Actel AX125-1BG896M Axcelerator family fpgas Datasheet

v2.7
™
Axcelerator Family FPGAs
u e
Leading-Edge Performance
•
•
•
•
–
350+ MHz System Performance
500+ MHz Internal Performance
High-Performance Embedded FIFOs
700 Mb/s LVDS Capable I/Os
Specifications
•
•
•
•
•
Up to 2 Million Equivalent System Gates
Up to 684 I/Os
Up to 10,752 Dedicated Flip-Flops
Up to 295 kbits Embedded SRAM/FIFO
Manufactured on Advanced 0.15 μm CMOS Antifuse
Process Technology, 7 Layers of Metal
Features
•
•
•
•
•
Single-Chip, Nonvolatile Solution
Up to 100% Resource Utilization with 100% Pin Locking
1.5V Core Voltage for Low Power
Footprint Compatible Packaging
Flexible, Multi-Standard I/Os:
– 1.5V, 1.8V, 2.5V, 3.3V Mixed Voltage Operation
– Bank-Selectable I/Os – 8 Banks per Chip
– Single-Ended I/O Standards: LVTTL, LVCMOS, 3.3V
PCI, and 3.3V PCI-X
– Differential I/O Standards: LVPECL and LVDS
Table 1-1 • Axcelerator Family Product Profile
Device
Capacity (in Equivalent System Gates)
Typical Gates
Modules
Register (R-cells)
Combinatorial (C-cells)
Maximum Flip-Flops
Embedded RAM/FIFO
Number of Core RAM Blocks
Total Bits of Core RAM
Clocks (Segmentable)
Hardwired
Routed
PLLs
I/Os
I/O Banks
Maximum User I/Os
Maximum LVDS Channels
Total I/O Registers
Package
CSP
PQFP
BGA
FBGA
CQFP
CCGA
November 2008
© 2008 Actel Corporation
•
•
•
•
•
•
•
Voltage-Referenced I/O Standards: GTL+, HSTL
Class 1, SSTL2 Class 1 and 2, SSTL3 Class 1 and 2
– Registered I/Os
– Hot-Swap Compliant I/Os (except PCI)
– Programmable Slew Rate and Drive Strength on
Outputs
– Programmable Delay and Weak Pull-Up/Pull-Down
Circuits on Inputs
Embedded Memory:
– Variable-Aspect 4,608-bit RAM Blocks (x1, x2, x4,
x9, x18, x36 Organizations Available)
– Independent, Width-Configurable Read and Write Ports
– Programmable Embedded FIFO Control Logic
Segmentable Clock Resources
Embedded Phase-Locked Loop:
– 14-200 MHz Input Range
– Frequency Synthesis Capabilities up to 1 GHz
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug Capability
with Actel Silicon Explorer II
Boundary-Scan Testing Compliant with IEEE Standard
1149.1 (JTAG)
FuseLock TM Secure Programming Technology
Prevents Reverse Engineering and Design Theft
AX125
125,000
82,000
AX250
250,000
154,000
AX500
500,000
286,000
AX1000
1,000,000
612,000
AX2000
2,000,000
1,060,000
672
1,344
1,344
1,408
2,816
2,816
2,688
5,376
5,376
6,048
12,096
12,096
10,752
21,504
21,504
4
18,432
12
55,296
16
73,728
36
165,888
64
294,912
4
4
8
4
4
8
4
4
8
4
4
8
4
4
8
8
168
84
504
8
248
124
744
8
336
168
1,008
8
516
258
1,548
8
684
342
2,052
208
208
256, 484
208, 352
484, 676
208, 352
729
484, 676, 896
352
624
896, 1152
352
624
180
256, 324
i
*See Actel’s website for the latest version of the datasheet.
Axcelerator Family FPGAs
Ordering Information
AX1000 _
1
FG
G
896
I
Application
Blank = Commercial (0 to +70° C)
PP = Pre-Production
I = Industrial (-40 to +85° C)
M = Military (-55 to +125° C)
B = MIL-STD-883 Class B
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G= RoHS-Compliant Packaging
Package Type
BG = Ball Grid Array (1.27mm pitch)
FG = Fine Ball Grid Array (1.0mm pitch)
CS = Chip Scale Package (0.8mm pitch)
PQ = Plastic Quad Flat Pack (0.5mm pitch)
CQ = Ceramic Quad Flat Pack (0.5mm pitch)
CG = Ceramic Column Grid Array
Speed Grade
Blank = Standard Speed
1 = Approximately 15% Faster than Standard
2 = Approximately 25% Faster than Standard
Part Number
AX125 = 125,000 Equivalent System Gates
AX250 = 250,000 Equivalent System Gates
AX500 = 500,000 Equivalent System Gates
AX1000 = 1,000,000 Equivalent System Gates
AX2000 = 2,000,000 Equivalent System Gates
Device Resources
User I/Os (Including Clock Buffers)
Package
AX125
AX250
AX500
AX1000
AX2000
CS180
98
–
–
–
–
PQ208
–
115
115
–
–
CQ208
–
115
115
–
–
FG256
138
138
–
–
–
FG324
168
–
–
–
–
CQ352
–
198
198
198
198
FG484
–
248
317
317
–
CG624
–
–
–
418
418
FG676
–
–
336
418
–
BG729
–
–
–
516
–
FG896
–
–
–
516
586
FG1152
–
–
–
–
684
Note: The FG256, FG324, and FG484 are footprint compatible with one another. The FG676, FG896, and FG1152 are also footprint
compatible with one another.
ii
v2.7
Axcelerator Family FPGAs
Temperature Grade Offerings
Package
AX125
AX250
AX500
AX1000
AX2000
CS180
C, I
–
–
–
–
PQ208
–
C, I, M
C, I, M
–
–
CQ208
–
M, B
M, B
–
–
FG256
C, I
C, I, M
–
–
–
FG324
C, I
–
–
–
–
CQ352
–
M, B
M, B
M, B
M, B
FG484
–
C, I, M
C, I, M
C, I, M
–
CG624
–
–
–
M, B
M, B
FG676
–
–
C, I, M
C, I, M
–
BG729
–
–
–
C, I, M
–
FG896
–
–
–
C, I, M
C, I, M
FG1152
–
–
–
–
C, I, M
Notes:
1.
2.
3.
4.
C = Commercial
I = Industrial
M = Military
B = MIL-STD-883 Class B
Speed Grade and Temperature Grade Matrix
Std
–1
–2
C
✓
✓
✓
I
✓
✓
✓
M
✓
✓
–
B
✓
✓
–
Notes:
5.
6.
7.
8.
C = Commercial
I = Industrial
M = Military
B = MIL-STD-883 Class B
Packaging Data
Refer to the following documents located on the Actel website for additional packaging information.
Package Mechanical Drawings
Package Thermal Characteristics and Weights
Hermatic Package Mechanical Information
Contact your local Actel representative for device availability.
v2.7
iii
Axcelerator Family FPGAs
Table of Contents
General Description
Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Programmable Interconnect Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Low Power (LP) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
In-System Diagnostic and Debug Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Detailed Specifications
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Voltage-Referenced I/O Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Differential Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
Routing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
Global Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
Axcelerator Clock Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
Package Pin Assignments
180-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
729-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
324-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
676-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36
896-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-49
iv
v2.7
Axcelerator Family FPGAs
Table of Contents
1152-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83
352-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-88
624-Pin CCGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-102
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
v2.7
v
Axcelerator Family FPGAs
General Description
Axcelerator offers high performance at densities of up to
two million equivalent system gates. Based upon the
Actel AX architecture, Axcelerator has several systemlevel features such as embedded SRAM (with complete
FIFO control logic), PLLs, segmentable clocks, chip-wide
highway routing, and carry logic.
page 1-2). This completely eliminates the channels of
routing and interconnect resources between logic
modules (as implemented on traditional FPGAs) and
enables the efficient sea-of-modules architecture. The
antifuses are normally open circuit and, when
programmed, form a permanent, passive, lowimpedance connection, leading to the fastest signal
propagation in the industry. In addition, the extremely
small size of these interconnect elements gives the
Axcelerator family abundant routing resources.
Device Architecture
Actel's AX architecture, derived from the highlysuccessful SX-A sea-of-modules architecture, has been
designed for high performance and total logic module
utilization (Figure 1-1). Unlike in traditional FPGAs, the
entire floor of the Axcelerator device is covered with a
grid of logic modules, with virtually no chip area lost to
interconnect elements or routing.
The very nature of Actel's nonvolatile antifuse
technology provides excellent protection against design
pirating and cloning (FuseLock technology). Cloning is
impossible (even if the security fuse is left
unprogrammed) as no bitstream or programming file is
ever downloaded or stored in the device. Reverse
engineering is virtually impossible due to the difficulty of
trying to distinguish between programmed and
unprogrammed antifuses and also due to the
programming methodology of antifuse devices (see
"Security" on page 2-90).
Programmable Interconnect
Element
The Axcelerator family uses a patented metal-to-metal
antifuse programmable interconnect element that resides
between the upper two layers of metal (Figure 1-2 on
Routing
Switch
Matrix
Logic Block
Sea-of-Modules
Architecture
Traditional FPGA
Architecture
Logic
Modules
Figure 1-1 • Sea-of-Modules Comparison
v2.7
1-1
Axcelerator Family FPGAs
Figure 1-2 • Axcelerator Family Interconnect Elements
Logic Modules
Actel's Axcelerator family provides two types of logic
modules: the register cell (R-cell) and the combinatorial
cell (C-cell). The
can implement more than 4,000 combinatorial functions
of up to five inputs (Figure 1-3 on page 1-3).
The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and active-low enable control
signals (Figure 1-3 on page 1-3). The R-cell registers
feature programmable clock polarity selectable on a
register-by-register basis. This provides additional
flexibility (e.g., easy mapping of dual-data-rate functions
into the FPGA) while conserving valuable clock resources.
The clock source for the R-cell can be chosen from the
hardwired clocks, routed clocks, or internal logic.
Two C-cells, a single R-cell, and two Transmit (TX) and two
Receive (RX) routing buffers form a Cluster, while two
Clusters comprise a SuperCluster (Figure 1-4 on page 1-3).
Each SuperCluster also contains an independent Buffer (B)
module, which supports buffer insertion on high-fanout
nets by the place-and-route tool, minimizing system
delays while improving logic utilization.
1 -2
v2.7
The logic modules within the SuperCluster are arranged
so that two combinatorial modules are side-by-side,
giving a C–C–R – C–C–R pattern to the SuperCluster. This
C–C–R pattern enables efficient implementation
(minimum delay) of two-bit carry logic for improved
arithmetic performance (Figure 1-5 on page 1-3).
The AX architecture is fully fracturable, meaning that if
one or more of the logic modules in a SuperCluster are
used by a particular signal path, the other logic modules
are still available for use by other paths.
At the chip level, SuperClusters are organized into core
tiles, which are arrayed to build up the full chip. For
example, the AX1000 is composed of a 3x3 array of nine
core tiles. Surrounding the array of core tiles are blocks
of I/O Clusters and the I/O bank ring (Table 1-1 on
page 1-3). Each core tile consists of an array of 336
SuperClusters and four SRAM blocks (176 SuperClusters
and three SRAM blocks for the AX250). The SRAM blocks
are arranged in a column on the west side of the tile
(Figure 1-6 on page 1-4).
Axcelerator Family FPGAs
FCI
A[1:0]
B[1:0]
C-cell
D[3:0]
DB
D
E
CLK
Y
PSET
Q
CLR
CFN
(Positive Edge Triggered)
FCO
C-Cell
R-Cell
Figure 1-3 • AX C-Cell and R-Cell
C
C
R
TX
TX
RX
RX
B
TX
TX
RX
RX
C
C
R
Figure 1-4 • AX SuperCluster
FCI
DCOUT
C-Cell
C-Cell
Y
Y
Carry Logic
FCO
Figure 1-5 • AX 2-bit Carry Logic
Table 1-1 • Number of Core Tiles per Device
Device
Number of Core Tiles
AX125
1 regular tile
AX250
4 smaller tiles
AX500
4 regular tiles
AX1000
9 regular tiles
AX2000
16 regular tiles
v2.7
1-3
Axcelerator Family FPGAs
SuperCluster
C
4k
RAM/
FIFO
4k
RAM/
FIFO
Chip Layout
4k
RAM/
FIFO
4k
RAM/
FIFO
C
R
TX
TX
RX
RX
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
HD
HD
HD
HD
HD
HD
HD
HD
HD
HD
HD
HD
HD
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
RAMC
SC
SC
SC
SC
SC
SC
RD
SC
SC
SC
SC
SC
SC
SC
SCTile
SC
Core
B
TX
TX
RX
RX
C
C
R
SC
I/O Structure
See Figure 7
Figure 1-6 • AX Device Architecture (AX1000 shown)
Embedded Memory
As mentioned earlier, each core tile has either three (in a
smaller tile) or four (in the regular tile) embedded SRAM
blocks along the west side, and each variable-aspectratio SRAM block is 4,608 bits in size. Available memory
configurations are: 128x36, 256x18, 512x9, 1kx4, 2kx2 or
4kx1 bits. The individual blocks have separate read and
write ports that can be configured with different bit
widths on each port. For example, data can be written in
by eight and read out by one.
In addition, every SRAM block has an embedded FIFO
control unit. The control unit allows the SRAM block to
be configured as a synchronous FIFO without using core
logic modules. The FIFO width and depth are
programmable. The FIFO also features programmable
ALMOST-EMPTY (AEMPTY) and ALMOST-FULL (AFULL)
flags in addition to the normal EMPTY and FULL flags. In
addition to the flag logic, the embedded FIFO control
unit also contains the counters necessary for the
generation of the read and write address pointers as well
1 -4
v2.7
as control circuitry to prevent metastability and
erroneous operation. The embedded SRAM/FIFO blocks
can be cascaded to create larger configurations.
I/O Logic
The Axcelerator family of FPGAs features a flexible I/O
structure, supporting a range of mixed voltages with its
bank-selectable I/Os: 1.5V, 1.8V, 2.5V, and 3.3V. In all,
Axcelerator FPGAs support at least 14 different I/O
standards (single-ended, differential, voltage-referenced).
The I/Os are organized into banks, with eight banks per
device (two per side). The configuration of these banks
determines the I/O standards supported (see "User I/Os"
on page 2-10 for more information). All I/O standards are
available in each bank.
Each I/O module has an input register (InReg), an output
register (OutReg), and an enable register (EnReg)
(Figure 1-7 on page 1-5). An I/O Cluster includes two I/O
modules, four RX modules, two TX modules, and a buffer
(B) module.
Axcelerator Family FPGAs
I/O Module
InReg
OutReg
EnReg
I
O
B
A
N
K
4k
RAM/
FIFO
I/O
Module
TX
RX
RX
TX
B
RX
RX
I/O
Module
I/O Cluster
4k
RAM/
FIFO
4k
RAM/
FIFO
CoreTile
4k
RAM/
FIFO
Figure 1-7 • I/O Cluster Arrangement
Routing
The next level contains the core tile routing. Over the
SuperClusters within a core tile, both vertical and
horizontal tracks run across rows or columns,
respectively. At the chip level, vertical and horizontal
tracks extend across the full length of the device, both
north-to-south and east-to-west. These tracks are
composed of highway routing that extend the entire
length of the device (segmented at core tile boundaries)
as well as segmented routing of varying lengths.
The AX hierarchical routing structure ties the logic
modules, the embedded memory blocks, and the I/O
modules together (Figure 1-8 on page 1-6). At the lowest
level, in and between SuperClusters, there are three local
routing structures: FastConnect, DirectConnect, and
CarryConnect routing. DirectConnects provide the highest
performance routing inside the SuperClusters by
connecting a C-cell to the adjacent R-cell. DirectConnects
do not require an antifuse to make the connection and
achieve a signal propagation time of less than 0.1 ns.
Global Resources
FastConnects provide high-performance, horizontal
routing inside the SuperCluster and vertical routing to
the SuperCluster immediately below it. Only one
programmable connection is used in a FastConnect path,
delivering a maximum routing delay of 0.4 ns.
Each family member has three types of global signals
available to the designer: HCLK, CLK, and GCLR/GPSET.
There are four hardwired clocks (HCLK) per device that
can directly drive the clock input of each R-cell. Each of
the four routed clocks (CLK) can drive the clock, clear,
preset, or enable pin of an R-cell or any input of a C-cell
(Figure 1-3 on page 1-3).
CarryConnects are used for routing carry logic between
adjacent SuperClusters. They connect the FCO output of
one two-bit, C-cell carry logic to the FCI input of the twobit, C-cell carry logic of the SuperCluster below it.
CarryConnects do not require an antifuse to make the
connection and achieve a signal propagation time of less
than 0.1 ns.
Global clear (GCLR) and global preset (GPSET) drive the
clear and preset inputs of each R-cell as well as each I/O
Register on a chip-wide basis at power-up.
Each HCLK and CLK has an associated analog PLL (a total
of eight per chip). Each embedded PLL can be used for
clock delay minimization, clock delay adjustment, or
clock frequency synthesis. The PLL is capable of
v2.7
1-5
Axcelerator Family FPGAs
Figure 1-8 • AX Routing Structures
operating with input frequencies ranging from 14 MHz
to 200 MHz and can generate output frequencies
between 20 MHz and 1 GHz. The clock can be either
divided or multiplied by factors ranging from 1 to 64.
Additionally, multiply and divide settings can be used in
any combination as long as the resulting clock frequency
is between 20 MHz and 1 GHz. Adjacent PLLs can be
cascaded to create complex frequency combinations.
The PLL can be used to introduce either a positive or a
negative clock delay of up to 3.75 ns in 250 ps
increments. The reference clock required to drive the PLL
can be derived from three sources: external input pad
(either single-ended or differential), internal logic, or the
output of an adjacent PLL.
Low Power (LP) Mode
The AX architecture was created for high-performance
designs but also includes a low power mode (activated via
the LP pin). When the low power mode is activated, I/O
banks can be disabled (inputs disabled, outputs tristated),
and PLLs can be placed in a power-down mode. All
internal register states are maintained in this mode.
Furthermore, individual I/O banks can be configured to
opt out of the LP mode, thereby giving the designer access
to critical signals while the rest of the chip is in low power
mode.
The power can be further reduced by providing an
external voltage source (VPUMP) to the device to bypass
the internal charge pump (See "Low Power Mode" on
page 2-89 for more information).
1 -6
v2.7
Design Environment
The Axcelerator family of FPGAs is fully supported by both
Actel's Libero™ Integrated Design Environment and
Designer FPGA Development software. Actel Libero IDE is
an integrated design manager that seamlessly integrates
design tools while guiding the user through the design
flow, managing all design and log files, and passing
necessary design data among tools. Additionally, Libero
IDE allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design in
a single environment (see the Libero IDE Flow diagram
located on Actel’s website). Libero IDE includes Synplify®
Actel Edition (AE) from Synplicity®, ViewDraw® AE from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ AE from
SynaptiCAD®, and Designer software from Actel.
Actel's Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
the following:
•
•
•
•
•
•
Timer – a world-class integrated static timing analyzer
and constraints editor which support timing-driven
place-and-route
NetlistViewer – a design netlist schematic viewer
ChipPlanner – a graphical floorplanner viewer and editor
SmartPower – allows the designer to quickly estimate
the power consumption of a design
PinEditor – a graphical application for editing pin
assignments and I/O attributes
I/O Attribute Editor – displays all assigned and
unassigned I/O macros and their attributes in a
spreadsheet format
Axcelerator Family FPGAs
In-System Diagnostic and Debug
Capabilities
With the Designer software, a user can lock the design
pins before layout while minimally impacting the results
of place-and-route. Additionally, Actel’s back-annotation
flow is compatible with all the major simulators and the
simulation results can be cross-probed with Silicon
Explorer II, Actel’s integrated verification and logic
analysis tool. Another tool included in the Designer
software is the SmartGen core generator, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design.
The Axcelerator family of FPGAs includes internal probe
circuitry, allowing the designer to dynamically observe
and analyze any signal inside the FPGA without disturbing
normal device operation. Up to four individual signals can
be brought out to dedicated probe pins (PRA/B/C/D) on
the device. The probe circuitry is accessed and controlled
via Silicon Explorer II (Figure 1-9), Actel's integrated
verification and logic analysis tool that attaches to the
serial port of a PC and communicates with the FPGA via
the JTAG port (See "Silicon Explorer II Probe Interface"
on page 2-91).
