ATMEL ATTINY11 8-bit microcontroller with 1k byte flash Datasheet

Features
• Utilizes the AVR® RISC Architecture
• AVR – High-performance and Low-power RISC Architecture
•
•
•
•
•
•
•
– 90 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General-purpose Working Registers
– Up to 4 MIPS Throughput at 4 MHz
Nonvolatile Program Memory
– 2K Bytes of Flash Program Memory
– Endurance: 1,000 Write/Erase Cycles
– Programming Lock for Flash Program Data Security
Peripheral Features
– Interrupt and Wake-up on Low-level Input
– One 8-bit Timer/Counter with Separate Prescaler
– On-chip Analog Comparator
– Programmable Watchdog Timer with On-chip Oscillator
– Built-in High-current LED Driver with Programmable Modulation
Special Microcontroller Features
– Low-power Idle and Power-down Modes
– External and Internal Interrupt Sources
– Power-on Reset Circuit with Programmable Start-up Time
– Internal Calibrated RC Oscillator
Power Consumption at 1 MHz, 2V, 25°C
– Active: 3.0 mA
– Idle Mode: 1.2 mA
– Power-down Mode: <1 µA
I/O and Packages
– 11 Programmable I/O Lines, 8 Input Lines and a High-current LED Driver
– 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
Operating Voltages
– VCC: 1.8V - 5.5V for the ATtiny28V
– VCC: 2.7V - 5.5V for the ATtiny28L
Speed Grades
– 0 - 1.2 MHz for the ATtiny28V
– 0 - 4 MHz For the ATtiny28L
8-bit
Microcontroller
with 2K Bytes of
Flash
ATtiny28L
ATtiny28V
Summary
Pin Configurations
PA0
PA1
PA3
PA2 (IR)
PB7
PB6
GND
NC
VCC
PB5
PB4 (INT1)
PB3 (INT0)
PB2 (T0)
PB1 (AIN1)
32
31
30
29
28
27
26
25
28
27
26
25
24
23
22
21
20
19
18
17
16
15
PD3
PD4
NC
VCC
GND
NC
XTAL1
XTAL2
24
23
22
21
20
19
18
17
1
2
3
4
5
6
7
8
PB7
PB6
NC
GND
NC
NC
VCC
PB5
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PD5
PD6
PD7
(AIN0) PB0
(AIN1) PB1
(T0) PB2
(INT0) PB3
(INT1) PB4
RESET
PD0
PD1
PD2
PD3
PD4
VCC
GND
XTAL1
XTAL2
PD5
PD6
PD7
(AIN0) PB0
TQFP/QFN/MLF
PD2
PD1
PD0
RESET
PA0
PA1
PA3
PA2 (IR)
PDIP
Rev. 1062FS–AVR–07/06
Note: This is a summary document. A complete document
1
is available on our Web site at www.atmel.com.
Description
The ATtiny28 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny28 achieves
throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize
power consumption versus processing speed. The AVR core combines a rich instruction
set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be
accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than
conventional CISC microcontrollers.
Block Diagram
Figure 1. The ATtiny28 Block Diagram
VCC
XTAL1
XTAL2
8-BIT DATA BUS
INTERNAL
OSCILLATOR
OSCILLATOR
TIMING AND
CONTROL
INTERNAL
CALIBRATED
OSCILLATOR
GND
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
PROGRAM
FLASH
HARDWARE
STACK
MCU CONTROL
REGISTER
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
INSTRUCTION
DECODER
CONTROL
LINES
Z
RESET
TIMER/
COUNTER
INTERRUPT
UNIT
ALU
STATUS
REGISTER
HARDWARE
MODULATOR
ANALOG
COMPARATOR
+
-
PROGRAMMING
LOGIC
DATA REGISTER
PORTB
PORTB
DATA REGISTER
PORTD
PORTD
DATA DIR
REG. PORTD
DATA REGISTER PORTA CONTROL
PORTA
REGISTER
PORTA
The ATtiny28 provides the following features: 2K bytes of Flash, 11 general-purpose I/O
lines, 8 input lines, a high-current LED driver, 32 general-purpose working registers, an
8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with
internal oscillator and 2 software-selectable power-saving modes. The Idle Mode stops
the CPU while allowing the timer/counter and interrupt system to continue functioning.
