CLARE CPC5601D Auxiliary programmable driver ic Datasheet

CPC5601 LITELINK™ Family
Auxiliary Programmable Driver IC
Features
•
•
•
•
Description
Meets PC Card (PCMCIA) height requirements
Zero standby current
PCB real estate and cost savings
Can be used with LITELINK II and LITELINK III parts
Compliance
The supplied application circuits comply with the
requirements of TIA/EIA/IS-968 (FCC part 68),
UL1950, UL60950, EN60950, IEC60950, EN55022B,
CISPR22B, EN55024, and TBR-21.
Description
CPC5601D
16-pin SOIC, .300 inch wide package
Figure 1. CPC5601 Block Diagram
RING
16
1
15
GND
INPUT
NC
2
14
3
13
12
11
10
9
8
6
Shift
Register
Drivers
7
DS-CPC5601-R3.0
The CPC5601 uses opto-electronics to maintain the
isolation barrier required in the data access arrangement for connection of host devices to the public
switched telephone network (PSTN).
The one-bit serial input of the CPC5601 recovers
clocking information from the input signal to set bits in
the shift register. The shift register outputs connect to
open-drain FET latches that are used to switch in different external components to set V/I slope, DC termination current limit, gain, and AC termination value in
LITELINK DAA implementations.The CPC5601 does
not need a clock signal for shift register operation, but
relies on internal timing instead.
Ordering Information
Part Number
The CPC5601 is a serially-programmed driver IC for
use with Clare, Inc. LITELINK Silicon Data Access
Arrangement (DAA) ICs. The CPC5601 allows hostequipment control of DAA characteristics for worldwide DAA implementations, avoiding multiple implementations with discrete component changes or “stuff”
options. The small, low-profile package makes the
CPC5601 ideal for 56K PC Card (PCMCIA) modems,
PC motherboards, and soft-modems.
LED-
LED+
The CPC5601 also includes an opto-coupler for ring
detection applications where the AC coupled ring
detector of the LITELINK DAA is not used.
VDDLINE
B1
B2
B3
B4
B5
B6
-BR
www.clare.com
1
CPC5601
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. 1 Absolute Minimum and Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. 2 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. 3 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. 4 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. 5 Mechanical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
3
3
4
4
5
2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. 1 Application Circuit Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 2 AC Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 3 LITELINK III Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 4 Current Limiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 5 Figure 4 Part List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. 6 Figure 5 Part List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. 7 Operational Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2. 8 Output Current Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. 1 Latch Circuit Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. 2 Programming Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. 3 Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
13
4 Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 LITELINK Design Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5. 1 Clare Design Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5. 2 Third Party Design Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
www.clare.com
R3.0
CPC5601
1. Specifications
1.1 Absolute Minimum and Maximum Ratings
Parameter
Isolation Voltage
Operating temperature
Minimum
Maximum
Unit
Conditions
1500
-
VRMS
From pins 1, 2, and 3 to
pins 7 through 16
0
+85
°C
Storage temperature
-40
+125
°C
Soldering temperature
-
+220
°C
Absolute maximum ratings are stress ratings. Stresses in excess of these ratings
can cause permanent damage to the
device. Functional operation of the device
at these or any other conditions beyond
those indicated in the operational sections
of this data sheet is not implied. Exposure
of the device to the absolute maximum ratings for an extended period may degrade
the device and affect its reliability.
