[AP1154ADLXX] -Preliminary- AP1154ADLXX 14V Input / 1A Output LDO Regulator 1. Genaral Description The AP1154ADLXX is a low dropout linear regulator with ON/OFF control, which can supply 1A load current. The IC is an integrated circuit with a silicon monolithic bipolar structure. The output voltage, trimmed with high accuracy, is available from 1.8 to 5.0V in 0.1V steps. The output capacitor is available to use a small 1μF ceramic capacitor. The IC can be used for USB application (500mA), since the output limitation current can be set by external resistor. The over current, thermal and reverse bias protections are integrated, and also the package is high heat radiation type, HSOP-8. The IC is designed for space saving requirements. 2. Feature Available to use a small 1μF ceramic capacitor Dropout voltage VDROP=160mV at 500mA Output current 1A High precision output voltage 1.5% or 50mV High ripple rejection ratio 80dB at 1kHz Wide operating voltage range 2.4V to 14.0V Very low quiescent current IQUT=320A at IOUT=0mA Programmable output current limitation by an external resistor On/Off control (High active) Built-in Short circuit protection, thermal shutdown Built-in reverse bias over current protection Available very low noise application Small package HSOP-8 3. Application Power supply for low voltage MPU and peripheral equipment Digital AV system Any electronic equipment Rev.0.1 -1- 2014/07 [AP1154ADLXX] 4. Table of Contents 1. 2. 3. 4. 5. 6. 7. Genaral Description ........................................................................................................................................... 1 Feature................................................................................................................................................................ 1 Application......................................................................................................................................................... 1 Table of Contents ............................................................................................................................................... 2 Block Diagram ................................................................................................................................................... 3 Ordering Information ......................................................................................................................................... 3 Pin Configurations and Functions ...................................................................................................................... 4 ■ Pin Configurations ............................................................................................................................................ 4 ■ Functions .......................................................................................................................................................... 4 8. Absolute Maximum Rating ................................................................................................................................ 5 9. Recommended Operating Conditions ................................................................................................................ 5 10. Electrical Characteristics ................................................................................................................................ 6 ■ Electrical Characteristics of Ta=Tj=25C ........................................................................................................ 6 ■ Electrical Characteristics of Ta=-40C~85C .................................................................................................. 7 11. Description ..................................................................................................................................................... 8 11.1 DC Characteristics ...................................................................................................................................... 