The Power-down mode saves the register contents but freezes the oscillator, disabling
all other chip functions until the next interrupt or hardware reset. The wake-up or inter-
2
ATtiny28L/V
1062FS–AVR–07/06
ATtiny28L/V
rupt on low-level input feature enables the ATtiny28 to be highly responsive to external
events, still featuring the lowest power consumption while in the power-down modes.
The device is manufactured using Atmel’s high-density, nonvolatile memory technology.
By combining an enhanced RISC 8-bit CPU with Flash on a monolithic chip, the Atmel
ATtiny28 is a powerful microcontroller that provides a highly flexible and cost-effective
solution to many embedded control applications. The ATtiny28 AVR is supported with a
full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators and evaluation kits.
Pin Descriptions
VCC
Supply voltage pin.
GND
Ground pin.
Port A (PA3..PA0)
Port A is a 4-bit I/O port. PA2 is output-only and can be used as a high-current LED
driver. At VCC = 2.0V, the PA2 output buffer can sink 25 mA. PA3, PA1 and PA0 are
bi-directional I/O pins with internal pull-ups (selected for each bit). The port pins are tristated when a reset condition becomes active, even if the clock is not running.
Port B (PB7..PB0)
Port B is an 8-bit input port with internal pull-ups (selected for all Port B pins). Port B
pins that are externally pulled low will source current if the pull-ups are activated.
Port B also serves the functions of various special features of the ATtiny28 as listed on
page 27. If any of the special features are enabled, the pull-up(s) on the corresponding
pin(s) is automatically disabled. The port pins are tri-stated when a reset condition
becomes active, even if the clock is not running.
Port D (PD7..PD0)
Port D is an 8-bit I/O port. Port pins can provide internal pull-up resistors (selected for
each bit). The port pins are tri-stated when a reset condition becomes active, even if the
clock is not running.
XTAL1
Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
RESET
Reset input. An external reset is generated by a low level on the RESET pin. Reset
pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter
pulses are not guaranteed to generate a reset.
3
1062FS–AVR–07/06
Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
$3F
SREG
I
T
H
S
V
N
Z
C
page 6
$3E
Reserved
...
Reserved
Notes:
4
$20
Reserved
$1F
Reserved
$1E
Reserved
$1D
Reserved
$1C
Reserved
$1B
PORTA
-
-
-
-
PORTA3
PORTA2
PORTA1
PORTA0
page 32
$1A
PACR
-
-
-
-
DDA3
PA2HC
DDA1
DDA0
page 32
$19
PINA
-
-
-
-
PINA3
-
PINA1
PINA0
page 32
$18
Reserved
$17
Reserved
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
page 32
page 33
$16
PINB
$15
Reserved
$14
Reserved
$13
Reserved
$12
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
$11
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
page 33
$10
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
page 33
$0F
Reserved
$0E
Reserved
$0D
Reserved
$0C
Reserved
$0B
Reserved
$0A
Reserved
$09
Reserved
$08
ACSR
ACD
-
ACO
ACI
ACIE
-
ACIS1
ACIS0
page 44
$07
MCUCS
PLUPB
-
SE
SM
WDRF
-
EXTRF
PORF
page 19
$06
ICR
INT1
INT0
LLIE
TOIE0
ISC11
ISC10
ISC01
ISC00
page 22
$05
IFR
INTF1
INTF0
-
TOV0
-
-
-
-
page 23
$04
TCCR0
FOV0
-
-
OOM01
OOM00
CS02
CS01
CS00
$03
TCNT0
$02
MODCR
ONTIM4
ONTIM3
ONTIM2
ONTIM1
ONTIM0
MCONF2
MCONF1
MCONF0
page 43
$01
WDTCR
-
-
-
WDTOE
WDE
WDP2
WDP1
WDP0
page 37
$00
OSCCAL
Timer/Counter0 (8-bit)
Oscillator Calibration Register
page 35
page 36
page 9
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. Some of the status flags are cleared by writing a logical “1” to them. Note that the CBI and SBI instructions will operate on all
bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work
with registers $00 to $1F only.