Actel's Designer software is compatible with the most
popular FPGA design entry and verification tools from
EDA vendors, such as Mentor Graphics, Synplicity,
Synopsys, and Cadence Design Systems. The Designer
software is available for both the Windows and UNIX
operating systems.
Summary
Programming
Actel’s Axcelerator family of FPGAs extends the
successful SX-A architecture, adding embedded RAM/
FIFOs, PLLs, and high-speed I/Os. With the support of a
suite of robust software tools, design engineers can
incorporate high gate counts and fixed pins into an
Axcelerator design yet still achieve high performance
and efficient device utilization.
Programming support is provided through Actel's Silicon
Sculptor II, a single-site programmer driven via a PCbased GUI. In addition, BP Microsystems offers multi-site
programmers that provide qualified support for Actel
devices. Factory programming is available for highvolume production needs.
Axcelerator FPGAs
16 Pin
Connection
TDI
TCK
Serial
Connection
TMS
Silicon Explorer II
TDO
PRA
PRB
22 Pin
Connection
CH3/PRC
CH4/PRD
Additional 14 Channels
(Logic Analyzer)
Figure 1-9 • Probe Setup
v2.7
1-7
Axcelerator Family FPGAs
Related Documents
Application Notes
Simultaneous Switching Noise and Signal Integrity
http://www.actel.com/documents/SSN_AN.pdf
Axcelerator Family PLL and Clock Management
http://www.actel.com/documents/AX_PLL_AN.pdf
Implementing DDR Transmit in Axcelerator
http://www.actel.com/documents/AX_DDR_AN.pdf
Implementation of Security in Actel Antifuse FPGAs
http://www.actel.com/documents/Antifuse_Security_AN.pdf
User’s Guides and Manuals
Antifuse Macro Library Guide
http://www.actel.com/documents/libguide_UG.pdf
SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder
http://www.actel.com/documents/genguide_ug.pdf
Silicon Sculptor II User’s Guide
http://www.actel.com/techdocs/manuals/default.asp
White Paper
Design Security in Nonvolatile Flash and Antifuse FPGAs
http://www.actel.com/documents/DesignSecurity_WP.pdf
Understanding Actel Antifuse Device Security
http://www.actel.com/documents/AntifuseSecurity_WP.pdf
Miscellaneous
Libero IDE flow diagram
http://www.actel.com/products/tools/libero/flow.html
1 -8
v2.7
Axcelerator Family FPGAs
Detailed Specifications
Operating Conditions
Table 2-1 lists the absolute maximum ratings of Axcelerator devices. Stresses beyond the ratings may cause permanent
damage to the device. Exposure to Absolute Maximum rated conditions for extended periods may affect device
reliability. Devices should not be operated outside the recommendations in Table 2-2.
Table 2-1 • Absolute Maximum Ratings
Symbol
Parameter
Limits
Units
VCCA
DC Core Supply Voltage
–0.3 to 1.6
V
VCCI
DC I/O Supply Voltage
–0.3 to 3.75
V
VREF
DC I/O Reference Voltage
–0.3 to 3.75
V
VI
Input Voltage
–0.5 to 3.75
V
VO
Output Voltage
–0.5 to 3.75
V
TSTG
Storage Temperature
–60 to +150
°C
VCCDA*
Supply Voltage for Differential I/Os
–0.3 to 3.75
V
Note: * Should be the maximum of all VCCI.
Table 2-2 •
Recommended Operating Conditions
Parameter Range
Commercial
Industrial
Military
Units
Ambient Temperature (TA)1
0 to +70
–40 to +85
–55 to +125
°C
1.5V Core Supply Voltage
1.425 to 1.575
1.425 to 1.575
1.425 to 1.575
V
1.5V I/O Supply Voltage
1.425 to 1.575
1.425 to 1.575
1.425 to 1.575
V
1.8V I/O Supply Voltage
1.71 to 1.89
1.71 to 1.89
1.71 to 1.89
V
2.5V I/O Supply Voltage
2.375 to 2.625
2.375 to 2.625
2.375 to 2.625
V
3.3V I/O Supply Voltage
3.0 to 3.6
3.0 to 3.6
3.0 to 3.6
V
VCCDA Supply Voltage
3.0 to 3.6
3.0 to 3.6
3.0 to 3.6
V
VPUMP Supply Voltage
3.0 to 3.6
3.0 to 3.6
3.0 to 3.6
V
Notes:
1. Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.
2. TJ max = 125°C
Power-Up/Down Sequence
All Axcelerator I/Os are tristated during power-up until normal device operating conditions are reached, when I/Os
enter user mode. VCCDA should be powered up before (or coincidentally with) VCCA and VCCI to ensure the behavior of
user I/Os at system start-up. Conversely, VCCDA should be powered down after (or coincidentally with) VCCA and VCCI.
Note that VCCI and VCCA can be powered up in any sequence with respect to each other, provided the requirement
with respect to VCCDA is satisfied.
v2.7
2-1
Axcelerator Family FPGAs
Calculating Power Dissipation
Table 2-3 • Standby Current
ICCA
ICCDA
ICCBANK
ICCPLL
Standby Current per
Standby
I/O Bank
Standby
Current,
Current Differential
(Core)
I/O
2.5V VCCI 3.3V VCCI
ICCCP
Standby Current,
Charge Pump
Standby
Current
per PLL
Active
Bypassed
Mode
Units
Device
Temperature
AX125
Typical at 25°C
1.5
1.5
0.2
0.3
0.2
0.3
0.01
70°C
15
6
0.5
0.75
1
0.4
0.01
mA
85°C
25
6
0.6
0.8
1
0.4
0.2
mA
125°C
50
8
1
1.5
2
0.4
0.5
mA
Typical at 25°C
1.5
1.4
0.25
0.4
0.2
0.3
0.01
mA
70°C
30
7
0.8
0.9
1
0.4
0.01
mA
85°C
40
7
0.8
1
1
0.4
0.2
mA
mA
AX250
AX500
AX1000
AX2000
mA
125°C
70
9
1.3
1.8
2
0.4
0.5
Typical at 25°C
5
1.4
0.4
0.75
0.2
0.3
0.01
mA
70°C
60
7
1
1.5
1
0.4
0.01
mA
85°C
80
7
1
1.9
1
0.4
0.2
mA
125°C
180
9
1.75
2.5
1.5
0.4
0.5
mA
Typical at 25°C
7.5
1.5
0.5
1.25
0.2
0.3
0.01
mA
70°C
80
8
1.5
3
1
0.4
0.01
mA
85°C
120
8
1.5
3.4
1
0.4
0.2
mA
125°C
200
10
3
4
1.5
0.4
0.5
mA
Typical at 25°C
20
1.6
0.7
1.5
0.2
0.3
0.01
mA
70°C
160
10
2
7
1
0.4
0.01
mA
85°C
200
10
3
8
1
0.4
0.2
mA
125°C
500
15
4
10
1.5
0.4
0.5
mA
Note: ICCCP Active is the ICCDA or the Internal Charge Pump current. ICCCP Bypassed mode is the External Charge Pump current IIH (VPUMP
pin).
Table 2-4 •
Default CLOAD/VCCI
CLOAD (pF)
VCCI (V)
PLOAD (μw/MHz)
P10 (μw/MHz)
PI/O (μW/MHz)*
LVTTL 24mA High Slew
35
3.3
381.2
262.6
643.7
LVTTL 16mA High Slew
35
3.3
381.2
220.1
601.3
LVTTL 12mA High Slew
35
3.3
381.2
160.9
542.1
LVTTL 8mA High Slew
35
3.3
381.2
125.4
506.5
LVTTL 24mA Low Slew
35
3.3
381.2
164.2
545.4
LVTTL 16mA Low Slew
35
3.3
381.2
145.9
527.0
LVTTL 12mA Low Slew
35
3.3
381.2
133.6
514.8
LVTTL 8mA Low Slew
35
3.3
381.2
113.8
494.9
LVCMOS – 25
35
2.5
218.8
143.2
361.9
35
1.8
113.4
68.7
182.1
Single-Ended without VREF
LVCMOS – 18
Note: *PI/O = P10 +
2 -2
CLOAD *VCCI2
v2.7
Axcelerator Family FPGAs
Table 2-4 •
Default CLOAD/VCCI (Continued)
CLOAD (pF)
VCCI (V)
PLOAD (μw/MHz)
P10 (μw/MHz)
PI/O (μW/MHz)*
LVCMOS - 15 (JESD8-11)
35
1.5
78.8
44.9
123.6
PCI
10
3.3
108.9
213.5
322.4
PCI-X
10
3.3
108.9
158.0
266.9
HSTL-I
20
1.5
-
36.8
36.8
SSTL2-I
30
2.5
-
166.9
166.9
SSTL2-II
30
2.5
-
143.5
143.5
SSTL3-I
30
3.3
-
322.8
322.8
SSTL3-II
30
3.3
-
284.0
284.0
GTLP - 25
10
2.5
-
TBD
TBD
GTLP - 33
10
3.3
-
TBD
TBD
N/A
3.3
-
255.1
255.1
N/A
2.5
-
140.4
140.4
Single-Ended with VREF
Differential
LVPECL - 33
LVDS - 25
Note: *PI/O = P10 +
Table 2-5 •
CLOAD *VCCI2
Different Components Contributing to the Total Power Consumption in Axcelerator Devices
Device Specific Value (in µW/MHz)
Component
Definition
AX125 AX250 AX500 AX1000
AX2000
P1
Core tile HCLK power component
33
49
71
130
216
P2
R-cell power component
0.2
0.2
0.2
0.2
0.2
P3
HCLK signal power dissipation
4.5
4.5
9
13.5
18
P4
Core tile RCLK power component
33
49
71
130
216
P5
R-cell power component
0.3
0.3
0.3
0.3
0.3
P6
RCLK signal power dissipation
6.5
6.5
13
19.5
26
P7
Power dissipation due to the switching activity on the R-cell
1.6
1.6
1.6
1.6
1.6
P8
Power dissipation due to the switching activity on the C-cell
1.4
1.4
1.4
1.4
1.4
P9
Power component associated with the input voltage
10
10
10
10
10
P10
Power component associated with the output voltage
P11
Power component associated with the read operation in the RAM
block
25
25
25
25
25
P12
Power component associated with the write operation in the RAM
block
30
30
30
30
30
P13
Core PLL power component
1.5
1.5
1.5
1.5
1.5
v2.7
See table Per pin contribution
2-3
Axcelerator Family FPGAs
Ptotal = Pdc + Pac
Pdc
=
ICCA * VCCA
Pac
=
PHCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory + PPLL
PHCLK = (P1 + P2 * s + P3 * sqrt[s]) * Fs
s
= the number of R-cells clocked by this clock
Fs
= the clock frequency
PCLK = (P4 + P5 * s + P6 * sqrt[s]) * Fs
s
= the number of R-cells clocked by this clock
Fs
= the clock frequency
PR-cells = P7 * ms * Fs
ms
=
the number of R-cells switching at each Fs cycle
Fs
=
the clock frequency
PC-cells = P8 * mc * Fs
mc = the number of C-cells switching at each Fs cycle
Fs
= the clock frequency
Pinputs = P9 * pi * Fpi
pi
= the number of inputs
Fpi
= the average input frequency
Poutputs = PI/O * po * Fpo
Cload
VCCI
po
Fpo
=
=
=
=
the output load (technology dependent)
the output voltage (technology dependent)
the number of outputs
the average output frequency
Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK
Nblock = the number of RAM/FIFO blocks (1 block = 4k)
FRCLK = the read-clock frequency of the memory
FWCLK = the write-clock frequency of the memory
PPLL = P13 * FCLK
FRefCLK = the clock frequency of the clock input of the PLL
FCLK
= the clock frequency of the first clock output of the PLL
2 -4
v2.7
Axcelerator Family FPGAs
Power Estimation Example
This example employs an AX1000 shift-register design with 1,080 R-cells, one C-cell, one reset input, and one LVTTL
12mA Output, with High Slew.
This design uses one HCLK at 100 MHz.
ms
=
1,080 (in a shift register - 100% of R-cells are toggling at each clock cycle)
Fs
s
= 100 MHz
= 1080
=> PHCLK = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 79 mW
and Fs = 100 MHz
=> PR-cells = P7 * ms * Fs = 173 mW
mc = 1 (1 C-cell in this shift-register)
and Fs = 100 MHz
=> PC-cells = P8 * mc * Fs = 0.14 mW
Fpi ~ 0 MHz
and pi= 1 (1 reset input => this is why Fpi=0)
=> Pinputs = P9 * pi * Fpi = 0 mW
Fpo = 50 MHz
and po = 1
=> Poutputs = PI/O * po * Fpo= 27.10 mW
No RAM/FIFO in this shift-register
=> Pmemory = 0 mW
No PLL in this shift-register
=> PPLL = 0 mW
Pac = PHCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory + PPLL = 276 mW
Pdc = 7.5mA * 1.5V = 11.25 mW
Ptotal = Pdc + Pac = 11.25 mW + 276mW = 290.30 mW
v2.7
2-5
Axcelerator Family FPGAs
Thermal Characteristics
Introduction
The temperature variable in Actel’s Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the chip junction
temperature to be higher than the ambient temperature. EQ 2-1 can be used to calculate junction temperature.
ΔT = θja * P
TJ = Junction Temperature = ΔT + Ta
EQ 2-1
Where:
Ta
EQ 2-2
Where:
= Ambient Temperature
ΔT = Temperature gradient
(silicon) and ambient
P
between
= Power
θja = Junction to ambient of package. θja numbers
are located under Table 2-6 on page 2-6.
junction
Package Thermal Characteristics
The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The
thermal characteristics for θja are shown with two different air flow rates. θjc values are provided for reference. The
absolute maximum junction temperature is 125°C.
The maximum power dissipation allowed for commercial- and industrial-grade devices is a function of θja. A sample
calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial
temperature and still air is as follows:
125°C – 70°C
Max. junction temp. (°C) – Max. ambient temp. (°C)
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 4.04 W
13.6°C/W
θ ja (°C/W)
The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function
of θjc.
Table 2-6 • Package Thermal Characteristics
Pin Count
θjc
θja Still Air
θja 1.0m/s
θja 2.5m/s
Units
Chip Scale Package (CSP)
180
N/A
57.8
51.0
50
°C/W
Plastic Quad Flat Pack (PQFP)
208
8.0
26
23.5
20.9
°C/W
Plastic Ball Grid Array (PBGA)
729
2.2
13.7
10.6
9.6
°C/W
Fine Pitch Ball Grid Array (FBGA)
256
3.0
26.6
22.8
21.5
°C/W
Fine Pitch Ball Grid Array (FBGA)
324
3.0
25.8
22.1
20.9
°C/W
Fine Pitch Ball Grid Array (FBGA)
484
3.2
20.5
17.0
15.9
°C/W
Fine Pitch Ball Grid Array (FBGA)
676
3.2
16.4
13.0
12.0
°C/W
Fine Pitch Ball Grid Array (FBGA)
896
2.4
13.6
10.4
9.4
°C/W
Fine Pitch Ball Grid Array (FBGA)
Package Type
1152
1.8
12.0
8.9
7.9
°C/W
1
208
2.0
22
19.8
18.0
°C/W
(CQFP)1
352
2.0
17.9
16.1
14.7
°C/W
624
6.5
8.9
8.5
8
°C/W
Ceramic Quad Flat Pack (CQFP)
Ceramic Quad Flat Pack
Ceramic Column Grid Array (CCGA)2
Notes:
1. θjc for the 208-pin and 352-pin CQFP refers to the thermal resistance between the junction and the bottom of the package.
2. θjc for the 624-pin CCGA refers to the thermal resistance between the junction and the top surface of the package. Thermal
resistance from junction to board (θjb) for CCGA 624 package is 3.4°C/W.
2 -6
v2.7
Axcelerator Family FPGAs
Timing Characteristics
Axcelerator devices are manufactured in a CMOS process, therefore, device performance varies according to
temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating
voltage, maximum operating temperature, and worst-case processing. The derating factors shown in Table 2-7 should
be applied to all timing data contained within this datasheet.
Table 2-7 • Temperature and Voltage Timing Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 1.425V)
Junction Temperature
VCCA
–55°C
–40°C
0°C
25°C
70°C
85°C
125°C
1.4V
0.83
0.86
0.91
0.96
1.02
1.05
1.15
1.425V
0.82
0.84
0.90
0.94
1.00
1.04
1.13
1.5V
0.78
0.80
0.85
0.89
0.95
0.98
1.07
1.575V
0.74
0.76
0.81
0.85
0.90
0.94
1.02
1.6V
0.73
0.75
0.80
0.84
0.89
0.92
1.01
Notes:
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 175°C.
2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.
All timing numbers listed in this datasheet represent sample timing characteristics of Axcelerator devices. Actual
timing delay values are design-specific and can be derived from the Timer tool in Actel’s Designer software after placeand-route.
v2.7
2-7
Axcelerator Family FPGAs
Timing Model
I/O Module
(Nonregistered)
Carry Chain
Combinatorial
Cell
tPY = 2.28 ns
Combinatorial
Cell
I/O
LVPECL
FCO
tPDC = 0.57 ns
I/O
tCCY = 0.61 ns
I/O Module
(Registered)
+
LVPECL
tDP = 1.70 ns
tRD2 = 0.53 ns
Buffer
Module
Combinatorial
Cell
Buffer
Module
tPY = 3.03 ns
Y
tBFPD = 0.12 ns
tPD = 0.74 ns
tICKLQ = 0.67 ns
tSUD = 0.23 ns
tHCKH = 3.03 ns
FMAX (external) = 350 MHz
FMAX (internal) = 870 MHz
D
Q
Combinatorial
I/O Module
Register Cell
Cell
t
tRCO = 0.67 ns
OCLKY = 0.67 ns
Buffer
tRD1 = 0.45 ns
tSUD = 0.23 ns
tSUD = 0.23 ns Module
D Q
D Q
Y
tBPFD = 0.12 ns
tPD = 0.74 ns
tRCO = 0.67 ns
tSUD = 0.23 ns
tPY = 1.01 ns
GTL + 3.3V
tRCKL = 3.08 ns
FMAX (external) = 350 MHz
FMAX (internal) = 870 MHz
Routed Clock
tDP = 1.84 ns
Hardwired or
Routed Clock
LVTTL
Output Drive
Strength = 4 (24mA)
High Slew Rate
Register Cell
I/O Module
(Non- registered)
+
tBFPD = 0.12 ns
tRD1 = 0.45 ns
tRD2 = 0.53 ns
tRD3 = 0.56 ns
Hardwired Clock
LVDS
I/O Module
(Nonregistered)
tHCKL = 3.02 ns
tRCKL = 3.08 ns
Note: Worst case timing data for the AX1000, –2 speed grade
Figure 2-1 • Worst Case Timing Data
Hardwired Clock – Using LVTTL 24mA High
Slew Clock I/O
Routed Clock – Using LVTTL 24mA High Slew
Clock I/O
External Setup
External Setup
= (tDP + tRD2 + tSUD) – tHCKL
= (tDP + tRD2 + tSUD) – tRCKH
= (1.72 + 0.53 + 0.23) – 3.02 = –0.54 ns
= (1.72 + 0.53 + 0.23) – 3.13 = –0.65 ns
Clock-to-Out (Pad-to-Pad)
2 -8
Clock-to-Out (Pad-to-Pad)
= tHCKL + tRCO + tRD1 + tPYs
= tRCKH + tRCO + tRD1 + tPY
= 3.02 + 0.67 + 0.45 + 3.03 = 7.17 ns
= 3.13 + 0.67 + 0.45 + 3.03 = 7.28 ns
v2.7
Axcelerator Family FPGAs
I/O Specifications
Pin Descriptions
Axcelerator Chip
Supply Pins
GND
250 Ω
1.5V Supply
Ground
Low supply voltage.
VCCA
VCCPLX
10µf
0.1µf
Supply Voltage
VCOMPLX
Supply voltage for array (1.5V). See "Operating
Conditions" on page 2-1 for more information.
VCCIBx
Supply Voltage
Figure 2-2 • VCCPLX and VCOMPLX Power Supply Connect
Supply voltage for I/Os. Bx is the I/O Bank ID – 0 to 7. See
"Operating Conditions" on page 2-1 for more
information.
VCCDA
User-Defined Supply Pins
VREF
Reference voltage for I/O banks. VREF pins are configured
by the user from regular I/O pins; VREF pins are not in
fixed locations. There can be one or more VREF pins in an
I/O bank.
Supply Voltage
Supply voltage for the I/O differential amplifier and JTAG
and probe interfaces. See "Operating Conditions" on
page 2-1 for more information. VCCDA should be tied to
3.3V.
