AD ADA4096-2 30 v, micropower, overvoltage protection, rail-to-rail input/output amplifier Datasheet

PIN CONNECTION DIAGRAMS
Input overvoltage protection, 32 V above and below the
supply rails
No phase reversal for input voltage up to ±32 V beyond the
power supply
Rail-to-rail input and output swing
Low power: 60 µA per amplifier typical
Unity-gain bandwidth
800 kHz typical at VSY = ±15 V
550 kHz typical at VSY = ±5 V
465 kHz typical at VSY = ±1.5 V
Single-supply operation: 3 V to 30 V
Low offset voltage: 300 µV maximum
Large signal voltage gain: 120 dB typical
Unity gain stable
Qualified for automotive applications
APPLICATIONS
OUTA 1
V+
ADA4096-2
7
OUTB
+INA 3
TOP VIEW
(Not to Scale)
6
–INB
5
+INB
V– 4
Figure 1. 8-Lead, MSOP (RM-8), ADA4096-2
OUTA 1
8 V+
–INA 2
ADA4096-2
7 OUTB
+INA 3
TOP VIEW
(Not to Scale)
6 –INB
5 +INB
V– 4
NOTES
1. CONNECT THE EXPOSED PAD
TO V–.
Figure 2. 8-Lead LFCSP (CP-8-10), ADA4096-2
Note: For the ADA4096-4, see the Pin Configurations and
Function Descriptions section.
Battery monitoring
Sensor conditioners
Portable power supply controls
Portable instrumentation
GENERAL DESCRIPTION
T
The ADA4096-2 and ADA4096-4 have overvoltage protection
inputs and diodes that allow the voltage input to extend 32 V
above and below the supply rails, making this device ideal for
robust industrial applications. The ADA4096-2 and ADA4096-4
feature a unique input stage that allows the input voltage to
exceed either supply safely without any phase reversal or latchup; this is called overvoltage protection, or OVP.
The dual ADA4096-2 is available in 8-lead LFCSP (2 mm ×
2 mm) and 8-lead MSOP packages. The ADA4096-2 is available
in 16-lead LFCSP (3 mm × 3 mm) and 14-lead TSSOP
packages. The ADA4096-2W is qualified for automotive
applications and is available in an 8-lead MSOP package.
1
CH1 10.0V
CH2 10.0V
M2.00ms
T 34.20%
A CH1
–3.6V
09241-146
The ADA4096-2 dual and ADA4096-4 quad operational
amplifiers feature micropower operation and rail-to-rail input
and output ranges. The extremely low power requirements and
guaranteed operation from 3 V to 30 V make these amplifiers
perfectly suited to monitor battery usage and to control battery
charging. Their dynamic performance, including 27 nV/√Hz
voltage noise density, recommends them for battery-powered
audio applications. Capacitive loads to 200 pF are handled
without oscillation.
Rev. F
8
–INA 2
09241-001
FEATURES
09241-002
Data Sheet
30 V, Micropower, Overvoltage Protection,
Rail-to-Rail Input/Output Amplifiers
ADA4096-2/ADA4096-4
Figure 3. No Phase Reversal
The ADA409x family is specified over the extended industrial
temperature range of (−40°C to +125°C) and is part of the
growing selection of 30 V, low power op amps from Analog
Devices, Inc. (see Table 1).
Table 1. Low Power, 30 V Operational Amplifiers
Op Amp
Dual
Quad
Rail-to-Rail I/O
ADA4091-2
ADA4091-4
PJFET
AD8682
AD8684
Low Noise
AD8622
AD8624
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011–2014 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADA4096-2/ADA4096-4
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................9
Applications ....................................................................................... 1
±1.5 V Characteristics ..................................................................9
Pin Connection Diagrams ............................................................... 1
±5 V Characteristics................................................................... 12
General Description ......................................................................... 1
±15 V Characteristics ................................................................ 15
Revision History ............................................................................... 2
Comparative Voltage and Variable Voltage Graphs ............... 18
Specifications..................................................................................... 3
Theory of Operation ...................................................................... 19
Electrical Specifications, VSY = ±1.5 V....................................... 3
Input Stage ................................................................................... 19
Electrical Specifications, VSY = ±5 V .......................................... 4
Phase Inversion ........................................................................... 19
Electrical Specifications, VSY = ±15 V........................................ 5
Input Overvoltage Protection ................................................... 20
Absolute Maximum Ratings ............................................................ 6
Comparator Operation .............................................................. 20
Thermal Resistance ...................................................................... 6
Outline Dimensions ....................................................................... 21