1.2 Electrical Characteristics
Parameter
Minimum
Typical
Maximum
Unit
Input high threshold current
-
1
5
mA
Input low threshold current
0.10
0.20
-
mA
Input voltage drop
0.9
1.2
1.4
V
-
-
10
mA
Conditions
Data Input
IF = 5 mA
b1 Through b5 Output Driver
Output Current
Output Breakdown Voltage
-
-
6
V
On Resistance
-
10
11
Ω
-
-
120
mA
Supply voltage >= 2.8 V
b6 Output Driver
Output Current
Output Breakdown Voltage
-
-
6
V
On Resistance
-
0.5
1.4
Ω
Supply voltage >= 2.8 V
6
20
100
mA
IC = 2 mA, VCE = 0.5 V
0.9
1.2
1.4
V
IF = 5 mA
20
50
-
V
IC = 10 mA
Dark Current
-
50
500
nA
IF = 0 mA
Saturation Voltage
-
0.3
0.5
V
IC = 2 mA, IF = 16 mA
33
400
-
%
IF = 6 mA, VCE = 0.5 V
Ring Detect Input
Input Control Current
Input Voltage drop
Ring Detect Output
Blocking Voltage
Current transfer ratio
Power Requirements
Supply Voltage
2.5
3.5
5.5
V
Total supply current (input current low)
-
0.01
1
µA
Total supply current (input current high)
-
10
20
µA
Specifications subject to change without notice. All performance characteristics based on the use of Clare, Inc. application circuits. Functional operation
of the device at conditions beyond those specified here is not implied. Specification conditions: VDD = 5V, temperature = 25 °C, unless otherwise indicated.
R3.0
www.clare.com
3
CPC5601
1.3 Timing Characteristics
Parameter
Minimum
Typical
Maximum
Unit
Conditions
Setup time
50
-
-
µS
logic low before positive timing transition on input (pin 3)
Data hold time
60
-
-
µS
hold time after internal 140 µS
clock period
Data latch time
-
-
140
µS
from positive transition on input
Input hold time for output on
200
-
-
µS
Input hold time for output off
-
-
50
µS
1.4 Pinout
Pin
Name
Figure 2. CPC5601 Pinout
Function
1
16
15
14
1
RING
Opto-isolated ring output
2
2
GND
Analog host system ground
3
3
INPUT
Serial data input used to program outputs b1
through b6.
4
NC
No connection
6
11
5
NC
No connection
7
10
6
NC
No connection
8
9
7
BR-
Phone line side common
8
B6
Output b6
9
B5
Output b5
10 B4
Output b4
11 B3
Output b3
12 B2
Output b2
13 B1
Output b1
14 VDDLINE
Telephone line side voltage source
15 LED+
Ring LED anode
16 LED-
Ring LED cathode
4
13
12
www.clare.com
R3.0
CPC5601
1.5 Mechanical Specifications
Figure 3. CPC5601 Mechanical Specifications
16-pin SOIC
1.981 ±.025
(.078 ±.001)
2.108 max
(.083)
.635 x 45°
(.025 x 45°)
1.106 typ.
(.040)
.254 ±.0127
(.010 ±.0005)
10.160 ±.051
(.400 ±.002)
1.270 typ.
(.050)
7.493 ±.127
(.295 ±.005)
10.363 ±.127
(.408 ±.005)
.483 ±.102
(.019 ±.009)
.406 typ.
(.016)
3.81 ±.381
(.150 ±.150)
8.890 typ.
(.350)
Printed Circuit Board Pattern
(top view)
1.270
(.050)
9.278 ±.051
(.383 ±.002)
1.193
(.047)
.787
(.031)
R3.0
Dimensions:
mm
(inches)
www.clare.com
5
CPC5601
2. Application
In the application circuits shown below, the CPC5601
is used to switch AC termination and gain. Loop-current limit switching is optional.
Figure 4. CPC5601 Application Circuit Using the LITELINK II and the Optical Snoop Circuit
II
501K
C3 0.1
REFM
R77 499K 1%
0.015
301
¹This design was tested and found to comply with FCC part 68 with this part.
Other compliance requirements may require a different part.
²Higher noise power supplies may require substitution of a 220 µH inductor,
Toko 380HB-2215 or similar. See the power quality section of Clare application note AN-146, Guidelines for Effective LITELINK Designs for more informa-
6
tion. Both application circuits use the same components for setting AC
termination and the telephone line current limit.