Global Pins
VCCPLA/B/C/D/E/F/G/H Supply Voltage
HCLKA/B/C/D
PLL analog power supply (1.5V) for internal PLL. There
are eight in each device. VCCPLA supports the PLL
associated with global resource HCLKA, VCCPLB supports
the PLL associated with global resource HCLKB, etc. The
PLL analog power supply pins should be connected to
1.5V whether PLL is used or not.
Dedicated (Hardwired) Clocks A, B, C
and D
These pins are the clock inputs for sequential modules or
north PLLs. Input levels are compatible with all
supported I/O standards. There is a P/N pin pair for
support of differential I/O standards. Single-ended clock
I/Os can only be assigned to the P side of a paired I/O.
This input is directly wired to each R-cell and offers clock
speeds independent of the number of R-cells being
driven. When the HCLK pins are unused, it is
recommended that they are tied to ground.
VCOMPLA/B/C/D/E/F/G/HSupply Voltage
Compensation reference signals for internal PLL. There
are eight in each device. VCOMPLA supports the PLL
associated with global resource HCLKA, VCOMPLE
supports the PLL associated with global resource CLKE,
etc. (see Figure 2-2 on page 2-9 for correct external
connection to the supply). The VCOMPLX pins should be
left floating if PLL is not used.
VPUMP
Supply Voltage
CLKE/F/G/H
Routed Clocks E, F, G, and H
These pins are clock inputs for clock distribution
networks or south PLLs. Input levels are compatible with
all supported I/O standards. There is a P/N pin pair for
support of differential I/O standards. Single-ended clock
I/Os can only be assigned to the P side of a paired I/O.
The clock input is buffered prior to clocking the R-cells.
When the CLK pins are unused, Actel recommends that
they are tied to ground.
Supply Voltage (External Pump)
In the low power mode, VPUMP will be used to access an
external charge pump (if the user desires to bypass the
internal charge pump to further reduce power). The
device starts using the external charge pump when the
voltage level on VPUMP reaches VIH1. In normal device
operation, when using the internal charge pump, VPUMP
should be tied to GND.
1. When VPUMP = VIH, it shuts off the internal charge pump. See "Low Power Mode" on page 2-89.
v2.7
2-9
Axcelerator Family FPGAs
JTAG/Probe Pins
User I/Os2
PRA/B/C/D
Introduction
Probe A/B/C/D
The Probe pins are used to output data from any userdefined design node within the device (controlled with
Silicon Explorer II). These independent diagnostic pins
can be used to allow real-time diagnostic output of any
signal path within the device. The pins’ probe
capabilities can be permanently disabled to protect
programmed design confidentiality. The probe pins are
of LVTTL output levels.
TCK
Test Clock
Test clock input for JTAG boundary-scan testing and
diagnostic probe (Silicon Explorer II).
TDI
Test Data Input
Serial input for JTAG boundary-scan testing and
diagnostic probe. TDI is equipped with an internal 10 kΩ
pull-up resistor.
TDO
Test Data Output
Serial output for JTAG boundary-scan testing.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1149.1
boundary-scan pins (TCK, TDI, TDO, TRST). TMS is
equipped with an internal 10 kΩ pull-up resistor.
TRST
Boundary Scan Reset Pin
The TRST pin functions as an active-low input to
asynchronously initialize or reset the boundary scan circuit.
The TRST pin is equipped with a 10 kΩ pull-up resistor.
Special Functions
LP
Low Power Pin
The LP pin controls the low power mode of Axcelerator
devices. The device is placed in the low power mode by
connecting the LP pin to logic high. To exit the low
power mode, the LP pin must be set Low. Additionally,
the LP pin must be set Low during chip powering-up or
chip powering-down operations. See "Low Power
Mode" on page 2-89 for more details.
NC
No Connection
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effect on the operation of the device.
The Axcelerator family features a flexible I/O structure,
supporting a range of mixed voltages (1.5V, 1.8V, 2.5V,
and 3.3V) with its bank-selectable I/Os. Table 2-8 on
page 2-11 contains the I/O standards supported by the
Axcelerator family, and Table 2-10 on page 2-11
compares the features of the different I/O standards.
Each I/O provides programmable slew rates, drive
strengths, and weak pull-up and weak pull-down circuits.
I/O standards, except 3.3V PCI and 3.3V PCI-X, are
capable of hot insertion. 3.3V PCI and 3.3V PCI-X are 5V
tolerant with the aid of an external resistor.
The input buffer has an optional user-configurable delay
element. The element can reduce or eliminate the hold
time requirement for input signals registered within the
I/O cell. The value for the delay is set on a bank-wide
basis. Note that the delay WILL be a function of process
variations as well as temperature and voltage changes.
Each I/O includes three registers: an input (InReg), an
output (OutReg), and an enable register (EnReg). I/Os are
organized into banks, and there are eight banks per
device — two per side (Figure 2-6 on page 2-15). Each I/O
bank has a common VCCI, the supply voltage for its I/Os.
For voltage-referenced I/Os, each bank also has a
common reference-voltage bus, VREF. While VREF must
have a common voltage for an entire I/O bank, its
location is user-selectable. In other words, any user I/O in
the bank can be selected to be a VREF.
The location of the VREF pin should be selected according
to the following rules:
• Any pin that is assigned as a VREF can control a
maximum of eight user I/O pad locations in each
direction (16 total maximum) within the same I/O
bank.
• I/O pad locations listed as no connects are counted
as part of the 16 maximum. In many cases, this
leads to fewer than eight user I/O package pins in
each direction being controlled by a VREF pin.
• Dedicated I/O pins (GND, VCCI...) are counted as
part of the 16.
• The two user I/O pads immediately adjacent on each
side of the VREF pin (four in total) may only be used
as an input. The exception is when there is a VCCI/
GND pair separating the VREF pin and the user I/O
pad location.
2. Do not use an external resister to pull the I/O above VCCI for a higher logic “1” voltage level. The desired higher logic “1”
voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above VCCI.
2 -1 0
v2.7
Axcelerator Family FPGAs
The differential amplifier supply voltage VCCDA should be
connected to 3.3V.
A user can gain access to the various I/O standards in
three ways:
• Instantiate specific library macros that represent
the desired specific standard
•
Use generic I/O macros and then use Actel
Designer’s PinEditor to specify the desired I/O
standards (please note that this is not applicable
to differential standards)
• A combination of the first two methods.
Please refer to the I/O Features in Axcelerator Family
Devices application note and the Antifuse Macro Library
Guide for more details.
Table 2-8 • I/O Standards Supported by the Axcelerator Family
Input/Output Supply
Voltage (VCCI)
Input Reference Voltage
(VREF)
Board Termination Voltage
(VTT)
LVTTL
3.3
N/A
N/A
LVCMOS 2.5V
2.5
N/A
N/A
LVCMOS 1.8V
1.8
N/A
N/A
LVCMOS 1.5V (JDEC8-11)
1.5
N/A
N/A
3.3V PCI/PCI-X
3.3
N/A
N/A
I/O Standard
GTL+ 3.3V
3.3
1.0
1.2
GTL+ 2.5V*
2.5
1.0
1.2
HSTL Class 1
1.5
0.75
0.75
SSTL3 Class 1 and II
3.3
1.5
1.5
SSTL2 Class1 and II
2.5
1.25
1.25
LVDS
2.5
N/A
N/A
LVPECL
3.3
N/A
N/A
Note: *2.5V GTL+ is not supported across the full military temperature range.
Table 2-9 • Supply Voltages
VCCA
VCCI
Input Tolerance
Output Drive Level
1.5V
1.5V
3.3V
1.5V
1.5V
1.8V
3.3V
1.8V
1.5V
2.5V
3.3V
2.5V
1.5V
3.3V
3.3V
3.3V
Table 2-10 • I/O Features Comparison
I/O Assignment
Clamp Diode
Hot Insertion
5V Tolerance
1
Input Buffer
Output Buffer
LVTTL
No
Yes
Yes
Enabled/Disabled
3.3V PCI, 3.3V PCI-X
Yes
No
Yes1, 2
Enabled/Disabled
LVCMOS2.5V
No
Yes
No
Enabled/Disabled
LVCMOS1.8V
No
Yes
No
Enabled/Disabled
LVCMOS1.5V (JESD8-11)
No
Yes
No
Enabled/Disabled
Voltage-Referenced Input Buffer
No
Yes
No
Enabled/Disabled
Differential, LVDS/LVPECL, Input
No
Yes
No
Enabled
Disabled3
Differential, LVDS/LVPECL, Output
No
Yes
No
Disabled
Enabled4
Notes:
1.
2.
3.
4.
Can be implemented with an IDT bus switch.
Can be implemented with an external resistor.
The OE input of the output buffer must be deasserted permanently (handled by software).
The OE input of the output buffer must be asserted permanently (handled by software).
v2.7
2-11
Axcelerator Family FPGAs
5V Tolerance
There are two schemes to achieve 5V tolerance:
1. 3.3V PCI and 3.3V PCI-X are the only I/O standards
that directly allow 5V tolerance. To implement this,
an internal clamp diode between the input pad and
the VCCI pad is enabled so that the voltage at the
input pin is clamped as shown in EQ 2-3:
Vinput = VCCI + Vdiode = 3.3V + 0.8V = 4.1V
EQ 2-3
An external series resister (~100Ω) is required between
the input pin and the 5V signal source to limit the
current (Figure 2-3).
Non-Actel Part
Actel FPGA
5V
3.3V
recommends that users not exceed eight simultaneous
switching outputs (SSO) per each VCCI/GND pair. To ease
this potential burden on designers, Actel has designed all
of the Axcelerator BGAs3 to not exceed this limit with
the exception of the CS180, which has an I/O to VCCI/GND
pair ratio of nine to one.
Please refer to the Simultaneous Switching Noise and
Signal Integrity application note for more information.
I/O Banks and Compatibility
Since each I/O bank has its own user-assigned input
reference voltage (VREF) and an input/output supply
voltage (VCCI), only I/Os with compatible standards can
be assigned to the same bank.
Table 2-11 shows the compatible I/O standards for a
common VREF (for voltage-referenced standards).
Similarly, Table 2-12 shows compatible standards for a
common VCCI.
3.3V
PCI
clamp
diode
Table 2-11 • Compatible I/O Standards for Different VREF
Values
Rext
VREF
Figure 2-3 • Use of an External Resistor for 5V Tolerance
2. 5V tolerance can also be achieved with 3.3V I/O
standards (3.3V PCI, 3.3V PCI-X, and LVTTL) using a
bus-switch product (e.g. IDTQS32X2384). This will
convert the 5V signal to a 3.3V signal with minimum
delay (Figure 2-4).
Compatible Standards
1.5V
SSTL 3 (Class I and II)
1.25V
SSTL 2 (Class I and II)
1.0V
GTL+ (2.5V and 3.3V Outputs)
0.75V
HSTL (Class I)
Table 2-12 • Compatible I/O Standards for Different VCCI
Values
VCCI1
Compatible Standards
VREF
3.3V
LVTTL, PCI, PCI-X, LVPECL, GTL+ 3.3V
1.0
3.3V
20X
3.3V
SSTL 3 (Class I and II), LVTTL, PCI, LVPECL
1.5
2.5V
LVCMOS 2.5V, GTL+ 2.5V, LVDS
1.0
3.3V
2.5V
LVCMOS 2.5V, SSTL 2 (Classes I and II), LVDS2
1.25
1.8V
LVCMOS 1.8V
N/A
Figure 2-4 • Bus Switch IDTQS32X2384
1.5V
LVCMOS 1.5V, HSTL Class I
0.75
Simultaneous Switching Outputs (SSO)
Notes:
5V
5V
When multiple output drivers switch simultaneously,
they induce a voltage drop in the chip/package power
distribution. This simultaneous switching momentarily
raises the ground voltage within the device relative to
the system ground. This apparent shift in the ground
potential to a non-zero value is known as simultaneous
switching noise (SSN) or more commonly, ground
bounce.
SSN becomes more of an issue in high pin count
packages and when using high performance devices such
as the Axcelerator family. Based upon testing, Actel
2
1. VCCI is used for both inputs and outputs
2. VCCI tolerance is ±5%
Table 2-13 on page 2-13 summarizes the different
combinations of voltages and I/O standards that can be
used together in the same I/O bank. Note that two I/O
standards are compatible if:
•
Their VCCI values are identical.
•
Their VREF standards are identical (if applicable).
3. The user should note that in Bank 8 of both AX1000-FG484 and AX500-FG484, there are local violations of this 8:1 ratio.
2 -1 2
v2.7
Axcelerator Family FPGAs
For example, if LVTTL 3.3V (VREF= 1.0V) is used, then the
other available (i.e. compatible) I/O standards in the
same bank are LVTTL 3.3V PCI/PCI-X, GTL+, and LVPECL.
Also note that when multiple I/O standards are used
within a bank, the voltage tolerance will be limited to
the minimum tolerance of all I/O standards used in the
bank.
I/O Standard
LVTTL 3.3V
LVCMOS 2.5V
LVCMOS1.8V
LVCMOS1.5V (JESD8-11)
3.3V PCI/PCI-X
GTL + (3.3V)
GTL + (2.5V)
HSTL Class I (1.5V)
SSTL2 Class I & II (2.5V)
SSTL3 Class I & II (3.3V)
LVDS (2.5V)
LVPECL (3.3V)
Table 2-13 • Legal I/O Usage Matrix
LVTTL 3.3V (VREF=1.0V)
✓
–
–
–
✓
✓
–
–
–
–
–
✓
LVTTL 3.3V(VREF=1.5V)
✓
–
–
–
✓
–
–
–
–
✓
–
✓
LVCMOS 2.5V (VREF=1.0V)
–
✓
–
–
–
–
✓
–
–
–
✓
–
LVCMOS 2.5V (VREF=1.25V)
–
✓
–
–
–
–
–
–
✓
–
✓
–
LVCMOS1.8V
–
–
✓
–
–
–
–
–
–
–
–
–
LVCMOS1.5V (VREF=1.75V) (JESD8-11)
–
–
–
✓
–
–
–
✓
–
–
–
–
3.3V PCI/PCI-X (VREF=1.0V)
✓
–
–
–
✓
✓
–
–
–
–
–
✓
3.3V PCI/PCI-X (VREF=1.5V)
✓
–
–
–
✓
–
–
–
–
✓
–
✓
GTL + (3.3V)
✓
–
–
–
✓
✓
–
–
–
–
–
✓
GTL + (2.5V)
–
✓
–
–
–
–
✓
–
–
–
–
–
HSTL Class I
–
–
–
✓
–
–
–
✓
–
–
–
–
SSTL2 Class I & II
–
✓
–
–
–
–
–
–
✓
–
✓
–
SSTL3 Class I & II
✓
–
–
–
✓
–
–
–
–
✓
–
✓
LVDS (VREF=1.0V)
–
✓
–
–
–
–
✓
–
–
–
✓
–
LVDS (VREF=1.25V)
–
✓
–
–
–
–
–
–
✓
–
✓
–
LVPECL (VREF=1.0V)
✓
–
–
–
✓
✓
–
–
–
–
–
✓
LVPECL (VREF=1.5V)
✓
–
–
–
✓
–
–
–
–
✓
–
✓
Notes:
1. Note that GTL+ 2.5V is not supported across the full military temperature range.
2. A "✓" indicates whether standards can be used within a bank at the same time.
Examples:
a) LVTTL can be used with 3.3V PCI and GTL+ (3.3V), when VREF = 1.0V (GTL+ requirement).
b) LVTTL can be used with 3.3V PCI and SSTL3 Class I and II, when VREF = 1.5V (SSTL3 requirement).
v2.7
2-13
Axcelerator Family FPGAs
I/O CLUSTER
routed input track
OEP
routed input track
OutREg
DIN YOUT
routed input track
UOP
output track
Y
InReg
DCIN
BSR
P PAD
routed input track
EnReg
DIN YOUT
UIP
output track
I/O
slew rate
drive strength
programmable delay
FPGA LOGIC CORE
VREF
N PAD
EnReg
DIN YOUT
routed input track
routed input track
OutREg
DIN YOUT
routed input track
output track
Y
InReg
DCIN
OEN
UON
output track
UIN
BSR
routed input track
I/O
slew rate
drive strength
programmable delay
VREF
Figure 2-5 • I/O Cluster Interface
I/O Clusters
Each I/O cluster incorporates two I/O modules, four RX
modules and two TX modules, and a buffer module. In
turn, each I/O module contains one Input Register
(InReg), one Output Register (OutReg), and one Enable
Register (EnReg) (Figure 2-5).
Using an I/O Register
To access the I/O registers, registers must be instantiated
in the netlist and then connected to the I/Os. Usage of
each I/O register (register combining) is individually
controlled and can be selected/deselected using the
PinEditor tool in Actel's Designer software. I/O register
combining can also be controlled at the device level,
affecting all I/Os. Please note, the I/O register option is
deselected by default in any given design.4
In addition, Designer software provides a global option to
enable/disable the usage of registers in the I/Os. This option
is design-specific. The setting for each individual I/O
overrides this global option. Furthermore, the global set
fuse option in the Designer software, when checked, causes
all I/O registers to output logic High at device power-up.
Using the Weak Pull-Up and Pull-Down
Circuits
Each Axcelerator I/O comes with a weak pull-up/down
circuit (on the order of 10 kΩ). I/O macros are provided
for combinations of pull up/down for LVTTL, LVCMOS
(2.5V, 1.8V, and 1.5V) standards. These macros can be
instantiated if a keeper circuit for any input buffer is
required.
Customizing the I/O
•
A five-bit programmable input delay element is
associated with each I/O. The value of this delay is
set on a bank-wide basis (Table 2-14 on page 2-15).
It is optional for each input buffer within the bank
(i.e. the user can enable or disable the delay
element for the I/O). When the input buffer drives a
register within the I/O, the delay element is
4. Please note that register combining for multi fanout nets is not supported.
2 -1 4
v2.7
Axcelerator Family FPGAs
Using the Voltage-Referenced I/O Standards
activated by default to ensure a zero hold-time.
The default setting for this property can be set in
Designer. When the input buffer does not drive a
register, the delay element is deactivated to
provide higher performance. Again, this can be
overridden by changing the default setting for this
property in Designer.
•
The slew-rate value for the LVTTL output buffer
can be programmed and can be set to either slow
or fast.
•
The drive strength value for LVTTL output buffers
can be programmed as well. There are four
different drive strength values – 8mA, 12mA,
16mA, or 24mA – that can be specified in
Designer.5
Using these I/O standards is similar to that of singleended I/O standards. Their settings can be changed in
Designer.
Using DDR (Double Data Rate)
In Double Data Rate mode, new data is present on every
transition of the clock signal. Clock and data lines have
identical bandwidth and signal integrity requirements,
making it very efficient for implementing very highspeed systems.
To implement a DDR, users need to:
1. Instantiate an input buffer (with the required I/O
standard)
2. Instantiate the DDR_REG macro (Figure 2-6)
Table 2-14 • Bank-Wide Delay Values
Bits Setting
Delay (ns)
Bits Setting
3. Connect the output from the Input buffer to the
input of the DDR macro
Delay (ns)
0
0.54
16
2.01
1
0.65
17
2.13
2
0.71
18
2.19
D
PSET
QR
3
0.83
19
2.3
4
0.9
20
2.38
D
5
1.01
21
2.49
6
1.08
22
2.55
CLK
CLR
7
1.19
23
2.67
8
1.27
24
2.75
Figure 2-6 • DDR Register
9
1.39
25
2.87
Macros for Specific I/O Standards
10
1.45
26
2.93
11
1.56
27
3.04
12
1.64
28
3.12
13
1.75
29
3.23
There are different macro types for any I/O standard or
feature that determine the required VCCI and VREF
voltages for an I/O. The generic buffer macros require
the LVTTL standard with slow slew rate and 24mA-drive
strength. LVTTL can support high slew rate but this
should only be used for critical signals.
14
1.81
30
3.29
15
1.93
31
3.41
QF
Most of the macro symbols represent variations of the six
generic symbol types:
Note: Delay values are approximate and will vary with process,
temperature, and voltage.
Using the Differential I/O Standards
Differential I/O macros should be instantiated in the
netlist. The settings for these I/O standards cannot be
changed inside Designer. Please note that there are no
tristated or bidirectional I/O buffers for differential
standards.
