ASX1437 ASX1437 Data Sheet Ku Band Power Amplifier MMIC 1. Product Overview 1.1 General Description ASX1437 is a three-stage internally matched MMIC Power Amplifier which operates between 13.5 GHz and 14.5 GHz frequency range. This product is well suited for VSAT applications. 1.2 Features Frequency Range: 13.5 – 14.5 GHz Saturated Output Power: 37 dBm Small Signal Gain: 21 dB Bias: VDD = +7 V, IDD = 1300 mA, VGG = -0.99 V (Typical) 100% DC and RF tested 1.3 Applications Ku Band VSAT Point to Point Radio 1.4 Package Profile & RoHS Compliance 10-lead Flange Package 1/13 ASB Inc. [email protected] RoHS-compliant January 2017 ASX1437 2. Summary on Product Performances 2.1 Typical Performance Test conditions : T = +25 C, VDD = +7 V, CW, ZO = 50 Parameters Test Conditions Gate Bias Voltage Min Typ Max Units f = 13.5 - 14.5 GHz -0.99 V f = 13.5 - 14.5 GHz 37 dBm Small signal gain f = 13.5 - 14.5 GHz 21 dB Input Return Loss f = 13.5 - 14.5 GHz -9 dB Output Return Loss f = 13.5 - 14.5 GHz -9 dB Supply Current VDD = +7 V 1300 mA Output Power at Psat1) 1) Psat: Saturated output power 2.2 Product Specification Test conditions : T = +25 C, VDD= +7 V, CW, VGG = -0.99 V typical, ZO = 50 Parameter Min Typ Max Frequency 13.5 14.5 Unit GHz Small Signal Gain 21 dB Input Return Loss -9 dB Output Return Loss -9 dB Supply Current 1300 mA 2.3 Absolute Maximum Ratings 2/13 Parameters Max. Ratings Operating Case Temperature (Tc) -40 to 85 C Storage Temperature (Tstg) -55 to 125 C Drain Voltage (VDD) +9 V Gate Voltage (VGG) -1.5 to -0.5 V Input RF Power (Pin) 23dBm ASB Inc. [email protected] January 2017 ASX1437 2.4 Pin Descriptions 3/13 ASB Inc. Pin Pin Name Description 1,5 Vg Gate voltage 3 RF IN Input, matched to 50 ohms 6,10 Vd Drain voltage 8 RF OUT 2,4,7,9 NC Output, matched to 50 ohms No internal connection ( open or connected to GND ) [email protected] January 2017 ASX1437 3. Application: 13.5 – 14.5 GHz 3.1 Application Circuit Note 1: The capacitors are recommended on the bias supply line, close to the package, in order to prevent video oscillations which could damage the module. 3.2 Biasing Procedure 4/13 Make sure no RF power is applied to the device before continuing. Pinch off device by setting VGG to -1.5 V. Raise VDD to +7 V while monitoring drain current. Raise VGG until drain current reaches 1.3 A. VGG should be between -1.5 and -0.5 V. Apply RF power. To improve the thermal and RF performance, ASB recommends a heat sinker attached to the bottom of the package with an Indium alloy preform. ASB Inc. [email protected] January 2017 ASX1437 3.3 Performance Table Test conditions : T = +25 C, VDD = +7 V, CW, ZO = 50 Parameters Test Conditions Min Typ Max Units Gate Bias Voltage f = 13.5 - 14.5 GHz -0.99 V Output Power at Psat1) f = 13.5 - 14.5 GHz 37 dBm Small signal gain f = 13.5 - 14.5 GHz 21 dB Input Return Loss f = 13.5 - 14.5 GHz -9 dB Output Return Loss f = 13.5 - 14.5 GHz -9 dB Supply Current VDD = +7 V 1300 mA 1) Psat: Saturated output power 5/13 ASB Inc. [email protected] January 2017 ASX1437 3.4 Plots of Performances S-parameter Input / Output Return Loss vs. Frequency Input / Output Return Loss (dB) VDD = +7 V, IDD = 1300 mA, Pin = -20 dBm 0 -5 -10 -15 Input Return Loss -20 Output Return Loss -25 13 13.5 14 14.5 Frequency (GHz) 15 Small Signal Gain vs. Frequency VDD = +7 V, IDD = 1300 mA, Pin = -20 dBm Small Signal Gain (dB) 32 28 24 20 16 12 8 4 0 13 6/13 13.5 ASB Inc. 14 14.5 Frequency (GHz) [email protected] 15 January 2017 ASX1437 Input Return Loss vs. Frequency VDD = +7 V, IDD = 1300 mA, Pin = -20 dBm Input Return Loss (dB) 0 -5 -10 -15 -20 -25 13 13.5 14 14.5 Frequency (GHz) 15 Output Return Loss vs. Frequency VDD = +7 V, IDD = 1300 mA, Pin = -20 dBm Output Return Loss (dB) 0 -5 -10 -15 -20 -25 13 7/13 13.5 ASB Inc. 14 14.5 Frequency (GHz) [email protected] 15 January 2017 ASX1437 Output Return Loss vs. Frequency VDD = +7 V, IDD = 1300 mA, Pin = -20 dBm Small Signal Gain (dB) 32 28 24 20 16 12 8 4 0 13 8/13 13.5 ASB Inc. 14 14.5 Frequency (GHz) [email protected] 15 January 2017 Output Power vs. Frequency Output Power, IDD, Gain vs. Input Power VDD = +7 V, IDD = 1300 mA VDD = +7 V, IDD = 1300 mA 40 