broad range of
applications.
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are normally
open circuit and, when programmed, form a permanent
low-impedance connection.
P r o g r a m m a b l e I n t e r c o nn e c t E l e m e n t
The extremely small size of these interconnect elements
gives the SX family abundant routing resources and provides
excellent protection against design pirating. Reverse
engineering is virtually impossible because it is extremely
difficult to distinguish between programmed and
unprogrammed antifuses, and there is no configuration
bitstream to intercept.
The SX family provides efficient use of silicon by locating the
routing interconnect resources between the Metal 2 (M2)
and Metal 3 (M3) layers (Figure 1). This completely
eliminates the channels of routing and interconnect
resources between logic modules (as implemented on SRAM
FPGAs and previous generations of antifuse FPGAs), and
enables the entire floor of the device to be spanned with an
uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved
using Actel’s patented metal-to-metal programmable
Additionally, the interconnect (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
Routing Tracks
Metal 3
Amorphous Silicon/
Dielectric Antifuse
Tungsten Plug Via
Tungsten Plug Via
Metal 2
Metal 1
Tungsten Plug
Contact
Silicon Substrate
Figure 1 • SX Family Interconnect Elements
Lo g ic M o du le D es ig n
The SX family architecture is described as a
“sea-of-modules” architecture because the entire floor of
the device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. Actel’s SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
4
The R-cell contains a flip-flop featuring asynchronous clear,
asynchronous preset, and clock enable (using the S0 and S1
lines) control signals (Figure 2 on page 5). The R-cell
registers feature programmable clock polarity selectable on
a register-by-register basis. This provides additional
flexibility while allowing mapping of synthesized functions
into the SX FPGA. The clock source for the R-cell can be
chosen from either the hard-wired clock or the routed clock.
v3.1
5 4 S X F a m i l y F PG A s
The C-cell implements a range of combinatorial functions
up to 5-inputs (Figure 3). Inclusion of the DB input and its
associated inverter function dramatically increases the
number of combinatorial functions that can be
implemented in a single module from 800 options in
previous architectures to more than 4,000 in the SX
architecture. An example of the improved flexibility
S0
enabled by the inversion capability is the ability to integrate
a 3-input exclusive-OR function into a single C-cell. This
facilitates construction of 9-bit parity-tree functions with 2
ns propagation delays. At the same time, the C-cell
structure is extremely synthesis friendly, simplifying the
overall design and reducing synthesis time.
Routed
Data Input S1
PSETB
Direct
Connect
Input
D
Q
Y
HCLK
CLRB
CLKA,
CLKB,
Internal Logic
CKS
CKP
Figure 2 • R-Cell
D0
D1
Y
D2
D3
Sa
Sb
DB
A0
B0
A1
B1
Figure 3 • C-Cell
Chip Architecture
Type 2 contains one C-cell and two R-cells.
The SX family’s chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of new
and emerging applications.
To increase design efficiency and device performance, Actel
has further organized these modules into SuperClusters
(Figure 4 on page 6). SuperCluster 1 is a two-wide grouping
of Type 1 clusters. SuperCluster 2 is a two-wide group
containing one Type 1 cluster and one Type 2 cluster. SX
devices feature more SuperCluster 1 modules than
SuperCluster 2 modules because designers typically require
significantly more combinatorial logic than flip-flops.
M od u le O r g a niz a t io n
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called Clusters. There are two types of
Clusters: Type 1 contains two C-cells and one R-cell, while
v3.1
5
54SX Family FPGAs
R-Cell
S0
C-Cell
D0
Routed
Data Input S1
D1
PSETB
Y
D2
Direct
Connect
Input
D
Q
D3
Y
Sa
Sb
HCLK
CLRB
CLKA,
CLKB,
Internal Logic
DB
CKS
Cluster 1
CKP
A0
Cluster 2
Cluster 2
Type 1 SuperCluster
B0
A1
B1
Cluster 1
Type 2 SuperCluster
Figure 4 • Cluster Organization
Ro ut in g Re so u r ce s
Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 5 and Figure 6 on
page 7). This routing architecture also dramatically reduces
the number of antifuses required to complete a circuit,
ensuring the highest possible performance.
DirectConnect is a horizontal routing resource that provides
connections from a C-cell to its neighboring R-cell in a given
SuperCluster. DirectConnect uses a hard-wired signal path
requiring no programmable interconnection to achieve its
fast signal propagation time of less than 0.1 ns.
FastConnect enables horizontal routing between any two
logic modules within a given SuperCluster and vertical
routing with the SuperCluster immediately below it. Only
one programmable connection is used in a FastConnect
path, delivering maximum pin-to-pin propagation of 0.4 ns.
6
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. Actel’s segmented routing structure provides a
variety of track lengths for extremely fast routing between
SuperClusters. The exact combination of track lengths and
antifuses within each path is chosen by the 100 percent
automatic place and route software to minimize signal
propagation delays.
Actel’s high-drive routing structure provides three clock
networks. The first clock, called HCLK, is hard wired from
the HCLK buffer to the clock select MUX in each R-cell. This
provides a fast propagation path for the clock signal,
enabling the 3.7 ns clock-to-out (pin-to-pin) performance of
the SX devices. The hard-wired clock is tuned to provide
clock skew as low as 0.25 ns. The remaining two clocks
(CLKA, CLKB) are global clocks that can be sourced from
external pins or from internal logic signals within the SX
device.
v3.1
5 4 S X F a m i l y F PG A s
O t h er A r c h i te c t ur a l F e at u re s
Technology
Actel’s SX family is implemented on a high-voltage twin-well
CMOS process using 0.35µ design rules. The metal-to-metal
antifuse is made up of a combination of amorphous silicon
and dielectric material with barrier metals and has a
programmed (“on” state) resistance of 25Ω with
capacitance of 1.0 fF for low signal impedance.
Direct Connect
• No antifuses
• 0.1 ns routing delay
Fast Connect
• One antifuse
• 0.4 ns routing delay
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
Figure 5 • DirectConnect and FastConnect for Type 1 SuperClusters
Direct Connect
• No antifuses
• 0.1 ns routing delay
Fast Connect
• One antifuse
• 0.4 ns routing delay
Routing Segments
• Typically 2 antifuses
• Max. 5 antifuses
Type 2 SuperClusters
Figure 6 • DirectConnect and FastConnect for Type 2 SuperClusters
v3.1
7
54SX Family FPGAs
P e r f o r m an c e
B o u nd a r y S c an T e st i ng ( B S T )
The combination of architectural features described above
enables SX devices to operate with internal clock
frequencies exceeding 300 MHz, enabling very fast
execution of even complex logic functions. Thus, the SX
family is an optimal platform upon which to integrate the
functionality previously contained in multiple CPLDs. In
addition, designs that previously would have required a gate
array to meet performance goals can now be integrated into
an SX device with dramatic improvements in cost and time
to market. Using timing-driven place and route tools,
designers can achieve highly deterministic device
performance. With SX devices, designers do not need to use
complicated performance-enhancing design techniques
such as the use of redundant logic to reduce fanout on
critical nets or the instantiation of macros in HDL code to
achieve high performance.
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test pins
in conjunction with the program fuse. The functionality of
each pin is described in Table 2.In the dedicated test mode,
TCK, TDI and TDO are dedicated pins and cannot be used as
regular I/Os. In flexible mode, TMS should be set HIGH
through a pull-up resistor of 10kΩ. TMS can be pulled LOW
to initiate the test sequence.
The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown) is
flexible mode. .
Table 2 • Boundary Scan Pin Functionality
I/O Modules
Each I/O on an SX device can be configured as an input, an
output, a tristate output, or a bidirectional pin. Even without
the inclusion of dedicated I/O registers, these I/Os, in
combination with array registers, can achieve clock-to-out
(pad-to-pad) timing as fast as 3.7 ns. I/O cells that have
embedded latches and flip-flops require instantiation in
HDL code; this is a design complication not encountered in
SX FPGAs. Fast pin-to-pin timing ensures that the device
will have little trouble interfacing with any other device in
the system, which in turn enables parallel design of system
components and reduces overall design time.
P o w er R e q u i r e m e nt s
The SX family supports 3.3V operation and is designed to
tolerate 5.0V inputs. (Table 1). Power consumption is
extremely low due to the very short distances signals are
required to travel to complete a circuit. Power requirements
are further reduced because of the small number of
low-resistance antifuses in the path. The antifuse
architecture does not require active circuitry to hold a
charge (as do SRAM or EPROM), making it the lowest-power
architecture on the market.
Table 1 • Supply Voltages
VCCA
VCCI
Maximum Maximum
Input
Output
VCCR Tolerance
Drive
3.3V
3.3V
5.0V
5.0V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
5.0V
5.0V
3.3V
A54SX08
A54SX16
A54SX32
A54SX16-P
Note:
8
Program Fuse Blown
(Dedicated Test Mode)
Program Fuse Not Blown
(Flexible Mode)
TCK, TDI, TDO are
dedicated BST pins
TCK, TDI, TDO are flexible
and may be used as I/Os
No need for pull-up resistor
for TMS
Use a pull-up resistor of 10k
Ω on TMS
D e v el op m e n t T o o l S u p po r t
The SX devices are fully supported by Actel’s line of FPGA
development tools, including the Actel DeskTOP series and
Designer Advantage tools. The Actel DeskTOP series is an
integrated design environment for PCs that includes design
entry, simulation, synthesis, and place and route tools.
Designer Advantage, Actel’s suite of FPGA development
point tools for PCs and Workstations, includes the ACTgen
Macro Builder, Designer with DirectTime timing driven
place and route and analysis tools, and device programming
software.
In addition, the SX devices contain ActionProbe circuitry
that provides built-in access to every node in a design,
enabling 100-percent real-time observation and analysis of a
device's internal logic nodes without design iteration. The
probe circuitry is accessed by Silicon Explorer II, an
easy-to-use integrated verification and logic analysis tool
that can sample data at 100 MHz (asynchronous) or 66 MHz
(synchronous). Silicon Explorer II attaches to a PC’s
standard COM port, turning the PC into a fully functional
18-channel logic analyzer. Silicon Explorer II allows
designers to complete the design verification process at
their desks and reduces verification time from several hours
per cycle to only a few seconds.
5.0V
5.0V
3.3V 5.0V 5.0V
A54SX16-P has three different entries because it is capable of
both a 3.3V and a 5V drive.
v3.1
5 4 S X F a m i l y F PG A s
S X P r o b e C i r cu it C o n t r o l P i n s
recommended that the TRST pin be left floating.
De s ig n Co ns id e r at io ns
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through these
pins are not available while probing. In addition, the
Security Fuse should not be programmed because doing so
disables the Probe Circuitry.