ESD Caution .................................................................................. 6
Ordering Guide .......................................................................... 23
Pin Configurations and Function Descriptions ........................... 7
Automotive Products ................................................................. 23
REVISION HISTORY
12/14—Rev. E to Rev. F
Changes to EPAD Note, Figure 2 ................................................... 1
Changes to EPAD Note, Figure 5 and Table 7 .............................. 7
Changes to EPAD Note, Figure 7 and Table 8 .............................. 8
3/14—Rev. D to Rev. E
Changes to Figure 10 and Figure 12............................................... 9
Changes to Figure 23 and Figure 25............................................. 12
Changes to Figure 36 and Figure 38............................................. 15
5/13—Rev. C to Rev. D
Changes to Pin Connection Diagrams Section ............................ 1
Changes to Pin Configurations and Function Descriptions
Section ................................................................................................ 7
Added Figure 10, Renumbered Sequentially ................................ 9
Added Figure 23.............................................................................. 12
Added Figure 36.............................................................................. 15
8/12—Rev. B to Rev. C
Changes to Table 8 ............................................................................ 8
8/12—Rev. A to Rev. B
Added ADA4096-4 ............................................................. Universal
Changes to Features Section............................................................ 1
Added Figure 3.................................................................................. 1
Changes to Pin Connection Diagrams Section ............................ 1
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, and Supply Current per
Amplifier Parameters, and −3 dB Closed-Loop Bandwidth
Symbol, Table 2 ..................................................................................3
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, and Parameters, and −3 dB
Closed-Loop Bandwidth Symbol, Table 3 ......................................4
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, Output Voltage High, and
Output Voltage Low Parameters, and −3 dB Closed-Loop
Bandwidth Symbol, Table 4..............................................................5
Changes to Table 6.............................................................................7
Added Pin Configurations and Function Descriptions
Section .................................................................................................8
Added Figure 4 and Figure 5, Renumbered Sequentially ............8
Added Table 7, Renumbered Sequentially .....................................8
Added Figure 6, Figure 7, and Table 8 ............................................9
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 20
3/12—Rev. 0 to Rev. A
Changed −3 dB Closed-Loop Bandwidth from 97 kHz to
970 kHz, Table 2.................................................................................3
Changed −3 dB Closed-Loop Bandwidth from 114 kHz to
1140 kHz, Table 3 ..............................................................................4
Changed to −3 dB Closed-Loop Bandwidth from 152 kHz to
1520 kHz, Table 4 ..............................................................................5
Updated Outline Dimensions ....................................................... 18
7/11—Revision 0: Initial Version
Rev. F | Page 2 of 24
Data Sheet
ADA4096-2/ADA4096-4
SPECIFICATIONS
ELECTRICAL SPECIFICATIONS, VSY = ±1.5 V
VSY = ±1.5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Input Bias Current
Symbol
Test Conditions/Comments
Min
VOS
∆VOS/∆T
IB
0°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Typ
Max
Unit
35
300
450
900
µV
µV
µV
µV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
1
±10
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±0.1
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VCM = 0 V to ±1.5 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = −1.4 V to +1.4 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = −1.3 V to +1.3 V
−40°C ≤ TA ≤ +125°C
−1.5
61
58
91
84
86
77
TA = 25°C
VOH
VOL
ISC
ZOUT
PSRR
ISY
SR
GBP
UGC
ΦM
f−3 dB
en p-p
en
in
1.48
1.45
1.45
1.40
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
RL = 100 kΩ, CL = 30 pF
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
77
94
92
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C to +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
±25
±30
±1.5
±3
+1.5
300
1.49
1.46
−1.49
−1.48
−1.48
−1.45
−1.47
−1.40
±10
102
40
50
80
µV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
µA
µA
AV = 1, VIN = 5 mV p-p
