MITSUBISHI IGBT MODULES CM300DU-34KA HIGH POWER SWITCHING USE CM300DU-34KA ● IC ................................................................... 300A ● VCES .......................................................... 1700V ● Insulated Type ● 2-elements in a pack APPLICATION General purpose inverters & Servo controlers, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm 140 130 10 110 ±0.25 43.8 13.8 11.5 14.5 G2 130 110 ±0.25 40 4-M4 NUTS Tc measured point G1 (15) 4-φ6.5MOUNTING C2E1 E2 C1 G1 E1 +1 35 -0.5 +1 24.5 -0.5 E2 G2 HOLES 8 65 3-M8 NUTS 14.5 E1 C1 (26) E2 (26) C2E1 20 (26) Tc measured point E2 9 (15) 20.4 10 36 CIRCUIT DIAGRAM Sep. 2001 MITSUBISHI IGBT MODULES CM300DU-34KA HIGH POWER SWITCHING USE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) Tj Tstg Viso Parameter Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage — Torque strength — Weight Conditions G-E Short C-E Short TC = 25°C Pulse TC = 25°C Pulse TC = 25°C Ratings 1700 ±20 300 600 300 600 1500 –40 ~ +150 –40 ~ +125 3500 8.8 ~ 10.8 3.5 ~ 4.5 1.3 ~ 1.7 1200 (Note 2) (Note 2) Main terminal to base plate, AC 1 min. Main Terminal M8 Mounting holes M6 G(E) Terminal M4 Typical value Unit V V A A A A W °C °C V N•m g ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol Test conditions Parameter Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 30mA, VCE = 10V 4 5.5 7 V IGES Gate leakage current Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge — — — — — — — — — — — — — — — — — — — — 3.2 3.8 — — — 1350 — — — — — 11.2 — 2.2 — — 0.010 — 0.5 4.0 — 42 7.2 2.3 — 800 300 1000 800 600 — 4.6 — 0.083 0.13 µA VCE(sat) VGE = VGES, VCE = 0V Tj = 25°C IC = 300A, VGE = 15V Tj = 125°C VEC(Note 1) Emitter-collector voltage Rth(j-c)Q Rth(j-c)R Rth(c-f) Rth(j-c’)Q Thermal resistance*1 Contact thermal resistance Thermal resistance VCE = 10V VGE = 0V VCC = 1000V, IC = 300A, VGE = 15V VCC = 1000V, IC = 300A VGE1 = VGE2 = 15V RG = 3.1Ω, Inductive load switching operation IE = 300A IE = 300A, VGE = 0V, Tj = 25°C IE = 300A, VGE = 0V, Tj = 125°C IGBT part (1/2 module) FWDi part (1/2 module) Case to fin, Thermal compound applied*2 (1/2 module) Tc measured point is just under the chips — 0.035*3 mA V nF nF nF nC ns ns ns ns ns µC V V °C/W °C/W °C/W °C/W Note 1. IE, VEC, trr, Qrr, die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. (FWDi). 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. Pulse width and repetition rate should be such as to cause negligible temperature rise. *1 : Tc measured point is indicated in OUTLINE DRAWING. *2 : Typical value is measured by using Shin-etsu Silicone “G-746”. *3 : If you use this value, Rth(f-a) should be measured just under the chips. Sep. 2001 MITSUBISHI IGBT MODULES CM300DU-34KA HIGH POWER SWITCHING USE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 600 12 COLLECTOR CURRENT (A) VGE = 20V 500 15 400 10 14 300 9 200 8 100 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 600 11 0 2 4 6 8 400 300 200 100 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 6 VGE = 15V Tj = 25°C 5 Tj = 125°C 4 3 2 1 0 0 100 200 300 400 500 600 Tj = 25°C 8 6 IC = 600A 4 IC = 300A 2 0 IC = 120A 6 8 10 12 14 16 18 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) 20 102 CAPACITANCE Cies, Coes, Cres (nF) Tj = 25°C 7 5 3 2 102 7 5 3 2 101 10 COLLECTOR CURRENT IC (A) 103 EMITTER CURRENT IE (A) VCE = 10V Tj = 25°C 500 Tj = 125°C 0 10 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) COLLECTOR CURRENT IC (A) Tj = 25°C 1 2 3 4 5 EMITTER-COLLECTOR VOLTAGE VEC (V) 7 5 3 2 Cies 101 7 5 3 2 Coes 100 Cres 7 5 3 2 VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Sep. 2001 MITSUBISHI IGBT MODULES CM300DU-34KA HIGH POWER SWITCHING USE SWITCHING TIMES (ns) 104 7 5 3 2 tf td(off) td(on) 103 7 5 3 2 Conditions: VCC = 1000V VGE = ±15V RG = 3.1Ω Tj = 125°C Inductive load 102 7 5 3 2 tr 101 1 10 2 3 5 7 102 2 3 5 7 103 REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 7 5 3 2 trr 102 Irr 7 5 2 101 1 10 COLLECTOR CURRENT IC (A) 3 2 10–1 7 5 3 2 7 5 3 2 10–2 10–2 7 5 3 2 10–3 7 5 3 2 Single Pulse TC = 25°C 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 TMIE (s) 3 5 7 102 2 3 5 7 103 GATE CHARGE CHARACTERISTICS (TYPICAL) 20 GATE-EMITTER VOLTAGE VGE (V) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) (°C/W) 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 101 7 IGBT part: 5 Per unit base = Rth(j–c) = 0.083°C/ W 3 FWDi part: 2 Per unit base = Rth(j–c) = 0.13°C/ W 100 10–1 2 EMITTER CURRENT IE (A) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part & FWDi part) 7 5 3 2 Conditions: VCC = 1000V VGE = ±15V RG = 3.1Ω Tj = 25°C Inductive load 3 IC = 300A 16 VCC = 800V VCC = 1000V 12 8 4 0 0 400 800 1200 1600 2000 GATE CHARGE QG (nC) Sep. 2001