3
Addition of this capacitor improves trans-hybrid loss.
www.clare.com
R3.0
CPC5601
Figure 5. CPC5601 Application Circuit Using the LITELINK III and the LITELINK Snoop Circuit
3.3 or 5 V
R23²
10
C1
1
FB1
600 Ω
200 mA
C16
10
C9
0.1
A
U1
LITELINK III
A
1
R1 (RTX) 80.6K 1%
2
C13 0.1
3
TX-
C2 0.1
TX+
4
5
6
MODE
7
OH
8
RING
9
VDD
REFL
TXSM
TXF
TX-
ZTX
TX+
ZNT
TX
TXSL
MODE
BR-
GND
NTS
OH
GAT
RING
NTF
10 CID
C14 0.1 11
RX-
CID
RXRX+
C4 0.1
DCS1
DCS2
12 RX+
13 SNP+
ZDC
14 SNP15 RXF
RPB
BRRXS
16 RX
VDDL
32
31
C15
0.01
500V
30
29
28
R22 (RDCS1A)
6.8 M 1%
R21 (RDCS1B)
6.2 M 1%
R14
(RGAT)
47
26
R10 499K 1%
25
BR-
Q1
CPC5602C
R13
(RNTS)
501K
1%
R75 (RNTX)
261K 1%
27
24
C12 (CDCS)
0.027
C21 (CGAT) 100 pF
23
R12 (RNTF) 499K 1%
22
R15 (RDCS2)
1.69M 1%
21
20
R16 (RZDC) 8.2 1%
19
R78 (RHNTF)
200K 1%
18
BR-
R20
(RVDDL)
2
BR-
+ DB1
NOTE: Unless otherwise
noted, all resistors are in
Ohms, 5%. All capacitors
are in microFarads.
17
R2
(RRXF)
130K
1%
A
C10
0.01
500V
BRR5 (RTXF)
60.4K
1%
TIP
R8 (RHTX)
221K 1%
R4
(RPB)
68.1
1%
BR-
SP1¹
-
C18
15 pF³
1
BR2
RING
C7
(CSNP-)
220pF
2000V
R6 (RSNP-2)
1.8M 1/10W 1%
R44 (RSNP-1)
1.8M 1/10W 1%
R7 (RSNP+2)
C8
(CSNP+) 1.8M 1/10W 1%
220pF
2000V
R45 (RSNP+1)
1.8M 1/10W 1%
R3
(RSNPD)
1.5M
1%
U4
CPC5601
1
RING
LED-
2
GND
R65 3
PROG
470 4
NC
5
NC
6
NC
7
BR8
B6
A
PROG
-BR
LED+
VDDLINE
B1
B2
B3
B4
B5
R76
100K
5%
16
15
14
13
12
C34
2.2 µF
R67 301 1%
R66 4.99K 1%
C31
0.68 µF
11
10
9
R71
165
1%
R72
59
1%
C33
0.024 µF
R75
200K
1%
-BR
R73
R18
(RZTX)
10K
1%
-BR
¹This design was tested and found to comply with FCC part 68 with this part.
Other compliance requirements may require a different part.
²Higher noise power supplies may require substitution of a 220 µH inductor,
Toko 380HB-2215 or similar. See the power quality section of Clare application note AN-146, Guidelines for Effective LITELINK Designs for more information. Both application circuits use the same components for setting AC
termination and the telephone line current limit.
R3.0
3Addition
www.clare.com
of this capacitor improves trans-hybrid loss.
7
CPC5601
2.1 Application Circuit Configurations
Figure 4 shows LITELINK II in circuit designed to use
the optical snoop circuit in the CPC5601 for ring
detection. Figure 5 shows LITELINK III in a circuit that
uses the LITELINK snoop circuit ring detection and
display feature (caller ID) signal processing. Note that
either generation of LITELINK can be used with either
signal monitoring scheme. Using the optical path on
the CPC5601 for ring detect precludes on-hook display feature signal processing.
2.2 AC Termination
2.2.1 LITELINK II
The networks connected to outputs b1, b2, b3 and b4
provide selectable telephone line AC termination
depending on which network is switched in place of
RZNT (see the appropriate LITELINK data sheet and
the application note Understanding LITELINK for more
information).