•
CLKBUF: Clock Buffer
•
HCLKBUF: Hardwired Clock Buffer
•
INBUF: Input Buffer
•
OUTBUF: Output Buffer
•
TRIBUF: Tristate Buffer
•
BIBUF: Bidirectional Buffer
Other macros include the following:
•
Differential I/O standard macros: The LVDS and
LVPECL macros either have a pair of differential
5. These values are minimum drive strengths.
v2.7
2-15
Axcelerator Family FPGAs
inputs (e.g. INBUF_LVDS) or a pair of differential
outputs (e.g. OUTBUF_LVPECL).
•
Pull-up and pull-down variations of the INBUF,
BIBUF, and TRIBUF macros. These are available
only with TTL and LVCMOS thresholds. They can
be used to model the behavior of the pull-up and
pull-down resistors available in the architecture.
Whenever an input pin is left unconnected, the
output pin will either go high or low rather than
unknown. This allows users to leave inputs
unconnected without having the negative effect
on simulation of propagating unknowns.
•
DDR_REG macro. It can be connected to any I/O
standard input buffers (i.e. INBUF) to implement a
double data rate register. Designer software will
map it to the I/O module in the same way it maps
the other registers to the I/O module.
Table 2-15, Table 2-16 on page 2-17, and Table 2-17 on
page 2-17 list all the available macro names
differentiated by I/O standard, type, slew rate, and drive
strength.
Table 2-15 • Macros for Single-Ended I/O Standards
Standard
VCCI
LVTTL
3.3V
CLKBUF, HCLKBUF
INBUF,
OUTBUF,
OUTBUF_S_8, OUTBUF_S_12, OUTBUF_S_16, OUTBUF_S_24,
OUTBUF_H_8, OUTBUF_H_12, OUTBUF_H_16, OUTBUF_H_24,
TRIBUF,
TRIBUF_S_8, TRIBUF_S_12, TRIBUF_S_16, TRIBUF_S_24,
TRIBUF_H_8, TRIBUF_H_12, TRIBUF_H_16, TRIBUF_H_24,
BIBUF,
BIBUF_S_8, BIBUF_S_12, BIBUF_S_16, BIBUF_S_24,
BIBUF_H_8, BIBUF_H_12, BIBUF_H_16, BIBUF_H_24,
3.3V PCI
3.3V
CLKBUF_PCI, HCLKBUF_PCI,
INBUF_PCI,
OUTBUF_PCI,
TRIBUF_PCI,
BIBUF_PCI
3.3V PCI-X
3.3V
CLKBUF_PCI-X,
HCLKBUF_PCI-X,
INBUF_PCI-X,
OUTBUF_PCI-X,
TRIBUF_PCI-X,
BIBUF_PCI-X
LVCMOS25
2.5V
CLKBUF_LVCMOS25,
HCLKBUF_LVCMOS25,
INBUF_LVCMOS25,
OUTBUF_LVCMOS25,
TRIBUF_LVCMOS25,
BIBUF_LVCMOS25
LVCMOS18
1.8V
CLKBUF_LVCMOS18,
HCLKBUF_LVCMOS18,
INBUF_LVCMOS18,
OUTBUF_LVCMOS18,
TRIBUF_LVCMOS18,
BIBUF_LVCMOS18
LVCMOS15 (JESD8-11)
1.5V
CLKBUF_LVCMOS15,
HCLKBUF_LVCMOS15,
INBUF_LVCMOS15,
OUTBUF_LVCMOS15,
TRIBUF_LVCMOS15,
BIBUF_LVCMOS15
2 -1 6
Macro Names
v2.7
Axcelerator Family FPGAs
Table 2-16 • I/O Macros for Differential I/O Standards
Standard
VCCI
LVPECL
3.3V
CLKBUF_LVPECL, HCLKBUF_LVPECL,
INBUF_LVPECL, OUTBUF_LVPECL,
LVDS
2.5V
CLKBUF_LVDS, HCLKBUF_LVDS,
INBUF_LVDS, OUTBUF_LVDS,
Macro Names
Table 2-17 • I/O Macros for Voltage-Referenced I/O Standards
Standard
VCCI
VREF
Macro Names
GTL+
3.3V
1.0V
CLKBUF_GTP33, HCLKBUF_GTP33, INBUF_GTP33, OUTBUF_GTP33, TRIBUF_GTP33,
BIBUF_GTP33
GTL+
2.5V
1.0V
CLKBUF_GTP25, HCLKBUF_GTP25, INBUF_GTP25, OUTBUF_GTP25, TRIBUF_GTP25,
BIBUF_GTP25
SSTL2 Class I
2.5V
1.25V
CLKBUF_SSTL2_I,
HCLKBUF_SSTL2_I,
TRIBUF_SSTL2_I, BIBUF_SSTL2_I
INBUF_SSTL2_I,
OUTBUF_SSTL2_I,
SSTL2 Class II
2.5V
1.25V
CLKBUF_SSTL2_II,
HCLKBUF_SSTL2_II,
TRIBUF_SSTL2_II, BIBUF_SSTL2_II
INBUF_SSTL2_II,
OUTBUF_SSTL2_II,
SSTL3 Class I
3.3V
1.5V
CLKBUF_SSTL3_I,
HCLKBUF_SSTL3_I,
TRIBUF_SSTL3_I, BIBUF_SSTL3_I
INBUF_SSTL3_I,
OUTBUF_SSTL3_I,
SSTL3 Class II
3.3V
1.5V
CLKBUF_SSTL3_II,
HCLKBUF_SSTL3_II,
TRIBUF_SSTL3_II, BIBUF_SSTL3_II
INBUF_SSTL3_II,
OUTBUF_SSTL3_II,
HSTL Class I
1.5V
0.75V
CLKBUF_HSTL_I, HCLKBUF_HSTL_I, INBUF_HSTL_I, OUTBUF_HSTL_I, TRIBUF_HSTL_I,
BIBUF_HSTL_I
v2.7
2-17
Axcelerator Family FPGAs
User I/O Naming Conventions
Due to the complex and flexible nature of the Axcelerator family’s user I/Os, a naming scheme is used to show the
details of the I/O. The naming scheme explains to which bank an I/O belongs, as well as the pairing and pin polarity for
differential I/Os (Figure 2-7).
GND
V CCDA
V PUMP
V CCI 1
Corner2
I/O BANK 2
I/O BANK 1
AX125
VCCDA
GND
I/O BANK 3
Corner4
I/O BANK 5
GND
VCCDA
VCCI 2
GND
VCCA
GND
GND
VCCDA
I/O BANK 6
GND
V CCDA
GND
I/O BANK 0
GND
VCCI 6
GND
VCCA
GND
VCCA
GND
V COMPLD
V CCPLD
V COMPLC
V CCPLC
VCCDA
GND
V COMPLB
V CCPLB
V COMPLA
V CCPLA
PRB
PRA
V CCI 0
GND
VCCA
Corner1
I/O BANK 7
VCCI 7
GND
VCCA
GND
TDO
TDI
TCK
TMS
TRST
LP
GND
VCCDA
I/O BANK 4
Corner3
VCCI 3
GND
VCCA
GND
GND
VCCDA
GND
V CCDA
V CCI 4
GND
V CCA
GND
V COMPLE
V CCPLE
V COMPLF
V CCPLF
PRC
PRD
V COMPLG
V CCPLG
V COMPLH
V CCPLH
GND
V CCDA
V CCI 5
GND
V CCA
GND
VCCDA
GND
Figure 2-7 • I/O Bank and Dedicated Pin Layout
IOxxXBxFx
Pair number in the
bank, starting at 00,
clockwise from IOB NW
P - Positive Pin/ N- Negative Pin
Bank I/D 0 through 7,
clockwise from IOB NW
Fx refers to an
unimplemented feature
and can be ignored.
Examples:
IO12PB1F1 is the positive pin of the thirteenth pair of the
first I/O bank (IOB NE). IO12PB1 combined
with IO12NB1 form a differential pair.
For those I/Os that can be employed
either as a user I/O or as a special
function, the following nomenclature
is used:
IOxxXBxFx/special_function_name
IOxxPB1Fx/xCLKx this pin can be configured as a clock
input or as a user I/O.
Figure 2-8 • General Naming Schemes
2 -1 8
v2.7
Axcelerator Family FPGAs
I/O Standard Electrical Specifications
Table 2-18 • Input Capacitance
Symbol
Parameter
Conditions
Min.
Max.
Units
CIN
Input Capacitance
VIN=0, f=1.0 MHz
10
pF
CINCLK
Input Capacitance on Clock Pin
VIN=0, f=1.0 MHz
10
pF
IN
PAD
Y
INBUF
Input High
Vtrip
Vtrip
ln
0V
VCCA
50%
50%
Y
GND
t DP
t DP
(Rising)
(Falling)
Figure 2-9 • Input Buffer Delays
OUT Pad
TRIBUF
ln
To AC test loads (shown below)
En
VCCA
50%
VCCA
50%
50%
ln
GND
En
Vtrip
Out
VOH
Out
VOL
VCCA
50%
50%
VCCI/VTT
Vtrip
GND
VTT
Vtrip
VOH
10%
tPY
tPY
(tDLH)
(tDHL)
VOL
tENLZ
50%
En
GND
tENLZ
Out
GND/VTT
tENHZ
Vtrip
90%
tENHZ
VTT
Figure 2-10 • Output Buffer Delays
v2.7
2-19
Axcelerator Family FPGAs
I/O Module Timing Characteristics
Out
Q
D
OutReg
OE
D
Q
IN
EnReg
D
D
Q
Q
InReg
CLK
CLK
(Routed or
Hardwired)
Figure 2-11 • Timing Model
D
tSUD
tHD
CLK
tCPWHL
tICLKQ
tCPWLH
Q
CLR
tHASYN
tREASYN
tWASYN
tCLR
tHASYN
tPRESET
tWASYN
PRESET
tSUE
tHE
E
Figure 2-12 • Input Register Timing Characteristics
2 -2 0
v2.7
tREASYN
Axcelerator Family FPGAs
D
tSUD
tHD
CLK
tCPWHL
tOCLKQ
tCPWLH
Q
CLR
tHASYN
tREASYN
tWASYN
tCLR
tPRESET
tHASYN
tREASYN
tHASYN
tREASYN
tWASYN
PRESET
tSUE
tHE
E
Figure 2-13 • Output Register Timing Characteristics
D
tSUD
tHD
CLK
tCPWHL
tOCLKQ
tCPWLH
Q
CLR
tHASYN
tREASYN
tWASYN
tCLR
tPRESET
tWASYN
PRESET
tSUE
tHE
E
Figure 2-14 • Output Enable Register Timing Characteristics
v2.7
2-21
Axcelerator Family FPGAs
3.3V LVTTL
Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3V applications. It uses an LVTTL
input buffer and push-pull output buffer.
Table 2-19 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
0.8
2.0
3.6
0.4
2.4
24
–24
AC Loadings
R=1k
Test Point
for tpd
Test Point
for tristate
35 pF
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
35 pF for tpzh/tpzl
5 pF for tphz/tplz
Figure 2-15 • AC Test Loads
Table 2-20 • AC Waveforms, Measuring Points, and Capacitive Load
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
0
3.0
1.40
N/A
35
* Measuring Point = Vtrip
Timing Characteristics
Table 2-21 • 3.3V LVTTL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVTTL Output Drive Strength = 1 (8mA) / Low Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
ns
tPY
Output Buffer
14.32
16.31
19.19
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -2 2
v2.7
Axcelerator Family FPGAs
Table 2-21 • 3.3V LVTTL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVTTL Output Drive Strength = 2 (12mA) / Low Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
ns
tPY
Output Buffer
12.18
13.87
16.31
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
ns
LVTTL Output Drive Strength =3 (16mA) / Low Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
tPY
Output Buffer
11.07
12.61
14.83
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
v2.7
2-23
Axcelerator Family FPGAs
Table 2-21 • 3.3V LVTTL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVTTL Output Drive Strength = 4 (24mA) / Low Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
ns
tPY
Output Buffer
10.49
11.95
14.05
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
1.72
1.96
2.31
ns
LVTTL Output Drive Strength = 1 (8mA) / High Slew Rate
tDP
Input Buffer
tPY
Output Buffer
4.26
4.86
5.72
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -2 4
v2.7
Axcelerator Family FPGAs
Table 2-21 • 3.3V LVTTL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVTTL Output Drive Strength = 2 (12mA) / High Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
ns
tPY
Output Buffer
3.34
3.80
4.47
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
1.72
1.96
2.31
ns
LVTTL Output Drive Strength =3 (16mA) / High Slew Rate
tDP
Input Buffer
tPY
Output Buffer
3.16
3.60
4.24
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
v2.7
2-25
Axcelerator Family FPGAs
Table 2-21 • 3.3V LVTTL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVTTL Output Drive Strength = 4 (24mA) / High Slew Rate
tDP
Input Buffer
1.72
1.96
2.31
ns
tPY
Output Buffer
3.03
3.45
4.06
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -2 6
v2.7
Axcelerator Family FPGAs
2.5V LVCMOS
Low-Voltage Complementary Metal-Oxide Semiconductor for 2.5V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 2.5V applications. It uses a 3.3V tolerant CMOS input buffer and a push-pull output buffer.
Table 2-22 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
0.7
1.7
3.6
0.4
2.0
12
-12
AC Loadings
R=1k
Test Point
for tpd
35 pF
Test Point
for tristate
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
35 pF for tpzh/tpzl
5 pF for tphz/tplz
Figure 2-16 • AC Test Loads
Table 2-23 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
0
2.5
1.25
N/A
35
* Measuring Point = Vtrip
Timing Characteristics
Table 2-24 • 2.5V LVCMOS I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVCMOS25 I/O Module Timing
tDP
Input Buffer
1.99
2.26
2.66
ns
tPY
Output Buffer
3.24
3.69
4.34
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
v2.7
2-27
Axcelerator Family FPGAs
1.8V LVCMOS
Low-Voltage Complementary Metal-Oxide Semiconductor for 1.8V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 1.8V applications. It uses a 3.3V tolerant CMOS input buffer and a push-pull output buffer.
Table 2-25 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
0.2VCCI
0.7VCCI
3.6
0.2
VCCI-0.2
8mA
-8mA
AC Loadings
R=1k
Test Point
for tpd
Test Point
for tristate
35 pF
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
35 pF for tpzh/tpzl
5 pF for tphz/tplz
Figure 2-17 • AC Test Loads
Table 2-26 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
0
1.8
0.5VCCI
N/A
35
* Measuring Point = Vtrip
Timing Characteristics
Table 2-27 • 1.8V LVCMOS I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.7V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVCMOS18 Output Module Timing
tDP
Input Buffer
3.30
3.76
4.42
ns
tPY
Output Buffer
4.54
5.17
6.08
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -2 8
v2.7
0.48
0.57
ns
Axcelerator Family FPGAs
1.5V LVCMOS (JESD8-11)
Low-Voltage Complementary Metal-Oxide Semiconductor for 1.5V is an extension of the LVCMOS standard (JESD8-5)
used for general-purpose 1.5V applications. It uses a 3.3V tolerant CMOS input buffer and a push-pull output buffer.
Table 2-28 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.5
0.35VCCI
0.65VCCI
3.6
0.4
VCCI-0.4
8mA
-8mA
AC Loadings
R=1k
Test Point
for tpd
Test Point
for tristate
35 pF
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
35 pF for tpzh/tpzl
5 pF for tphz/tplz
Table 2-29 • AC Test Loads
Table 2-30 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
0
1.5
0.5VCCI
N/A
35
* Measuring Point = Vtrip
Timing Characteristics
Table 2-31 • 1.5V LVCMOS I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.4V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVCMOS15 (JESD8-11) I/O Module Timing
tDP
Input Buffer
3.63
4.14
4.87
ns
tPY
Output Buffer
6.02
6.86
8.07
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
tCPWLH
Clock Pulse Width Low to High
tWASYN
Asynchronous Pulse Width
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
0.43
v2.7
0.48
0.57
ns
0.45
0.51
0.60
ns
0.43
0.48
0.57
ns
2-29
Axcelerator Family FPGAs
3.3V PCI, 3.3V PCI-X
Peripheral Component Interface for 3.3V standard specifies support for both 33 MHz and 66 MHz PCI bus applications.
It uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5V tolerant with the aid
of external components. Axcelerator 3.3V PCI and 3.3V PCI-X buffers are compliant with the PCI Local Bus Specification
Rev. 2.1.
The PCI Compliance Specification requires the clamp diodes to be able to withstand for 11 ns, -3.5V in undershoot, and
7.1V in overshoot.
Table 2-32 • DC Input and Output Levels
VIH
VIL
VOL
VOH
IOL
IOH
Max,V
Min,V
mA
mA
Min,V
Max,V
Min,V
Max,V
PCI
-0.5
0.3VCCI
0.5VCCI
VCCI+0.5
(per PCI specification)
PCI-X
-0.5
0.35VCCI
0.5VCCI
VCCI+0.5
(per PCI specification)
AC Loadings
R=1k
Test Point
for tristate
R to VCCI for tplz/tpzl
R to GND for tphz/tpzh
R to V CCI for tpl
R to GND for tph
R=25
Test point for data
10pF
35 pF for tpzl/tpzh
5 pF for tphz/tplz
GND
Figure 2-18 • AC Test Loads
Table 2-33 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
(Per PCI Spec and PCI-X Spec)
* Measuring Point = Vtrip
2 -3 0
v2.7
VREF (typ) (V)
Cload (pF)
N/A
10
Axcelerator Family FPGAs
Timing Characteristics
Table 2-34 • 3.3V PCI I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.3V PCI Output Module Timing
tDP
Input Buffer
1.61
1.83
2.16
ns
tPY
Output Buffer
1.95
2.22
2.62
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
2.87
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.90
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.31
ns
tHD
Data Input Hold
0.00
0.00
0.35
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.00
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
tHASYN
Asynchronous Removal Time
0.00
0.00
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
0.48
0.57
ns
0.00
ns
ns
Table 2-35 • 3.3V PCI-X I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.3V PCI-X Output Module Timing
tDP
Input Buffer
1.61
1.83
2.16
ns
tPY
Output Buffer
2.14
2.44
2.87
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
v2.7
0.48
0.57
ns
ns
2-31
Axcelerator Family FPGAs
Voltage-Referenced I/O Standards
GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It requires a differential amplifier input buffer
and an Open Drain output buffer. The VCCI pin should be connected to 2.5V or 3.3V. Note that 2.5V GTL+ is not
supported across the full military temperature range.
Table 2-36 • DC Input and Output Levels
VIH
VIL
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
N/A
VREF-0.1
VREF+0.1
N/A
0.6
NA
NA
NA
AC Loadings
VTT
25
Test Point
10 pF
Figure 2-19 • AC Test Loads
Table 2-37 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-0.2
* Measuring Point = Vtrip
VREF+0.2
VREF
1.0
10
Timing Characteristics
Table 2-38 • 2.5V GTL+ I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
2.35
ns
2.5V GTL+ I/O Module Timing
tDP
Input Buffer
tPY
Output Buffer
1.01
1.15
1.36
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O enable
register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -3 2
1.75
v2.7
1.99
Axcelerator Family FPGAs
Table 2-39 • 3.3V GTL+ I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.3V GTL+I/O Module Timing
tDP
Input Buffer
1.75
1.99
2.35
ns
tPY
Output Buffer
1.01
1.15
1.36
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
v2.7
2-33
Axcelerator Family FPGAs
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5V bus standard (EIA/JESD8-6). The Axcelerator devices
support Class I. This requires a differential amplifier input buffer and a push-pull output buffer.
Table 2-40 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
VREF-0.1
VREF+0.1
3.6
0.4
VCC-0.4
8
-8
AC Loadings
VTT
50
Test Point
20 pF
Figure 2-20 • AC Test Loads
Table 2-41 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-0.5
VREF+0.5
VREF
0.75
20
* Measuring Point = Vtrip
Timing Characteristics
Table 2-42 • 1.5V HSTL Class I I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.425V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
2.47
ns
1.5V HSTL Class I I/O Module Timing
tDP
Input Buffer
tPY
Output Buffer
4.93
5.62
6.61
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -3 4
1.84
2.10
0.00
v2.7
0.00
0.48
0.57
ns
Axcelerator Family FPGAs
SSTL2
Stub Series Terminated Logic for 2.5V is a general-purpose 2.5V memory bus standard (JESD8-9). The Axcelerator
devices support both classes of this standard. This requires a differential amplifier input buffer and a push-pull output
buffer.