8 11.2 ON/OFF Transient .................................................................................................................................... 17 11.3 Line transient ............................................................................................................................................ 18 11.4 Load transient ........................................................................................................................................... 19 11.5 Ripple Rejection ....................................................................................................................................... 21 11.6 Output Noise ............................................................................................................................................ 22 11.7 Setting of output current limitation .......................................................................................................... 23 11.8 Stability..................................................................................................................................................... 25 11.9 Operating Region and Power Dissipation ................................................................................................ 26 11.10 Operating Region and Power Dissipation ............................................................................................ 28 12. Definition of term ......................................................................................................................................... 29 13. Recommended External Circuits .................................................................................................................. 30 ■Test Circuit ...................................................................................................................................................... 30 14. Package ........................................................................................................................................................ 31 ■ Outline Dimensions ........................................................................................................................................ 31 IMPORTANT NOTICE .......................................................................................................................................... 32 Rev.0.1 -2- 2014/07 [AP1154ADLXX] 5. Block Diagram VCont PCL On/Off Control Thermal & Over Current Protection Disconnect Circuit VRef VIn VOut GND CIn=1.0F COut=1.0F Figure 1. Block Diagram 6. Ordering Information AP1154ADLXX Ta = -40 to 85°C HSOP-8 ・ Output Voltage Code For product name, please check the below chart. Please contact your authorized ASAHI KASEI MICRODEVICES representative for voltage availability. AP1154ADLXX Output voltage code Table 1. Standard Voltage Version, Output Voltage & Voltage Code XX VOUT XX VOUT XX VOUT 18 1.8 25 2.5 33 3.3 21 2.1 30 3.0 50 5.0 Rev.0.1 -3- 2014/07 [AP1154ADLXX] 7. Pin Configurations and Functions NC VIN VCONT NC ■ Pin Configurations 8 7 6 5 1 2 3 4 NC VOUT PCL GND (Top View) ■ Functions Pin No. Pin Description Internal Equivalent Circuit Description Programmable Current Limitation Vin 3 Vout PCL VB.G. 2 4 Vout Connect a capacitor between the VOut terminal and GND as follows. PCL GND The output limitation current can be set by an external resistance (RPCL). The RPCL is connected between the PCL terminal and GND. If there is no need of setting a current limit, connect the PCL terminal to GND. Output Terminal Vout≥2.4V: Capacitance ≥ 1μF Vout<2.4V:Capacitance ≥ 2.2μF GND Terminal - Cont On/Off Control Terminal 300k 6 Cont The On/Off voltages are as follows: VCont≥1.8V : ON VCont≤0.35V : OFF 500k Pull-down resistance (500kΩ) is built-in. Input Terminal 7 Rev.0.1 Vin - Connect a capacitor of 1.0F or higher between the VIn terminal and GND. -4- 2014/07 [AP1154ADLXX] 8. Absolute Maximum Rating Parameter Supply Voltage Symbol VccMAX Reverse Bias VrevMAX PCL pin Voltage Control pin Voltage Junction temperature Storage Temperature Range VpclMAX VcontMAX Tj Tstg min -0.4 -0.4 -0.4 -0.4 -0.4 -55 max 16 6 10 5 16 150 150 Unit V V V V V C C Condition Vout≦2.0V 2.1V≦Vout When mounted on PCB (Note 1) Note 1. Please derate 19.2mW/C above 25C or more. Thermal resistance (JA) = 52C/W. Power Dissipation PD - 2400 mW WARNING: The maximum ratings are the absolute limitation values with the possibility of the IC breakage. When the operation exceeds this standard quality cannot be guaranteed. 