In North American applications, turn outputs b1 and
b2 on, and turn outputs b3 and b4 off to switch in the
required 600 Ω AC termination. For European applications, turn outputs b1 and b2 off, and outputs b3 and
b4 on to switch in the complex AC termination network.
2.2.2 LITELINK III
The networks connected to outputs b1 and b3 provide
selectable telephone line AC termination depending
on which network is switched in place of RZNT (see the
appropriate LITELINK data sheet and the application
note Understanding LITELINK for more information).
The resistor connected to output b2 provides the
required bias current for North American applications.
In North American applications, turn outputs b1 and
b2 on, and turn output b3 off to switch in the required
600 Ω AC termination. For European applications, turn
outputs b1 and b2 off, and output b3 on to switch in the
complex AC termination network.
2.3 LITELINK III Gain
Turning output 5 on adds attenuation to the receive
path, which is required for the complex termination.
Asserting the MODE pin on LITELINK III corrects for
the added attenuation.
2.4 Current Limiting
Clare recommends using the default value for RZDC
to set the loop-current limit to 133 mA. You can, if
required, adjust the current limit level by adding R73
and using output b6 to switch this value in parallel with
RZDC. See the appropriate LITELINK datasheet for
more information on setting loop-current limits.
2.5 Figure 4 Part List
Qty.
Reference
Value
Suppliers
1
U1
CPC561x LITELINK II
1
U4
CPC5601 Auxiliary Programmable Driver
1
Q1
CPC5602C N-Channel Depletion-Mode FET
1
Q2
MMBT4126 PNP bipolar transistor
Fairchild
1
DB1
S1ZB60 or DB104 Bridge Rectifier
Sindengen Co., Diodes, Inc.
1
D1
1N914
2
Z1, Z2
10V Zener Diode
1
SP1
P3100SB Sidactor
Teccor, TI, ST Microelectronics
1
FB1
600 Ω, 200 mA ferrite bead
Murata BLM11A601S or similar
8
www.clare.com
Clare, Inc.
R3.0
CPC5601
Qty.
Reference
Value
1
C1
1 µF, 16 V, ± 10%
6
C2, C3, C4, C9,
C13, C14
0.1 µF, 16 V, ± 10%
1
C10
0.01 µF, 500 V, ± 10%1
1
C12
0.027 µF, 16 V, ± 10%
1
C15
0.0022 µF, 500 V, ± 10%1
1
C16
10 µF, 16 V, ± 10%
1
C29
1.5 µF, 16 V, ± 10%
1
C30
0.47 µF, 300 V, ± 10%
1
C31
0.68 µF, 16 V, ± 10%
1
C32
0.47 µF, 16 V, ± 10%
1
C33
0.015 µF, 16 V, ± 10%
1
C34
2.2 µF, 16 V, ± 10%
1
R1
80.6 KΩ, 1/16W, ± 1%
1
R2
127 KΩ, 1/16W, ± 1%
Panasonic, AVX, Novacap, Murata, SMEC
1
R4
68.1 Ω, 1/16W, ± 1%
1
R5
42.2 KΩ, 1/16W, ± 1%
2
R8, R9
200 KΩ, 1/16W, ± 1%
1
R13
501 KΩ, 1/16W, ± 1%
1
R14
47 Ω, 1/16W, ± 1%
1
R15
1.69 MΩ, 1/16W, ± 1%
1
R20
2 Ω, 1/16W, ± 1%
1
R21
6.2 MΩ, 1/4W, ± 1%
1
R22
6.8 MΩ, 1/4W, ± 1%
1
R23
10 Ω, 1/16W, ± 5% or 220 µH inductor
1
R64
10 kΩ, 1/16W, ± 5%
1
R65
470 Ω, 1/16W, ± 5%
1
R66
150 Ω, 1/16W, ± 1%
1
R67
301 Ω, 1/16W, ± 1%
1
R68
82.5 Ω, 1/16W, ± 1%
1
R69
29.4 Ω, 1/16W, ± 1%
1
R70
8.2 kΩ, 1/4W, ± 5%
1
R71
165 Ω, 1/16W, ± 1%
1
R72
59 Ω, 1/16W, ± 1%
1
R73
optional, see text
1
R74
10 Ω, 1/16W, ± 1%
1
R75
402 kΩ, 1/16W, ± 1%
1
R76
100 kΩ, 1/16W, ± 5%
1
R77
499 kΩ, 1/16W, ± 1%
R3.0
Suppliers
Panasonic, Electro Films, FMI, Vishay, etc.