Class I
Table 2-43 • DC Input and Output Levels
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
VIH
Max,V
Max,V
Min,V
mA
mA
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.57
VREF+0.57
7.6
-7.6
VIL
AC Loadings
VTT
50
Test Point
25
30 pF
Figure 2-21 • AC Test Loads
Table 2-44 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-0.75
* Measuring Point = Vtrip
VREF+0.75
VREF
1.25
30
Timing Characteristics
Table 2-45 • 2.5V SSTL2 Class I I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
2.5V SSTL2 Class I I/O Module Timing
tDP
Input Buffer
1.86
2.12
2.50
ns
tPY
Output Buffer
2.43
2.76
3.25
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
tCPWLH
tWASYN
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
0.43
0.48
0.57
ns
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
Asynchronous Pulse Width
0.43
0.48
0.57
ns
v2.7
2-35
Axcelerator Family FPGAs
Class II
Table 2-46 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.8
VREF+0.8
15.2
-15.2
AC Loadings
VTT
25
Test Point
25
30 pF
Figure 2-22 • AC Test Loads
Table 2-47 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-0.75
VREF+0.75
VREF
1.25
30
* Measuring Point = Vtrip
Timing Characteristics
Table 2-48 • 2.5V SSTL2 Class II I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
2.5V SSTL2 Class II I/O Module Timing
tDP
Input Buffer
1.93
2.20
2.59
ns
tPY
Output Buffer
2.43
2.76
3.25
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -3 6
v2.7
ns
Axcelerator Family FPGAs
SSTL3
Stub Series Terminated Logic for 3.3V is a general-purpose 3.3V memory bus standard (JESD8-8). The Axcelerator
devices support both classes of this standard. This requires a differential amplifier input buffer and a push-pull output
buffer.
Class I
Table 2-49 • DC Input and Output Levels
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
VIH
Max,V
Max,V
Min,V
mA
mA
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.6
VREF+0.6
8
-8
VIL
AC Loadings
VTT
50
Test Point
25
30 pF
Figure 2-23 • AC Test Loads
Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-1.0
*Measuring Point = Vtrip
VREF+1.0
VREF
1.50
30
Timing Characteristics
Table 2-51 • 3.3V SSTL3 Class I I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.3V SSTL3 Class I I/O Module Timing
tDP
Input Buffer
1.82
2.07
2.44
ns
tPY
Output Buffer
2.21
2.52
2.96
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
tREASYN
Asynchronous Recovery Time
tHASYN
tCLR
tPRESET
0.00
0.00
0.48
0.00
0.57
ns
ns
0.10
0.10
0.10
ns
Asynchronous Removal Time
0.00
0.00
0.00
ns
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
v2.7
2-37
Axcelerator Family FPGAs
Class II
Table 2-52 • DC Input and Output Levels
VIL
VIH
VOL
VOH
IOL
IOH
Min,V
Max,V
Min,V
Max,V
Max,V
Min,V
mA
mA
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.8
VREF+0.8
16
-16
AC Loadings
VTT
25
Test Point
25
30 pF
Figure 2-24 • AC Test Loads
Table 2-53 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ) (V)
Cload (pF)
VREF-1.0
VREF+1.0
VREF
1.50
30
* Measuring Point = Vtrip
Timing Characteristics
Table 2-54 • 3.3V SSTL3 Class II I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.3V SSTL3 Class II I/O Module Timing
tDP
Input Buffer
1.88
2.14
2.53
ns
tPY
Output Buffer
2.21
2.52
2.96
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -3 8
0.00
v2.7
0.00
Axcelerator Family FPGAs
Differential Standards
Physical Implementation
(OutReg), Enable Register (EnReg), and Double Data
Rate (DDR). However, there is no support for
bidirectional I/Os or tristates with these standards.
Implementing differential I/O standards requires the
configuration of a pair of external I/O pads, resulting in a
single internal signal. To facilitate construction of the
differential pair, a single I/O Cluster contains the
resources for a pair of I/Os. Configuration of the I/O
Cluster as a differential pair is handled by Actel's
Designer software when the user instantiates a
differential I/O macro in the design.
LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a
high-speed, differential I/O standard. It requires that one
data bit is carried through two signal lines, so two pins
are needed. It also requires an external resistor
termination. The voltage swing between these two
signal lines is approximately 350 mV.
Differential I/Os can also be used in conjunction with the
embedded Input Register (InReg), Output Register
OUTBUF_LVDS
FPGA
P
165Ω
ZO=50Ω
165Ω
ZO=50Ω
FPGA
+
–
100Ω
140Ω
N
P
INBUF_LVDS
N
Figure 2-25 • LVDS Board-Level Implementation
The LVDS circuit consists of a differential driver
connected to a terminated receiver through a constantimpedance transmission line. The receiver is a widecommon-mode-range
differential
amplifier.
The
common-mode range is from 0.2V to 2.2V for a
differential input with 400 mV swing.
current of 3.5 mA. When this current flows through a
100 Ω termination resistor on the receiver side, a voltage
swing of 350 mV is developed across the resistor. The
direction of the current flow is controlled by the data fed
to the driver.
An external-resistor network (three resistors) is needed
to reduce the voltage swing to about 350 mV. Therefore,
four external resistors are required, three for the driver
and one for the receiver.
To implement the driver for the LVDS circuit, drivers from
two adjacent I/O cells are used to generate the
differential signals (note that the driver is not a currentmode driver). This driver provides a nominal constant
Table 2-55 • DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
VCCI1
Supply Voltage
2.375
2.5
2.625
V
VOH
Output High Voltage
1.25
1.425
1.6
V
VOL
Output Low Voltage
0.9
1.075
1.25
V
VODIFF
Differential Output Voltage
250
350
450
mV
VOCM
Output Common Mode Voltage
1.125
1.25
1.375
V
VICM2
Input Common Mode Voltage
0.2
1.25
2.2
V
1. +/- 5%
2. Differential input voltage =+/-350mV.
v2.7
2-39
Axcelerator Family FPGAs
Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
1.2-0.125
1.2+0.125
1.2
* Measuring Point = Vtrip
Timing Characteristics
Table 2-57 • LVDS I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVDS Output Module Timing
tDP
Input Buffer
1.84
2.10
2.47
ns
tPY
Output Buffer
2.36
2.69
3.16
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -4 0
v2.7
Axcelerator Family FPGAs
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit
is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The
voltage swing between these two signal lines is approximately 850 mV.
FPGA
P
OUTBUF_LVPECL
100Ω
FPGA
P
ZO=50Ω
+
INBUF_LVPECL
100Ω
187Ω
–
ZO=50Ω
100Ω
N
N
Figure 2-26 • LVPECL Board-Level Implementation
The LVPECL circuit is similar to the LVDS scheme. It requires four external resistors, three for the driver and one for the
receiver. The values for the three driver resistors are different from that of LVDS since the output voltage levels are
different. Please note that the VOH levels are 200 mV below the standard LVPECL levels.
Table 2-58 • DC Input and Output Levels
Min.
DC Parameter
Min.
VCCI
Typ.
Max.
Min.
3
Max.
Max.
Min.
3.3
Max.
Units
3.6
V
VOH
1.8
2.11
1.92
2.28
2.13
2.41
V
VOL
0.96
1.27
1.06
1.43
1.3
1.57
V
VIH
1.49
2.72
1.49
2.72
1.49
2.72
V
VIL
0.86
2.125
0.86
2.125
0.86
2.125
V
Differential Input Voltage
0.3
0.3
0.3
V
Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
1.6-0.3
1.6+0.3
1.6
* Measuring Point = Vtrip
v2.7
2-41
Axcelerator Family FPGAs
Timing Characteristics
Table 2-60 • LVPECL I/O Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
LVPECL Output Module Timing
tDP
Input Buffer
1.70
1.93
2.28
ns
tPY
Output Buffer
2.28
2.60
3.06
ns
tICLKQ
Clock-to-Q for the I/O input register
0.67
0.77
0.90
ns
tOCLKQ
Clock-to-Q for the IO output register and the I/O
enable register
0.67
0.77
0.90
ns
tSUD
Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Data Input Hold
0.00
0.00
0.00
ns
tHE
Enable Input Hold
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.43
0.48
0.57
ns
tCPWLH
Clock Pulse Width Low to High
0.45
0.51
0.60
ns
tWASYN
Asynchronous Pulse Width
0.43
0.48
0.57
ns
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
2 -4 2
v2.7
Axcelerator Family FPGAs
Module Specifications
C-Cell
Introduction
The C-cell is one of the two logic module types in the AX
architecture. It is the combinatorial logic resource in the
Axcelerator device. The AX architecture implements a
new combinatorial cell that is an extension of the C-cell
implemented in the SX-A family. The main enhancement
of the new C-cell is the addition of carry-chain logic.
The C-cell can be used in a carry-chain mode to construct
arithmetic functions. If carry-chain logic is not required,
it can be disabled.
•
A carry input and a carry output. The carry input
signal of the C-cell is the carry output from the Ccell directly to the north.
•
Carry connect for carry-chain logic with a signal
propagation time of less than 0.1 ns.
•
A hardwired connection (direct connect) to the
adjacent R-cell (Register Cell) for all C-cells on the
east side of a SuperCluster with a signal
propagation time of less than 0.1 ns.
This layout of the C-cell (and the C-cell Cluster) enables
the implementation of over 4,000 functions of up to five
bits. For example, two C-cells can be used together to
implement a four-input XOR function in a single cell
delay.
The C-cell features the following (Figure 2-27):
•
•
Eight-input MUX (data: D0-D3, select: A0, A1, B0,
B1). User signals can be routed to any one of these
inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0,
B1) can be tied to one of the four routed clocks
(CLKE/F/G/H).
The carry-chain configuration is handled automatically
for the user with Actel's extensive macro library (please
see Actel’s Antifuse Macro Library Guide for a complete
listing of available Axcelerator macros).
Inverter (DB input) can be used to drive a
complement signal of any of the inputs to the Ccell.
.
CFN FCI
D1 D3 B0 B1
0
1
0
1
0
1
0 1
0
1
D0 D2
DB
A0
A1
FCO
Y
Figure 2-27 • C-Cell
v2.7
2-43
Axcelerator Family FPGAs
Timing Model and Waveforms
VCCA
50%
50%
A, B, D, FCI
GND
VCCA
50%
Y, FCO
GND
50%
tPD, tPDC
tPD, tPDC
VCCA
Y, FCO
50%
tPD, tPDC
GND
50%
tPD, tPDC
Figure 2-28 • C-Cell Timing Model and Waveforms
Timing Characteristics
Table 2-61 • C-Cell
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
C-Cell Propagation Delays
tPD
Any input to output Y
0.74
0.84
0.99
ns
tPDC
Any input to carry chain output (FCO)
0.57
0.64
0.76
ns
tPDB
Any input through DB when one input is used
0.95
1.09
1.28
ns
tCCY
Input to carry chain (FCI) to Y
0.61
0.69
0.82
ns
tCC
Input to carry chain (FCI) to carry chain output (FCO)
0.08
0.09
0.11
ns
2 -4 4
v2.7
Axcelerator Family FPGAs
Carry-Chain Logic
The Axcelerator dedicated carry-chain logic offers a very
compact solution for implementing arithmetic functions
without sacrificing performance.
C-cell pair, drives the FCI input of the C-cell pair
immediately below it (Figure 1-4 on page 1-3 and
Figure 2-30 on page 2-46).
To implement the carry-chain logic, two C-cells in a
Cluster are connected together so the FCO (i.e. carry out)
for the two bits is generated in a carry look-ahead
scheme to achieve minimum propagation delay from the
FCI (i.e. carry in) into the two-bit Cluster. The two-bit
carry logic is shown in Figure 2-29.
The carry-chain logic is selected via the CFN input. When
carry logic is not required, this signal is deasserted to
save power. Again, this configuration is handled
automatically for the user through Actel's macro library.
The signal propagation delay between two C-cells in the
carry-chain sequence is 0.1 ns.
CFN
D1
D3
B0
B1
FCI
D1
D3
B0
B1
CFN
The FCI of one C-cell pair is driven by the FCO of the
C-cell pair immediately above it. Similarly, the FCO of one
0
1
0
1
DCOUT
0
1
0
1
0
1
0
1
0
1
0
1
A1
A0
DB
D0
D2
Y
0
1
FCO
Y
0
1
A1
A0
DB
D0
D2
0
1
Figure 2-29 • Axcelerator’s Two-Bit Carry Logic
v2.7
2-45
Axcelerator Family FPGAs
FCI1
C-cell1
FCI3
C-cell2
DCOUT
R-cell1
DCIN
FCO2
DCOUT
DCIN
FCO4
FCI5
n-2
Clusters
FCI(2n-1)
C-cell
(2n-1)
C-cell2n
DCOUT
R-celln
CDIN
FCO2n
Note: The carry-chain sequence can end on either C-cell.
Figure 2-30 • Carry-Chain Sequencing of C-cells
Timing Characteristics
Refer to the Table 2-61 on page 2-44 for more information on carry-chain timing.
2 -4 6
v2.7
Axcelerator Family FPGAs
R-Cell
Introduction
•
The R-cell, the sequential logic resource of the
Axcelerator devices, is the second logic module type in
the AX family architecture. It includes clock inputs for all
eight global resources of the Axcelerator architecture as
well as global presets and clears (Figure 2-31).
The main features of the R-cell include the following:
•
•
•
•
Direct connection to the adjacent logic module
through the hardwired connection DCIN. DCIN is
driven by the DCOUT of an adjacent C-cell via the
Direct-Connect routing resource, providing a
connection with less than 0.1 ns of routing delay.
Provision of data enable-input (S0).
Independent active-low asynchronous preset
(PSET). If both CLR and PSET are low, CLR has
higher priority.
One of the four high performance hardwired
fast clocks (HCLKs)
–
One of the four routed clocks (CLKs)
–
User signals
Global power-on clear (GCLR) and preset (GPSET),
which drive each flip-flop on a chip-wide basis.
When the Global Set Fuse option in the
Designer software is unchecked (by default),
GCLR = 0 and GPSET =1 at device power-up.
When the option is checked, GCLR = 1 and
GPSET= 0. Both pins are pulled High when the
device is in user mode.
•
S0, S1, PSET, and CLR can be driven by routed
clocks CLKE/F/G/H or user signals.
•
DIN and S1 can be driven by user signals.
As with the C-cell, the configuration of the R-cell to
perform various functions is handled automatically for
the user through Actel's extensive macro library (please
see Actel’s Antifuse Macro Library Guide for a complete
listing of available AX macros).
CKP
Independent active-low asynchronous clear (CLR).
•
–
–
The R-cell can be used as a standalone flip-flop. It
can be driven by any C-cell or I/O modules through
the regular routing structure (using DIN as a
routable data input). This gives the option of
using the R-Cell as a 2:1 MUXed flip-flop as well.
•
Clock can be driven by any of the following (CKP
selects clock polarity):
DIN(user signals)
DCIN
HCLKA/B/C/D
CLKE/F/G/H
Y
PSET
GPSET
S0
S1
CKS
CLR
GCLR
Internal Logic
Figure 2-31 • R-Cell
v2.7
2-47
Axcelerator Family FPGAs
Timing Models and Waveforms
D
tSUD
tHD
CLK
tCPWHL
tRCO
tCPWLH
Q
CLR
tHASYN
tREASYN
tWASYN
tCLR
tHASYN
tPRESET
tREASYN
tWASYN
PRESET
tSUE
tHE
E
Figure 2-32 • R-Cell Delays
Timing Characteristics
Table 2-62 • R-Cell
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
R-Cell Propagation Delays
tRCO
Sequential Clock-to-Q
0.67
0.77
0.90
ns
tCLR
Asynchronous Clear-to-Q
0.23
0.27
0.31
ns
tPRESET
Asynchronous Preset-to-Q
0.23
0.27
0.31
ns
tSUD
Flip-Flop Data Input Set-Up
0.23
0.27
0.31
ns
tSUE
Flip-Flop Enable Input Set-Up
0.26
0.30
0.35
ns
tHD
Flip-Flop Data Input Hold
0.00
0.00
0.00
ns
tHE
Flip-Flop Enable Input Hold
0.00
0.00
0.00
ns
tWASYN
Asynchronous Pulse Width
tREASYN
Asynchronous Recovery Time
0.10
0.10
0.10
ns
tHASYN
Asynchronous Removal Time
0.00
0.00
0.00
ns
tCPWHL
Clock Pulse Width High to Low
0.42
0.47
0.55
ns
tCPWLH
Clock Pulse Width Low to High
0.40
0.46
0.54
ns
2 -4 8
0.43
v2.7
0.48
0.57
ns
Axcelerator Family FPGAs
Buffer Module
Introduction
An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3). When a fanout
constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has been added to
the AX architecture to avoid logic duplication resulting from the hard fanout constraints. The router utilizes this logic
resource to save area and reduce loading and delays on medium-to-high-fanout nets.
Timing Models and Waveforms
IN
OUT
Figure 2-33 • Buffer Module Timing Model
VCCA
50%
50%
GND
IN
VCCA
OUT
GND
50%
50%
tBFPD
tBFPD
Figure 2-34 • Buffer Module Waveform
Timing Characteristics
Table 2-63 • Buffer Module
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
0.16
ns
Buffer Module Propagation Delays
tBFPD
Any input to output Y
0.12
v2.7
0.14
2-49
Axcelerator Family FPGAs
Routing Specifications
Routing Resources
The routing structure found in Axcelerator devices
enables any logic module to be connected to any other
logic module while retaining high performance. There
are multiple paths and routing resources that can be
used to route one logic module to another, both within a
SuperCluster and elsewhere on the chip.
There are four primary types of routing within the AX
architecture: DirectConnect, CarryConnect, FastConnect,
and Vertical and Horizontal Routing.
DirectConnect
DirectConnects provide a high-speed connection
between an R-cell and its adjacent C-cell (Figure 2-35).
This connection can be made from DCOUT of the C-cell
to DCIN of the R-cell by configuring of the S1 line of the
R-cell. This provides a connection that does not require
an antifuse and has a delay of less than 0.1 ns.
Figure 2-35 • DirectConnect and CarryConnect
CarryConnect
CarryConnects are used to build carry chains for
arithmetic functions (Figure 2-35). The FCO output of the
right C-cell of a two-C-cell Cluster drives the FCI input of
the left C-cell in the two-C-cell Cluster immediately
below it. This pattern continues down both sides of each
SuperCluster column.
Similar to the DirectConnects, CarryConnects can be built
without an antifuse connection. This connection has a
delay of less than 0.1 ns from the FCO of one two-C-cell
cluster to the FCI of the two-C-cell cluster immediately
below it (see the "Carry-Chain Logic" on page 2-45 for
more information).
FastConnect
For high-speed routing of logic signals, FastConnects can
be used to build a short distance connection using a
single antifuse (Figure 2-36 on page 2-51). FastConnects
provide a maximum delay of 0.3 ns. The outputs of each
logic module connect directly to the Output Tracks
within a SuperCluster. Signals on the Output Tracks can
2 -5 0
v2.7
then be routed through a single antifuse connection to
drive the inputs of logic modules either within one
SuperCluster or in the SuperCluster immediately below
it.
Vertical and Horizontal Routing
Vertical and Horizontal Tracks provide both local and
long distance routing (Figure 2-37 on page 2-51). These
tracks are composed of both short-distance, segmented
routing and across-chip routing tracks (segmented at
core tile boundaries). The short-distance, segmented
routing resources can be concatenated through antifuse
connections to build longer routing tracks.
These short-distance routing tracks can be used within
and between SuperClusters or between modules of nonadjacent SuperClusters. They can be connected to the
Output Tracks and to any logic module input (R-cell,
C-cell, Buffer, and TX module).
The across-chip horizontal and vertical routing provides
long-distance routing resources. These resources
interface with the rest of the routing structures through
Axcelerator Family FPGAs
the RX and TX modules (Figure 2-37). The RX module is
used to drive signals from the across-chip horizontal and
vertical routing to the Output Tracks within the
SuperCluster. The TX module is used to drive vertical and
horizontal across-chip routing from either short-distance
horizontal tracks or from Output Tracks. The TX module
can also be used to drive signals from vertical across-chip
tracks to horizontal across-chip tracks and vice versa.