9. Recommended Operating Conditions Parameter Symbol min typ max Unit Operating Temperature Range Operating Voltage Range Ta VOP -40 2.4 - 85 14 C V Rev.0.1 -5- Condition 2014/07 [AP1154ADLXX] 10. Electrical Characteristics ■ Electrical Characteristics of Ta=Tj=25C The parameters with min or max values will be guaranteed at Ta=Tj=25C. Parameter Output Voltage (VIN=Vouttyp+1V,Vcont=1.8V,Ta=Tj=25C, unless otherwise specified.) Symbol Condition min typ max Unit V Iout = 5mA Vout (Table 2) Line Regulation LinReg LoaReg Load Regulation Vdrop Dropout Voltage (Note 2) Maximum Output Current (Note 3) Short Circuit Current(Note 3) Quiescent Current Standby Current GND Pin Current Iout,Peak ∆V=5V, Iout=5mA Iout=5mA ~ 500mA -5.0 -25 0.0 - 5.0 25 mV mV Iout=5mA ~ 1000mA -45 - 45 mV Iout=500mA - 160 300 mV Iout=1000mA - 300 600 mV Vout=Vout,typ 0.9 - 1400 - mA - 1500 - mA - 320 0.0 0.7 520 0.1 1.4 μA μA mA - 0 0.1 μA Vcont = 1.8V - 5 10 μA Vout ON state 1.8 - - V - - 0.35 V ISHORT Iq Istandby Ignd Reverce Bias Current Irev Control Terminal Control Current Icont Control Voltage Vcont Iout = 0mA Vcont = 0V Iout=30mA Vrev=Vout,typ, Vin=0V, Vcont=0V Vout OFF state Note 2. For Vout 2.0V , no regulations. Note 3. The maximum output current is limited by power dissipation. General Note: Parameter with only typical value is for reference only. Table 2. Standard Voltage Version Output Voltage Part Number AP1154ADL18 AP1154ADL21 AP1154ADL25 AP1154ADL30 AP1154ADL33 AP1154ADL50 Rev.0.1 MIN V 1.750 2.050 2.450 2.950 3.250 4.925 TYP V 1.800 2.100 2.500 3.000 3.300 5.000 MAX V 1.850 2.150 2.550 3.050 3.350 5.075 -6- 2014/07 [AP1154ADLXX] ■ Electrical Characteristics of Ta=-40C~85C The parameters with min or max values will be guaranteed at Ta=Tj=-40 ~ 85C. (VIN=VoutTYP+1V,Vcont=1.8V,Ta=-40 ~ 85C, unless otherwise specified.) Symbol Condition min typ max Unit V Iout = 5mA Vout (Table 3) Parameter Output Voltage Line Regulation Load Regulation Dropout Voltage (Note 4) Maximum Output Current (Note 5) Short Circuit Current(Note 5) LinReg LoaReg ∆V=5V, Iout=5mA Iout=5mA ~ 500mA Iout=5mA ~ 1000mA Vdrop Iout,Peak -8.0 -40 -120 0.0 - 8.0 40 120 mV mV mV Iout=500mA Iout=1000mA - 160 300 385 670 mV mV Vout=Vout,typ 0.9 - 1400 - mA - 1500 - mA - 320 0.0 624 0.5 μA μA Iout=30mA Vrev=Vout,typ, Vin=0V, Vcont=0V - 0.7 1.8 mA - 0 0.1 μA Vcont = 1.8V - 5 10 μA Vout ON state 1.8 - - V - - 0.35 V ISHORT Quiescent Current Standby Current Iq Istandby GND Pin Current Ignd Reverce Bias Current Irev Control Terminal Control Current Icont Control Voltage Vcont Iout = 0mA Vcont = 0V Vout OFF state Note 4. For Vout 2.0V , no regulations. Note 5. The maximum output current is limited by power dissipation. General Note: Parameter with only typical value is for reference only. Table 3. Standard Voltage Version Output Voltage Part Number AP1154ADL18 AP1154ADL21 AP1154ADL25 AP1154ADL30 AP1154ADL33 AP1154ADL50 Rev.0.1 MIN V 1.720 2.020 2.420 2.920 3.217 4.875 TYP V 1.800 2.100 2.500 3.000 3.300 5.000 MAX V 1.880 2.180 2.580 3.080 3.383 5.125 -7- 2014/07 [AP1154ADLXX] 11. Description 11.1 DC Characteristics VOut vs VIn (AP1154ADL25) VOut vs VIn (AP1154ADL50) LINE REG LINE REG 6.0 6.0 VFB 5.0 4.0 4.0 3.0 2.0 Vout(V) 5.0 Vout [ V ] Vout(V) Vout [ V ] VFB 1.0 3.0 2.0 1.0 0.0 0.0 0 2 4 6 8 10 12 14 16 0 2 4 Vin(V) 6 8 10 12 Vin [ V ] Line Regulation (AP1154ADL50) IQ vs VIn (AP1154ADL25) IQ vs VIn (AP1154ADL50) 400 400 380 380 360 360 340 340 320 320 Iq(mA) Iq(mA) Line Regulation (AP1154ADL25) 300 280 16 14 16 300 280 260 260 240 240 220 220 200 200 0 2 4 6 8 10 12 14 16 0 Vin(V) Rev.0.1 14 VinVin(V) [V] 2 4 6 8 10 12 Vin(V) -8- 2014/07 [AP1154ADLXX] IQ vs VIn (AP1154ADL50) 12 10 10 8 8 6 4 Iq(mA) 12 Iq [ mA ] Iq(mA) Iq [ mA ] IQ vs VIn (AP1154ADL25) 6 4 2 2 0 0 0 2 4 6 8 10 12 14 16 0 2 4 VinVin(V) [V] Load Regulation (AP1154ADL25) 20 20 10 10 0 0 -10 -10 -20 -20 -30 -30 -40 -40 10 12 14 16 -50 0 200 400 600 Iout(mA) 800 1000 0 IGND vs IOut (AP1154ADL25) 200 400 600 Iout(mA) 800 1000 800 1000 IGND vs IOut (AP1154ADL50) 50 50 45 45 40 40 35 35 Ignd(mA) Ignd(mA) 8 Load Regulation (AP1154ADL50) -50 30 25 20 30 25 20 15 15 10 10 5 5 0 0 0 200 400 600 800 1000 0 Iout(mA) Rev.0.1 6 VinVin(V) [V] 200 400 600 Iout(mA) -9- 2014/07 [AP1154ADLXX] VDrop vs IOut (AP1154ADL50) 0 0 -100 -100 Vdrop(mV) Vdrop [ mV ] Vdrop(mV) Vdrop [ mV ] VDrop vs IOut (AP1154ADL25) -200 -300 -400 -200 -300 -400 -500 -500 0 200 400 600 800 1000 0 200 Iout(mA) Iout [ mA ] 600 800 1000 1600 2000 Vout vs IOut (AP1154ADL50) 6.0 6.0 5.0 5.0 4.0 4.0 Vout(V) Vout(V) Vout vs IOut (AP1154ADL25) 3.0 3.0 2.0 2.0 1.0 1.0 0.0 0.0 0 400 800 1200 Iout(mA) 1600 2000 0 400 800 1200 Iout(mA) ∆Vout [ mV ] ΔVOut vs VIn (AP1154ADL50) ∆Vout [ mV ] ΔVOut vs VIn (AP1154ADL25) Vin-Vout,typ [ mV ] Rev.0.1 400 Iout(mA) Iout [ mA ] Vin-Vout,typ [ mV ] - 10 - 2014/07 [AP1154ADLXX] PCL terminal current (IPCL) vs IOut (AP1154ADL50) 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 2.5 2.0 1.5 Vout(V) 5.0 IPCL [ mA ] Vout(V) IPCL [ mA ] PCL terminal current (IPCL) vs IOut (AP1154ADL25) 3.0 2.5 2.0 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0 200 400 600 Iout(mA) Iout [ mA ] 800 1000 ICont vs VCont (AP1154ADL25) 0 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 2 4 6 8 10 12 14 16 0 Vrev(V) VOut vs VCont (AP1154ADL25) 1000 2 4 6 8 10 12 14 16 Vrev(V) VOut vs VCont (AP1154ADL50) 6 5 5 4 4 3 2 1 Iq(mA) 6 Vout [ V ] Iq(mA) 800 0 0 Vout [ V ] 400 600 Iout(mA) Iout [ mA ] ICont vs VCont (AP1154ADL50) 0 3 2 1 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Vin(V) Vcont [V] Rev.0.1 200 Vin(V) Vcont [V] - 11 - 2014/07 [AP1154ADLXX] IStandby vs VIn (AP1154ADL50) 1.E-05 1.E-05 1.E-06 1.E-06 1.E-07 1.E-07 Istandby [ A ] Istandby [ A ] IStandby vs VIn (AP1154ADL25) 1.E-08 1.E-09 1.E-10 1.E-11 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E-12 0 2 4 6 8 10 12 14 16 0 2 4 Vrev(V) Iout [ mA ] 10 12 14 16 12 14 16 IRev vs VRev (AP1154ADL50) 1.E-03 1.E-03 1.E-04 1.E-04 1.E-05 1.E-05 1.E-06 1.E-06 Irev [ A ] Irev [ A ] 8 Vrev(V) Iout [ mA ] IRev vs VRev (AP1154ADL25) 1.E-07 1.E-08 1.E-09 1.E-07 1.E-08 1.E-09 1.E-10 1.E-10 1.E-11 1.E-11 1.E-12 1.E-12 0 2 4 6 8 10 12 14 16 0 Vrev(V) 2 4 6 8 10 Vrev(V) Vcont [ V ] Rev.0.1 6 Vcont [ V ] - 12 - 2014/07 [AP1154ADLXX] ・Temperature Characteristics ∆Vout [ mV ] ΔVOut vs Ta (AP1154ADL50) ∆Vout [ mV ] ΔVOut vs Ta (AP1154ADL25) Ta [ C ] Ta [ C ] IQ vs Ta (AP1154ADL25) IQ vs Ta (AP1154ADL50) Iin(A) Iin(A) 400 400 380 380 360 360 340 340 320 320 300 300 280 280 260 260 240 240 220 220 200 200 -40 -20 0 20 40 60 80 100 -40 -20 0 Ta(ーC) 60 80 100 80 100 LoaReg vs Ta (AP1154ADL50) 10 10 Iout=100mA Iout=500mA Iout=1000mA 5 Iout=100mA Iout=500mA Iout=1000mA 5 0 LoaReg(mV) LoaReg(mV) 40 Ta(ーC) LoaReg vs Ta (AP1154ADL25) -5 -10 -15 0 -5 -10 -15 -20 -20 -40 -20 0 20 40 60 80 100 -40 Ta( ℃) Rev.0.1 20 -20 0 20 40 60 Ta( ℃) - 13 - 2014/07 [AP1154ADLXX] IGND vs Ta (AP1154ADL25) IGND vs Ta (AP1154ADL50) 70 70 Iout=100mA Iout=500mA Iout=1000mA 60 Ignd [ mA ] 40 30 20 Iq(mA) 50 Ignd [ mA ] 50 Iq(mA) Iout=100mA Iout=500mA Iout=1000mA 60 40 30 20 10 10 0 0 -40 -20 0 20 40 60 80 100 -40 -20 0 Ta(ーC) Iq(mA) Iq(mA) 0 20 40 60 80 0 -50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 -600 100 100 60 80 100 60 80 100 Iout=100mA Iout=500mA Iout=1000mA -40 -20 0 Ta(ーC) 20 40 Ta(ーC) IOut,MAX vs Ta (AP1154ADL25) IOut,MAX vs Ta (AP1154ADL50) 1600 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 -40 -20 0 20 40 60 80 100 -40 Ta(ーC) Rev.0.1 80 VDrop vs Ta (AP1154ADL50) Iout=500mA Iout=100mA Iout=1000mA -20 60 Ta [ C ] VDrop vs Ta (AP1154ADL25) -40 40 Ta(ーC) Ta [ C ] 0 -50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 -600 20 -20 0 20 40 Ta(ーC) - 14 - 2014/07 [AP1154ADLXX] IPCL vs Ta (AP1154ADL25) IPCL vs Ta (AP1154ADL50) Iout=100mA Iout=500mA Iout=1000mA 5.0 4.5 4.5 3.5 