Channel
16
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS and TDO) to select the desired nets for
verification. The selected internal nets are assigned to the
PRA/PRB pins for observation. Figure 7 illustrates the
interconnection between Silicon Explorer II and the FPGA
to perform in-circuit verification. The TRST pin is equipped
with a pull-up resistor. To remove the boundary scan state
machine from the reset state during probing, it is
SX FPGA
TDI
TCK
TMS
Serial Connection
Silicon Explorer II
TDO
PRA
PRB
Figure 7 • Probe Setup
v3.1
9
54SX Family FPGAs
3 . 3V / 5V O p e ra t i n g C o n di t i o n s
A b s o l u t e Ma x i m u m R a ti n g s 1
Symbol
Parameter
Limits
R e c o m m e n de d O p e r at i n g C o n di ti o n s
Units
VCCR2
DC Supply Voltage3
–0.3 to +6.0
V
VCCA2
DC Supply Voltage
–0.3 to +4.0
V
VCCI2
DC Supply Voltage
(A54SX08, A54SX16,
A54SX32)
–0.3 to +4.0
V
VCCI2
DC Supply Voltage
(A54SX16P)
–0.3 to +6.0
V
VI
Input Voltage
–0.5 to +5.5
V
VO
Output Voltage
–0.5 to +3.6
V
–30 to +5.0
mA
–65 to +150
°C
IIO
TSTG
I/O Source Sink
Current3
Storage Temperature
Commer
cial
Industrial
Military
Units
Temperature
Range1
0 to+70
–40 to +85
–55 to +125
°C
3.3V Power
Supply
Tolerance
±10
±10
±10
%VC
5.0V Power
Supply
Tolerance
±5
Parameter
C
±10
%VC
±10
C
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. VCCR in the A54SX16P must be greater than or equal to VCCI
during power-up and power-down sequences and during
normal operation.
3. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND – 0.5V, the internal protection
diodes will forward-bias and can draw excessive current.
E l e ct r i c al S pe c i fi ca t i o n s
Commercial
Symbol
Parameter
VOH
(IOH = -8mA) (TTL)
(IOH = -20uA) (CMOS)
Min.
Max.
Min.
Max.
(VCCI – 0.1)
VCCI
(VCCI – 0.1)
VCCI
2.4
VCCI
(IOL= 20uA) (CMOS)
0.10
(IOL = 12mA) (TTL)
0.50
VCCI
V
0.50
(IOL = 8mA) (TTL)
VIL
0.8
2.0
VIH
Units
V
2.4
(IOH = -6mA) (TTL)
VOL
Industrial
0.8
V
2.0
V
tR , tF
Input Transition Time tR, tF
CIO
CIO I/O Capacitance
10
10
pF
ICC
Standby Current, ICC
4.0
4.0
mA
ICC(D)
ICC(D) IDynamic VCC Supply Current
10
50
50
ns
See “Evaluating Power in 54SX Devices” on page 18
v3.1
5 4 S X F a m i l y F PG A s
P C I C o m p l i a n ce f or t h e 54 S X F a m i l y
The 54SX family supports 3.3V and 5V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.
A54SX16P DC Specifications (5.0V PCI Operation)
Symbol
Parameter
Condition
Min.
Max.
Units
VCCA
Supply Voltage for Array
3.0
3.6
V
VCCR
Supply Voltage required for Internal Biasing
4.75
5.25
V
VCCI
Supply Voltage for IOs
4.75
5.25
V
2.0
VCC + 0.5
V
–0.5
Input High
Voltage1
VIL
Input Low
Voltage1
0.8
V
IIH
Input High Leakage Current
VIN = 2.7
70
µA
IIL
Input Low Leakage Current
VIN = 0.5
–70
µA
VOH
Output High Voltage
IOUT = –2 mA
VOL
Output Low
Voltage2
CIN
Input Pin Capacitance3
CCLK
CLK Pin Capacitance
VIH
CIDSEL
IDSEL Pin
2.4
IOUT = 3 mA, 6 mA
5
Capacitance4
V
0.55
V
10
pF
12
pF
8
pF
Notes:
1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA; the latter include,
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
v3.1
11
54SX Family FPGAs
A54SX16P AC Specifications for (PCI Operation)
Symbol
Parameter
Condition
Min.
0 < VOUT ≤ 1.41
IOH(AC)
Switching Current High
1.4 ≤ VOUT < 2.41, 2
–44
mA
mA
Equation A: on
page 13
VOUT = 3.13
–142
VOUT ≥ 2.21
IOL(AC)
Switching Current High
95
2.2 > VOUT > 0.551
ICL
slewR
slewF
VOUT = 0.713
Low Clamp Current
–5 < VIN ≤ –1
Output Rise Slew Rate
Output Fall Slew Rate
mA
mA
VOUT/0.023
0.71 > VOUT > 01, 3
(Test Point)
Units
–44 + (VOUT – 1.4)/0.024
3.1 < VOUT < VCC1, 3
(Test Point)
Max.
Equation B: on
page 13
mA
206
mA
–25 + (VIN + 1)/0.015
mA
0.4V to 2.4V
load4
1
5
V/ns
2.4V to 0.4V
load4
1
5
V/ns
Notes:
1. Refer to the V/I curves in Figure 8. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.
“Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward
the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure 8. The equation defined maxima should be met by design. In order to facilitate
component testing, a maximum current test point is defined for each side of the output driver.
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is
now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to
revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard
designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity
modeling accounts for this. Rise slew rate does not apply to open drain outputs.
pin
1/2 in. max.
output
buffer
VCC
10 pF
1kΩ
1kΩ
12
v3.1
5 4 S X F a m i l y F PG A s
Figure 8 shows the 5.0V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family.
0.50
0.45
0.40
PCI IOL Maximum
0.35
Current (A)
0.30
0.25
SX PCI IOL
0.20
0.15
0.10
PCI IOL Mininum
0.05
0
1
2
3
4
5
6
–0.05
–0.10
PCI IOH Mininum
SX PCI IOH
–0.15
PCI IOH Maximum
–0.20
Voltage Out
Figure 8 • 5.0V PCI Curve for A54SX16P Family
Equation A:
Equation B:
IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)
for VCC > VOUT > 3.1V
IOL = 78.5 * VOUT * (4.4 – VOUT)
for 0V < VOUT < 0.71V
v3.1
13
54SX Family FPGAs
A 5 4 S X 1 6 P D C S p e c i f i ca t i on s ( 3 . 3 V P C I O p e r a t i on )
Symbol
Parameter
Condition
VCCA
Supply Voltage for Array
3.0
3.6
V
VCCR
Supply Voltage required for Internal Biasing
3.0
3.6
V
VCCI
Supply Voltage for IOs
3.0
3.6
V
VIH
Input High Voltage
0.5VCC
VCC + 0.5
V
VIL
Input Low Voltage
–0.5
0.3VCC
V
IIPU
Input Pull-up Voltage1
2
Input Leakage Current
0 < VIN < VCC
VOH
Output High Voltage
IOUT = –500 µA
VOL
Output Low Voltage
IOUT = 1500 µA
CIN
Input Pin Capacitance3
CCLK
CLK Pin Capacitance
IDSEL Pin
Max.
0.7VCC
IIL
CIDSEL
Min.
V
±10
0.9VCC
5
Capacitance4
Units
µA
V
0.1VCC
V
10
pF
12
pF
8
pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this
input voltage.
2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
3. Absolute maximum pin capacitance for a PCI input is 10pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
14
v3.1
5 4 S X F a m i l y F PG A s
A 54SX16P AC Specifications (3.3V PCI Operation)
Symbol
Parameter
Condition
Min.
Max.
0 < VOUT ≤ 0.3VCC1
Switching Current High
IOH(AC)
mA
0.3VCC ≤ VOUT < 0.9VCC1
–12VCC
0.7VCC < VOUT < VCC1, 2
–17.1 + (VCC – VOUT)
VOUT = 0.7VCC2
(Test Point)
mA
Equation C: on
page 16
–32VCC
VCC > VOUT ≥ 0.6VCC1
Switching Current High
0.6VCC > VOUT >
mA
mA
0.1VCC1
1, 2
16VCC
0.18VCC > VOUT > 0
IOL(AC)
Units
26.7VOUT
2
mA
on page 16
mA
(Test Point)
VOUT = 0.18VCC
ICL
Low Clamp Current
–3 < VIN ≤ –1
–25 + (VIN + 1)/0.015
mA
ICH
High Clamp Current
–3 < VIN ≤ –1
25 + (VIN – VOUT – 1)/0.015
mA
slewR
slewF
Output Rise Slew
Output Fall Slew
Rate3
Rate3
38VCC
0.2VCC to 0.6VCC load
1
4
V/ns
0.6VCC to 0.2VCC load
1
4
V/ns
Notes:
1. Refer to the V/I curves in Figure 9. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.
“Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D)
are provided with the respective diagrams in Figure 9. The equation defined maxima should be met by design. In order to facilitate
component testing, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
pin
1/2 in. max.
output
buffer
VCC
10 pF
1kΩ
1kΩ
v3.1
15
54SX Family FPGAs
Figure 9 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family.
0.50
0.45
0.40
PCI IOL Maximum
0.35
Current (A)
0.30
0.25
0.20
SX PCI IOL
0.15
0.10
PCI IOL Minimum
0.05
0
–0.05
SX PCI IOH
1
2
3
PCI IOH Minimum
4
5
6
PCI IOH Maximum
–0.10
–0.15
–0.20
Voltage Out
Figure 9 • 3.3V PCI Curve for A54SX16P Family
Equation C:
Equation D:
IOL = (256/VCC) * VOUT * (VCC – VOUT)
for 0V < VOUT < 0.18 VCC
IOH = (98.0/VCC) * (VOUT – VCC) * (VOUT + 0.4VCC)
for VCC > VOUT > 0.7 VCC
16
v3.1
5 4 S X F a m i l y F PG A s
P o we r - U p S e q u en c i n g
VCCA
VCCR
VCCI
Power-Up Sequence
Comments
A54SX08, A54SX16, A54SX32
3.3V
5.0V
3.3V
5.0V First
3.3V Second
No possible damage to device.
3.3V First
5.0V Second
Possible damage to device.
A54SX16P
3.3V
3.3V
3.3V
3.3V
5.0V
5.0V
3.3V
3.3V
5.0V
3.3V Only
No possible damage to device.
5.0V First
3.3V Second
No possible damage to device.
3.3V First
5.0V Second
Possible damage to device.
5.0V First
3.3V Second
No possible damage to device.
3.3V First
5.0V Second
No possible damage to device.
Power-Down Sequence
Comments
P o we r - D o w n S e qu e n ci ng
VCCA
VCCR
VCCI
A54SX08, A54SX16, A54SX32
3.3V
5.0V
3.3V
5.0V First
3.3V Second
No possible damage to device.
3.3V First
5.0V Second
Possible damage to device.
A54SX16P
3.3V
3.3V
3.3V
3.3V
5.0V
5.0V
3.3V
3.3V
5.0V
3.3V Only
No possible damage to device.
5.0V First
3.3V Second
Possible damage to device.