0.25
501
465
51
970
V/µs
kHz
kHz
Degrees
kHz
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.7
27
0.2
µV p-p
nV/√Hz
pA/√Hz
Rev. F | Page 3 of 24
ADA4096-2/ADA4096-4
Data Sheet
ELECTRICAL SPECIFICATIONS, VSY = ±5 V
VSY = ±5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Test Conditions/Comments
Min
VOS
Typ
Max
Unit
35
300
500
µV
µV
µV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
Input Bias Current
∆VOS/∆T
IB
1
±10
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±1.5
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
CMRR
AVO
VCM = −5 V to +5 V
−40°C ≤ TA ≤ +125°C
VCM = −3 V to +3 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = ±4.8 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = ±4.7 V
−40°C ≤ TA ≤ +125°C
−5
72
68
91
85
102
99
93
88
TA = 25°C
VOH
VOL
ISC
ZOUT
PSRR
ISY
4.96
4.95
4.80
4.70
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
SR
GBP
UGC
ΦM
f−3 dB
RL = 100 kΩ, CL = 30 pF
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
en p-p
en
in
86
103
111
103
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
±25
±30
±2
±3
+5
300
4.97
4.90
−4.98
−4.90
−4.97
−4.95
−4.80
−4.75
±10
71
47
55
75
µV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
µA
µA
AV = 1, VIN = 5 mV p-p
0.3
595
550
52
1140
V/µs
kHz
kHz
Degrees
kHz
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.7
27
0.2
µV p-p
nV/√Hz
pA/√Hz
Rev. F | Page 4 of 24
Data Sheet
ADA4096-2/ADA4096-4
ELECTRICAL SPECIFICATIONS, VSY = ±15 V
VSY = ±15 V, VCM = VSY/2, VO = 0.0 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Offset Voltage Drift
Input Bias Current
∆VOS/∆T
IB
Test Conditions/Comments
Min
VOS
Typ
Max
Unit
35
300
500
µV
µV
µV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
1
±3
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±0.1
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Input Capacitance
Differential Mode
Common Mode
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
Channel Separation
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
CMRR
AVO
VCM = −15 V to +15 V
−40°C ≤ TA ≤ +125°C
VCM = −13 V to +13 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = ±14.7 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = ±11 V
−40°C ≤ TA ≤ +125°C
−15
81
75
95
89
109
105
99
90
CDM
CCM
VOL
ISC
ZOUT
PSRR
ISY
95
107
120
112
2.5
7
TA = 25°C
VOH
±25
±30
±1.5
±3
+15
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
14.92
14.90
14.0
11.0
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
SR
tS
GBP
UGC
ΦM
f−3 dB
CS
RL = 100 kΩ, CL = 30 pF
To 0.1%, 10 V step
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
en p-p
en
in
pF
pF
300
14.94
14.3
−14.96
−14.75
−14.80
−14.75
−14.60
−14.0
±10
40
60
75
100
µV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
µA
µA
AV = 1, VIN = 5 mV p-p
f = 1 kHz
0.4
23.4
786
800
60
1520
100
V/µ
µs
kHz
kHz
Degrees
kHz
dB
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.7
27
0.2
µV p-p
nV/√Hz
pA/√Hz
Rev. F | Page 5 of 24
ADA4096-2/ADA4096-4
Data Sheet
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 5.
Parameter
Supply Voltage
Input Voltage
Operating Condition
Overvoltage Condition1
Differential Input Voltage2
Input Current
Output Short-Circuit Duration to
GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering,
60 seconds)
1
2
θJA is specified for the device soldered on a 4-layer JEDEC
standard printed circuit board (PCB) with zero airflow. The
exposed pad is soldered to the application board.
Rating
36 V
−V ≤ VIN ≤ +V
(−V) − 32 V ≤ VIN ≤ (+V) + 32 V
±VSY
±5 mA
Indefinite
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
Table 6. Thermal Resistance
Package Type
8-Lead MSOP (RM-8)
8-Lead LFCSP (CP-8-10)
14-Lead TSSOP (RU-14)
16-Lead LFCSP (CP-16-27)
ESD CAUTION
Performance not guaranteed during overvoltage conditions.
Limit the input current to ±5 mA.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Rev. F | Page 6 of 24
θJA
142
76
112
75
θJC
45
43
35
12
Unit
°C/W
°C/W
°C/W
°C/W
Data Sheet
ADA4096-2/ADA4096-4
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
V+
ADA4096-2
7
OUTB
+INA 3
TOP VIEW
(Not to Scale)
6
–INB
5
+INB
V– 4
OUTA 1
8 V+
–INA 2
ADA4096-2
7 OUTB
+INA 3
TOP VIEW
(Not to Scale)
6 –INB
V– 4
5 +INB
NOTES
1. CONNECT THE EXPOSED PAD
TO V–.
Figure 4. 8-Lead, MSOP (RM-8), ADA4096-2
09241-202
8
–INA 2
09241-201
OUTA 1
Figure 5. 8-Lead LFCSP (CP-8-10), ADA4096-2
Table 7. Pin Function Descriptions, ADA4096-2
Pin No.1
8-Lead MSOP 8-Lead LFCSP
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
N/A
EP2
1
2
Mnemonic
OUTA
−INA
+INA
V−
+INB
−INB
OUTB
V+
EPAD
Description
Output Channel A.
Negative Input Channel A.
Positive Input Channel A.
Negative Supply Voltage.
Positive Input Channel B.
Negative Input Channel B.
Output Channel B.
Positive Supply Voltage.
Exposed Pad.2 For the ADA4096-2 (8-lead LFCSP only), connect the exposed pad to V−.
N/A means not applicable.
The exposed pad is not shown in the pin configuration diagram.