www.clare.com
9
CPC5601
2.6 Figure 5 Part List
Qty.
Reference
Value
Suppliers
1
U1
CPC562x LITELINK III
1
U4
CPC5601 Auxiliary Programmable Driver
1
Q1
CPC5602C N-Channel Depletion-Mode FET
1
DB1
S1ZB60 or DB104 Bridge Rectifier
Sindengen Co., Diodes, Inc.
1
SP1
P3100SB Sidactor
Teccor, TI, ST Microelectronics
1
FB1
600 Ω, 200 mA ferrite bead
Murata BLM11A601S or similar
1
C1
1 µF, 16 V, ± 10%
4
C2, C9, C13, C14 0.1 µF, 16 V, ± 10%
2
C7, C8
220 pF, 2 kV, ±5%1
2
C10, C15
0.01 µF, 500 V, ± 10%1
1
C12
0.027 µF, 16 V, ± 10%
1
C15
0.0022 µF, 500 V, ± 10%1
1
C16
10 µF, 16 V, ± 10%
1
C18
15 pF, 50 V, ± 10%
1
C21
100 pF, 50 V, ± 10%
1
C29
1.5 µF, 16 V, ± 10%
1
C30
0.47 µF, 300 V, ± 10%
1
C31
0.68 µF, 16 V, ± 10%
1
C32
0.47 µF, 16 V, ± 10%
1
C33
0.024 µF, 16 V, ± 10%
1
C34
2.2 µF, 16 V, ± 10%
10
Clare, Inc.
Panasonic, AVX, Novacap, Murata, SMEC
www.clare.com
R3.0
CPC5601
Qty.
Reference
Value
1
R1
80.6 KΩ, 1/16W, ± 1%
1
R2
130 KΩ, 1/16W, ± 1%
1
R3
1.5 MΩ, 1/16W, ± 1%
1
R4
68.1 Ω, 1/16W, ± 1%
1
R5
60.4 KΩ, 1/16W, ± 1%
4
R6, R7, R44, R45 1.8 MΩ, 1/10W, ± 1%
1
R8
221 KΩ, 1/16W, ± 1%
2
R10, R12
499 KΩ, 1/16W, ± 1%
1
R13
501 KΩ, 1/16W, ± 1%
1
R14
47 Ω, 1/16W, ± 1%
1
R15
1.69 MΩ, 1/16W, ± 1%
1
R16
8.2 Ω, 1/16W, ± 1%
1
R18
10 KΩ, 1/16W, ± 1%
1
R20
2 Ω, 1/16W, ± 1%
1
R21
6.2 MΩ, 1/4W, ± 1%
1
R22
6.8 MΩ, 1/4W, ± 1%
1
R23
10 Ω, 1/16W, ± 5% or 220 µH inductor
1
R64
10 kΩ, 1/16W, ± 5%
1
R65
470 Ω, 1/16W, ± 5%
1
R66
150 Ω, 1/16W, ± 1%
1
R67
301 Ω, 1/16W, ± 1%
1
R71
165 Ω, 1/16W, ± 1%
1
R72
59 Ω, 1/16W, ± 1%
1
R73
optional, see text
1
R75
402 kΩ, 1/16W, ± 1%
1
R76
100 kΩ, 1/16W, ± 5%
1
R77
499 kΩ, 1/16W, ± 1%
1
R78
200 kΩ, 1/16W, ± 1%
Panasonic, Electro Films, FMI, Vishay, etc.