3.3V First
5.0V Second
No possible damage to device.
5.0V First
3.3V Second
No possible damage to device.
3.3V First
5.0V Second
No possible damage to device.
v3.1
17
54SX Family FPGAs
E v a l u a ti n g P o w er i n 5 4 S X D e v i c es
dissipation is defined as follows:
A critical element of system reliability is the ability of
electronic devices to safely dissipate the heat generated
during operation. The thermal characteristics of a circuit
depend on the device and package used, the operating
temperature, the operating current, and the system's ability
to dissipate heat.
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
(3)
POutput Buffer + PInput Buffer
2
PAC = VCCA * [(m * CEQM * fm)Module +
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output Buffer+
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA +
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB +
(4)
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK]
You should complete a power evaluation early in the design
process to help identify potential heat-related problems in
the system and to prevent the system from exceeding the
device’s maximum allowed junction temperature.
The actual power dissipated by most applications is
significantly lower than the power the package can
dissipate. However, a thermal analysis should be performed
for all projects. To perform a power evaluation, follow these
steps:
D e f i n i t i o n o f T e r m s U s e d i n F o r m u la
m
n
p
q1
=
=
=
=
q2
=
x
y
r1
=
=
=
r2
=
s1
=
CEQM
CEQI
CEQO
CEQCR
=
=
=
=
CEQHV
CEQHF
CL
fm
fn
fp
fq1
fq2
fs1
=
=
=
=
=
=
=
=
=
• Estimate the power consumption of the application.
• Calculate the maximum power allowed for the device and
package.
• Compare the estimated power and maximum power
values.
E s t i m a t i ng P o w e r C o ns u m p ti o n
The total power dissipation for the 54SX family is the sum of
the DC power dissipation and the AC power dissipation. Use
Equation 1 to calculate the estimated power consumption of
your application.
PTotal = PDC + PAC
(1)
DC Power Dissipation
The power due to standby current is typically a small
component of the overall power. The Standby power is
shown below for commercial, worst case conditions (70°C).
Table 3 •
ICC
VCC
Power
4mA
3.6V
14.4mW
The DC power dissipation is defined in Equation 2 as
follows:
PDC = (Istandby)*VCCA + (Istandby)*VCCR +
(Istandby)*VCCI + x*VOL*IOL + y*(VCCI – VOH)*VOH
(2)
AC Power Dissipation
The power dissipation of the 54SX Family is usually
dominated by the dynamic power dissipation. Dynamic
power dissipation is a function of frequency, equivalent
capacitance and power supply voltage. The AC power
18
Number of logic modules switching at fm
Number of input buffers switching at fn
Number of output buffers switching at fp
Number of clock loads on the first routed array
clock
Number of clock loads on the second routed
array clock
Number of I/Os at logic low
Number of I/Os at logic high
Fixed capacitance due to first routed array
clock
Fixed capacitance due to second routed array
clock
Number of clock loads on the dedicated array
clock
Equivalent capacitance of logic modules in pF
Equivalent capacitance of input buffers in pF
Equivalent capacitance of output buffers in pF
Equivalent capacitance of routed array clock in
pF
Variable capacitance of dedicated array clock
Fixed capacitance of dedicated array clock
Output lead capacitance in pF
Average logic module switching rate in MHz
Average input buffer switching rate in MHz
Average output buffer switching rate in MHz
Average first routed array clock rate in MHz
Average second routed array clock rate in MHz
Average dedicated array clock rate in MHz
A54SX08
CEQM (pF) 4.0
CEQI (pF) 3.4
CEQO (pF) 4.7
CEQCR (pF) 1.6
0.615
CEQHV
CEQHF
60
87
r1 (pF)
87
r2 (pF)
v3.1
A54SX16
4.0
3.4
4.7
1.6
0.615
96
138
138
A54SX16P A54SX32
4.0
4.0
3.4
3.4
4.7
4.7
1.6
1.6
0.615
0.615
96
140
138
171
138
171
5 4 S X F a m i l y F PG A s
G u i d e l i n e s f or C a l c u l a t i ng P ow e r
C o n s u m p t i on
A C P ow e r D i s s i pa t i o n
The following guidelines are meant to represent worst-case
scenarios so that they can be generally used to predict the
upper limits of power dissipation. These guidelines are as
follow:
Logic Modules (m)
Inputs Switching (n)
Outputs Switching (p)
First Routed Array Clock Loads (q1)
=
=
=
=
20% of modules
# inputs/4
# output/4
20% of register
cells
Second Routed Array Clock Loads (q2) = 20% of register
cells
= 35 pF
Load Capacitance (CL)
Average Logic Module Switching Rate = f/10
(fm)
Average Input Switching Rate (fn)
= f/5
Average Output Switching Rate (fp)
= f/10
Average First Routed Array Clock Rate = f/2
(fq1)
Average Second Routed Array Clock = f/2
Rate (fq2)
Average Dedicated Array Clock Rate = f
(fs1)
Dedicated Clock Array clock loads (s1) = 20% of regular
modules
Sample Power Calculation
One of the designs used to characterize the A54SX family
was a 528 bit serial in serial out shift register. The design
utilized 100% of the dedicated flip-flops of an A54SX16P
device. A pattern of 0101… was clocked into the device at
frequencies ranging from 1 MHz to 200 MHz. Shifting in a
series of 0101… caused 50% of the flip-flops to toggle from
low to high at every clock cycle.
Follow the steps below to estimate power consumption. The
values provided for the sample calculation below are for the
shift register design above. This method for estimating
power consumption is conservative and the actual power
consumption of your design may be less than the estimated
power consumption.
The total power dissipation for the 54SX family is the sum of
the AC power dissipation and the DC power dissipation.
PTotal = PAC (dynamic power) + PDC (static power)
(5)
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
(6)
POutput Buffer + PInput Buffer
2
PAC = VCCA * [(m * CEQM * fm)Module +
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output
Buffer+
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA +
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB +
(7)
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK]
Step #1:
Define Terms Used in Formula
3.3
VCCA
Module
m
Number of logic modules switching at fm
(Used 50%)
Average logic modules switching rate
fm
fm (MHz) (Guidelines: f/10)
Module capacitance CEQM (pF)
CEQM
Input Buffer
n
Number of input buffers switching at fn
fn
Average input switching rate fn (MHz)
(Guidelines: f/5)
Input buffer capacitance CEQI (pF)
CEQI
Output Buffer
p
Number of output buffers switching at fp
fp
Average output buffers switching rate
fp(MHz) (Guidelines: f/10)
Output buffers buffer Capacitance CEQO (pF) CEQO
Output Load capacitance CL (pF)
CL
RCLKA
q1
Number of Clock loads q1
Capacitance of routed array clock (pF)
CEQCR
Average clock rate (MHz)
fq1
Fixed capacitance (pF)
r1
RCLKB
Number of Clock loads q2
q2
Capacitance of routed array clock (pF)
CEQCR
Average clock rate (MHz)
fq2
Fixed capacitance (pF)
r2
HCLK
Number of Clock loads
s1
Variable capacitance of dedicated
CEQHV
array clock (pF)
Fixed capacitance of dedicated
CEQHF
array clock (pF)
Average clock rate (MHz)
fs1
v3.1
264
20
4.0
1
40
3.4
1
20
4.7
35
528
1.6
200
138
0
1.6
0
138
0
0.615
96
0
19
54SX Family FPGAs
PDC = (Istandby)*VCCA
Step #2: Calculate Dynamic Power Consumption
VCCA*VCCA
m*fm*CEQM
n*fn*CEQI
p*fp*(CEQO+CL)
0.5*(q1*CEQCR*fq1)+(r1*fq1)
0.5*(q2*CEQCR*fq2)+(r2*fq2)
0.5 *(s1 * CEQHV * fs1)+(CEQHF*fs1)
PAC = 1.461W
10.89
0.02112
0.000136
0.000794
0.11208
0
0
PDC = .55mA*3.3V
PDC = 0.001815W
Step #4: Calculate Total Power Consumption
PTotal = PAC + PDC
PTotal = 1.461 + 0.001815
PTotal = 1.4628W
Step #5: Compare Estimated Power Consumption against
Characterized Power Consumption
Step #3: Calculate DC Power Dissipation
DC Power Dissipation
PDC = (Istandby)*VCCA + (Istandby)*VCCR + (Istandby)*VCCI +
X*VOL*IOL + Y*(VCCI – VOH)*VOH
(8)
For a rough estimate of DC Power Dissipation, only use
PDC = (Istandby)*VCCA. The rest of the formula provides a
very small number that can be considered negligible.
The estimated total power consumption for this design is
1.46W. The characterized power consumption for this design
at 200 MHz is 1.0164W. Figure 10 shows the characterized
power dissipation numbers for the shift register design
using frequencies ranging from 1 MHz to 200 MHz.
1200
Power Dissipation mW
1000
800
600
400
200
0
0
20
40
60
80
100
120
Frequency MHz
Figure 10 • Power Dissipation
20
v3.1
140
160
180
200
5 4 S X F a m i l y F PG A s
J un c t i on T e m p e ra t u re ( T J )
P = Power calculated from Estimating Power Consumption
section
The temperature that you select in Designer Series software
is the junction temperature, not ambient temperature. This
is an important distinction because the heat generated from
dynamic power consumption is usually hotter than the
ambient temperature. Use the equation below to calculate
junction temperature.
θja = Junction to ambient of package. θja numbers are
located in Package Thermal Characteristics section.
P a ck a g e T he r m a l C h a r ac t e ri s ti cs
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two different
air flow rates.
Junction Temperature = ∆T + Ta
Where:
Ta = Ambient Temperature
∆T = Temperature gradient between junction (silicon) and
ambient
The maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:
∆T = θja * P
– 70°C = 2.86W
Max. junction temp. (°C) – Max. ambient temp. (°C) = 150°C
--------------------------------Maximum Power Allowed = -----------------------------------------------------------------------------------------------------------------------------28°C/W
θ ja (°C/W)
θja
300 ft/min
Units
32
22
°C/W
32
24
°C/W
28
21
°C/W
10
38
32
°C/W
208
8
30
23
°C/W
208
3.8
20
17
°C/W
Plastic Ball Grid Array (PBGA)
272
3
20
14.5
°C/W
Plastic Ball Grid Array (PBGA)
313
3
23
17
°C/W
Pin Count
θjc
Plastic Leaded Chip Carrier (PLCC)
84
12
Thin Quad Flat Pack (TQFP)
144
11
Thin Quad Flat Pack (TQFP)
176
11
Very Thin Quad Flatpack (VQFP)
100
Plastic Quad Flat Pack (PQFP) without Heat Spreader
Plastic Quad Flat Pack (PQFP) with Heat Spreader
Package Type
θja
Still Air
Plastic Ball Grid Array (PBGA)
329
3
18
13.5
°C/W
Fine Pitch Ball Grid Array (FBGA)
144
3.8
38.8
26.7
°C/W
Note:
SX08 does not have a heat spreader.
v3.1
21
54SX Family FPGAs
5 4S X T i m i n g M o de l *
Input Delays
I/O Module
tINY = 1.5 ns
Internal Delays
Predicted
Routing
Delays
Combinatorial
Cell
Output Delays
I/O Module
tIRD2 = 0.6 ns
tDHL = 1.6 ns
tPD =0.6 ns
tRD1 = 0.3 ns
tRD4 = 1.0 ns
tRD8 = 1.9 ns
I/O Module
tDHL = 1.6 ns
Register
Cell
D
Q
Register
Cell
tRD1 = 0.3 ns
D
Q
tRD1 = 0.3 ns
tENZH = 2.3 ns
tSUD = 0.5 ns
tHD = 0.0 ns
Routed
Clock
tRCO = 0.8 ns
tRCO = 0.8 ns
tRCKH = 1.5 ns (100% Load)
FMAX = 250 MHz
Hard-Wired
Clock
tHCKH = 1.0 ns
FHMAX = 320 MHz
*Values shown for A54SX08-3, worst-case commercial conditions.