Figure 2-36 • FastConnect Routing
Figure 2-37 • Horizontal and Vertical Tracks
v2.7
2-51
Axcelerator Family FPGAs
Timing Characteristics
Table 2-64 • AX125 Predicted Routing Delays
Worst-Case Commercial Conditions VCCA = 1.425V, TJ = 70°C
Parameter
Description
'–2' Speed
'–1' Speed
'Std' Speed
Typical
Typical
Typical
Units
Predicted Routing Delays
tDC
DirectConnect Routing Delay, FO1
0.11
0.12
0.15
ns
tFC
FastConnect Routing Delay, FO1
0.35
0.39
0.46
ns
tRD1
Routing delay for FO1
0.35
0.40
0.47
ns
tRD2
Routing delay for FO2
0.38
0.43
0.51
ns
tRD3
Routing delay for FO3
0.43
0.48
0.57
ns
tRD4
Routing delay for FO4
0.48
0.55
0.64
ns
tRD5
Routing delay for FO5
0.55
0.62
0.73
ns
tRD6
Routing delay for FO6
0.64
0.72
0.85
ns
tRD7
Routing delay for FO7
0.79
0.89
1.05
ns
tRD8
Routing delay for FO8
0.88
0.99
1.17
ns
tRD16
Routing delay for FO16
1.49
1.69
1.99
ns
tRD32
Routing delay for FO32
2.32
2.63
3.10
ns
Table 2-65 • AX250 Predicted Routing Delays
Worst-Case Commercial Conditions VCCA = 1.425V, TJ = 70°C
Parameter
Description
'–2' Speed
'–1' Speed
'Std' Speed
Typical
Typical
Typical
Units
Predicted Routing Delays
tDC
DirectConnect Routing Delay, FO1
0.11
0.12
0.15
ns
tFC
FastConnect Routing Delay, FO1
0.35
0.39
0.46
ns
tRD1
Routing delay for FO1
0.39
0.45
0.53
ns
tRD2
Routing delay for FO2
0.41
0.46
0.54
ns
tRD3
Routing delay for FO3
0.48
0.55
0.64
ns
tRD4
Routing delay for FO4
0.56
0.63
0.75
ns
tRD5
Routing delay for FO5
0.60
0.68
0.80
ns
tRD6
Routing delay for FO6
0.84
0.96
1.13
ns
tRD7
Routing delay for FO7
0.90
1.02
1.20
ns
tRD8
Routing delay for FO8
1.00
1.13
1.33
ns
tRD16
Routing delay for FO16
2.17
2.46
2.89
ns
tRD32
Routing delay for FO32
3.55
4.03
4.74
ns
2 -5 2
v2.7
Axcelerator Family FPGAs
Table 2-66 • AX500 Predicted Routing Delays
Worst-Case Commercial Conditions VCCA = 1.425V, TJ = 70°C
Parameter
Description
'–2' Speed
'–1' Speed
'Std' Speed
Typical
Typical
Typical
Units
Predicted Routing Delays
tDC
DirectConnect Routing Delay, FO1
0.11
0.12
0.15
ns
tFC
FastConnect Routing Delay, FO1
0.35
0.39
0.46
ns
tRD1
Routing delay for FO1
0.39
0.45
0.53
ns
tRD2
Routing delay for FO2
0.41
0.46
0.54
ns
tRD3
Routing delay for FO3
0.48
0.55
0.64
ns
tRD4
Routing delay for FO4
0.56
0.63
0.75
ns
tRD5
Routing delay for FO5
0.60
0.68
0.80
ns
tRD6
Routing delay for FO6
0.84
0.96
1.13
ns
tRD7
Routing delay for FO7
0.90
1.02
1.20
ns
tRD8
Routing delay for FO8
1.00
1.13
1.33
ns
tRD16
Routing delay for FO16
2.17
2.46
2.89
ns
tRD32
Routing delay for FO32
3.55
4.03
4.74
ns
'–2' Speed
'–1' Speed
'Std' Speed
Typical
Typical
Typical
Units
Table 2-67 • AX1000 Predicted Routing Delays
Worst-Case Commercial Conditions VCCA = 1.425V, TJ = 70°C
Parameter
Description
Predicted Routing Delays
tDC
DirectConnect Routing Delay, FO1
0.12
0.13
0.15
ns
tFC
FastConnect Routing Delay, FO1
0.35
0.39
0.46
ns
tRD1
Routing delay for FO1
0.45
0.51
0.60
ns
tRD2
Routing delay for FO2
0.53
0.60
0.71
ns
tRD3
Routing delay for FO3
0.56
0.63
0.74
ns
tRD4
Routing delay for FO4
0.63
0.71
0.84
ns
tRD5
Routing delay for FO5
0.73
0.82
0.97
ns
tRD6
Routing delay for FO6
0.99
1.13
1.32
ns
tRD7
Routing delay for FO7
1.02
1.15
1.36
ns
tRD8
Routing delay for FO8
1.48
1.68
1.97
ns
tRD16
Routing delay for FO16
2.57
2.91
3.42
ns
tRD32
Routing delay for FO32
4.24
4.81
5.65
ns
v2.7
2-53
Axcelerator Family FPGAs
Table 2-68 • AX2000 Predicted Routing Delays
Worst-Case Commercial Conditions VCCA = 1.425V, TJ = 70°C
Parameter
'–2' Speed
'–1' Speed
'Std' Speed
Typical
Typical
Typical
Units
Description
Predicted Routing Delays
tDC
DirectConnect Routing Delay, FO1
0.12
0.13
0.15
ns
tFC
FastConnect Routing Delay, FO1
0.35
0.39
0.46
ns
tRD1
Routing delay for FO1
0.50
0.56
0.66
ns
tRD2
Routing delay for FO2
0.59
0.67
0.79
ns
tRD3
Routing delay for FO3
0.70
0.80
0.94
ns
tRD4
Routing delay for FO4
0.76
0.87
1.02
ns
tRD5
Routing delay for FO5
0.98
1.11
1.31
ns
tRD6
Routing delay for FO6
1.48
1.68
1.97
ns
tRD7
Routing delay for FO7
1.65
1.87
2.20
ns
tRD8
Routing delay for FO8
1.73
1.96
2.31
ns
tRD16
Routing delay for FO16
2.58
2.92
3.44
ns
tRD32
Routing delay for FO32
4.24
4.81
5.65
ns
2 -5 4
v2.7
Axcelerator Family FPGAs
Global Resources
Hardwired Clocks
One of the most important aspects of any FPGA
architecture is its global resources or clocks. The
Axcelerator family provides the user with flexible and
easy-to-use global resources, without the limitations
normally found in other FPGA architectures.
The hardwired (HCLK) is a low-skew network that can
directly drive the clock inputs of all sequential modules
(R-cells, I/O registers, and embedded RAM/FIFOs) in the
device with no antifuse in the path. All four HCLKs are
available everywhere on the chip.
The AX architecture contains two types of global
resources, the HCLK (hardwired clock) and CLK (routed
clock). Every Axcelerator device is provided with four
HCLKs and four CLKs for a total of eight clocks,
regardless of device density.
Timing Characteristics
Table 2-69 • AX125 Dedicated (Hardwired) Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Networks
tHCKL
Input Low to High
3.02
3.44
4.05
ns
tHCKH
Input High to Low
3.03
3.46
4.06
ns
tHPWH
Minimum Pulse Width High
0.58
tHPWL
Minimum Pulse Width Low
0.52
tHCKSW
Maximum Skew
tHP
Minimum Period
tHMAX
Maximum Frequency
0.65
0.77
0.59
0.06
1.15
0.69
0.07
1.31
870
ns
ns
0.08
1.54
763
ns
ns
649
MHz
Table 2-70 • AX250 Dedicated (Hardwired) Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
3.45
ns
Dedicated (Hardwired) Array Clock Networks
tHCKL
Input Low to High
2.57
2.93
tHCKH
Input High to Low
tHPWH
Minimum Pulse Width High
0.58
0.65
0.77
ns
tHPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
tHMAX
Maximum Frequency
2.61
2.97
0.06
1.15
v2.7
0.07
1.31
870
3.50
0.08
ns
649
MHz
1.54
763
ns
ns
2-55
Axcelerator Family FPGAs
Table 2-71 • AX500 Dedicated (Hardwired) Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Networks
tHCKL
Input Low to High
2.35
2.68
3.15
ns
tHCKH
Input High to Low
2.44
2.79
3.27
ns
tHPWH
Minimum Pulse Width High
0.58
0.65
0.77
ns
tHPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
tHMAX
Maximum Frequency
0.06
1.15
0.07
1.31
870
0.08
1.54
763
ns
ns
649
MHz
Table 2-72 • AX1000 Dedicated (Hardwired) Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Networks
tHCKL
Input Low to High
3.02
3.44
4.05
ns
tHCKH
Input High to Low
3.03
3.46
4.06
ns
tHPWH
Minimum Pulse Width High
0.58
0.65
0.77
ns
tHPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
tHMAX
Maximum Frequency
0.06
1.15
0.07
1.31
870
0.08
1.54
ns
ns
763
649
'–1' Speed
'Std' Speed
MHz
Table 2-73 • AX2000 Dedicated (Hardwired) Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
Min.
Max.
Min.
Max.
Units
Dedicated (Hardwired) Array Clock Networks
tHCKL
Input Low to High
3.02
3.44
4.05
ns
tHCKH
Input High to Low
3.03
3.46
4.06
ns
tHPWH
Minimum Pulse Width High
0.58
0.65
0.77
ns
tHPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tHCKSW
Maximum Skew
tHP
Minimum Period
tHMAX
Maximum Frequency
2 -5 6
0.06
1.15
1.31
870
v2.7
0.07
0.08
1.54
763
ns
ns
649
MHz
Axcelerator Family FPGAs
Routed Clocks
The routed clock (CLK) is a low-skew network that can
drive the clock inputs of all sequential modules in the
device (logically equivalent to the HCLK), but has the
added flexibility in that it can drive the S0 (Enable), S1,
PSET, and CLR input of a register (R-cells and I/O
registers) as well as any of the inputs of any C-cell in the
device. This allows CLKs to be used not only as clocks, but
also for other global signals or high fanout nets. All four
CLKs are available everywhere on the chip.
Timing Characteristics
Table 2-74 • AX125 Routed Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Routed Array Clock Networks
tRCKL
Input Low to High
3.08
3.50
4.12
ns
tRCKH
Input High to Low
3.13
3.56
4.19
ns
tRPWH
Minimum Pulse Width High
0.57
0.64
0.75
ns
tRPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tRCKSW
Maximum Skew
tRP
Minimum Period
tRMAX
Maximum Frequency
0.35
1.15
0.39
1.31
870
0.46
1.54
763
ns
ns
649
MHz
Table 2-75 • AX250 Routed Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Routed Array Clock Networks
tRCKL
Input Low to High
2.52
2.87
3.37
ns
tRCKH
Input High to Low
2.59
2.95
3.47
ns
tRPWH
Minimum Pulse Width High
0.57
0.64
0.75
ns
tRPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tRCKSW
Maximum Skew
tRP
Minimum Period
tRMAX
Maximum Frequency
0.35
1.15
0.39
1.31
870
v2.7
0.46
1.54
763
ns
ns
649
MHz
2-57
Axcelerator Family FPGAs
Table 2-76 • AX500 Routed Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Routed Array Clock Networks
tRCKL
Input Low to High
2.31
2.63
3.09
ns
tRCKH
Input High to Low
2.44
2.78
3.27
ns
tRPWH
Minimum Pulse Width High
0.57
0.64
0.75
ns
tRPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tRCKSW
Maximum Skew
tRP
Minimum Period
tRMAX
Maximum Frequency
0.35
1.15
0.39
1.31
870
0.46
1.54
763
ns
ns
649
MHz
Table 2-77 • AX1000 Routed Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Routed Array Clock Networks
tRCKL
Input Low to High
3.08
3.50
4.12
ns
tRCKH
Input High to Low
3.13
3.56
4.19
ns
tRPWH
Minimum Pulse Width High
0.57
0.64
0.75
ns
tRPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tRCKSW
Maximum Skew
tRP
Minimum Period
tRMAX
Maximum Frequency
0.35
1.15
0.39
1.31
870
0.46
1.54
763
ns
ns
649
MHz
Table 2-78 • AX2000 Routed Array Clock Networks
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Routed Array Clock Networks
tRCKL
Input Low to High
3.08
3.50
4.12
ns
tRCKH
Input High to Low
3.13
3.56
4.19
ns
tRPWH
Minimum Pulse Width High
0.57
0.64
0.75
ns
tRPWL
Minimum Pulse Width Low
0.52
0.59
0.69
ns
tRCKSW
Maximum Skew
tRP
Minimum Period
tRMAX
Maximum Frequency
2 -5 8
0.35
1.15
1.31
870
v2.7
0.39
0.46
1.54
763
ns
ns
649
MHz
Axcelerator Family FPGAs
Global Resource Distribution
At the root of each global resource is a PLL. There are
two groups of four PLLs for every device. One group,
located at the center of the north edge (in the I/O ring)
of the chip, sources the four HCLKs. The second group,
located at the center of the south edge (again in the I/O
ring), sources the four CLKs (Figure 2-38).
PLL
P N
Regardless of the type of global resource, HCLK or CLK,
each of the eight resources reach the ClockTileDist (CTD)
Cluster located at the center of every core tile with zero
skew. From the ClockTileDist Cluster, all four HCLKs and
four CLKs are distributed through the core tile (Figure 239).
PLL
P N
PLL
P N
PLL
P N
PLL Cluster
HCLKA
HCLKB
CLKE
CLKF
HCLKC HCLKD
CLKG
CLKH
PLL Cluster
P N
PLL
P N
PLL
P N
PLL
P N
PLL
Figure 2-38 • PLL Group
HCLK
CLK
PLL Group
ClockTileDist Cluster
4
4
PLL Group
Figure 2-39 • Example of HCLK and CLK Distributions on the AX2000
v2.7
2-59
Axcelerator Family FPGAs
The ClockTileDist Cluster contains an HCLKMux (HM)
module for each of the four HCLK trees and a CLKMux
(CM) module for each of the CLK trees. The HCLK
branches then propagate horizontally through the
middle of the core tile to HCLKColDist (HD) modules in
every SuperCluster column. The CLK branches propagate
Figure 2-40 • CTD, CD, and HD Module Layout
Figure 2-41 • HCLK and CLK Distribution within a Core Tile
2 -6 0
v2.7
vertically through the center of the core tile to
CLKRowDist (RD) modules in every SuperCluster row.
Together, the HCLK and CLK branches provide for a lowskew global fanout within the core tile (Figure 2-40 and
Figure 2-41).
Axcelerator Family FPGAs
CLKINT and HCLKINT
The HM and CM modules can select between:
•
The HCLK or CLK source respectively
•
A local signal routed on generic routing resources
CLKINT (HCLKINT) is used to access the CLK (HCLK)
resource internally from the user signals (Figure 2-43).
This allows each core tile to have eight clocks
independent of the other core tiles in the device.
Both HCLK and CLK are segmentable, meaning that
individual branches of the global resource can be used
independently.
Clock
Network
Logic
CLKINT
HCLKINT
Like the HM and CM modules, the HD and RD modules
can select between:
•
The HCLK or CLK source from the HM or CM
module respectively
•
A local signal routed on generic routing resources
Figure 2-43 • CLKINT and HCLKINT
PLLRCLK and PLLHCLK
PLLRCLK (PLLHCLK) is used to drive global resource
CLK (HCLK) from a PLL (Figure 2-44).
The AX architecture is capable of supporting a large
number of local clocks – 24 segments per HCLK driving
north-south and 28 segments per CLK driving east-west
per core tile.
Actel's Designer software’s place-and-route takes
advantage of the segmented clock structure found in
Axcelerator devices by turning off any unused clock
segments. This results in not only better performance but
also lower power consumption.
RefCLK
Clock
Network
CLK1
PLL
FB
CLK2
PLLRCLK
PLLHCLK
Figure 2-44 • PLLRCLK and PLLHCLK
Global Resource Access Macros
Global resources can be driven by one of three sources:
external pad(s), an internal net, or the output of a PLL.
These connections can be made by using one of three
types of macros: CLKBUF, CLKINT, and PLLCLK.
Using Global Resources with PLLs
CLKBUF and HCLKBUF
In addition, each clock pin of the package can be used to
drive either its associated global resource or PLL. For
example, package pins CLKEP and CLKEN can drive either
the RefCLK input of PLLE or CLKE.
Each global resource has an associated PLL at its root. For
example, PLLA can drive HCLKA, PLLE can drive CLKE, etc.
(Figure 2-45 on page 2-62).
CLKBUF (HCLKBUF) is used to drive a CLK (HCLK) from
external pads. These macros can be used either
generically or with the specific I/O standard desired
(e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.)
(Figure 2-42).
There are two macros required when interfacing the
embedded PLLs with the global resources: PLLINT and PLLOUT.
PLLINT
P
This macro is used to drive the RefCLK input of the PLL
internally from user signals.
Clock
Network
PLLOUT
N
This macro is used to connect either the CLK1 or CLK2
output of a PLL to the regular routing network (Figure 246 on page 2-62).
CLKBUF
HCLKBUF
Figure 2-42 • CLKBUF and HCLKBUF
Package pins CLKEP and CLKEN are associated with
CLKE; package pins HCLKAP and HCLKAN are
associated with HCLKA, etc.
Note that when CLKBUF (HCLKBUF) is used with a
single-ended I/O standard, it must be tied to the Ppad of the CLK (HCLK) package pin. In this case, the
CLK (HCLK) N-pad can be used for user signals.
v2.7
2-61
Axcelerator Family FPGAs
Implementation Example:
Figure 2-47 shows a complex clock distribution example. The reference clock (RefCLK) of PLLE is being sourced from
non-clock signal pins (INBUF to PLLINT). The CLK1 output of PLLE is being fed to the RefCLK input of PLLF. The CLK2
output of PLLE is driving logic (via PLLOUT). In turn, this logic is driving the global resource CLKE. PLLF is driving both
CLKF and CLKG global resources.
HCLKAP
RefCLK
HCLKA
Network
CLK1
PLLA
FB
HCLKAN
CLK2
PLLHCLK
Figure 2-45 • Example of HCLKA driven from a PLL with External Clock Source
PLLHCLK
PLLINT
RefCLK
Logic
HCLKA
Network
CLK1
PLLA
FB
CLK2
Logic
PLLOUT
Figure 2-46 • Example of PLLINT and PLLOUT Usage
Non-Clock
Pins
INBUF
PLLINT
P
PLLRCLK
N
RefCLK
CLK1
PLLE
FB
CLK2
CLKINT
PLLOUT
Logic
PLLRCLK
RefCLK
CLK1
CLKF
CLK2
CLKG
PLLF
FB
PLLRCLK
Figure 2-47 • Complex Clock Distribution Example
2 -6 2
v2.7
CLKE
Axcelerator Family FPGAs
Axcelerator Clock Management System
Introduction
southern edge. The northern group is associated with
the four HCLK networks (e.g. PLLA can drive HCLKA),
while the southern group is associated with the four CLK
networks (e.g. PLLE can drive CLKE).
Each member of the Axcelerator family contains eight
phase-locked loop (PLL) blocks which perform the
following functions:
•
Programmable Delay (32 steps of 250 ps)
•
Clock Skew Minimization
•
Clock Frequency Synthesis
Each PLL cell is connected to two I/O pads and a PLL
Cluster that interfaces with the FPGA core. Figure 2-48
illustrates a PLL block. The VCCPLL pin should be
connected to a 1.5V power supply through a 250 Ω
resistor. Furthermore, 0.1 μF and 10 μF decoupling
capacitors should be connected across the VCCPLL and
VCOMPPLL pins. Note: The VCOMPPLL pin should never be
grounded (Figure 2-2 on page 2-9)!
Each PLL has the following key features:
•
Input Frequency Range – 14 to 200 MHz
•
Output Frequency Range – 20 MHz to 1 GHz
•
Output Duty Cycle Range – 45% to 55%
•
Maximum Long-Term
(whichever is greater)
•
Maximum Short-Term Jitter – 50ps + 1% of Output
Frequency
•
Maximum Acquisition Time (lock) – 20µs
Jitter
–
1%
or
The I/O pads associated with the PLL can also be
configured for regular I/O functions except when it is
used as a clock buffer. The I/O pads can be configured in
all the modes available to the regular I/O pads in the
same I/O bank. In particular, the [H]CLKxP pad can be
configured as a differential pair, single-ended, or
voltage-referenced standard. The [H]CLKxN pad can only
be used as a differential pair with [H]CLKxP.
100ps
Physical Implementation
The block marked “/i Delay Match” is a fixed delay equal
to that of the i divider. The “/j Delay Match” block has
the same function as its j divider counterpart.
The eight PLL blocks are arranged in two groups of four.