3.0 2.5 2.0 1.5 Iq(mA) 4.0 3.5 IPCL [ mA ] 4.0 IPCL [ mA ] Iq(mA) Iout=100mA Iout=500mA Iout=1000mA 5.0 3.0 2.5 2.0 1.5 1.0 1.0 0.5 0.5 0.0 0.0 -40 -20 0 20 40 60 80 100 -40 -20 0 Ta(ーC) 60 80 100 Ta [ C ] ICont vs Ta (AP1154ADL25) (Vcont=1.8V) VOut On/Off Point vs Ta (AP1154ADL25) ICont vs Ta (AP1154ADL50) (Vcont=1.8V) VOut On/Off Point vs Ta (AP1154ADL50) 2.0 2.0 1.8 Vout_ON 1.8 Vout_ON 1.6 Vout_OFF 1.6 Vout_OFF 1.4 1.4 1.2 1.2 Vcont(V) Vcont(V) 40 Ta(ーC) Ta [ C ] 1.0 0.8 1.0 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -40 -20 0 20 40 60 80 100 -40 Ta (℃) Rev.0.1 20 -20 0 20 40 60 80 100 Ta (℃) - 15 - 2014/07 [AP1154ADLXX] Rev.0.1 - 16 - 2014/07 [AP1154ADLXX] 11.2 ON/OFF Transient Measurement circuit Vin Measurement Condition Vout Vin Vout Cin Vcont 2V Vcont PCL GND 0V Cout RPCL AP1154ADL25 Cout : 1μF , 10μF Vin = Vout,typ + 1V Vcont = 0V 2V ( f = 10Hz ) Iout = 1000mA Cin = 1μF Cout = 1μF RPCL = 0Ω AP1154ADL25 RPCL : 0Ω ~ 10kΩ , Iout=50mA 2V 2V 0V V c o n Cout=1.0 10μF t V o u t 0V 1V 10μsec 1V Vertical axis:1V/Div, Horizontal axis:10μsec/Div AP1154ADL50 Cout : 1μF , 10μF AP1154ADL50 RPCL : 0Ω ~ 10kΩ , Iout=50mA 2V V c o n Cout=1.0μFt , 10μF V o u t 0V 2V 10μsec V c o RPCL =0Ω , 1kΩ n , 5kΩ , 10kΩ t V o u t 2V Vertical axis:1V/Div, Horizontal axis:10μsec/Div Rev.0.1 10μsec Vertical axis:1V/Div, Horizontal axis:10μsec/Div 2V 0V V c o n RPCL= 0Ω , 1kΩ t , 5kΩ , 10kΩ V o u t 10μsec Vertical axis:1V/Div, Horizontal axis:10μsec/Div - 17 - 2014/07 [AP1154ADLXX] 11.3 Line transient Measurement circuit Measurement condition Vout,Typ+2V Vin = Vout,typ + 1V Vout,typ + 2V ( f = 1kHz ) Vcont = 2V Cin = 1μF Cout = 1μF RPCL = 0Ω Vout,Typ+1V Vin Vout Vin Vout Cin Vcont Vcont PCL GND Cout AP1154ADL25 AP1154ADL50 4.5V 4.5V Vin Vin 3.5V 3.5V Iout=500mA Iout=500mA Vout Vout Iout=1000mA 5mV Iout=1000mA 100μs 5mV 1 0 Vertical axis: 5mV/Div, Horizontal axis:100μsec/Div 0 μ s e c Rev.0.1 100μs 1 0 Vertical axis: 5mV/Div, Horizontal axis:100μsec/Div 0 μ s e c - 18 - 2014/07 [AP1154ADLXX] 11.4 Load transient Measurement circuit Measurement condition 500mA, 1000mA 0mA Vin Vout Vin Vout Cin Vcont Vcont PCL GND Cout AP1154ADL25 Iout:0A500mA, 1000mA (Freq=10Hz) Vin = Vout,typ + 1V Vcont = 2V Cin = 1μF Cout = 1μF RPCL = 0Ω AP1154ADL25 Iout:500mA, 1000mA0A (Freq=10Hz) 500mA or 1A 500mA or 1A Iout Iout 0A 0A Iout=0A→500mA Vout Iout=500mA→0A Vout Iout=0A→1000mA Iout=1000mA→0A 200mV 25μs 1 0 Vertical axis: 200mV/Div, Horizontal axis:25μsec/Div 0 μ s e AP1154ADL50 c Iout:0A500mA, 1000mA (Freq=10Hz) 500mV 2.5ms 1 Vertical axis: 500mV/Div, Horizontal axis:2.5msec/Div 0 0 μ s AP1154ADL50 e c Iout:500mA, 1000mA0A (Freq=10Hz) 500mA or 1A 500mA or 1A Iout Iout 0A 0A Iout=0A→500mA Vout Iout=500mA→0A Vout Iout=0A→1000mA Iout=1000mA→0A 200mV 25μs 1 Vertical axis: 200mV/Div, Horizontal axis:25μsec/Div 0 0 μ s e c Rev.0.1 - 19 - 500mV 2.5ms 1 Vertical axis: 500mV/Div, Horizontal axis:2.5msec/Div 0 0 μ s e c 2014/07 [AP1154ADLXX] AP1154ADL25 Iout:10mA500mA10mA(Freq=5kHz) AP1154ADL25 Iout:10mA1000mA10mA(Freq=5kHz) 1A 500mA Iout Iout 10mA 10mA 10mA 25μs 200mV Vout 1 0 0 μ s e c 10mA 25μs 200mV Vout Vertical axis: 200mV/Div, Horizontal axis:25μsec/Div Vertical axis: 200mV/Div, Horizontal axis:25μsec/Div AP1154ADL50 Iout:10mA500mA10mA(Freq=5kHz) AP1154ADL50 Iout:10mA1000mA10mA(Freq=5kHz) I o u t 1 0 m A 5 0 0 m A 2 5 2 μ 0 s 0 Vout e m c V Vout 縦軸:200mV/Div 横軸:25μsec/Div Rev.0.1 I o u t 1 0 0 μ s e c 1 0 0 μ s e c 1 A 1 0 m A 2 0 0 m V 縦軸:200mV/Div 横軸:25μsec/Div - 20 - 2014/07 2 5 μ s e c [AP1154ADLXX] 11.5 Ripple Rejection Measurement circuit Measurement condition 500mVp-p Vin Vout Vin Vout Cout Vcont PCL GND Vin=Vout ,Typ+1.5V Vcont Vin = Vout,typ + 1.5V Ripple Noise = 500mVp-p ( f = 1kHz , Sine wave ) Vcont = 2V Iout=100mA Cin : None Cout = 1μF RPCL = 0Ω AP1154ADL25 Iout=100mA ~ 1A AP1154ADL25 Cout=1.0μF ~ 10μF R.R(dB) R.R(dB) 0 0 Cout=1.0 2.2 4.7 10μF -50 -50 -100 100 Iout=100 500 1000mA 1k 10k 100k -100 100 1M Frequency(Hz) 1k 10k 100k 1M Frequency(Hz) AP1154ADL50 Iout=100mA ~ 1A AP1154ADL50 Cout=1.0μF ~ 10μF R.R(dB) R.R(dB) 0 0 Cout=1.0 2.2 4.7 10μF -50 -50 Iout=100 500 1000mA -100 100 1k 10k 100k 1M Frequency(Hz) Rev.0.1 -100 100 1k 10k 100k 1M Frequency(Hz) - 21 - 2014/07 [AP1154ADLXX] AP1154ADL25 Iout=1mA~1A , f=1kHz AP1154ADL50 Iout=1mA~1A , f=1kHz 0 0 -10 -10 R.R. [dB] -40 -50 -60 -70 -20 -30 R.R.