H a r d- Wi r e d C lo c k
R o u t ed C lo ck
External Set-Up
External Set-Up = tINY + tIRD1 + tSUD – tRCKH
= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns
= tINY + tIRD1 + tSUD – tHCKH
= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns
Clock-to-Out (Pin-to-Pin)
22
Clock-to-Out (Pin-to-Pin)
= tHCKH + tRCO + tRD1 + tDHL
= tRCKH + tRCO + tRD1 + tDHL
= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns
= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns
v3.1
5 4 S X F a m i l y F PG A s
Output Buffer Delays
E
D
VCC
In
50%
Out
VOL
PAD To AC test loads (shown below)
TRIBUFF
VCC
GND
50%
VOH
En
1.5V
1.5V
50%
VCC
VCC
GND
50%
1.5V
Out
En
Out
GND
10%
VOL
tENZL
tDHL
tDLH
90%
1.5V
tENZH
tENLZ
GND
50%
VOH
50%
tENHZ
AC Test Loads
Load 3
(Used to measure disable delays)
Load 2
(Used to measure enable delays)
Load 1
(Used to measure
propagation delay)
To the output
under test
VCC
35 pF
To the output
under test
VCC
GND
R to VCC for tPZL
R to GND for tPZH
R = 1 kΩ
GND
R to VCC for tPLZ
R to GND for tPHZ
R = 1 kΩ
To the output
under test
5 pF
35 pF
In p u t B uf fe r D e l a y s
PAD
C - C el l D e l a y s
S
A
B
Y
INBUF
Y
VCC
3V
In
0V
1.5V 1.5V
VCC
Out
GND
50% 50%
VCC
Out
GND
50%
50%
50%
tINY
S, A or B
tPD
GND
50%
tPD
VCC
Out
50%
tPD
tINY
v3.1
GND
50%
tPD
23
54SX Family FPGAs
R e g i s t e r C el l T i m i n g C h a ra c t er i s ti c s
Fl ip -F lo ps
D
Q
PRESET
CLK
CLR
(Positive edge triggered)
tHD
D
tHP
tHPWH,
tRPWH
tSUD
CLK
tRCO
tHPWL,
tRPWL
Q
tCLR
tPRESET
CLR
tWASYN
PRESET
T i m i n g C h a ra c t er i s ti c s
L on g T r a c ks
Timing characteristics for 54SX devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all 54SX family members.
Internal routing delays are device dependent. Design
dependency means actual delays are not determined until
after placement and routing of the user’s design is complete.
Delay values may then be determined by using the
DirectTime Analyzer utility or performing simulation with
post-layout delays.
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows, columns,
or modules. Long tracks employ three and sometimes five
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically up to 6% of nets in a fully
utilized device require long tracks. Long tracks contribute
approximately 4 ns to 8.4 ns delay. This additional delay is
represented statistically in higher fanout (FO=24) routing
delays in the data sheet specifications section.
C r i t ic al N e t s a nd T yp ic a l N e t s
Timing Derating
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most
time-critical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up to
6% of the nets in a design may be designated as critical,
while 90% of the nets in a design are typical.
54SX devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case processing.
Maximum timing parameters reflect minimum operating
voltage, maximum operating temperature, and worst-case
processing.
T em p er a tu r e an d V o l t a ge D er a ti ng F a c to r s
(Normalized to Worst-Case Commercial, T J = 70°C, V CCA = 3.0V)
Junction Temperature (TJ)
24
VCCA
–55
–40
0
25
70
85
125
3.0
0.75
0.78
0.87
0.89
1.00
1.04
1.16
3.3
0.70
0.73
0.82
0.83
0.93
0.97
1.08
3.6
0.66
0.69
0.77
0.78
0.87
0.92
1.02
v3.1
5 4 S X F a m i l y F PG A s
A 5 4 S X 0 8 Ti m i n g C h ar a c te r i s t i c s
(Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA, V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing Delays
0.6
0.7
0.8
0.9
ns
2
tDC
FO=1 Routing Delay, Direct
Connect
0.1
0.1
0.1
0.1
ns
tFC
FO=1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.2
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
1.5
1.7
1.9
2.2
ns
2
Input Module Predicted Routing Delays
tIRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
v3.1
25
54SX Family FPGAs
A 5 4 S X 0 8 T i m i n g C h ar a c te r i s t i c s (continued)
(Worst-Case Commercial Conditions)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH
Input LOW to HIGH
(Pad to R-Cell Input)
1.0
1.1
1.3
1.5
ns
tHCKL
Input HIGH to LOW
(Pad to R-Cell Input)
1.0
1.2
1.4
1.6
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.1
2.7
0.2
3.1
0.2
3.6
0.2
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input)
1.3
1.5
1.7
2.0
ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input)
1.4
1.6
1.8
2.1
ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input)
1.4
1.7
1.9
2.2
ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input)
1.5
1.7
2.0
2.3
ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input)
1.5
1.7
1.9
2.2
ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input)
1.5
1.8
2.0
2.3
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (Light Load)
0.1
0.2
0.2
0.2
ns
tRCKSW
Maximum Skew (50% Load)
0.3
0.3
0.4
0.4
ns
tRCKSW
Maximum Skew (100% Load)
0.3
0.3
0.4
0.4
ns
TTL Output Module Timing1
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
tENHZ
Enable-to-Pad, H to Z
1.3
1.5
1.7
2.0
ns
Note:
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.
26
v3.1
5 4 S X F a m i l y F PG A s
A 5 4 S X 1 6 Ti m i n g C h ar a c te r i s t i c s
(Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA, V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing Delays
0.6
0.7
0.8
0.9
ns
2
tDC
FO=1 Routing Delay, Direct
Connect
0.1
0.1
0.1
0.1
ns
tFC
FO=1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.2
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
2
Predicted Input Routing Delays
tIRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
v3.1
27
54SX Family FPGAs
A 5 4 S X 1 6 T i m i n g C h ar a c te r i s t i c s (continued)
(Worst-Case Commercial Conditions)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH
Input LOW to HIGH
(Pad to R-Cell Input)
1.2
1.4
1.5
1.8
ns
tHCKL
Input HIGH to LOW
(Pad to R-Cell Input)
1.2
1.4
1.6
1.9
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.2
2.7
0.2
3.1
0.3
3.6
0.3
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input)
1.6
1.8
2.1
2.5
ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input)
1.8
2.0
2.3
2.7
ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input)
1.8
2.1
2.5
2.8
ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input)
2.0
2.2
2.5
3.0
ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input)
1.8
2.1
2.4
2.8
ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input)
2.0
2.2
2.5
3.0
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (Light Load)
0.5
0.5
0.5
0.7
ns
tRCKSW
Maximum Skew (50% Load)
0.5
0.6
0.7
0.8
ns
tRCKSW
Maximum Skew (100% Load)
0.5
0.6
0.7
0.8
ns
TTL Output ModuleTiming1
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
tENHZ
Enable-to-Pad, H to Z
1.3
1.5
1.7
2.0
ns
Note:
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.
28
v3.1
5 4 S X F a m i l y F PG A s
A 5 4 S X 1 6P T i m i n g C h ar a c te r i s t i c s
(Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA, V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing Delays
0.6
0.7
0.8
0.9
ns
2
tDC
FO=1 Routing Delay, Direct
Connect
0.1
0.1
0.1
0.1
ns
tFC
FO=1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.9
1.1
1.3
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.5
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
2
Predicted Input Routing Delays
tIRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO=2 Routing Delay
0.6
0.7
0.8
0.9
ns
tIRD3
FO=3 Routing Delay
0.8
0.9
1.0
1.2
ns
tIRD4
FO=4 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD8
FO=8 Routing Delay
1.9
2.2
2.5
2.9
ns
tIRD12
FO=12 Routing Delay
2.8
3.2
3.7
4.3
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
v3.1
29
54SX Family FPGAs
A 5 4 S X 1 6P T i m i n g C h ar a c te r i s t i c s (continued)
(Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA, V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH
Input LOW to HIGH
(Pad to R-Cell Input)
1.2
1.4
1.5
1.8
ns
tHCKL
Input HIGH to LOW
(Pad to R-Cell Input)
1.2
1.4
1.6
1.9
ns
tHPWH
Minimum Pulse Width HIGH
1.4
tHPWL
Minimum Pulse Width LOW
1.4
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
1.6
1.8
1.6
0.2
2.7
2.1
1.8
0.2
3.1
ns
2.1
0.3
3.6
ns
0.3
ns
4.2
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input)
1.6
1.8
2.1
2.5
ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input)
1.8
2.0
2.3
2.7
ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input)
1.8
2.1
2.5
2.8
ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input)
2.0
2.2
2.5
3.0
ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input)
1.8
2.1
2.4
2.8
ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input)
2.0
2.2
2.5
3.0
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (Light Load)
0.5
0.5
0.5
0.7
ns
tRCKSW
Maximum Skew (50% Load)
0.5
0.6
0.7
0.8
ns
tRCKSW
Maximum Skew (100% Load)
0.5
0.6
0.7
0.8
ns
2.4
2.8
3.1
3.7
ns
TTL Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
tDHL
Data-to-Pad HIGH to LOW
2.3
2.9
3.2
3.8
ns
tENZL
Enable-to-Pad, Z to L
3.0
3.4
3.9
4.6
ns
tENZH
Enable-to-Pad, Z to H
3.3
3.8
4.3
5.0
ns
tENLZ
Enable-to-Pad, L to Z
2.3
2.7
3.0
3.5
ns
tENHZ
Enable-to-Pad, H to Z
2.8
3.2
3.7
4.3
ns
TTL/PCI Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
1.5
1.7
2.0
2.3
ns
tDHL
Data-to-Pad HIGH to LOW
1.9
2.2
2.4
2.9
ns
tENZL
Enable-to-Pad, Z to L
2.3
2.6
3.0
3.5
ns
tENZH
Enable-to-Pad, Z to H
1.5
1.7
1.9
2.3
ns
tENLZ
Enable-to-Pad, L to Z
2.7
3.1
3.5
4.1
ns
tENHZ
Enable-to-Pad, H to Z
2.9
3.3
3.7
4.4
ns
30
v3.1
5 4 S X F a m i l y F PG A s
A 5 4 S X 1 6P T i m i n g C h ar a c te r i s t i c s (continued)
(Worst-Case Commercial Conditions V CCR = 3.0V, V CCA , V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
PCI Output Module Timing1
tDLH
Data-to-Pad LOW to HIGH
1.8
2.0
2.3
2.7
ns
tDHL
Data-to-Pad HIGH to LOW
1.7
2.0
2.2
2.6
ns
tENZL
Enable-to-Pad, Z to L
0.8
1.0
1.1
1.3
ns
tENZH
Enable-to-Pad, Z to H
1.2
1.2
1.5
1.8
ns
tENLZ
Enable-to-Pad, L to Z
1.0
1.1
1.3
1.5
ns
tENHZ
Enable-to-Pad, H to Z
1.1
1.3
1.5
1.7
ns
TTL Output Module Timing
tDLH
Data-to-Pad LOW to HIGH
2.1
2.5
2.8
3.3
ns
tDHL
Data-to-Pad HIGH to LOW
2.0
2.3
2.6
3.1
ns
tENZL
Enable-to-Pad, Z to L
2.5
2.9
3.2
3.8
ns
tENZH
Enable-to-Pad, Z to H
3.0
3.5
3.9
4.6
ns
tENLZ
Enable-to-Pad, L to Z
2.3
2.7
3.1
3.6
ns
tENHZ
Enable-to-Pad, H to Z
2.9
3.3
3.7
4.4
ns
Note:
1. Delays based on 10 pF loading.
v3.1
31
54SX Family FPGAs
A 5 4 S X 3 2 T i m i n g C h ar a c te r i s t i c s
(Worst-Case Commercial Conditions, V CCR = 4.75V, V CCA, V CCI = 3.0V, T J = 70°C)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
C-Cell Propagation Delays1
tPD
Internal Array Module
Predicted Routing Delays
0.6
0.7
0.8
0.9
ns
2
tDC
FO=1 Routing Delay, Direct Connect
0.1
0.1
0.1
0.1
ns
tFC
FO=1 Routing Delay, Fast Connect
0.3
0.4
0.4
0.5
ns
tRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tRD2
FO=2 Routing Delay
0.7
0.8
0.9
1.0
ns
tRD3
FO=3 Routing Delay
1.0
1.2
1.4
1.6
ns
tRD4
FO=4 Routing Delay
1.4
1.6
1.8
2.1
ns
tRD8
FO=8 Routing Delay
2.7
3.1
3.5
4.1
ns
tRD12
FO=12 Routing Delay
4.0
4.7
5.3
6.2
ns
R-Cell Timing
tRCO
Sequential Clock-to-Q
0.8
1.1
1.3
1.4
ns
tCLR
Asynchronous Clear-to-Q
0.5
0.6
0.7
0.8
ns
tPRESET
Asynchronous Preset-to-Q
0.7
0.8
0.9
1.0
ns
tSUD
Flip-Flop Data Input Set-Up
0.5
0.6
0.7
0.8
ns
tHD
Flip-Flop Data Input Hold
0.0
0.0
0.0
0.0
ns
tWASYN
Asynchronous Pulse Width
1.4
1.6
1.8
2.1
ns
Input Module Propagation Delays
tINYH
Input Data Pad-to-Y HIGH
1.5
1.7
1.9
2.2
ns
tINYL
Input Data Pad-to-Y LOW
1.5
1.7
1.9
2.2
ns
Predicted Input Routing
Delays2
tIRD1
FO=1 Routing Delay
0.3
0.4
0.4
0.5
ns
tIRD2
FO=2 Routing Delay
0.7
0.8
0.9
1.0
ns
tIRD3
FO=3 Routing Delay
1.0
1.2
1.4
1.6
ns
tIRD4
FO=4 Routing Delay
1.4
1.6
1.8
2.1
ns
tIRD8
FO=8 Routing Delay
2.7
3.1
3.5
4.1
ns
tIRD12
FO=12 Routing Delay
4.0
4.7
5.3
6.2
ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
32
v3.1
5 4 S X F a m i l y F PG A s
A 5 4 S X 3 2 Ti m i n g C h ar a c te r i s t i c s (continued)
(Worst-Case Commercial Conditions)
‘–3’ Speed
Parameter
Description
Min.
Max.
‘–2’ Speed
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH
Input LOW to HIGH
(Pad to R-Cell Input)
1.9
2.1
2.4
2.8
ns
tHCKL
Input HIGH to LOW
(Pad to R-Cell Input)
1.9
2.1
2.4
2.8
ns
tHPWH
Minimum Pulse Width HIGH
1.4
1.6
1.8
2.1
ns
tHPWL
Minimum Pulse Width LOW
1.4
1.6
1.8
2.1
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
fHMAX
Maximum Frequency
0.3
2.7
0.4
3.1
0.4
3.6
0.5
4.2
ns
ns
350
320
280
240
MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input)
2.4
2.7
3.0
3.5
ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input)
2.4
2.7
3.1
3.6
ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input)
2.7
3.0
3.5
4.1
ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input)
2.7
3.1
3.6
4.2
ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input)
2.7
3.1
3.5
4.1
ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input)
2.8
3.2
3.6
4.3
ns
tRPWH
Min. Pulse Width HIGH
2.1
2.4
2.7
3.2
ns
tRPWL
Min. Pulse Width LOW
2.1
2.4
2.7
3.2
ns
tRCKSW
Maximum Skew (Light Load)
0.85
0.98
1.1
1.3
ns
tRCKSW
Maximum Skew (50% Load)
1.23
1.4
1.6
1.9
ns
tRCKSW
Maximum Skew (100% Load)
1.30
1.5
1.7
2.0
ns
TTL Output Module Timing1
tDLH
Data-to-Pad LOW to HIGH
1.6
1.9
2.1
2.5
ns
tDHL
Data-to-Pad HIGH to LOW
1.6
1.9
2.1
2.5
ns
tENZL
Enable-to-Pad, Z to L
2.1
2.4
2.8
3.2
ns
tENZH
Enable-to-Pad, Z to H
2.3
2.7
3.1
3.6
ns
tENLZ
Enable-to-Pad, L to Z
1.4
1.7
1.9
2.2
ns
tENHZ
Enable-to-Pad, H to Z
1.3
1.5
1.7
2.0
ns
Note:
1. Delays based on 35pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5pF.
v3.1
33
54SX Family FPGAs
P i n D e s c r i p ti o n
CLKA/B
Clock A and B
TCK
Test Clock
These pins are 3.3V/5.0V PCI/TTL clock inputs for clock
distribution networks. The clock input is buffered prior to
clocking the R-cells. If not used, this pin must be set LOW or
HIGH on the board. It must not be left floating. (For
A54SX72A, these clocks can be configured as bidirectional.)
Test clock input for diagnostic probe and device
programming. In flexible mode, TCK becomes active when
the TMS pin is set LOW (refer to Table 2 on page 8). This pin
functions as an I/O when the boundary scan state machine
reaches the “logic reset” state.
GND
TDI
Ground
LOW supply voltage.
HCLK
Dedicated (Hard-wired)
Array Clock
This pin is the 3.3V/5.0V PCI/TTL clock input for sequential
modules. This input is directly wired to each R-cell and
offers clock speeds independent of the number of R-cells
being driven. If not used, this pin must be set LOW or HIGH
on the board. It must not be left floating.
I/O
Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain configurations, input
and output levels are compatible with standard TTL, LVTTL,
3.3V PCI or 5.0V PCI specifications. Unused I/O pins are
automatically tristated by the Designer Series software.
NC
No Connection
This pin is not connected to circuitry within the device.
PRA, I/O
Probe A
The Probe A pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin can be used in conjunction with
the Probe B pin to allow real-time diagnostic output of any
signal path within the device. The Probe A pin can be used
as a user-defined I/O when verification has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality.
PRB, I/O
Probe B
The Probe B pin is used to output data from any node within
the device. This diagnostic pin can be used in conjunction
with the Probe A pin to allow real-time diagnostic output of
any signal path within the device. The Probe B pin can be
used as a user-defined I/O when verification has been
completed. The pin’s probe capabilities can be permanently
disabled to protect programmed design confidentiality.
34
Test Data Input
Serial input for boundary scan testing and diagnostic probe.
In flexible mode, TDI is active when the TMS pin is set LOW
(refer to Table 2 on page 8). This pin functions as an I/O
when the boundary scan state machine reaches the “logic
reset” state.
TDO
Test Data Output
Serial output for boundary scan testing. In flexible mode,
TDO is active when the TMS pin is set LOW (refer to Table 2
on page 8). This pin functions as an I/O when the boundary
scan state machine reaches the “logic reset” state.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1149.1 Boundary
Scan pins (TCK, TDI, TDO). In flexible mode when the TMS
pin is set LOW, the TCK, TDI, and TDO pins are boundary
scan pins (refer to Table 2 on page 8). Once the boundary
scan pins are in test mode, they will remain in that mode
until the internal boundary scan state machine reaches the
“logic reset” state. At this point, the boundary scan pins will
be released and will function as regular I/O pins. The “logic
reset” state is reached 5 TCK cycles after the TMS pin is set
HIGH. In dedicated test mode, TMS functions as specified in
the IEEE 1149.1 specifications.
V CCI
Supply Voltage
Supply voltage for I/Os. See Table 1 on page 8.
V CCA
Supply Voltage
Supply voltage for Array. See Table 1 on page 8.