ATtiny28L/V
1062FS–AVR–07/06
ATtiny28L/V
Instruction Set Summary
Mnemonic
Operands
Description
Operation
Flags
# Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add Two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry Two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
SUB
Rd, Rr
Subtract Two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry Two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← $FF - Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← $00 - Rd
Z,C,N,V,H
1
SBR
Rd, K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd, K
Clear Bit(s) in Register
Rd ← Rd • (FFh - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd - 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← $FF
None
1
BRANCH INSTRUCTIONS
RJMP
k
Relative Jump
PC ← PC + k + 1
None
2
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CPSE
Rd, Rr
4
1/2
CP
Rd, Rr
Compare
Rd - Rr
Z,N,V,C,H
1
CPC
Rd, Rr
Compare with Carry
Rd - Rr - C
Z,N,V,C,H
1
CPI
Rd, K
Compare Register with Immediate
Rd - K
Z N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b) = 0) PC ← PC + 2 or 3
None
1/2
1/2
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b) = 1) PC ← PC + 2 or 3
None
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b) = 0) PC ← PC + 2 or 3
None
1/2
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b) = 1) PC ← PC + 2 or 3
None
1/2
1/2
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC ← PC + k + 1
None
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC ← PC + k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V = 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less than Zero, Signed
if (N ⊕ V = 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half-carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half-carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T-flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T-flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if (I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if (I = 0) then PC ← PC + k + 1
None
1/2
5
1062FS–AVR–07/06
Instruction Set Summary (Continued)
Mnemonic
Operands
Description
Operation
Flags
# Clocks
DATA TRANSFER INSTRUCTIONS
LD
Rd, Z
Load Register Indirect
Rd ← (Z)
None
2
ST
Z, Rr
Store Register Indirect
(Z) ← Rr
None
2
MOV
Rd, Rr
Move between Registers
Rd ← Rr
None
1
LDI
Rd, K
Load Immediate
Rd ← K
None
1
IN
Rd, P
In Port
Rd ← P
None
1
OUT
P, Rr
Out Port
P ← Rr
None
1
Load Program Memory
R0 ← (Z)
None
3
LPM
BIT AND BIT-TEST INSTRUCTIONS
SBI
P, b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P, b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left through Carry
Rd(0) ← C, Rd(n+1) ← Rd(n), C ← Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right through Carry
Rd(7) ← C, Rd(n) ← Rd(n+1), C ← Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n = 0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0) ← Rd(7..4), Rd(7..4) ← Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit Load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
1
CLS
Clear Signed Test Flag
S←0
S
SEV
Set Two’s Complement Overflow
V←1
V
1
CLV
Clear Two’s Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
Set Half-carry Flag in SREG
H←1
H
1
CLH
Clear Half-carry Flag in SREG
H←0
H
1
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
Watchdog Reset
(see specific descr. for WDR/timer)
None
1
6
ATtiny28L/V
1062FS–AVR–07/06
ATtiny28L/V
Ordering Information
Speed (MHz)
4
1.2
Notes:
Power Supply (Volts)
2.7 - 5.5
1.8 - 5.5
Ordering Code
Package(1)
ATtiny28L-4AC
ATtiny28L-4PC
ATtiny28L-4MC
32A
28P3
32M1-A
Commercial
(0°C to 70°C)
ATtiny28L-4AI
ATtiny28L-4AU(2)
ATtiny28L-4PI
ATtiny28L-4PU(2)
ATtiny28L-4MI
ATtiny28L-4MU(2)
32A
32A
28P3
28P3
32M1-A
32M1-A
Industrial
(-40°C to 85°C)
ATtiny28V-1AC
ATtiny28V-1PC
ATtiny28V-1MC
32A
28P3
32M1-A
Commercial
(0°C to 70°C)
ATtiny28V-1AI
ATtiny28V-1AU(2)
ATtiny28V-1PI
ATtiny28V-1PU(2)
ATtiny28V-1MI
ATtiny28V-1MU(2)
32A
32A
28P3
28P3
32M1-A
32M1-A
Industrial
(-40°C to 85°C)
Operation Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green.