Rev. F | Page 7 of 24
OUTD
–INA 1
–IND
+INA 2
ADA4096-4
12
+IND
V+ 3
TOP VIEW
(Not to Scale)
11
V–
10
+INC
+INB 5
–INB
6
9
–INC
OUTB
7
8
OUTC
13 NIC
11 +IND
10 V–
9
+INB 4
+INC
–INC 8
V+ 4
TOP
VIEW
OUTC 7
3
–INB 5
+INA
12 –IND
ADA4096-4
OUTB 6
2
09241-101
–INA
NOTES
1. NIC = NOT INTERNALLY CONNECTED.
2. CONNECT THE EXPOSED PAD TO V–.
Figure 6. 14-Lead TSSOP (RU-14), ADA4096-4
09241-103
14
13
OUTA 1
14 OUTD
16 NIC
Data Sheet
15 OUTA
ADA4096-2/ADA4096-4
Figure 7. 16-Lead LFCSP (CP-16-27), ADA4096-4
Table 8. Pin Function Descriptions, ADA4096-4
Pin No.1
14-Lead TSSOP
16-Lead LFCSP
1
15
2
1
3
2
4
3
5
4
6
5
7
6
8
7
9
8
10
9
11
10
12
11
13
12
14
14
N/A
13
N/A
16
N/A
EP2
1
2
Mnemonic
OUTA
−INA
+INA
V+
+INB
−INB
OUTB
OUTC
−INC
+INC
V−
+IND
−IND
OUTD
NIC
NIC
EPAD
Description
Output Channel A.
Negative Input Channel A.
Positive Input Channel A.
Positive Supply Voltage.
Positive Input Channel B.
Negative Input Channel B.
Output Channel B.
Output Channel C.
Negative Input Channel C.
Positive Input Channel C.
Negative Supply Voltage.
Positive Input Channel D.
Negative Input Channel D.
Output Channel D.
No Internal Connection.
No Internal Connection.
Exposed Pad.2 For the ADA4096-4 (16-lead LFCSP only), connect the exposed pad to V−.
N/A means not applicable.
The exposed pad is not shown in the pin configuration diagram.
Rev. F | Page 8 of 24
Data Sheet
ADA4096-2/ADA4096-4
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted. All typical performance characteristics shown are for the ADA4096-2 only.
±1.5 V CHARACTERISTICS
180
30
ADA4096-2
VSY = ±1.5V
TA = 25°C
ADA4096-2
VSY = ±1.5V
20
140
10
120
TA = +25°C
100
80
TA = +85°C
–10
TA = 0°C
60
–20
40
–30
TA = –40°C
–1.0
–0.5
0
0.5
1.0
1.5
VCM (V)
Figure 8. Input Offset Voltage (VOS) Distribution
Figure 11. Input Bias Current (IB) vs. VCM for Various Temperatures
25
10k
ADA4096-2
VSY = ±1.5V
TA = 25°C
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
20
15
10
5
0
0.5
1.0
1.5
2.0
2.5
100
SOURCING
TCVOS (µV/°C)
SINKING
10
1
0.001
09241-004
0
–2.5 –2.0 –1.5 –1.0 –0.5
1k
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 9. Offset Voltage Drift (TCVOS) Distribution
09241-006
ADA4096-2
VSY = ±1.5V
TA = –40°C TO +125°C
Figure 12. Output Voltage to Supply Rail vs. Load Current
800
200
140
ADA4096-2
VSY = ±1.5V
TA = 25°C
120
600
100
400
150
80
GAIN (dB)
0
–200
100
60
50
40
GAIN
20
0
0
PHASE (Degrees)
PHASE
200
VOS (µV)
09241-005
VOS (µV)
–40
–1.5
09241-003
200
MORE
175
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–200
0
–175
20
NUMBER OF AMPLIFIERS
TA = +125°C
0
IB (nA)
NUMBER OF AMPLIFIERS
160
–400
–20
–800
–1.5 –1.3 –1.0 –0.8 –0.5 –0.3
0
0.3
0.5
0.8
1.0
1.3
–50
–40
–60
100
1.5
VCM (V)
1k
10k
100k
1M
–100
10M
FREQUENCY (Hz)
Figure 10. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM)
Rev. F | Page 9 of 24
Figure 13. Open-Loop Gain and Phase vs. Frequency
09241-007
VSY = ±1.5V
10 CHANNELS
09241-210
–600
ADA4096-2/ADA4096-4
Data Sheet
50
120
ADA4096-2
VSY = ±1.5V
TA = 25°C
G = +100
40
ADA4096-2
VSY = ±1.5V
TA = 25°C
100
G = +10
80
20
PSRR+
10
PSRR (dB)
CLOSED-LOOP GAIN (dB)
30
G = +1
0
–10
–20
60
PSRR–
40
20
–30
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–20
10
09241-008
–50
10
100