V CCR
Supply Voltage
Supply voltage for input tolerance (required for internal
biasing) See Table 1 on page 8.
v3.1
5 4 S X F a m i l y F PG A s
P a ck a g e Pi n A s s i g nm en t s
84 -P in P LC C ( T o p Vie w )
1
84
84-Pin
PLCC
v3.1
35
54SX Family FPGAs
84 -P in P LC C P ac k ag e
36
Pin
Number
A54SX08
Function
Pin
Number
A54SX08
Function
1
VCCR
43
VCCR
2
GND
44
I/O
3
VCCA
45
HCLK
4
PRA, I/O
46
I/O
5
I/O
47
I/O
6
I/O
48
I/O
7
VCCI
49
I/O
8
I/O
50
I/O
9
I/O
51
I/O
10
I/O
52
TDO, I/O
11
TCK, I/O
53
I/O
12
TDI, I/O
54
I/O
13
I/O
55
I/O
14
I/O
56
I/O
15
I/O
57
I/O
16
TMS
58
I/O
17
I/O
59
VCCA
18
I/O
60
VCCI
19
I/O
61
GND
20
I/O
62
I/O
21
I/O
63
I/O
22
I/O
64
I/O
23
I/O
65
I/O
24
I/O
66
I/O
25
I/O
67
I/O
26
I/O
68
VCCA
27
GND
69
GND
28
VCCI
70
I/O
29
I/O
71
I/O
30
I/O
72
I/O
31
I/O
73
I/O
32
I/O
74
I/O
33
I/O
75
I/O
34
I/O
76
I/O
35
I/O
77
I/O
36
I/O
78
I/O
37
I/O
79
I/O
38
I/O
80
I/O
39
I/O
81
I/O
40
PRB, I/O
82
I/O
41
VCCA
83
CLKA
42
GND
84
CLKB
v3.1
5 4 S X F a m i l y F PG A s
P a ck a g e Pi n A s s i g nm en t s (continued)
20 8 -P in P Q F P ( T op V ie w )
208
1
208-Pin PQFP
v3.1
37
54SX Family FPGAs
20 8 -P in P Q F P
Pin Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
GND
TDI, I/O
I/O
NC
I/O
NC
I/O
I/O
I/O
I/O
TMS
VCCI
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
VCCR
GND
VCCA
GND
I/O
I/O
NC
I/O
I/O
I/O
NC
I/O
I/O
I/O
NC
VCCI
VCCA
I/O
I/O
I/O
I/O
I/O
I/O
NC
I/O
NC
I/O
GND
I/O
GND
TDI, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TMS
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCR
GND
VCCA
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
VCCA
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
GND
TDI, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TMS
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCR
GND
VCCA
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
VCCA
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
* Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
38
v3.1
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
54
55
56
57
58
59
60
61
62
63
64
65*
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
NC
PRB, I/O
GND
VCCA
GND
VCCR
I/O
HCLK
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
VCCI
I/O
I/O
I/O
I/O
TDO, I/O
I/O
GND
NC
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PRB, I/O
GND
VCCA
GND
VCCR
I/O
HCLK
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
TDO, I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
NC*
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PRB, I/O
GND
VCCA
GND
VCCR
I/O
HCLK
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
TDO, I/O
I/O
GND
I/O
5 4 S X F a m i l y F PG A s
20 8 -P in P Q F P ( C on t in u ed )
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
I/O
I/O
I/O
107
NC
I/O
I/O
108
I/O
I/O
I/O
109
I/O
I/O
I/O
110
I/O
I/O
I/O
111
I/O
I/O
I/O
112
I/O
I/O
I/O
113
VCCA
VCCA
VCCA
114
VCCI
VCCI
VCCI
115
NC
I/O
I/O
116
I/O
I/O
I/O
117
I/O
I/O
I/O
118
NC
I/O
I/O
119
I/O
I/O
I/O
120
I/O
I/O
I/O
121
NC
I/O
I/O
122
I/O
I/O
I/O
123
I/O
I/O
I/O
124
NC
I/O
I/O
125
I/O
I/O
I/O
126
I/O
I/O
I/O
127
I/O
I/O
I/O
128
GND
GND
GND
129
VCCA
VCCA
VCCA
130
GND
GND
GND
131
VCCR
VCCR
VCCR
132
I/O
I/O
I/O
133
I/O
I/O
I/O
134
NC
I/O
I/O
135
I/O
I/O
I/O
136
I/O
I/O
I/O
137
NC
I/O
I/O
138
I/O
I/O
I/O
139
I/O
I/O
I/O
140
NC
I/O
I/O
141
I/O
I/O
I/O
142
NC
I/O
I/O
143
I/O
I/O
I/O
144
VCCA
VCCA
VCCA
145
GND
GND
GND
146
I/O
I/O
I/O
147
VCCI
VCCI
VCCI
148
I/O
I/O
I/O
149
I/O
I/O
I/O
150
I/O
I/O
I/O
151
I/O
I/O
I/O
152
I/O
I/O
I/O
153
I/O
I/O
I/O
154
NC
I/O
I/O
155
NC
I/O
I/O
156
GND
GND
GND
157
* Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).
v3.1
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
I/O
CLKA
CLKB
VCCR
GND
VCCA
GND
PRA, I/O
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
NC
I/O
I/O
VCCI
NC
NC
I/O
NC
I/O
I/O
TCK, I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
CLKA
CLKB
VCCR
GND
VCCA
GND
PRA, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
TCK, I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
CLKA
CLKB
VCCR
GND
VCCA
GND
PRA, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
TCK, I/O
39
54SX Family FPGAs
P ac k a g e Pi n A s s i g nm en t s (continued)
14 4 -P in T Q F P ( T op V ie w)
144
1
144-Pin
TQFP
40
v3.1
5 4 S X F a m i l y F PG A s
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
1
GND
GND
GND
41
I/O
I/O
I/O
2
TDI, I/O
TDI, I/O
TDI, I/O
42
I/O
I/O
I/O
3
I/O
I/O
I/O
43
I/O
I/O
I/O
4
I/O
I/O
I/O
44
VCCI
VCCI
VCCI
5
I/O
I/O
I/O
45
I/O
I/O
I/O
6
I/O
I/O
I/O
46
I/O
I/O
I/O
7
I/O
I/O
I/O
47
I/O
I/O
I/O
8
I/O
I/O
I/O
48
I/O
I/O
I/O
9
TMS
TMS
TMS
49
I/O
I/O
I/O
10
VCCI
VCCI
VCCI
50
I/O
I/O
I/O
11
GND
GND
GND
51
I/O
I/O
I/O
12
I/O
I/O
I/O
52
I/O
I/O
I/O
13
I/O
I/O
I/O
53
I/O
I/O
I/O
14
I/O
I/O
I/O
54
PRB, I/O
PRB, I/O
PRB, I/O
15
I/O
I/O
I/O
55
I/O
I/O
I/O
16
I/O
I/O
I/O
56
VCCA
VCCA
VCCA
17
I/O
I/O
I/O
57
GND
GND
GND
18
I/O
I/O
I/O
58
VCCR
VCCR
VCCR
19
VCCR
VCCR
VCCR
59
I/O
I/O
I/O
20
VCCA
VCCA
VCCA
60
HCLK
HCLK
HCLK
21
I/O
I/O
I/O
61
I/O
I/O
I/O
22
I/O
I/O
I/O
62
I/O
I/O
I/O
23
I/O
I/O
I/O
63
I/O
I/O
I/O
24
I/O
I/O
I/O
64
I/O
I/O
I/O
25
I/O
I/O
I/O
65
I/O
I/O
I/O
26
I/O
I/O
I/O
66
I/O
I/O
I/O
27
I/O
I/O
I/O
67
I/O
I/O
I/O
28
GND
GND
GND
68
VCCI
VCCI
VCCI
29
VCCI
VCCI
VCCI
69
I/O
I/O
I/O
30
VCCA
VCCA
VCCA
70
I/O
I/O
I/O
31
I/O
I/O
I/O
71
TDO, I/O
TDO, I/O
TDO, I/O
32
I/O
I/O
I/O
72
I/O
I/O
I/O
33
I/O
I/O
I/O
73
GND
GND
GND
34
I/O
I/O
I/O
74
I/O
I/O
I/O
35
I/O
I/O
I/O
75
I/O
I/O
I/O
36
GND
GND
GND
76
I/O
I/O
I/O
37
I/O
I/O
I/O
77
I/O
I/O
I/O
38
I/O
I/O
I/O
78
I/O
I/O
I/O
39
I/O
I/O
I/O
79
VCCA
VCCA
VCCA
40
I/O
I/O
I/O
80
VCCI
VCCI
VCCI
v3.1
41
54SX Family FPGAs
144-Pin TQFP (Continued)
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
81
GND
GND
GND
113
I/O
I/O
I/O
42
82
I/O
I/O
I/O
114
I/O
I/O
I/O
83
I/O
I/O
I/O
115
VCCI
VCCI
VCCI
84
I/O
I/O
I/O
116
I/O
I/O
I/O
85
I/O
I/O
I/O
117
I/O
I/O
I/O
86
I/O
I/O
I/O
118
I/O
I/O
I/O
87
I/O
I/O
I/O
119
I/O
I/O
I/O
88
I/O
I/O
I/O
120
I/O
I/O
I/O
89
VCCA
VCCA
VCCA
121
I/O
I/O
I/O
90
VCCR
VCCR
VCCR
122
I/O
I/O
I/O
91
I/O
I/O
I/O
123
I/O
I/O
I/O
92
I/O
I/O
I/O
124
I/O
I/O
I/O
93
I/O
I/O
I/O
125
CLKA
CLKA
CLKA
94
I/O
I/O
I/O
126
CLKB
CLKB
CLKB
95
I/O
I/O
I/O
127
VCCR
VCCR
VCCR
96
I/O
I/O
I/O
128
GND
GND
GND
97
I/O
I/O
I/O
129
VCCA
VCCA
VCCA
98
VCCA
VCCA
VCCA
130
I/O
I/O
I/O
99
GND
GND
GND
131
PRA, I/O
PRA, I/O
PRA, I/O
100
I/O
I/O
I/O
132
I/O
I/O
I/O
101
GND
GND
GND
133
I/O
I/O
I/O
102
VCCI
VCCI
VCCI
134
I/O
I/O
I/O
103
I/O
I/O
I/O
135
I/O
I/O
I/O
104
I/O
I/O
I/O
136
I/O
I/O
I/O
105
I/O
I/O
I/O
137
I/O
I/O
I/O
106
I/O
I/O
I/O
138
I/O
I/O
I/O
107
I/O
I/O
I/O