One group is located in the center of the northern edge
of the chip, while the second group is centered on the
DIVJ
6
PowerDown
RefCLK
Delay Line
/i Delay
Match
PLL
FB
Delay Line
FBMuxSel
5
DelayLine
Lock
/j
CLK1
/j Delay
Match
CLK2
/i
6
DIVJ
LowFreq
3
Osc
Figure 2-48 • PLL Block Diagram
v2.7
2-63
Axcelerator Family FPGAs
Functional Description
•
Figure 2-48 on page 2-63 illustrates a block diagram of
the PLL. The PLL contains two dividers, i and j, that allow
frequency scaling of the clock signal:
• The i divider in the feedback path allows
multiplication of the input clock by integer factors
ranging from 1 to 64, and the resultant frequency
is available at the output of the PLL block.
• The j divider divides the PLL output by integer
factors ranging from 1 to 64, and the divided clock
is available at CLK1.
• The two dividers together can implement any
combination of multiplication and division up to a
maximum frequency of 1 GHz on CLK1. Both the
CLK1 and CLK2 outputs have a fixed 50/50 duty
cycle.
• The output frequencies of the two clocks are given
by the following formulas (fREF is the reference
clock frequency):
fCLK1 = fREF * (DividerI) / (DividerJ)
EQ 2-4
fCLK2 = fREF * (DividerI)
EQ 2-5
CLK2 provides the PLL output directly—without
division
The input and output frequency ranges are selected by
LowFreq and Osc(2:0), respectively. These functions and
their possible values are detailed in Table 2-79.
The delay lines shown in Figure 2-48 on page 2-63 are
programmable. The feedback clock path can be delayed
(using the five DelayLine bits) relative to the reference
clock (or vice versa) by up to 3.75 ns in increments of
250 ps. Table 2-79 describes the usage of these bits. The
delay increments are independent of frequency, so this
results in phase changes that vary with frequency. The
delay value is highly dependent on VCC and the speed
grade.
Figure 2-49 on page 2-65 is a logical diagram of the
various control signals to the PLL and shows how the PLL
interfaces with the global and routing networks of the
FPGA. Note that not all signals are user-accessible. These
non-user-accessible signals are used by Actel's place-androute tool to control the configuration of the PLL. The
user gains access to these control signals either based
upon the connections built in the user's design or
through the special macros (Table 2-83 on page 2-67)
inserted into the design. For example, connecting the
macro PLLOUT to CLK2 will control the OUTSEL signal.
Table 2-79 • PLL Interface Signals
Signal Name
Type
User Accessible
RefCLK
Input
Yes
Reference Clock for the PLL
FB
Input
Yes
Feedback port for the PLL
PowerDown
Input
Yes
PLL power down control
DIVI[5:0]
Input
Yes
DIVJ[5:0]
Input
Yes
LowFreq
Input
Yes
Allowable Values
0
PLL powered down
1
PLL active
1 to 64, in unsigned
binary notation offset
by -1
DelayLine[4:0]
Input
14–50 MHz
Yes
Yes
Sets value for CLK1 divider
50–200 MHz
1
Input
Sets value for feedback divider (multiplier)
Input frequency range selector
0
Osc[2:0]
Function
Output frequency range selector
XX0
400–1000 MHZ
001
200–400 MHZ
011
100–200 MHZ
101
50–100 MHZ
111
20–50 MHZ
Clock Delay (positive/negative) in increments of 250 ps, with
–15 to +15
(increments), in signed- maximum value of ± 3.75 ns
and-magnitude binary
representation
FBMuxSel
Input
No
Selects the source for the feedback input
REFSEL
Input
No
Selects the source for the reference clock
OUTSEL
Input
No
Selects the source for the routed net output
2 -6 4
v2.7
Axcelerator Family FPGAs
Table 2-79 • PLL Interface Signals (Continued)
Signal Name
Type
User Accessible
PLLSEL
Input
No
Allowable Values
Function
ROOTSEL
Input
No
Lock
Output
Yes
High value indicates PLL has locked
CLK1
Output
Yes
PLL clock output
CLK2
Output
Yes
PLL clock output
ROOTSEL & PLLSEL are used to select the source of the global
clock network
Note: If the input RefClk is taken outside its operating range, the outputs Lock, CLK1 and CLK2 are indeterminate.
ROOTSEL
REFSEL
CLKINT
CLK1 (PLLn-1)
CLK1 (PLLn-1)
RefCLK
[H]CLKINT
0
1
2
3
CLK1
[H]CLKxP
PLL
I/O
Core net
CLK net
[H]CLK
PLLSEL
CLK2
0
FBINT
CLK Out
(Routed net out pin)
1
FB
[H]CLKxN
OUTSEL
FBMuxSEL
To PLLn+1
Note: Not all signals are available to the user.
Figure 2-49 • PLL Logical Interface
PLL Configurations
Regular, LVPECL, or LVDS IOPAD
The following rules apply to the different PLL inputs and
outputs:
Non-clock
Pins
Reference Clock
The RefCLK can be driven by (Figure 2-50):
P
1. Global routed clocks (CLKE/F/G/H) or user-created
clock network
N
INBUF
RefCLK
PLL
2. CLK1 output of an adjacent PLL
Any macro from the core, except HCLK nets
3. [H]CLKxP (single-ended or voltage-referenced)
4. [H]CLKxP/[H]CLKxN pair
LVPECL or LVDS)
(differential
modes
like
RefCLK
Logic
Feedback Clock
The feedback clock can be driven by (Figure 2-51 on page
2-66):
PLL
For cascading
1. Global routed clocks (CLKE/F/G/H) or user-created
clock network
PLL
CLK1 RefCLK
PLL
2. External [H]CLKxP/N I/O pad(s) from the adjacent PLL
cell
Figure 2-50 • Reference Clock Connections
3. An internal signal from the PLL block
v2.7
2-65
Axcelerator Family FPGAs
Table 2-81 • North PLL Connections
PLLOUT/PLLRCLK
CLK1
HCLK1
FB
PLL
Any macro except HCLK macros
FB
PLL
Figure 2-51 • Feedback Clock Connections
CLK2
Routed net
HCLK1
Unused
HCLK2
HCLK1
HCLK2
Routed net
HCLK2
Both HCLK1 and routed net
HCLK2
Unused
Unused
HCLK1
Unused
Routed net
Unused
Both HCLK1 and routed net
Unused
Unused
CLK1 and CLK2
Routed net
HCLK1
Both PLL outputs, CLK1 and CLK2, can be used to drive a
global resource, an adjacent PLL RefCLK input, or a net in
the FPGA core. Not all drive combinations are possible
(Table 2-80).
Routed net
Unused
Both HCLK1 and HCLK2
Routed net
Both HCLK1 and HCLK2
Unused
Both HCLK1 and routed net
Unusable
Table 2-80 • PLL General Connections Rules
Both HCLK2 and routed net
HCLK1
Both HCLK2 and routed net
Unused
CLK1
CLK2
HCLK
HCLK
HCLK1, HCLK2, and routed net Unusable
CLK
CLK
HCLK
Routed net output
Routed net output
HCLK
Note: Designer software currently does not support all of these
connections. Only exclusive connections where one
output connects to a single net are supported at this time
(e.g.CLK1 driving HCLK1, and HCLK2 is not supported).
HCLK
NONE
NONE
HCLK
CLK
NONE
Table 2-82 • South PLL Connections
CLK1
Routed net
NONE
CLK1
Unused
CLK
CLK2
CLK1
CLK2
Routed net
CLK2
Both CLK1 and routed net
CLK2
Unused
Unused
CLK1
Unused
Routed net
Unused
Both CLK1 and routed net
Unused
Unused
Routed net
CLK1
Routed net
Unused
Both CLK1 and CLK2
Routed net
Both CLK1 and CLK2
Unused
Both CLK1 and routed net
Unusable
Both CLK2 and routed net
CLK1
Both CLK2 and routed net
Unused
CLK1, CLK2, and routed net
Unusable
Note: The PLL outputs remain Low when REFCLK is constant
(either Low or High).
Restrictions on CLK1 and CLK2
•
•
When both are driving global resources, they must
be driving the same type of global resource (i.e.
either HCLK or CLK).
Only one can drive a routed net at any given time.
Table 2-81 and Table 2-82 specify all the possible CLK1
and CLK2 connections for the north and south PLLs.
HCLK1 and HCLK2 are used to denote the different HCLK
networks when two are being driven at the same time by
a single PLL (Note that HCLK1 is the primary clock
resource associated with the PLL, and HCLK2 is the clock
resource associated with the adjacent PLL). Likewise,
CLK1 and CLK2 are used to denote the different CLK
networks when two are being driven at the same time by
a single PLL (Figure 2-48 on page 2-63).
2 -6 6
CLK2
CLK1
v2.7
Note: Designer software currently does not support all of these
connections. Only exclusive connections where one
output connects to a single net are supported at this time
(e.g., CLK1 driving both CLK1 and CLK2 is not supported).
Axcelerator Family FPGAs
Special PLL Macros
Table 2-83 shows the macros used to connect the RefCLK input and CLK1 and CLK2 outputs using the different routing
resources.
Table 2-83 • PLL Special Macros
Macro Name
Usage
PLLINT
Connects RefCLK to a regular routed net or a pad.
PLLRCLK
Connects CLK1 or CLK2 to the CLK network.
PLLHCLK
Connects CLK1 or CLK2 to the HCLK network.
PLLOUT
Connects CLK1 or CLK2 to a regular routed net.
Table 2-84 • Electrical Specifications
Parameter
Value
Notes
Frequency Ranges
Reference Frequency (min.)
14 MHz
Lowest input frequency
Reference Frequency (max.)
200 MHz
Highest input frequency
OSC Frequency (min.)
20 MHz
Lowest output frequency
OSC Frequency (max.)
1 GHz
Highest output frequency
Jitter
Long-Term Jitter (max.)
1%
Percentage of period, low reference clock frequencies
Long-Term Jitter (max.)
100ps
High reference clock frequencies
Short-Term Jitter (max.)
50ps+1%
Percentage of output frequency
Acquisition Time (lock) from Cold Start
Acquisition Time (max.)*
400 cycles
Acquisition Time (max.)*
1.5 μs
Period of low reference clock frequencies
High reference clock frequencies
Power Consumption
Analog Supply Current (low freq.)
200μA
Current at minimum oscillator frequency
Analog Supply Current (high freq.)
200μA
Frequency-dependent current
Digital Supply Current (low freq.)
0.5μA/MHz
Digital Supply Current (high freq.)
1μA/MHz
Current at maximum oscillator frequency, unloaded
Frequency-dependent current
Duty Cycle
Minimum Output Duty Cycle
45%
Maximum Output Duty Cycle
55%
Note: *The lock bit remains Low until RefCLK reaches the minimum input frequency.
v2.7
2-67
Axcelerator Family FPGAs
User Flow
There are two methods of including a PLL in a design:
•
•
The recommended method of using a PLL is to
create custom PLL blocks using Actel's macro
generator, SmartGen, that can be instantiated in a
design.
The alternative method is to instantiate one of the
generic library primitives (PLL or PLLFB) into either
a schematic or HDL netlist, using inverters for
polarity control and tying all unused address and
data bits to ground.
Timing Model
Lock
CLK1
tPCLK*
CLK
CLK2
FB
Note: tPCLK is the delay in the clock signal
Figure 2-52 • PLL Model
2 -6 8
v2.7
3
OSC
5
Delay Line
FBMux
6
DividerI/DividerJ
Configuration Pins
6
Axcelerator Family FPGAs
Sample Implementations
Frequency Synthesis
Figure 2-54 illustrates the PLL using both dividers to
synthesize a 133 MHz output clock from a 155 MHz input
reference clock. The input frequency of 155 MHz is
multiplied by 6 and divided by 7, giving a CLK1 output
frequency of 132.86 MHz. When dividers are used, a
given ratio can be generated in multiple ways, allowing
the user to stay within the operating frequency ranges of
the PLL.
Figure 2-53 illustrates an example where the PLL is used
to multiply a 155.5 MHz external clock up to 622 MHz.
Note that the same PLL schematic could use an external
350 MHz clock, which is divided down to 155 MHz by the
FPGA internal logic.
DividerJ
6
PowerDown
RefCLK
155.5 MHz
Delay Line
Lock
/i Delay
Match
CLK1
/j
PLL
FB
Delay Line
/i
/j Delay
Match
CLK2
622 MHz
FBMuxSel
5
DelayLine
6
DividerI
LowFreq
3
Osc
÷4
Figure 2-53 • Using the PLL 155.5 MHz In, 622 MHz Out
/7
DividerJ
6
PowerDown
RefCLK
Delay Line
155 MHz
/i Delay
Match
155 MHz
Lock
132.8 MHz
930 MHz
PLL
/j
CLK1
FB
Delay Line
/i
155 MHz
/j Delay
Match
CLK2
Yes
5
FBMuxSel
DelayLine
3
6
DividerI
LowFreq
Osc
÷6
Figure 2-54 • Using the PLL 155 MHz In, 133 MHz Out
v2.7
2-69
Axcelerator Family FPGAs
Adjustable Clock Delay
Figure 2-55 illustrates using the PLL to delay the reference clock by employing one of the adjustable delay lines. In this
case, the output clock is delayed relative to the reference clock. Delaying the reference clock relative to the output
clock is accomplished by using the delay line in the feedback path.
DividerJ
6
PowerDown
Lock
RefCLK
Delay Line
133 MHz
/i Delay
Match
PLL
CLK1
/j
FB
Delay Line
/j
/j Delay
Match
CLK2
133 MHz
5
FBMuxSel
DelayLine
6
DividerI
3
LowFreq
÷1
Figure 2-55 • Using the PLL Delaying the Reference Clock
2 -7 0
v2.7
Osc
Axcelerator Family FPGAs
Clock Skew Minimization
Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed
clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2)
feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then
adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two
clocks. Refer to Actel’s Axcelerator Family PLL and Clock Management application note for more information.
DividerJ
6
Lock
PowerDown
RefCLK
Input Clock
/i Delay
Match
Delay Line
133 MHz
133 MHz
PLL
FB
Delay Line
CLK1
/j
/i
/i Delay
Match
CLK2
133 MHz
FBMuxSel
6
DividerI
÷1
5
DelayLine
Q
SET
LowFreq
3
Osc
D
QCLR
Clock Network
Figure 2-56 • Using the PLL for Clock Deskewing
v2.7
2-71
Axcelerator Family FPGAs
Embedded Memory
The AX architecture provides extensive, high-speed
memory resources to the user. Each 4,608 bit block of
RAM contains its own embedded FIFO controller,
allowing the user to configure each block as either RAM
or FIFO.
RA [K:0]
To meet the needs of high performance designs, the
memory blocks operate in synchronous mode for both
read and write operations. However, the read and write
clocks are completely independent, and each may
operate up to and above 500 MHz.
RCLK
No additional core logic resources are required to
cascade the address and data buses when cascading
different RAM blocks. Dedicated routing runs along each
column of RAM to facilitate cascading.
WEN
WCLK
The AX memory block includes dedicated FIFO control
logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY). Since read and
write operations can occur asynchronously to one
another, special control circuitry is included to prevent
metastability, overflow, and underflow. A block diagram
of the memory module is illustrated in Figure 2-57.
RW [2:0]
During RAM operation, read (RA) and write (WA)
addresses are sourced by user logic and the FIFO
controller is ignored. In FIFO mode, the internal
addresses are generated by the FIFO controller and
routed to the RAM array by internal MUXes. Enables
with programmable polarity are provided to create
upper address bits for cascading up to 16 memory blocks.
When cascading memory blocks, the bussed signals WA,
WD, WEN, RA, RD, and REN are internally linked to
eliminate external routing congestion.
RD [(N-1):0]
REN
WD [(M-1):0]
WA [J:0]
PIPE
WW [2:0]
Figure 2-57 • Axcelerator Memory Module
RAM
Each memory block consists of 4,608 bits that can be
organized as 128x36, 256x18, 512x9, 1kx4, 2kx2, or 4kx1
and are cascadable to create larger memory sizes. This
allows built-in bus width conversion (Table 2-85). Each
block has independent read and write ports which
enable simultaneous read and write operations.
Table 2-85 • Memory Block WxD Options
Data-word (in bits)
Depth
Address Bus
Data Bus
1
4,096
RA/WA[11:0]
RD/WD[0]
2
2,048
RA/WA[10:0]
RD/WD[1:0]
4
1,024
RA/WA[9:0]
RD/WD[3:0]
9
512
RA/WA[8:0]
RD/WD[8:0]
18
256
RA/WA[7:0]
RD/WD[17:0]
36
128
RA/WA[6:0]
RD/WD[35:0]
2 -7 2
v2.7
Axcelerator Family FPGAs
Clocks
The D x W different configurations are: 128 x 36,
256 x 18, 512 x 9, 1k x 4, 2k x 2, and 4k x 1. The allowable
RW and WW values are shown in Table 2-87.
The RCLK and the WCLK have independent source
polarity selection and can be sourced by any global or
local signal.
When widths of one, two, and four are selected, the
ninth bit is unused. For example, when writing nine-bit
values and reading four-bit values, only the first four bits
and the second four bits of each nine-bit value are
addressable for read operations. The ninth bit is not
accessible. Conversely, when writing four-bit values and
reading nine-bit values, the ninth bit of a read operation
will be undefined.
RAM Configurations
The AX architecture allows the read side and write side
of RAMs to be organized independently, allowing for
bus conversion. For example, the write side can be set to
256x18 and the read side to 512x9.
Note that the RAM blocks employ little-endian byte
order for read and write operations.
Both the write width and read width for the RAM blocks
can be specified independently and changed dynamically
with the WW (write width) and RW (read width) pins.
Table 2-86 • RAM Signal Description
Signal
Direction
Description
WCLK
Input
Write clock (can be active on either edge).
WA[J:0]
Input
Write address bus.The value J is dependent on the RAM configuration and the number of cascaded
memory blocks. The valid range for J is from 6 to15.
WD[M-1:0]
Input
Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or
36.
RCLK
Input
Read clock (can be active on either edge).
RA[K:0]
Input
Read address bus. The value K is dependent on the RAM configuration and the number of cascaded
memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0]
Output
Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN
Input
Read enable. When this signal is valid on the active edge of the clock, data at location RA will be
driven onto RD.
WEN
Input
Write enable. When this signal is valid on the active edge of the clock, WD data will be written at
location WA.
RW[2:0]
Input
Width of the read operation dataword.
WW[2:0]
Input
Width of the write operation dataword.
Pipe
Input
Sets the pipe option to be on or off.
Table 2-87 • Allowable RW and WW Values
RW(2:0)
WW(2:0)
DxW
000
000
4k x 1
001
001
2k x 2
010
010
1k x 4
011
011
512 x 9
100
100
256 x 18
101
101
128 x 36
11x
11x
reserved
v2.7
2-73
Axcelerator Family FPGAs
Modes of Operation
higher frequency. The read-address is registered on the
read-port active-clock edge, and the read data is
registered and appears at RD after the second read clock
edge. Setting the PIPE to ON enables this mode.
There are two read modes and one write mode:
•
Read Nonpipelined (synchronous – one clock edge)
•
Read Pipelined (synchronous – two clock edges)
•
Write (synchronous – one clock edge)
On the write active-clock edge, the write data are
written into the SRAM at the write address when WEN is
high. The setup time of the write address, write enables,
and write data are minimal with respect to the write
clock.
In the standard read mode, new data is driven onto the
RD bus in the clock cycle immediately following RA and
REN valid. The read address is registered on the readport active-clock edge and data appears at read-data
after the RAM access time. Setting the PIPE to OFF
enables this mode.
Write and read transfers are described with timing
requirements beginning in "Timing Characteristics".