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 14. Closed-Loop Gain vs. Frequency
Figure 16. PSRR vs. Frequency
10k
1k
1k
09241-052
–40
2.0
ADA4096-2
VSY = ±1.5V
TA = 25°C
ADA4096-2
VSY = ±1.5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
1.5
1.0
0.5
VOUT (V)
G = +100
10
G = +10
0
–0.5
1
–1.0
G = +1
0.1
0.01
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
Figure 15. Output Impedance (ZOUT) vs. Frequency
–2.0
0
20
40
60
80
100
TIME (µs)
Figure 17. Large Signal Transient Response
Rev. F | Page 10 of 24
120
09241-010
–1.5
09241-009
ZOUT (Ω)
100
Data Sheet
ADA4096-2/ADA4096-4
0.08
0.2
ADA4096-2
VSY = ±1.5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
–0.2
0
–0.02
–0.6
–0.8
–0.04
–1.0
–0.06
–1.2
–0.08
–1.4
–0.10
0
5
10
15
20
25
30
TIME (µs)
Figure 18. Small Signal Transient Response
ADA4096-2
VSY = ±1.5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
1.2
1.0
0.8
0.6
0.4
0
20
40
60
80
TIME (µs)
100
09241-055
0.2
0
0
20
40
60
80
TIME (µs)
Figure 20. Negative Overload Recovery
1.6
1.4
–1.6
Figure 19. Positive Overload Recovery
Rev. F | Page 11 of 24
100
09241-056
VOUT (V)
–0.4
09241-011
VOUT (V)
0.02
VOUT (V)
ADA4096-2
VSY = ±1.5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
0
ADA4096-2/ADA4096-4
Data Sheet
±5 V CHARACTERISTICS
250
30
ADA4096-2
VSY = ±5V
TA = 25°C
20
ADA4096-2
VSY = ±5V
10
TA = +125°C
0
150
IB (nA)
NUMBER OF AMPLIFIERS
200
TA = +85°C
–10
100
–20
TA = +25°C
–30
50
TA = 0°C
–40
–3
–2
–1
0
1
2
3
4
Figure 24. Input Bias Current (IB) vs. VCM for Various Temperatures
10k
40
ADA4096-2
VSY = ±5V
TA = 25°C
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
30
25
20
15
10
5
0
0.5
1.0
1.5
2.5
2.0
100
SOURCING
TCVOS (µV/°C)
SINKING
10
1
0.001
09241-016
0
–2.5 –2.0 –1.5 –1.0 –0.5
1k
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 22. Offset Voltage Drift (TCVOS) Distribution
Figure 25. Output Voltage to Supply Rail vs. Load Current
800
200
140
VSY = ±5V
10 CHANNELS
600
09241-023
ADA4096-2
VSY = ±5V
35 T = –40°C TO +125°C
A
ADA4096-2
VSY = ±5V
TA = 25°C
120
100
400
150
80
GAIN (dB)
0
–200
100
60
50
40
GAIN
20
0
0
PHASE (Degrees)
PHASE
200
VOS (µV)
5
VCM (V)
Figure 21. Input Offset Voltage (VOS) Distribution
NUMBER OF AMPLIFIERS
–4
09241-050
–50
–5
09241-015
200
VOS (µV)
MORE
175
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–200
–175
TA = –40°C
0
–400
–20
–4
–3
–2
–1
0
1
2
3
4
5
–50
–40
–60
100
VCM (V)
1k
10k
100k
1M
–100
10M
FREQUENCY (Hz)
Figure 23. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM)
Rev. F | Page 12 of 24
Figure 26. Open-Loop Gain and Phase vs. Frequency.
09241-020
–800
–5
09241-223
–600
Data Sheet
ADA4096-2/ADA4096-4
50
140
ADA4096-2
VSY = ±5V
TA = 25°C
G = +100
40
ADA4096-2
VSY = ±5V
TA = 25°C
120
100
G = +10
20
10
PSRR (dB)
CLOSED-LOOP GAIN (dB)
30
G = +1
0
–10
80
PSRR+
60
PSRR–
40
–20
20
–30
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–20
10
09241-024
–50
10
100
100k
1M
10M
Figure 29. PSRR vs. Frequency
6
10k
ADA4096-2
VSY = ±5V
TA = 25°C
ADA4096-2
VSY = ±5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
4
2
100
VOUT (V)
G = +100
10
0
G = +10
–2
1
G = +1
0.01
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
Figure 28. Output Impedance (ZOUT) vs. Frequency.