139
I/O
I/O
I/O
108
I/O
I/O
I/O
140
VCCI
VCCI
VCCI
109
GND
GND
GND
141
I/O
I/O
I/O
110
I/O
I/O
I/O
142
I/O
I/O
I/O
111
I/O
I/O
I/O
143
I/O
I/O
I/O
112
I/O
I/O
I/O
144
TCK, I/O
TCK, I/O
TCK, I/O
113
I/O
I/O
I/O
v3.1
5 4 S X F a m i l y F PG A s
P a ck a g e Pi n A s s i g nm en t s (continued)
17 6 -P in T Q F P ( T op V ie w )
176
1
176-Pin
TQFP
v3.1
43
54SX Family FPGAs
17 6 -P in T Q F P
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1
GND
GND
2
TDI, I/O
3
NC
4
5
44
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
GND
45
I/O
I/O
I/O
TDI, I/O
TDI, I/O
46
I/O
I/O
I/O
I/O
I/O
47
I/O
I/O
I/O
I/O
I/O
I/O
48
I/O
I/O
I/O
I/O
I/O
I/O
49
I/O
I/O
I/O
6
I/O
I/O
I/O
50
I/O
I/O
I/O
7
I/O
I/O
I/O
51
I/O
I/O
I/O
8
I/O
I/O
I/O
52
VCCI
VCCI
VCCI
9
I/O
I/O
I/O
53
I/O
I/O
I/O
10
TMS
TMS
TMS
54
NC
I/O
I/O
11
VCCI
VCCI
VCCI
55
I/O
I/O
I/O
12
NC
I/O
I/O
56
I/O
I/O
I/O
13
I/O
I/O
I/O
57
NC
I/O
I/O
14
I/O
I/O
I/O
58
I/O
I/O
I/O
15
I/O
I/O
I/O
59
I/O
I/O
I/O
16
I/O
I/O
I/O
60
I/O
I/O
I/O
17
I/O
I/O
I/O
61
I/O
I/O
I/O
18
I/O
I/O
I/O
62
I/O
I/O
I/O
19
I/O
I/O
I/O
63
I/O
I/O
I/O
20
I/O
I/O
I/O
64
PRB, I/O
PRB, I/O
PRB, I/O
21
GND
GND
GND
65
GND
GND
GND
22
VCCA
VCCA
VCCA
66
VCCA
VCCA
VCCA
23
GND
GND
GND
67
VCCR
VCCR
VCCR
24
I/O
I/O
I/O
68
I/O
I/O
I/O
25
I/O
I/O
I/O
69
HCLK
HCLK
HCLK
26
I/O
I/O
I/O
70
I/O
I/O
I/O
27
I/O
I/O
I/O
71
I/O
I/O
I/O
28
I/O
I/O
I/O
72
I/O
I/O
I/O
29
I/O
I/O
I/O
73
I/O
I/O
I/O
30
I/O
I/O
I/O
74
I/O
I/O
I/O
31
I/O
I/O
I/O
75
I/O
I/O
I/O
32
VCCI
VCCI
VCCI
76
I/O
I/O
I/O
33
VCCA
VCCA
VCCA
77
I/O
I/O
I/O
34
I/O
I/O
I/O
78
I/O
I/O
I/O
35
I/O
I/O
I/O
79
NC
I/O
I/O
36
I/O
I/O
I/O
80
I/O
I/O
I/O
37
I/O
I/O
I/O
81
NC
I/O
I/O
38
I/O
I/O
I/O
82
VCCI
VCCI
VCCI
39
I/O
I/O
I/O
83
I/O
I/O
I/O
40
NC
I/O
I/O
84
I/O
I/O
I/O
41
I/O
I/O
I/O
85
I/O
I/O
I/O
42
NC
I/O
I/O
86
I/O
I/O
I/O
43
I/O
I/O
I/O
87
TDO, I/O
TDO, I/O
TDO, I/O
44
GND
GND
GND
88
I/O
I/O
I/O
v3.1
5 4 S X F a m i l y F PG A s
17 6 -P in T Q F P ( C on t in u ed )
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
89
GND
GND
GND
133
GND
GND
GND
90
NC
91
NC
I/O
I/O
134
I/O
I/O
I/O
I/O
I/O
135
I/O
I/O
I/O
92
93
I/O
I/O
I/O
136
I/O
I/O
I/O
I/O
I/O
I/O
137
I/O
I/O
I/O
94
I/O
I/O
I/O
138
I/O
I/O
I/O
95
I/O
I/O
I/O
139
I/O
I/O
I/O
96
I/O
I/O
I/O
140
VCCI
VCCI
VCCI
97
I/O
I/O
I/O
141
I/O
I/O
I/O
98
VCCA
VCCA
VCCA
142
I/O
I/O
I/O
99
VCCI
VCCI
VCCI
143
I/O
I/O
I/O
100
I/O
I/O
I/O
144
I/O
I/O
I/O
101
I/O
I/O
I/O
145
I/O
I/O
I/O
102
I/O
I/O
I/O
146
I/O
I/O
I/O
103
I/O
I/O
I/O
147
I/O
I/O
I/O
104
I/O
I/O
I/O
148
I/O
I/O
I/O
105
I/O
I/O
I/O
149
I/O
I/O
I/O
106
I/O
I/O
I/O
150
I/O
I/O
I/O
107
I/O
I/O
I/O
151
I/O
I/O
I/O
108
GND
GND
GND
152
CLKA
CLKA
CLKA
109
VCCA
VCCA
VCCA
153
CLKB
CLKB
CLKB
110
GND
GND
GND
154
VCCR
VCCR
VCCR
111
I/O
I/O
I/O
155
GND
GND
GND
112
I/O
I/O
I/O
156
VCCA
VCCA
VCCA
113
I/O
I/O
I/O
157
PRA, I/O
PRA, I/O
PRA, I/O
114
I/O
I/O
I/O
158
I/O
I/O
I/O
115
I/O
I/O
I/O
159
I/O
I/O
I/O
116
I/O
I/O
I/O
160
I/O
I/O
I/O
117
I/O
I/O
I/O
161
I/O
I/O
I/O
118
NC
I/O
I/O
162
I/O
I/O
I/O
119
I/O
I/O
I/O
163
I/O
I/O
I/O
120
NC
I/O
I/O
164
I/O
I/O
I/O
121
NC
I/O
I/O
165
I/O
I/O
I/O
122
VCCA
VCCA
VCCA
166
I/O
I/O
I/O
123
GND
GND
GND
167
I/O
I/O
I/O
124
VCCI
VCCI
VCCI
168
NC
I/O
I/O
125
I/O
I/O
I/O
169
VCCI
VCCI
VCCI
126
I/O
I/O
I/O
170
I/O
I/O
I/O
127
I/O
I/O
I/O
171
NC
I/O
I/O
128
I/O
I/O
I/O
172
NC
I/O
I/O
129
I/O
I/O
I/O
173
NC
I/O
I/O
130
I/O
I/O
I/O
174
I/O
I/O
I/O
131
NC
I/O
I/O
175
I/O
I/O
I/O
132
NC
I/O
I/O
176
TCK, I/O
TCK, I/O
TCK, I/O
v3.1
45
54SX Family FPGAs
P ac k a g e Pi n A s s i g nm en t s (continued)
10 0 -P in V Q F P ( T op V ie w)
100
1
100-Pin
VQFP
46
v3.1
5 4 S X F a m i l y F PG A s
10 0 -VQ FP
Pin Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
A54SX08
Function
A54SX16,
A54SX16P
Function
GND
TDI, I/O
I/O
I/O
I/O
I/O
TMS
VCCI
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PRB, I/O
VCCA
GND
VCCR
I/O
HCLK
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
TDO, I/O
I/O
GND
TDI, I/O
I/O
I/O
I/O
I/O
TMS
VCCI
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
PRB, I/O
VCCA
GND
VCCR
I/O
HCLK
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
TDO, I/O
I/O
Pin Number
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
v3.1
A54SX08
Function
A54SX16
A54SX16P
Function
GND
I/O
I/O
I/O
I/O
I/O
VCCA
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCA
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
CLKA
CLKB
VCCR
VCCA
GND
PRA, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TCK, I/O
GND
I/O
I/O
I/O
I/O
I/O
VCCA
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCA
GND
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
I/O
I/O
I/O
I/O
CLKA
CLKB
VCCR
VCCA
GND
PRA, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
TCK, I/O
47
54SX Family FPGAs
P ac k a g e Pi n A s s i g nm en t s (continued)
313-Pin PBGA (Top View)
1
3
4
5
6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
N
P
P
R
R
T
U
T
U
V
V
W
W
Y
AA
Y
AA
AB
AB
AC
AC
AD
AD
AE
AE
1
48
2
2
3
4
5
6
7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
v3.1
5 4 S X F a m i l y F PG A s
3 1 3 -P in P B G A
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
A1
GND
AC15
I/O
C5
NC
F20
I/O
A3
NC
AC17
I/O
C7
I/O
F22
I/O
A5
I/O
AC19
I/O
C9
I/O
F24
I/O
A7
I/O
AC21
I/O
C11
I/O
G1
I/O
A9
I/O
AC23
I/O
C13
VCCI
G3
TMS
A11
I/O
AC25
NC
C15
I/O
G5
I/O
A13
VCCR
AD2
GND
C17
I/O
G7
I/O
A15
I/O
AD4
I/O
C19
VCCI
G9
VCCI
A17
I/O
AD6
VCCI
C21
I/O
G11
I/O
A19
I/O
AD8
I/O
C23
I/O
G13
CLKB
A21
I/O
AD10
I/O
C25
NC
G15
I/O
A23
NC
AD12
PRB, I/O
D2
I/O
G17
I/O
A25
GND
AD14
I/O
D4
NC
G19
I/O
AA1
I/O
AD16
I/O
D6
I/O
G21
I/O
AA3
I/O
AD18
I/O
D8
I/O
G23
I/O
AA5
NC
AD20
I/O
D10
I/O
G25
I/O
AA7
I/O
AD22
NC
D12
I/O
H2
I/O
AA9
NC
AD24
I/O
D14
I/O
H4
I/O
AA11
I/O
AE1
NC
D16
I/O
H6
I/O
AA13
I/O
AE3
I/O
D18
I/O
H8
I/O
AA15
I/O
AE5
I/O
D20
I/O
H10
I/O
AA17
I/O
AE7
I/O
D22
I/O
H12
PRA, I/O
AA19
I/O
AE9
I/O
D24
NC
H14
I/O
AA21
I/O
AE11
I/O
E1
I/O
H16
I/O
AA23
NC
AE13
VCCA
E3
NC
H18
NC
AA25
I/O
AE15
I/O
E5
I/O
H20
I/O
AB2
NC
AE17
I/O
E7
I/O
H22
VCCI
AB4
NC
AE19
I/O
E9
I/O
H24
I/O
AB6
I/O
AE21
I/O
E11
I/O
J1
I/O
AB8
I/O
AE23
TDO, I/O
E13
VCCA
J3
I/O
AB10
I/O
AE25
GND
E15
I/O
J5
I/O
AB12
I/O
B2
TCK, I/O
E17
I/O
J7
NC
AB14
I/O
B4
I/O
E19
I/O
J9
I/O
AB16
I/O
B6
I/O
E21
I/O
J11
I/O
AB18
VCCI
B8
I/O
E23
I/O
J13
CLKA
AB20
NC
B10
I/O
E25
I/O
J15
I/O
AB22
I/O
B12
I/O
F2
I/O
J17
I/O
AB24
I/O
B14
I/O
F4
I/O
J19
I/O
AC1
I/O
B16
I/O
F6
NC
J21
GND
AC3
I/O
B18
I/O
F8
I/O
J23
I/O
AC5
I/O
B20
I/O
F10
NC
J25
I/O
AC7
I/O
B22
I/O
F12
I/O
K2
I/O
AC9
I/O
B24
I/O
F14
I/O
K4
I/O
AC11
I/O
C1
TDI, I/O
F16
NC
K6
I/O
AC13
VCCR
C3
I/O
F18
I/O
K8
VCCI
v3.1
49
54SX Family FPGAs