35 Output Power (dBm) 30 Output Power (dBm), Gain (dB) Pin = +18 dBm Pin = +16 dBm Pin = +14 dBm Pin = +12 dBm Pin = +10 dBm Pin = +8 dBm Pin = +6 dBm 25 Pin = 0 dBm 20 Pin = -5 dBm 15 Pin = -10 dBm 10 Pin = -15 dBm 5 0 13.5 14 Frequency (GHz) 3100 3000 2900 2800 2700 2600 2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -20 15 -15 -10 -5 0 5 10 Input Power (dBm) 15 20 Power Added Efficiency vs. Frequency IMD3 vs. Output Power / Tone VDD = +7 V, IDD = 1300 mA VDD = +7 V, IDD = 1300 mA, Δf = 10 MHz 25 -10 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 Pin = +18 dBm Pin = +16 dBm -15 Pin = +14 dBm -25 -20 -30 Pin = +12 dBm Pin = +10 dBm -35 -40 -45 Pin = +8 dBm -50 Pin = +6 dBm -55 Pin = 0 dBm -60 -65 -70 13 9/13 14.5 IMD3 (dBc) Power Added Efficiency (%) 13 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 IDD (mA) ASX1437 13.5 14 Frequency (GHz) 14.5 12 15 ASB Inc. [email protected] 14 16 18 20 22 24 26 28 Output Power / Tone (dBm) 30 32 34 January 2017 ASX1437 Output Power, Drain Current, Gain vs. Input Power -20 -15 -10 -5 0 5 10 Input Power (dBm) 15 20 25 Output Power (dBm), Gain (dB) 3100 3000 2900 2800 2700 2600 2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 IDD (mA) Output Power (dBm), Gain (dB) 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 3100 3000 2900 2800 2700 2600 2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -20 -15 -10 -5 0 5 10 Input Power (dBm) 15 20 IDD (mA) VDD = +7 V, IDD = 1300 mA @ 14.0 GHz VDD = +7 V, IDD = 1300 mA @ 13.5 GHz 25 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 3100 3000 2900 2800 2700 2600 2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 -20 10/13 -15 -10 -5 0 5 10 Input Power (dBm) 15 20 IDD (mA) Output Power (dBm), Gain (dB) VDD = +7 V, IDD = 1300 mA @ 14.5 GHz 25 ASB Inc. [email protected] January 2017 ASX1437 VDD = +7 V, IDD = 1300 mA, Δf = 10 MHz VDD = +7 V, IDD = 1300 mA, Δf = 10 MHz @ 13.5 GHz @ 14.0 GHz -10 -10 -15 -15 -20 -20 -25 -25 -30 -30 IMD3 (dBc) IMD3 (dBc) IMD3 vs. Output Power / Tone by Temperature -35 -40 -45 -35 -40 -45 -50 -50 -55 -55 -60 -60 -65 -65 -70 -70 12 14 16 18 20 22 24 26 28 Output Power / Tone (dBm) 30 32 34 30 32 34 12 14 16 18 20 22 24 26 28 Output Power / Tone (dBm) 30 32 34 VDD = +7 V, IDD = 1300 mA, Δf = 10 MHz @ 14.5 GHz -10 -15 -20 -25 IMD3 (dBc) -30 -35 -40 -45 -50 -55 -60 -65 -70 12 11/13 14 16 18 20 22 24 26 28 Output Power / Tone (dBm) ASB Inc. [email protected] January 2017 ASX1437 4. Mounting Instructions for Flange Package 4.1 Screw Mounting 4.1.1 The flange of package should be attached using screws. Torque conditions are shown in table 1. Table 1. Recommended and Maximum Torque for Screw Mounting Package Recommended Screw Recommended Torque Maximum Torque Flange M2.0 10 N-cm (0.9 lb-in) 15 N-cm (1.3 lb-in) 4.1.2 First, tighten the screws with a torque driver set to 5 N-cm 4.1.3 The surface finish of the heat sinker should be better than 0.8 µm and the surface flatness must be better than 10 µm. 4.1.4 Silicon based heat sink compounds should not be used for the thermal conductive grease. It causes the poor grounding of the source flange, contamination, and long term degradation of thermal resistance between the package and heat sinker. 4.2. Solder Mounting 4.2.1 Recommended solder is lead-free solder (Sn-3.0Ag-0.5Cu) or equivalent. 4.2.2 After soldering, the flux residue should be removed by appropriate cleaning methods. 4.2.3 The recommended soldering conditions are as follows: Partial heating method: Soldering iron, spot laser/air Product terminal temperature: 260°C, max. 10 sec/terminal or 400°C, max. 3 sec/terminal 12/13 ASB Inc. [email protected] January 2017 ASX1437 5. Package Outline Units: mm [in] *Please note the 1.51 mm of the height of the lead from the bottom of the metal base when it is to be mounted. (End of Datasheet) Copyright 2016-2017 ASB Inc. All rights reserved. Datasheet subject to change without notice. ASB assumes no responsibility for any errors which may appear in this datasheet. No part of the datasheet may be copied or reproduced in any form or by any means without the prior written consent of ASB. 13/13 ASB Inc. [email protected] January 2017