–6
0
50
100
150
200
250
300
350
TIME (µs)
Figure 30. Large Signal Transient Response
Rev. F | Page 13 of 24
400
09241-017
–4
0.1
09241-021
ZOUT (Ω)
10k
FREQUENCY (Hz)
Figure 27. Closed-Loop Gain vs. Frequency
1k
1k
09241-053
0
–40
ADA4096-2/ADA4096-4
Data Sheet
0.08
1
ADA4096-2
VSY = ±5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
0
–1
VOUT (V)
0.02
VOUT (V)
ADA4096-2
VSY = ±5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
0
–0.02
–2
–3
–0.04
–0.06
–4
0
5
10
15
20
25
30
TIME (µs)
Figure 31. Small Signal Transient Response
ADA4096-2
VSY = ±5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
3
2
1
0
20
40
60
80
TIME (µs)
100
09241-057
VOUT (V)
4
0
0
20
40
60
80
TIME (µs)
Figure 33. Negative Overload Recovery
6
5
–5
Figure 32. Positive Overload Recovery
Rev. F | Page 14 of 24
100
09241-058
–0.10
09241-018
–0.08
Data Sheet
ADA4096-2/ADA4096-4
±15 V CHARACTERISTICS
250
40
ADA4096-2
VSY = ±15V
TA = 25°C
ADA4096-2
30 VSY = ±15V
20
TA = +125°C
10
150
TA = +85°C
0
IB (nA)
–10
100
–20
TA = +25°C
TA = 0°C
–30
50
–40
–5
0
5
10
09241-051
–10
15
VCM (V)
Figure 37. Input Bias Current (IB) vs. VCM for Various Temperatures
Figure 34. Input Offset Voltage (VOS) Distribution
10k
35
ADA4096-2
VSY = ±15V
TA = 25°C
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
ADA4096-2
VSY = ±15V
30 TA = –40°C TO +125°C
NUMBER OF AMPLIFIERS
TA = –40°C
–60
–15
09241-027
200
VOS (µV)
MORE
175
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–200
–175
–50
0
25
20
15
10
5
0
0.5
1.0
2.0
1.5
2.5
100
SOURCING
TCVOS (µV/°C)
SINKING
10
1
0.001
09241-028
0
–2.5 –2.0 –1.5 –1.0 –0.5
1k
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 35. Offset Voltage Drift (TCVOS) Distribution
Figure 38. Output Voltage to Supply Rail vs. Load Current
800
200
140
VSY = ±15V
10 CHANNELS
600
09241-034
NUMBER OF AMPLIFIERS
200
ADA4096-2
VSY = ±15V
TA = 25°C
120
100
150
80
GAIN (dB)
VOS (µV)
200
0
–200
PHASE
100
60
50
40
GAIN
20
0
0
PHASE (Degrees)
400
–400
–20
–12
–9
–6
–3
0
3
6
9
12
15
–50
–40
–60
100
VCM (V)
1k
10k
100k
1M
–100
10M
FREQUENCY (Hz)
Figure 36. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM)
Rev. F | Page 15 of 24
Figure 39. Open-Loop Gain and Phase vs. Frequency
09241-030
–800
–15
09241-236
–600
ADA4096-2/ADA4096-4
Data Sheet
50
120
ADA4096-2
VSY = ±15V
TA = 25°C
G = +100
ADA4096-2
VSY = ±15V
TA = 25°C
100
30
80
G = +10
PSRR+
20
PSRR (dB)
10
G = +1
0
60
PSRR–
40
–10
20
–20
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–20
10
09241-036
–40
10
100
10M
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
10
5
VOUT (V)
G = +100
G = +10
0
–5
G = +1
–10
0.1
0.01
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
10M
09241-035
ZOUT (Ω)
1M
15
ADA4096-2
VSY = ±15V
TA = 25°C
100
1
100k
Figure 42. PSRR vs. Frequency
10k
10
10k
FREQUENCY (Hz)
Figure 40. Closed-Loop Gain vs. Frequency
1k
1k
09241-054
0
–30
Figure 41. Output Impedance (ZOUT) vs. Frequency
–15
0
50
100
150
200
250
300
350
TIME (µs)
Figure 43. Large Signal Transient Response
Rev. F | Page 16 of 24
400
09241-031
CLOSED-LOOP GAIN (dB)
40
Data Sheet
ADA4096-2/ADA4096-4
0.08
0
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
ADA4096-2
VSY = ±15V
TA = 25°C
RF = 10kΩ
RS = 100Ω
–2
–4
0.02
VOUT (V)
VOUT (V)
–6
0
–0.02
–8
–10
–0.04
–12
–0.06
0
5
10
15
20
25
30
TIME (µs)
09241-032
–0.10
Figure 44. Small Signal Transient Response
ADA4096-2
VSY = ±15V
TA = 25°C
RF = 10kΩ
RS = 100Ω
12
8
6
4
2
0
20
40
60
80
TIME (µs)
100
09241-059
VOUT (V)
10
0
0
20
40
60
80
TIME (µs)
Figure 46. Negative Overload Recovery
16
14
–16
Figure 45. Positive Overload Recovery
Rev. F | Page 17 of 24
100
09241-060
–14
–0.08
ADA4096-2/ADA4096-4
Data Sheet
COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS
70
0.4
SUPPLY CURRENT PER AMPLIFIER (µA)
ADA4096-2
VSY = ±15V
TA = 25°C
0.3
NOISE (µV)
0.2
0.1
0
–0.1
–0.2
–0.4
–10
–8
–6
–4
–2
0
2
4
6
8
10
TIME (s)
30
20
10
4
8
12
16
20
24
28
32
36
SUPPLY VOLTAGE (V)
Figure 50. Supply Current per Amplifier vs. Supply Voltage
–80
100
ADA4096-2
VSY = ±15V
TA = 25°C