31 3 -P in P B G A ( C o nt in ue d )
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
K10
I/O
N3
VCCA
R21
I/O
V18
I/O
K12
I/O
N5
VCCR
R23
I/O
V20
I/O
K14
I/O
N7
I/O
R25
I/O
V22
VCCA
K16
I/O
N9
VCCI
T2
I/O
V24
VCCI
K18
I/O
N11
GND
T4
I/O
W1
I/O
50
K20
VCCA
N13
GND
T6
I/O
W3
I/O
K22
I/O
N15
GND
T8
I/O
W5
I/O
K24
I/O
N17
I/O
T10
I/O
W7
NC
L1
I/O
N19
I/O
T12
I/O
W9
I/O
L3
I/O
N21
I/O
T14
HCLK
W11
I/O
L5
I/O
N23
VCCR
T16
I/O
W13
VCCI
L7
I/O
N25
VCCA
T18
I/O
W15
I/O
L9
I/O
P2
I/O
T20
I/O
W17
I/O
L11
I/O
P4
I/O
T22
I/O
W19
I/O
L13
GND
P6
I/O
T24
I/O
W21
I/O
L15
I/O
P8
I/O
U1
I/O
W23
I/O
L17
I/O
P10
I/O
U3
I/O
W25
I/O
L19
I/O
P12
GND
U5
VCCI
Y2
I/O
L21
I/O
P14
GND
U7
I/O
Y4
I/O
L23
I/O
P16
I/O
U9
I/O
Y6
I/O
L25
I/O
P18
I/O
U15
I/O
Y8
I/O
M2
I/O
P20
NC
U17
I/O
Y10
I/O
M4
I/O
P22
I/O
U19
I/O
Y12
I/O
M6
I/O
P24
I/O
U21
I/O
Y14
I/O
M8
I/O
R1
I/O
U23
I/O
Y16
I/O
M10
I/O
R3
I/O
U25
I/O
Y18
I/O
M12
GND
R5
I/O
V2
VCCA
Y20
NC
M14
GND
R7
I/O
V4
I/O
Y22
I/O
M16
VCCI
R9
I/O
V6
I/O
Y24
NC
M18
I/O
R11
I/O
V8
I/O
M20
I/O
R13
GND
V10
I/O
M22
I/O
R15
I/O
V12
I/O
M24
I/O
R17
I/O
V14
I/O
N1
I/O
R19
I/O
V16
NC
v3.1
5 4 S X F a m i l y F PG A s
P a ck a g e Pi n A s s i g nm en t s (continued)
329-Pin PBGA (Top View)
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
v3.1
51
54SX Family FPGAs
3 2 9 -P in P B G A
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
A1
GND
AA23
VCCI
AC22
VCCI
C21
VCCI
A2
GND
AB1
I/O
AC23
GND
C22
GND
A3
VCCI
AB2
GND
B1
VCCI
C23
NC
A4
NC
AB3
I/O
B2
GND
D1
I/O
A5
I/O
AB4
I/O
B3
I/O
D2
I/O
52
A6
I/O
AB5
I/O
B4
I/O
D3
I/O
A7
VCCI
AB6
I/O
B5
I/O
D4
TCK, I/O
A8
NC
AB7
I/O
B6
I/O
D5
I/O
A9
I/O
AB8
I/O
B7
I/O
D6
I/O
A10
I/O
AB9
I/O
B8
I/O
D7
I/O
A11
I/O
AB10
I/O
B9
I/O
D8
I/O
A12
I/O
AB11
PRB, I/O
B10
I/O
D9
I/O
A13
CLKB
AB12
I/O
B11
I/O
D10
I/O
A14
I/O
AB13
HCLK
B12
PRA, I/O
D11
VCCA
A15
I/O
AB14
I/O
B13
CLKA
D12
VCCR
A16
I/O
AB15
I/O
B14
I/O
D13
I/O
A17
I/O
AB16
I/O
B15
I/O
D14
I/O
A18
I/O
AB17
I/O
B16
I/O
D15
I/O
A19
I/O
AB18
I/O
B17
I/O
D16
I/O
A20
I/O
AB19
I/O
B18
I/O
D17
I/O
A21
NC
AB20
I/O
B19
I/O
D18
I/O
A22
VCCI
AB21
I/O
B20
I/O
D19
I/O
A23
GND
AB22
GND
B21
I/O
D20
I/O
AA1
VCCI
AB23
I/O
B22
GND
D21
I/O
AA2
I/O
AC1
GND
B23
VCCI
D22
I/O
AA3
GND
AC2
VCCI
C1
NC
D23
I/O
AA4
I/O
AC3
NC
C2
TDI, I/O
E1
VCCI
AA5
I/O
AC4
I/O
C3
GND
E2
I/O
AA6
I/O
AC5
I/O
C4
I/O
E3
I/O
AA7
I/O
AC6
I/O
C5
I/O
E4
I/O
AA8
I/O
AC7
I/O
C6
I/O
E20
I/O
AA9
I/O
AC8
I/O
C7
I/O
E21
I/O
AA10
I/O
AC9
VCCI
C8
I/O
E22
I/O
AA11
I/O
AC10
I/O
C9
I/O
E23
I/O
AA12
I/O
AC11
I/O
C10
I/O
F1
I/O
AA13
I/O
AC12
I/O
C11
I/O
F2
TMS
AA14
I/O
AC13
I/O
C12
I/O
F3
I/O
AA15
I/O
AC14
I/O
C13
I/O
F4
I/O
AA16
I/O
AC15
NC
C14
I/O
F20
I/O
AA17
I/O
AC16
I/O
C15
I/O
F21
I/O
AA18
I/O
AC17
I/O
C16
I/O
F22
I/O
AA19
I/O
AC18
I/O
C17
I/O
F23
I/O
AA20
TDO, I/O
AC19
I/O
C18
I/O
G1
I/O
AA21
VCCI
AC20
I/O
C19
I/O
G2
I/O
AA22
I/O
AC21
NC
C20
I/O
G3
I/O
v3.1
5 4 S X F a m i l y F PG A s
3 2 9 -P in P B G A
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
Pin Number
A54SX32
Function
G4
I/O
L22
I/O
R20
I/O
Y10
I/O
G20
I/O
L23
NC
R21
I/O
Y11
I/O
G21
I/O
M1
I/O
R22
I/O
Y12
VCCA
G22
I/O
M2
I/O
R23
I/O
Y13
VCCR
G23
GND
M3
I/O
T1
I/O
Y14
I/O
H1
I/O
M4
VCCA
T2
I/O
Y15
I/O
H2
I/O
M10
GND
T3
I/O
Y16
I/O
H3
I/O
M11
GND
T4
I/O
Y17
I/O
H4
I/O
M12
GND
T20
I/O
Y18
I/O
H20
VCCA
M13
GND
T21
I/O
Y19
I/O
H21
I/O
M14
GND
T22
I/O
Y20
GND
H22
I/O
M20
VCCA
T23
I/O
Y21
I/O
H23
I/O
M21
I/O
U1
I/O
Y22
I/O
J1
NC
M22
I/O
U2
I/O
Y23
I/O
J2
I/O
M23
VCCI
U3
VCCA
J3
I/O
N1
I/O
U4
I/O
J4
I/O
N2
I/O
U20
I/O
J20
I/O
N3
I/O
U21
VCCA
J21
I/O
N4
I/O
U22
I/O
J22
I/O
N10
GND
U23
I/O
J23
I/O
N11
GND
V1
VCCI
K1
I/O
N12
GND
V2
I/O
K2
I/O
N13
GND
V3
I/O
K3
I/O
N14
GND
V4
I/O
K4
I/O
N20
NC
V20
I/O
K10
GND
N21
I/O
V21
I/O
K11
GND
N22
I/O
V22
I/O
K12
GND
N23
I/O
V23
I/O
K13
GND
P1
I/O
W1
I/O
K14
GND
P2
I/O
W2
I/O
K20
I/O
P3
I/O
W3
I/O
K21
I/O
P4
I/O
W4
I/O
K22
I/O
P10
GND
W20
I/O
K23
I/O
P11
GND
W21
I/O
L1
I/O
P12
GND
W22
I/O
L2
I/O
P13
GND
W23
NC
L3
I/O
P14
GND
Y1
NC
L4
VCCR
P20
I/O
Y2
I/O
L10
GND
P21
I/O
Y3
I/O
L11
GND
P22
I/O
Y4
GND
L12
GND
P23
I/O
Y5
I/O
L13
GND
R1
I/O
Y6
I/O
L14
GND
R2
I/O
Y7
I/O
L20
VCCR
R3
I/O
Y8
I/O
L21
I/O
R4
I/O
Y9
I/O
v3.1
53
54SX Family FPGAs
P ac k a g e Pi n A s s i g nm en t s (Continued)
144-Pin FBGA (Top View)
1
2
3
4
5
6
7
A
B
C
D
E
F
G
H
J
K
L
M
54
v3.1
8
9
10
11
12
5 4 S X F a m i l y F PG A s
14 4 -P in F B G A
Pin Number
A54SX08
Function
Pin Number
A54SX08
Function
Pin Number
A54SX08
Function
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
I/O
I/O
I/O
I/O
VCCA
GND
CLKA
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
CLKB
I/O
I/O
I/O
GND
I/O
I/O
I/O
TCK, I/O
I/O
I/O
PRA, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCI
TDI, I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
G1
G2
G3
G4
G5
G6
G7
G8
G9
G10
G11
G12
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
I/O
I/O
I/O
I/O
TMS
VCCI
VCCI
VCCI
VCCA
I/O
GND
I/O
I/O
I/O
VCCR
I/O
GND
GND
GND
VCCI
I/O
GND
I/O
I/O
I/O
GND
I/O
I/O
GND
GND
GND
VCCI
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCA
VCCA
VCCI
VCCI
VCCA
I/O
I/O
VCCR
J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
I/O
I/O
I/O
I/O
I/O
PRB, I/O
I/O
I/O
I/O
I/O
I/O
VCCA
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
GND
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
HCLK
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCA
I/O
I/O
I/O
TDO, I/O
I/O
v3.1
55
54SX Family FPGAs
L i s t o f C ha n g es
The following table lists critical changes that were made in the current version of the document.
Previous version
Changes in current version (v3.1)
Page
1
v3.0.1
The storage temperature in the “Absolute Maximum Ratings ” table on page 10 was
page 10
updated.
Table 1 on page 8 was updated.
page 8
D a ta s he e t C a te g o ri es
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production.” The definition of these categories
are as follows:
Product Brief
The product brief is a modified version of an advanced datasheet containing general product information. This brief
summarizes specific device and family information for unreleased products.
A d v an ce d
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades.
This information can be used as estimates but not for production.
U n ma r k ed ( pr o d uc t io n )
This datasheet version contains information that is considered to be final.
56
v3.1
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Corporation
Actel Europe Ltd.
Actel Japan
Actel Hong Kong
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
39th Floor
One Pacific Place
88 Queensway
Admiralty, Hong Kong
Tel: 852-22735712
572137-4/6.03
Similar pages