Package Type
32A
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3
28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A
32-pad, 5x5x1.0 body, Lead Pitch 0.50mm, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)
7
1062FS–AVR–07/06
Packaging Information
32A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
8.75
9.00
9.25
D1
6.90
7.00
7.10
E
8.75
9.00
9.25
E1
6.90
7.00
7.10
B
0.30
–
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
10/5/2001
R
8
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
REV.
32A
B
ATtiny28L/V
1062FS–AVR–07/06
ATtiny28L/V
28P3
D
PIN
1
E1
A
SEATING PLANE
L
B2
B1
A1
B
(4 PLACES)
0º ~ 15º
REF
e
E
C
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
eB
Note:
1. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
A
MIN
–
NOM
MAX
–
4.5724
A1
0.508
–
–
D
34.544
–
34.798
E
7.620
–
8.255
E1
7.112
–
7.493
B
0.381
–
0.533
B1
1.143
–
1.397
B2
0.762
–
1.143
L
3.175
–
3.429
C
0.203
–
0.356
eB
–
–
10.160
e
NOTE
Note 1
Note 1
2.540 TYP
09/28/01
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual
Inline Package (PDIP)
DRAWING NO.
28P3
REV.
B
9
1062FS–AVR–07/06
32M1-A
D
D1
1
2
3
0
Pin 1 ID
E1
SIDE VIEW
E
TOP VIEW
A3
A2
A1
A
K
0.08 C
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
A
0.80
0.90
1.00
A1
–
0.02
0.05
A2
–
0.65
1.00
P
D2
1
2
3
P
Pin #1 Notch
(0.20 R)
A3
E2
K
e
b
L
BOTTOM VIEW
MAX
NOTE
0.20 REF
b
0.18
D
4.90
5.00
5.10
D1
4.70
4.75
4.80
D2
2.95
3.10
3.25
E
4.90
5.00
5.10
E1
4.70
4.75
4.80
E2
2.95
3.10
3.25
e
Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.
NOM
0.23
0.30
0.50 BSC
L
0.30
0.40
0.50
P
–
–
0
–
–
0.60
o
12
K
0.20
–
–
5/25/06
R
10
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm,
3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
32M1-A
REV.
E
ATtiny28L/V
1062FS–AVR–07/06
ATtiny28L/V
Errata
All revisions
No known errata.
11
1062FS–AVR–07/06
Datasheet Revision
History
Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.
Rev – 01/06G
1. Updated chapter layout.
2. Updated “Ordering Information” on page 7.
Rev – 01/06G
1. Updated description for “Port A” on page 25.
2. Added note 6 in “DC Characteristics” on page 54.
3. Updated “Ordering Information” on page 7.
4. Added “Errata” on page 11.
Rev – 03/05F
1. Updated “Electrical Characteristics” on page 54.
2. MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package
QFN/MLF”.
3. Updated “Ordering Information” on page 7.
12
ATtiny28L/V
1062FS–AVR–07/06
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. ATMEL ®, logo and combinations thereof, Everywhere You Are ®, AVR ®, AVR Studio ®, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
1062FS–AVR–07/06
Similar pages