ADA4096-2
VSY = ±15V
TA = 25°C
–100
en (nV/ Hz)
CHANNEL SEPARATION (dB)
40
0
Figure 47. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth
–90
50
0
09241-039
–0.3
ADA4096-2
TA = 25°C
RL = ∞
60
09241-043
0.5
–110
10kΩ
–120
1kΩ
2kΩ
–130
100
1k
10k
50k
FREQUENCY (Hz)
10
0.1
09241-040
–140
20
10
100
1k
FREQUENCY (Hz)
Figure 48. Channel Separation vs. Frequency
Figure 51. Voltage Noise Density (eN) vs. Frequency
50
120
ADA4096-2
TA = 25°C
110
40
100
90
OVERSHOOT (%)
VSY = ±15V
80
VSY = ±1.5V
70
VSY = ±5V
60
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 2kΩ
G = +1
VIN = 100mV p-p
30
20
OS–
50
10
40
20
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
Figure 49. CMRR vs. Frequency
0
0.01
0.1
CLOAD (nF)
Figure 52. Overshoot vs. Load Capacitance (CLOAD)
Rev. F | Page 18 of 24
1
09241-100
OS+
30
09241-041
CMRR (dB)
1
09241-044
VIN =
10V p-p
ADA4096-2/ADA4096-4
THEORY OF OPERATION
INPUT STAGE
VCC
R2
I1
R7
R5
I3
D6
Q5
D3
Q3
Q6
D10
Q11
D9
C2
Q4
Q18
OUT
Q13
D4
Q20
Q12
Q7
Q8
C1
Q9
Q14
Q10
D8
Q17
×1
+IN
OVP
–IN
OVP
Q1
Q19
Q2
R6
D2
I2
Q15
R4
R3
D7
Q16
D11
D1
VEE
09241-045
R1
Figure 53. Simplified Schematic, ADA4096-2
Figure 53 shows a simplified schematic of the ADA4096-2. The
input stage comprises two differential pairs (Q1 to Q4 and Q5
to Q8) operating in parallel. When the input common-mode
voltage approaches VCC − 1.5 V, Q1 to Q4 shut down as I1
reaches its minimum voltage compliance. Conversely, when the
input common-mode voltage approaches VEE + 1.5 V, Q5 to Q8
shut down as I2 reaches its minimum voltage compliance. This
topology allows for maximum input dynamic range because the
amplifier can function with its inputs at 200 mV outside the rail
(at room temperature).
Although phase inversion persists for only as long as the inputs
are saturated, it can be detrimental to applications where the
amplifier is part of a closed-loop system. The ADA409x family
is free from phase inversion over the entire common-mode
voltage range, as well as the overvoltage protected range that is
stated in the Absolute Maximum Ratings section, Table 5.
Figure 54 shows the ADA4096-2 in a unity-gain configuration
with the input signal at ±40 V and the amplifier supplies at
±10 V.
As with any rail-to-rail input amplifier, VOS mismatch between
the two input pairs determines the CMRR of the amplifier. If
the input common-mode voltage range is kept within 1.5 V of
each rail, transitions between the input pairs are avoided, thus
improving the CMRR by approximately 10 dB (see Table 3 and
Table 4).
T
1
Some single-supply amplifiers exhibit phase inversion when
the input signal extends beyond the common-mode voltage
range of the amplifier. When the input devices become
saturated, the inverting and noninverting inputs exchange
functions, causing the output to move in the opposing
direction.
CH1 10.0V
CH2 10.0V
M2.00ms
T 34.20%
A CH1
Figure 54. No Phase Reversal
Rev. F | Page 19 of 24
–3.6V
09241-046
PHASE INVERSION
ADA4096-2/ADA4096-4
Data Sheet
INPUT OVERVOLTAGE PROTECTION
The ADA409x family inputs are protected from input voltage
excursions up to 32 V outside each rail. This feature is of
particular importance in applications with power supply
sequencing issues that could cause the signal source to be active
before the power supplies.
4
3
2
1
0
COMPARATOR OPERATION
Although op amps are quite different from comparators,
occasionally an unused section of a dual or a quad op amp may
be pressed into service as a comparator; however, this is not
recommended for any rail-to-rail output op amps. For rail-torail output op amps, the output stage is generally a ratioed
current mirror with bipolar or metal-oxide semiconductor
field-effect (MOSFET) transistors. With the device operating in
open loop, the second stage increases the current drive to the
ratioed mirror to close the loop, but it cannot, which results in
an increase in supply current. With the op amp configured as a
comparator, the supply current can be significantly higher (see
Figure 56).