(dB) -30 R.R.(dB) R.R. [dB] -20 -40 -50 -60 -80 -70 -90 -80 -100 -90 0 200 400 600 800 1000 -100 Iout(mA) 0 Iout [mA] 200 400 600 800 1000 Iout(mA) Iout [mA] 11.6 Output Noise Measurement circuit Vin Measurement condition Vout Vin Vout Cin Vcont Vcont PCL GND AP1154ADL50 (f = 10 ~ 100kHz ) Noise. [μVrms] Noise. [μVrms] AP1154ADL25 (f = 10 ~ 100kHz ) Cout Iout [mA] Rev.0.1 Vin = Vout,typ + 1V Vcont = 2V Cin = 1μF Cout = 1μF RPCL = 0Ω Iout [mA] - 22 - 2014/07 [AP1154ADLXX] 11.7 Setting of output current limitation The output current limit can be set by connecting an external resistance (RPCL) between the PCL terminal and GND. If there is no need of setting a current limit, connect the PCL terminal to GND AP1154ADL50 Iout,Peak vs Iout with RPCL 6.0 5.0 Vout. [V] 4.0 Vin Vout Vin Cin Vcont Vcont PCL GND Cout Iout 3.0 RPCL 10k,5k,2k,1k 500,100 2.0 10kΩ 5kΩ 1.0 2kΩ 1kΩ 500Ω 100Ω 0.0 0 500 1000 1500 Iout [mA] The below figures show relation between RPCL value and Iout,Peak at Vin=Vout,typ+1V , Ta=25C AP1154ADL50 Iout,Peak vs RPCL 1600 1600 1400 1400 1200 1200 Iout,Peak [mA] Iout,Peak [mA] AP1154ADL25 Iout,Peak vs RPCL 1000 800 600 1000 800 600 400 400 200 200 0 0 100 1k 10k 100 RPCL [Ω] 1k 10k RPCL [Ω] * Iout,Peak : Output current at 10% drop from typical output voltage. Rev.0.1 - 23 - 2014/07 [AP1154ADLXX] Relation between RPCL and IoutPeak has variation based on the supply voltage and the ambient temperature. Please ensure the suitable value on the environment. AP1154ADL25 Iout,Peak vs RPCL with Vin Ta=25C 1400 Iout,Peak [mA] 1400 1000 800 Ta=25C 1600 Vin=4.5V 3.5V 1200 Iout,Peak [mA] AP1154ADL50 Iout,Peak vs RPCL with Vin 3.0V 600 400 Vin=7.0V 6.0V 1200 1000 800 5.5V 600 400 200 200 0 0 100 1k 10k 100 1k AP1154ADL25 Iout,Peak vs RPCL with Ta Vin=Vouttyp+1V 1600 1400 Ta=85C 1200 0C Iout,Peak [mA] Iout,Peak [mA] AP1154ADL50 Iout,Peak vs RPCL with Ta Vin=Vouttyp+1V 1400 1000 800 -40C 600 400 1200 Ta=85C 0C 1000 800 -40C 600 400 200 200 0 0 100 1k 10k 100 1k RPCL [Ω] 1200 1200 100Ω 1000 800 500Ω 600 1kΩ 400 2kΩ 200 5kΩ 10kΩ 0 -40 -20 0 20 40 60 80 Vin=Vouttyp+1V 1400 Iout,Peak [mA] Iout,Peak [mA] AP1154ADL50 Iout,Peak vs Ta with RPCL Vin=Vouttyp+1V 1400 10k RPCL [Ω] AP1154ADL25 Iout,Peak vs Ta with RPCL 100Ω 1000 800 500Ω 600 1kΩ 400 2kΩ 200 5kΩ 10kΩ 0 100 -40 Ta [C] Rev.0.1 10k RPCL [Ω] RPCL [Ω] -20 0 20 40 60 80 100 Ta [C] - 24 - 2014/07 [AP1154ADLXX] 11.8 Stability The standard capacitor recommended for use on the output side is a ceramic capacitor equal to or greater than 1.0F. For operations at 2.4V or less, use at least a 2.2F capacitor. Unstable Area Stable Area Figure 2. Stable operation area (COut≥0.47F) Figure 2 indicates that operation is stable in the entire current range with a resistance of 1 or less (equivalent series resistance or ‘ESR’) connected in series to the output capacitor. Generally, the ESR of a ceramic capacitor is very low (several tens of m), and no problems should arise in actual use. If an application requires use of a large ESR capacitor, connecting a ceramic capacitor with low ESR in parallel will enable operations at this level. When parallel output capacitors are used, be sure to position the ceramic capacitor as close to the IC as possible. The other capacitor connected in parallel may be located away from the IC. The IC will not be damaged by the increased capacitance. Input capacitors are necessary when the power supply impedance increases due to battery depletion or when the line to the power supply is particularly long. There is no general rule that can be used to determine the required number of capacitors used for such purposes. In some cases, only one capacitor is necessary for several regulator ICs. In some cases, one capacitor is required for each IC. To determine the required number of capacitors in a specific application, be sure to verify operation