2.7 Operational Sequence
In the application circuits above, the CPC5601 is powered from the telephone line only when the LITELINK
is off-hook. This requires that you set the telephone
line characteristics controlled by the CPC5601 under
host system control immediately after taking the DAA
off-hook or after pulse dialing is complete, using the
following sequence:
1. For incoming calls, validate a ring signal by having the host system poll or read the output of
RING (ring detect via snoop circuit on the
LITELINK) or RING (ring detect via opto-isolated
ring circuit in the CPC5601).
2. Assert OH to complete the connection.
3. Set the telephone line characteristics of the DAA
using the CPC5601 via the programming method
(see “Programming” on page 12).
R3.0
Suppliers
With this circuit, you must program the CPC5601 as
soon as possible after asserting off hook. Leaving the
CPC5601 unprogrammed leaves open the possibility
of LITELINK instability due to lack of AC termination.
2.8 Output Current Ratings
Output b6 is the only output that can be used for the
current limiting function of a DAA. The FET on output
b6 can sink up to 120 mA of current, while the other
outputs can sink up to 10 mA.
The other outputs can be used for any of the other
switchable functions on the telephone line side of a
DAA, as long as the current does not exceed the
10 mA limit.
www.clare.com
11
CPC5601
3. Programming
3.1 Latch Circuit Description
Data applied to the input pin is optically coupled to the
shift register through a pulse generator. Each low-tohigh transition in the pulse generator triggers a clock
pulse. Clock pulses are applied to the CLK input of six
rising-edge-triggered flip-flops. The non-inverted input
data is fed to the flip-flops at all times, but the flip-flops
are only clocked on receipt of a pulse from the pulse
generator. The flip-flops drive six FET switches.
3.2 Programming Protocol
Figure 6. Latch Circuit Timing to Turn an Output On
t0
INPUT (pin 3)
140µs
>=50µs (tsetup)
200µs
thold
Transition after setup time
initiates clock pulse
CLOCK
First flip-flop reads data
at the rising edge of the clock
B1 (pin 13)
B1 output FET off (drain open)
B1 output FET on (sinking current)
A setup pulse on the input of at least 50 µS starts the
bit programming sequence. The trailing edge of the
setup pulse starts a timer on the CPC5601 (t0). After
140 µS, the value of the input is latched into the shift
register.
To set an output, hold the input high for 200 µS from
the leading edge after the setup pulse. This turns on
the corresponding open-drain FET to sink current.
Figure 7. Latch Circuit Timing to Turn an Output Off
t0
>=50 s (tsetup)
50 s
140 s
150 s min
INPUT (pin 3)
Transition after setup time
initiates clock pulse
CLOCK
B1 (pin 13)
First flip-flop reads data
at the rising edge of the clock
B1 output FET on (sinking current)
To clear an output, hold the input high for 50 µS after
the setup pulse, then take the input low for at least 150
µS.
B1 output FET off (drain open)
Repeat the sequence of the setup pulse followed by
the appropriate input condition for each successive bit.
Bear the following in mind while programming the
CPC5601:
12
www.clare.com
R3.0
CPC5601
3.3.1 LITELINK III
• All bits must be set in each programming sequence,
even to change just one of the outputs.
• Data is placed in least-significant bit (output 1) first.
• After setting all the bits, take the input low. In the
absence of low-to-high transitions on the input, the
internal CPC5601 clock is held high, preventing any
output changes.
• The CPC5601 does not employ a shift register load
function. As new data is shifted into the flip-flops, the
outputs (starting with b1) change throughout the
data input sequence.
b1 (LSB)
b2
b3
b4
b5
b6 (MSB)
off
off
on
off
on
off
3.3.2 LITELINK II
b1 (LSB)
b2
b3
b4
b5
b6 (MSB)
off
off
on
on
on
off
1. Hold the input low for 50 µS.
2. Set the input high for 50 µS to trigger the timer.
3. Set the input low for 150 µS to set output b1 to
off.