–1
500
–4
–5
LOW RDSON SERIES FET
5kΩ SERIES RESISTOR
–6
–7
–48 –40 –32 –24 –16 –8
0
8
16
24
32
VIN (V)
40
48
Figure 55. Input Current Limiting Capability
Figure 55 was generated with the ADA4096-2 in a buffer
configuration with the supplies connected to GND (or ±15 V)
and the positive input swept until it exceeds the supplies by
32 V. In general, input current is limited to 1 mA during
positive overvoltage conditions and 200 μA during negative
undervoltage conditions. For example, at an overvoltage of 20 V,
the ADA4096-2 input current is limited to 1 mA, providing a
current-limit equivalent to a series 20 kΩ resistor. Figure 55 also
shows that the current limiting circuitry is active whether the
amplifier is powered or not.
Rev. F | Page 20 of 24
400
VOUT = HIGH
300
VOUT = LOW
200
100
BUFFER
0
0
4
8
12
16
20
24
28
SUPPLY VOLTAGE (V)
Figure 56. Comparator Supply Current
32
36
09241-048
–3
SUPPLY CURRENT PER AMPLIFIER (µA)
–2
09241-047
INPUT BIAS CURRENT (mA)
5
VCC = +15V
6
VEE = 0V
7
VEE = –15V
Figure 55 shows the input current limiting capability of the
ADA4096-2 (green curves) compared to using a 5 kΩ series
resistor (red curves).
Note that Figure 55 represents input protection under abnormal
conditions only. The correct amplifier operation input voltage
range (IVR) is specified in Table 2 to Table 4.
Data Sheet
ADA4096-2/ADA4096-4
OUTLINE DIMENSIONS
3.20
3.00
2.80
8
3.20
3.00
2.80
1
5.15
4.90
4.65
5
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.40
0.25
0.80
0.55
0.40
0.23
0.09
6°
0°
10-07-2009-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 57. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
1.70
1.60
1.50
2.10
2.00 SQ
1.90
0.50 BSC
8
5
1.10
1.00
0.90
EXPOSED
PAD
0.425
0.350
0.275
1
4
TOP VIEW
0.60
0.55
0.50
SEATING
PLANE
BOTTOM VIEW
0.05 MAX
0.02 NOM
0.30
0.25
0.20
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 REF
Figure 58. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
2 mm × 2 mm Body, Ultra Thin, Dual Lead
(CP-8-10)
Dimensions shown in millimeters
Rev. F | Page 21 of 24
PIN 1
INDICATOR
(R 0.15)
01-14-2013-C
PIN 1 INDEX
AREA
0.15 REF
ADA4096-2/ADA4096-4
Data Sheet
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
0.65 BSC
1.20
MAX
0.15
0.05
COPLANARITY
0.10
0.30
0.19
0.20
0.09
0.75
0.60
0.45
8°
0°
SEATING
PLANE
061908-A
1.05
1.00
0.80
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 59. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
0.30
0.25
0.20
0.50
BSC
13
PIN 1
INDICATOR
16
1
12
EXPOSED
PAD
1.65
1.50 SQ
1.45
9
TOP VIEW
0.80
0.75
0.70
SEATING
PLANE
0.50
0.40
0.30
4
8
5
0.20 MIN
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.
Figure 60. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-27)
Dimensions shown in millimeters
Rev. F | Page 22 of 24
01-26-2012-A
PIN 1
INDICATOR
3.10
3.00 SQ
2.90
Data Sheet
ADA4096-2/ADA4096-4
ORDERING GUIDE
Model1, 2
ADA4096-2ARMZ
ADA4096-2ARMZ-R7
ADA4096-2ARMZ-RL
ADA4096-2ACPZ-R7
ADA4096-2ACPZ-RL
ADA4096-2WARMZ-R7
ADA4096-2WARMZ-RL
ADA4096-4ARUZ
ADA4096-4ARUZ-R7
ADA4096-4ARUZ-RL
ADA4096-4ACPZ-R7
ADA4096-4ACPZ-RL
1
2
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
Package Option
RM-8
RM-8
RM-8
CP-8-10
CP-8-10
RM-8
RM-8
RU-14
RU-14
RU-14
CP-16-27
CP-16-27
Branding
A2T
A2T
A2T
A4
A4
A2T
A2T
A30
A30
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
Rev. F | Page 23 of 24
ADA4096-2/ADA4096-4
Data Sheet
NOTES
©2011–2014 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09241-0-12/14(F)
Rev. F | Page 24 of 24
Similar pages