with all parts in the installed configuration. Ceramic capacitors normally have specific temperature and voltage characteristics. Be sure to take the operating voltage and temperature into consideration when selecting parts for use. We recommend parts featuring B characteristics. Figure 3. Example Ceramic Capacitance vs. Bias Voltage, Temperature For evaluation Kyocera : CM05B104K10AB , CM05B224K10AB , CM105B104K16A , CM105B224K16A , CM21B225K10A Murata : GRM36B104K10 , GRM42B104K10 , GRM39B104K25 , GRM39B224K10 , GRM39B105K6.3 Rev.0.1 - 25 - 2014/07 [AP1154ADLXX] 11.9 Operating Region and Power Dissipation Power dissipation capability is limited by the junction temperature that triggers the built-in overheat protection circuit. Therefore, power dissipation capability is regarded as an internal limitation. The package itself does not offer high heat dissipation because of its small size. The package is, however, designed to release heat effectively when mounted on the PCB. Therefore, the heat-dissipation value will vary depending on the material, copper pattern, etc. of the PCB on which the package is mounted. When the regulator loss is large (high ambient temperature, poor heat radiation), the overheat protection circuit is activated. When this occurs, output current cannot be obtained, and an output voltage drop is observed. When the junction temperature reaches the set value, the IC stops operating. However, after the IC has stopped operation and the junction temperature lowers sufficiently, the IC restarts operation immediately. The thermal resistance when mounted on PCB The chip junction temperature during operation is expressed by Tj θ ja PD 25 The junction temperature of the AP1154ADLxx is limited to approximately 145C by the overheat protection circuit. PD is the value observed when the overheat protection circuit is activated. The following example is based on an ambient temperature of 25C. 145 θ ja PD 25 θ ja PD 120 θ ja 120 (°C/W) PD Glass epoxy substrate with double-layer wiring (x=30mm, y=30mm, t=1.0mm, copper pattern thickness: 35m) AP1154ADLXX (HSOP-8) PD is 2400mW. If the temperature exceeds 25C, be sure to derate at -20mW/C. Method of obtaining Pd easily With the output terminal shorted-circuited to GND, gradually increase the input voltage and measure the input current. Slowly increase the input voltage to about 10V. The initial input current value becomes the maximum instantaneous output current value, but gradually lowers as the chip temperature rises, and ultimately reaches a state of thermal equilibrium (through natural air cooling). PD is calculated using the input value for input current and the input voltage value in the equilibrium state. PD VIn I In Procedure (conducted at the time of installation on PCB) 1: Obtain PD ( VIn I In when output is short-circuited). PD (mW) 2: Plot PD on the 25C line. 3: Draw a straight line between PD and the 145C line. 4: Extend a straight-line perpendicular from the point of the designed maximum operating temperature (for example, 75C). 5: Extend a line to the left from the intersection of the derating curve and the line drawn in 4, and read the PD value (this value is DPD). 6: DPD (VIn,MAX VOut ) I Out at 75C 2 PD 5 DPD 3 4 0 25 50 75 100 145 Ta (°C) The maximum operating current at the maximum temperature is as follows: I Out {DPD (VIn,MAX VOut )} Rev.0.1 - 26 - 2014/07 [AP1154ADLXX] Try to achieve maximum heat dissipation in your design in order to minimize the part’s temperature during operation. Generally, lower part temperatures result in higher reliability in operation. Rev.0.1 - 27 - 2014/07 [AP1154ADLXX] 11.10 Operating Region and Power Dissipation It is recommended to turn the regulator off when the circuit following the regulator is not operating. A design with small electric power loss can be implemented. Because the control current is small, it is possible to control it directly by CMOS logic. Control Terminal Voltage (Vcont) Vcont > 1.8V Vcont < 0.35V ON/OFF State ON OFF Parallel Connected ON/OFF Control Vout Vin 5.0V AP1154ADL 3.3V R AP1154ADL 2.5V