4. Repeat the steps as shown in the programming
waveform below to program all six outputs to the
desired pattern.
3.3 Programming Example
This programming example sets the following
CPC5601 output state, suitable for a European DAA:
Figure 8. LITELINK III European Programming Sample Input Waveform
t0
timer
trigger
timer
trigger
setup
setup
setup
bit 1
set off
timer
trigger
bit 2
set off
bit 6
set off
bit 5
set on
bit 4
set off
bit 3
set on
setup
setup
setup
timer
trigger
timer
trigger
timer
trigger
50µS/div.
Figure 9. LITELINK II European Programming Sample Input Waveform
t0
timer
trigger
timer
trigger
setup
setup
setup
bit 1
set off
timer
trigger
bit 2
set off
bit 3
set on
setup
setup
setup
bit 4
set on
timer
trigger
timer
trigger
timer
trigger
bit 5
set on
bit 6
set off
50µS/div.
4. Regulatory Information
CPC5601 can be used to build products that comply
with the requirements of TIA/EIA/IS-968 (formerly
FCC part 68), FCC part 15B, TBR-21, EN60950,
UL1950, EN55022B, IEC950/IEC60950, CISPR22B,
EN55024, and many other standards. CPC5601 comR3.0
plies with the requirements of UL1577. CPC5601 provides supplementary isolation. Metallic surge
requirements are met through the inclusion of a Sidactor in the application circuit. Longitudinal surge protection is provided by CPC5601’s optical-across-the-
www.clare.com
13
barrier technology and the use of high-voltage components in the application circuit as needed.
The information provided in this document is intended
to inform the equipment designer but it is not sufficient
to assure proper system design or regulatory compliance. Since it is the equipment manufacturer's responsibility to have their equipment properly designed to
conform to all relevant regulations, designers using
CPC5601 are advised to carefully verify that their endproduct design complies with all applicable safety,
EMC, and other relevant standards and regulations.
Semiconductor components are not rated to withstand
electrical overstress or electro-static discharges resulting from inadequate protection measures at the board
or system level.
5. LITELINK Design Resources
5.1 Clare Design Resources
The Clare, Inc. web site has a wealth of information
useful for designing with LITELINK, including application notes and reference designs that already meet all
applicable regulatory requirements. LITELINK data
sheets also contains additional application and design
information. See the following links:
LITELINK datasheets and reference designs
Application note AN-107 LOCxx Series - Isolated Amplifier Design Principles
Application note AN-114 ITC117P
Application note AN-117 Customize Caller-ID Gain and
Ring Detect Voltage Threshold for CPC5610/11
Application note AN-149, Increased LITELINK II Transmit
Power
Application note AN-150, Ground-start Supervision Circuit Using IAA110
5.2 Third Party Design Resources
The following also contain information useful for
LITELINK designs. All of the books are available on
amazon.com.
Understanding Telephone Electronics, Stephen J. Bigelow, et. al., Butterworth-Heinenman; ISBN:
0750671750.
Newton’s Telecom Dictionary, Harry Newton, CMP
Books; ISBN: 1578200695.
Application note AN-140, Understanding LITELINK
Application note AN-141, Enhanced Pulse Dialing with
LITELINK
Application note AN-143, Loop Reversal Detection with
LITELINK
Application note AN-146, Guidelines for Effective
LITELINK Designs
Photodiode Amplifiers: Op Amp Solutions, Jerald
Graeme, McGraw-Hill Professional Publishing; ISBN:
007024247X
Teccor, Inc. Surge Protection Products
United States Code of Federal Regulations, CFR 47
Part 68.3.
Application note AN-147, Worldwide Application of
LITELINK
For additional information please visit www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Specifications: DS-CPC5601-R3.0
© Copyright 2002, Clare, Inc.
LITELINK™ is a trademark of Clare, Inc.
All rights reserved. Printed in USA.
6/5/2002
Similar pages