AP1154ADL On/Off Figure 4. Parallel Connection Example Figure 4 shows the multiple regulators being controlled by a single ON/OFF control signal. There is fear of overheating, because the power loss of the low voltage side (AP1154ADL20) is large. The series resistor (R) is put in the input line of the low output voltage regulator in order to prevent over-dissipation. The voltage dropped across the resistor reduces the large input-to-output voltage across the regulator, reducing the power dissipation in the device. When the thermal sensor works, a decrease of the output voltage, oscillation, etc. may be observed. Rev.0.1 - 28 - 2014/07 [AP1154ADLXX] 12. Definition of term Characteristics Output Voltage (VOut) The output voltage is specified with VIn=VOut,TYP+1V and IOut=5mA. Output Current (IOut) Output current, which can be used continuously (It is the range where overheating protection of the IC does not operate). Maximum output current (IOut,Peak) The rated output current is specified under the condition where the output voltage drops 0.9V times the value specified with IOut=5mA by increasing the output current. The input voltage is set to VOutTYP+1V and the current is pulsed to minimize temperature effect. Dropout Voltage (VDrop) It is the difference between the input voltage and the output voltage when the circuit stops stable operation by decreasing the input voltage. It is measured when the output voltage drops 100mV from its nominal value by decreasing the input voltage gradually. Line Regulation (LinReg) It is the fluctuations of the output voltage value when the input voltage is changed. Load Regulation (LoaReg) It is the fluctuations of the output voltage value when the input voltage is assumed to be V Out,TYP+1V, and the output current is changed. Ripple Rejection (RR) Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is measured with the condition of VIn=VOut,TYP+1.5V. Ripple rejection is the ratio of the ripple content between the output vs. input and is expressed in dB Standby Current (IStandby) Standby current is the current which flows into the regulator when the output is turned off by the control function (VCont=0V). Protections Over Current Protection It is a function to protect the IC by limiting the output current when excessive current flows into the IC, such as the output is connected to GND, etc. Thermal Protection It protects the IC not to exceed the permissible power consumption of the package in case of a large power loss inside the regulator. The output is turned off when the chip reaches around 145°C, but it turns on again when the temperature of the chip decreases. Reverse Voltage Protection Reverse voltage protection prevents damage due to the output voltage being higher than the input voltage. This fault condition can occur when the output capacitor remains charged and the input is reduced to zero, or when an external voltage higher than the input voltage is applied to the output side. Generally, a LDO regulator has a diode in the input direction from an output. If an input falls from an output in an input-GND short circuit etc. and this diode turns on, current will flow for an input terminal from an output terminal. In the case of excessive current, IC may break.In order to prevent this, it is necessary to connect an Schottky Diode etc. outside. This product is equipped with reverse bias over-current prevention, and excessive current does not flow in to IC. Therefore, no need to connect diode outside. Vin Vout GND ESD MM: 200pF 0 200V or over HBM: 100pF 1.5k 2000V or over Rev.0.1 - 29 - 2014/07 [AP1154ADLXX] 13. Recommended External Circuits ■Test Circuit Vin Iin A - Vout Cin Vin Cout Vcont A - Vout V Iout 5mA PCL GND RPCL Vcont 1.8V Figure 5. Test Circuit Rev.0.0 - 30 - 2014/07 [AP1154ADLXX] 14. Package ■ Outline Dimensions ・Unit: mm Mark 8 5 4.4 0.2 AC30 xxxX Green Product Mark 1 4 0.40 0.05 0.1 0 - 0.25 1.45 0.1 4.9 0.2 0.15 0.05 Lot No. 1.27 4 8 5 0.4 0.2 (2.7) 1 6.2 0.3 (2.9) Rev.0.0 - 31 - 2014/07 [AP1154ADLXX] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. Rev.0.0 - 32 - 2014/07