The pipelined mode incurs an additional clock delay
from address to data, but enables operation at a much
Timing Characteristics
WD
RD
WA
RA
WCLK
RCLK
WEN
REN
Figure 2-58 • SRAM Model
tWCKP
tWCKH
tWCKL
WCLK
tWxxSU
WA<11:0>, WD<35:0>, WEN<4:0>
Figure 2-59 • RAM Write Timing Waveforms
2 -7 4
v2.7
tWxxHD
Axcelerator Family FPGAs
tRCKH
tRCKP
tRCKL
RCLK
tRxxSU tRxxHD
RA<11:0>, REN<4:0>
tRCK2RD1
tRCK2RD2
RD <35:0>
Figure 2-60 • RAM Read Timing Waveforms
Table 2-88 • One RAM Block
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Write Mode
tWDASU
Write Data Setup vs. WCLK
1.08
1.23
1.45
ns
tWDAHD
Write Data Hold vs. WCLK
0.22
0.25
0.30
ns
tWADSU
Write Address Setup vs. WCLK
1.08
1.23
1.45
ns
tWADHD
Write Address Hold vs. WCLK
0.22
0.25
0.30
ns
tWENSU
Write Enable Setup vs. WCLK
1.08
1.23
1.45
ns
tWENHD
Write Enable Hold vs. WCLK
0.22
0.25
0.30
ns
tWCKH
WCLK Minimum High Pulse Width
0.98
1.11
1.31
ns
tWCLK
WCLK Minimum Low Pulse Width
1.15
1.30
1.53
ns
tWCKP
WCLK Minimum Period
2.29
2.61
3.07
ns
Read Mode
tRADSU
Read Address Setup vs. RCLK
0.81
0.92
1.08
ns
tRADHD
Read Address Hold vs. RCLK
0.00
0.00
0.00
ns
tRENSU
Read Enable Setup vs. RCLK
0.81
0.92
1.08
ns
tRENHD
Read Enable Hold vs. RCLK
0.00
0.00
0.00
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
1.39
1.59
1.86
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
2.62
2.98
3.5
ns
tRCLKH
RCLK Minimum High Pulse Width
1.00
1.14
1.34
ns
tRCLKL
RCLK Minimum Low Pulse Width
1.21
1.38
1.62
ns
tRCKP
RCLK Minimum Period
2.42
2.76
3.24
ns
v2.7
2-75
Axcelerator Family FPGAs
Table 2-89 • Two RAM Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Write Mode
tWDASU
Write Data Setup vs. WCLK
1.39
1.59
1.86
ns
tWDAHD
Write Data Hold vs. WCLK
0.22
0.25
0.3
ns
tWADSU
Write Address Setup vs. WCLK
1.39
1.59
1.86
ns
tWADHD
Write Address Hold vs. WCLK
0.22
0.25
0.3
ns
tWENSU
Write Enable Setup vs. WCLK
1.39
1.59
1.86
ns
tWENHD
Write Enable Hold vs. WCLK
0.22
0.25
0.3
ns
tWCKH
WCLK Minimum High Pulse Width
0.98
1.11
1.31
ns
tWCLK
WCLK Minimum Low Pulse Width
2.29
2.61
3.07
ns
tWCKP
WCLK Minimum Period
4.58
5.22
6.13
ns
Read Mode
tRADSU
Read Address Setup vs. RCLK
1.7
1.94
2.28
ns
tRADHD
Read Address Hold vs. RCLK
0.00
0.00
0.00
ns
tRENSU
Read Enable Setup vs. RCLK
1.7
1.94
2.28
ns
tRENHD
Read Enable Hold vs. RCLK
0.00
0.00
0.00
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
1.51
1.72
2.02
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
2.76
3.14
3.69
ns
tRCLKH
RCLK Minimum High Pulse Width
0.95
1.08
1.27
ns
tRCLKL
RCLK Minimum Low Pulse Width
2.46
2.8
3.29
ns
tRCKP
RCLK Minimum Period
4.92
5.6
6.59
ns
2 -7 6
v2.7
Axcelerator Family FPGAs
Table 2-90 • Four RAM Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Write Mode
tWDASU
Write Data Setup vs. WCLK
2.37
2.7
3.17
ns
tWDAHD
Write Data Hold vs. WCLK
0.22
0.25
0.3
ns
tWADSU
Write Address Setup vs. WCLK
2.37
2.7
3.17
ns
tWADHD
Write Address Hold vs. WCLK
0.22
0.25
0.3
ns
tWENSU
Write Enable Setup vs. WCLK
2.37
2.7
3.17
ns
tWENHD
Write Enable Hold vs. WCLK
0.22
0.25
0.3
ns
tWCKH
WCLK Minimum High Pulse Width
0.98
1.11
1.31
ns
tWCLK
WCLK Minimum Low Pulse Width
3.27
3.72
4.37
ns
tWCKP
WCLK Minimum Period
6.53
7.44
8.75
ns
Read Mode
tRADSU
Read Address Setup vs. RCLK
3.08
3.51
4.13
ns
tRADHD
Read Address Hold vs. RCLK
0.00
0.00
0.00
ns
tRENSU
Read Enable Setup vs. RCLK
3.08
3.51
4.13
ns
tRENHD
Read Enable Hold vs. RCLK
0.00
0.00
0.00
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
2.49
2.83
3.33
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
3.36
3.82
4.5
ns
tRCLKH
RCLK Minimum High Pulse Width
0.95
1.08
1.27
ns
tRCLKL
RCLK Minimum Low Pulse Width
3.85
4.39
5.16
ns
tRCKP
RCLK Minimum Period
7.7
8.78
10.32
ns
v2.7
2-77
Axcelerator Family FPGAs
Table 2-91 • Eight RAM Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Write Mode
tWDASU
Write Data Setup vs. WCLK
5.78
6.58
7.74
ns
tWDAHD
Write Data Hold vs. WCLK
0.22
0.25
0.3
ns
tWADSU
Write Address Setup vs. WCLK
5.78
6.58
7.74
ns
tWADHD
Write Address Hold vs. WCLK
0.22
0.25
0.3
ns
tWENSU
Write Enable Setup vs. WCLK
5.78
6.58
7.74
ns
tWENHD
Write Enable Hold vs. WCLK
0.22
0.25
0.3
ns
tWCKH
WCLK Minimum High Pulse Width
0.98
1.11
1.31
ns
tWCLK
WCLK Minimum Low Pulse Width
6.68
7.6
8.94
ns
tWCKP
WCLK Minimum Period
13.35
15.21
17.88
ns
Read Mode
tRADSU
Read Address Setup vs. RCLK
6.75
7.69
9.04
ns
tRADHD
Read Address Hold vs. RCLK
0.00
0.00
0.00
ns
tRENSU
Read Enable Setup vs. RCLK
6.75
7.69
9.04
ns
tRENHD
Read Enable Hold vs. RCLK
0.00
0.00
0.00
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
3.57
4.06
4.77
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
5.48
6.24
7.34
ns
tRCLKH
RCLK Minimum High Pulse Width
0.95
1.08
1.27
ns
tRCLKL
RCLK Minimum Low Pulse Width
7.51
8.55
10.05
ns
tRCKP
RCLK Minimum Period
15.02
17.11
20.11
ns
2 -7 8
v2.7
Axcelerator Family FPGAs
Table 2-92 • Sixteen RAM Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
Write Mode
tWDASU
Write Data Setup vs. WCLK
16.54
18.84
22.15
ns
tWDAHD
Write Data Hold vs. WCLK
0.22
0.25
0.3
ns
tWADSU
Write Address Setup vs. WCLK
16.54
18.84
22.15
ns
tWADHD
Write Address Hold vs. WCLK
0.22
0.25
0.3
ns
tWENSU
Write Enable Setup vs. WCLK
16.54
18.84
22.15
ns
tWENHD
Write Enable Hold vs. WCLK
0.22
0.25
0.3
ns
tWCKH
WCLK Minimum High Pulse Width
0.98
1.11
1.31
ns
tWCLK
WCLK Minimum Low Pulse Width
17.44
19.86
23.35
ns
tWCKP
WCLK Minimum Period
34.87
39.73
46.7
ns
Read Mode
tRADSU
Read Address Setup vs. RCLK
18.13
20.65
24.27
ns
tRADHD
Read Address Hold vs. RCLK
0.00
0.00
0.00
ns
tRENSU
Read Enable Setup vs. RCLK
18.13
20.65
24.27
ns
tRENHD
Read Enable Hold vs. RCLK
0.00
0.00
0.00
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
12.71
14.48
17.03
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
13.91
15.85
18.63
ns
tRCLKH
RCLK Minimum High Pulse Width
0.95
1.08
1.27
ns
tRCLKL
RCLK Minimum Low Pulse Width
18.75
21.36
25.11
ns
tRCKP
RCLK Minimum Period
37.5
42.72
50.22
ns
v2.7
2-79
Axcelerator Family FPGAs
FIFO
Every memory block has its own embedded FIFO
controller. Each FIFO block has one read port and one
write port. This embedded FIFO controller uses no
internal FPGA logic and features:
•
Glitch-free FIFO Flags
•
Gray-code address counters/pointers to prevent
metastability problems
•
Overflow and underflow control
The FIFO block offers programmable almost-empty
(AEMPTY) and almost-full (AFULL) flags as well as EMPTY
and FULL flags (Figure 2-61):
•
The FULL flag is synchronous to WCLK. It allows
the FIFO to inhibit writing when full.
•
The EMPTY flag is synchronous to RCLK. It allows
the FIFO to inhibit reading at the empty condition.
Gray code counters are used to prevent metastability
problems associated with flag logic. The depth of the
FIFO is dependent on the data width and the number of
memory blocks used to create the FIFO. The write
operations to the FIFO are synchronous with respect to
the WCLK, and the read operations are synchronous with
respect to the RCLK.
Both ports are configurable in various sizes from 4k x 1
to 128 x 36, similar to the RAM block size. Each port is
fully synchronous.
Read and write operations can be completely
independent. Data on the appropriate WD pins are
written to the FIFO on every active WCLK edge as long as
WEN is high. Data is read from the FIFO and output on
the appropriate RD pins on every active RCLK edge as
long as REN is asserted.
The FIFO block may be reset to the empty state.
RD [n-1:0]
WD [n-1:0]
RCLK
WCLK
RCLK
WCLK
RAM
REN
WEN
PIPE
RA [J:0]
WA [J:0]
RW[2:0]
WW[2:0]
WD
FREN
CNT 16
E
FULL
=
AFULL
AFVAL
SUB 16
>
AEMPTY
>=
AEVAL
FWEN
CNT 16
E
=
CLR
Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller
2 -8 0
v2.7
EMPTY
WIDTH[2:0]
DEPTH[3:0]
RD
Axcelerator Family FPGAs
FIFO Flag Logic
The FIFO is user configurable into various DEPTHs and
WIDTHs. Figure 2-62 shows the FIFO address counter
details.
•
Bits 11 to 5 are active for all modes.
•
As the data word size is reduced, more leastsignificant bits are added to the address.
•
As the number of cascaded blocks increases, the
number of significant bits in the address increases.
RAM block, whereas bits 13 and 12 will be used to specify
the RAM block.
The AFULL and AEMPTY flag threshold values are
programmable. The threshold values are AFVAL and
AEVAL, respectively. Although the trigger threshold for
each flag is defined with eight bits, the effective number
of threshold bits in the comparison depends on the
configuration. The effective number of threshold bits
corresponds to the range of active bits in the FIFO
address space (Table 2-93).
For example, if four blocks are cascaded as a 1kx16 FIFO
with each block having a 1kx4 aspect ratio, bits 11 to 2 of
the address will be used to specify locations within each
FIFO Address Counters
Mode when
Active
Counter
Bits
FIFO Address
Alignment of
Threshold bits
Cas 16 blks
CNTR [15]
activate
R/W EN[3]
Cas 8 blks
CNTR [14]
activate
R/W EN[2]
AEVAL/AFVAL[6]
Cas 4 blks
CNTR [13]
activate
R/W EN[1]
AEVAL/AFVAL[5]
CNTR [12]
activate
R/W EN[0]
Cas 2 blks
by 36
R/W ADD[11:8]
CNTR [11:5]
always active R/W ADD[7:5]
AEVAL/AFVAL[7]
AEVAL/AFVAL[4]
AEVAL/AFVAL[3:0]
not compared
[15:W]
[14:W]
[12:W] [13:W]
128x36 256x18
512x9
CNTR [4]
activate
R/W ADD[4]
by 9
CNTR [3]
activate
R/W ADD[3]
not compared
by 4
CNTR [2]
activate
R/W ADD[2]
not compared
by 2
CNTR [1]
activate
R/W ADD[1]
not compared
by 1
CNTR [0]
activate
R/W ADD[0]
not compared
4kx1
2kx2
[11:5]
[11:4]
by 18
1kx4
not compared
[11:3]
[11:2]
CNTR [15:0]
[11:1]
[11:0]
Variable Active Address Space
>> REN [4:0], RAD [11:0]
>> WEN [4:0], WAD [11:0]
Note: Inactive counter bits are set to zero.
Figure 2-62 • FIFO Address Counters
Table 2-93 • FIFO Flag Logic
Mode
Inactive AEVAL/AFVAL bits
Inactive DIFF bits (set to 0)
DIFF comparison to AFVAL/AEVAL
Non-cascade
[7:4]
[15:12]
DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks
[7:5]
[15:13]
DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks
[7:6]
[15:14]
DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks
[7]
[15]
DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks
None
None
DIFF[15:8] withAE/FVAL[7:0]
v2.7
2-81
Axcelerator Family FPGAs
Figure 2-63 illustrates flag generation. The Verilog codes for the flags are:
assign AF = (DIFF[15:0] >={AFVAL[7:0],8'b00000000})?1:0;
assign AE = ({AEVAL[7:0],8'b00000000}>=DIFF[15:0])?1:0;
The number of DIFF-bits active depends on the configuration depth and width (Table 2-94).
ALMOST EMPTY and ALMOST FULL Logic
AEMPTY
AEVAL [7:0], GND [7:0] (MSB....LSB)
X
WCLK
WCNTR
[15:0]
Y
16
X>=Y
(16 bit)
DIFF [15:0]
RCLK
RCNTR
[15:0]
16
AFULL
X
AFVAL [7:0], GND [7:0] (MSB....LSB) Y
Figure 2-63 • ALMOST-EMPTY and ALMOST-FULL Logic
Table 2-94 • Number of Available Configuration Bits
Number of Blocks
Block DxW
Number of AEVAL/AFVAL Bits
1
1x1
4
2
1x2
4
2
2x1
5
4
1x4
4
4
2x2
5
4
4x1
6
8
1x8
4
8
2x4
5
8
4x2
6
8
8x1
7
16
1x16
4
16
2x8
5
16
4x4
6
16
8x2
7
16
16x1
8
2 -8 2
v2.7
Axcelerator Family FPGAs
Overflow and Underflow Control
The active-high CLR pin is used to reset the FIFO to the
empty state, which sets FULL and AFULL low, and EMPTY
and AEMPTY high.
The counter MSB keeps track of the difference between
the read address (RA) and the write address (WA). The
EMPTY flag is set when the read and write addresses are
equal. To prevent underflow, the write address is doublesampled by the read clock prior to comparison with the
read address (part A in Figure 2-64). To prevent overflow,
the read address is double-sampled by the write clock
prior to comparison to the write address (part B in
Figure 2-64).
Assuming that the EMPTY flag is not set, new data is
read from the FIFO when REN is valid on the active edge
of the clock. Write and read transfers are described with
timing requirements in "Timing Characteristics" on
page 2-85.
Glitch Elimination
An analog filter is added to each FIFO controller to
guarantee glitch-free FIFO-flag logic.
A
B
WA
RCLK
RA
RA
=
=
EMPTY WCLK
WA
FULL
Figure 2-64 • Overflow and Underflow Control
FIFO Configurations
Clock
Unlike the RAM, the FIFO's write width and read width
cannot be specified independently. For the FIFO, the
write and read widths must be the same. The WIDTH pins
are used to specify one of six allowable word widths, as
shown in Table 2-95.
As with RAM configuration, the RCLK and WCLK pins
have independent polarity selection
Table 2-95 • FIFO Width Configurations
The DEPTH pins allow RAM cells to be cascaded to create
larger FIFOs. The four pins allow depths of 2, 4, 8, and 16
to be specified. Table 2-85 on page 2-72 describes the
FIFO depth options for various data width and memory
blocks.
Interface
WIDTH(2:0)
WxD
000
1 x 4k
001
2 x 2k
010
4 x 1k
011
9 x 512
100
18 x 256
101
36 x 128
11x
reserved
Figure 2-65 shows a logic block diagram of the
Axcelerator FIFO module.
Cascading FIFO Blocks
FIFO blocks can be cascaded to create deeper FIFO
functions. When building larger FIFO blocks, if the word
width can be fractured in a multi-bit FIFO, the fractured
word configuration is recommended over a cascaded
configuration. For example, 256x36 can be configured as
two blocks of 256x18. This should be taken into account
when building the FIFO blocks manually. However, when
using SmartGen, the user only needs to specify the depth
and width of the necessary FIFO blocks. SmartGen
automatically configures these blocks to optimize
performance.
DEPTH [3:0]
RD [35:0]
WIDTH [2:0]
PIPE
FREN
FULL
RCLK
AEVAL [7:0]
EMPTY
AFULL
AEMPTY
AFVAL [7:0]
WD [35:0]
FWEN
WCLK
CLR
Figure 2-65 • FIFO Block Diagram
v2.7
2-83
Axcelerator Family FPGAs
Table 2-96 • FIFO Signal Description
Signal
Direction
Description
WCLK
Input
Write clock (active either edge).
FWEN
Input
FIFO write enable. When this signal is asserted, the WD bus data is latched into the
FIFO, and the internal write counters are incremented.
WD[N-1:0]
Input
Write data bus. The value N is dependent on the RAM configuration and can be 1,
2, 4, 9, 18, or 36.
FULL
Output
Active high signal indicating that the FIFO is FULL. When this signal is set,
additional write requests are ignored.
AFULL
Output
Active high signal indicating that the FIFO is AFULL.
AFVAL
Input
8-bit input defining the AFULL value of the FIFO.
RCLK
Input
Read clock (active either edge).
FREN
Input
FIFO read enable.
RD[N-1:0]
Output
Read data bus. The value N is dependent on the RAM configuration and can be 1,
2, 4, 9, 18, or 36.
EMPTY
Output
Empty flag indicating that the FIFO is EMPTY. When this signal is asserted,
attempts to read the FIFO will be ignored.
AEMPTY
Output
Active high signal indicating that the FIFO is AEMPTY.
AEVAL
Input
8-bit input defining the almost-empty value of the FIFO.
PIPE
Input
Sets the pipe option on or off.
CLR
Input
Active high clear input.
DEPTH
Input
Determines the depth of the FIFO and the number of FIFOs to be cascaded.
WIDTH
Input
Determines the width of the dataword / width of the FIFO, and the number of the
FIFOs to be cascaded.
2 -8 4
v2.7
Axcelerator Family FPGAs
Timing Characteristics
WD
RD
AEMPTY
EMPTY
AFULL
FULL
FWEN
FREN
WCLK
RCLK
Clr
Figure 2-66 • FIFO Model
tWCKP
tWCKH
tWCKL
WCLK
tWSU
tWHD
WD<35:0>, FWEN
tCLR2HF
CLR
tCLR2xF
tCK2xF
EMPTY, AEMPTY, AFULL, FULL
Figure 2-67 • FIFO Write Timing
v2.7
2-85
Axcelerator Family FPGAs
tRCKH
tRCKP
RCLK
tRSU
tRCKL
tRHD
FREN
tRCK2RD1
tRCK2RD2
RD <35:0>
tCLRHF
CLR
tCLR2xF
tCK2xF
EMPTY, AEMPTY, AFULL, FULL
Figure 2-68 • FIFO Read Timing
Table 2-97 • One FIFO Block
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
FIFO Module Timing
tWSU
Write Setup
1.08
1.23
1.45
ns
tWHD
Write Hold
0.22
0.25
0.30
ns
tWCKH
WCLK High
0.98
1.11
1.31
ns
tWCKL
WCLK Low
1.15
1.30
1.53
ns
tWCKP
Minimum WCLK Period
tRSU
Read Setup
0.81
0.92
1.08
ns
tRHD
Read Hold
0.00
0.00
0.00
ns
tRCKH
RCLK High
1.00
1.14
1.34
ns
tRCKL
RCLK Low
tRCKP
Minimum RCLK period
tCLRHF
Clear High
1.08
1.23
1.45
ns
tCLR2FF
Clear-to-flag (EMPTY/FULL)
2.02
2.3
2.7
ns
tCLR2AF
Clear-to-flag (AEMPTY/AFULL)
4.62
5.26
6.19
ns
tCK2FF
Clock-to-flag (EMPTY/FULL)
2.24
2.55
3
ns
tCK2AF
Clock-to-flag (AEMPTY/AFULL)
5.31
6.05
7.11
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
1.39
1.59
1.86
ns
tRCK2RD2
RCLK-To-OUT (Non-Pipelined)
2.62
2.98
3.5
ns
2 -8 6
2.3
2.6
1.21
2.42
v2.7
3.06
1.38
2.76
ns
1.62
3.24
ns
ns
Axcelerator Family FPGAs
Table 2-98 • Two FIFO Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
FIFO Module Timing
tWSU
Write Setup
1.39
1.59
1.86
ns
tWHD
Write Hold
0.22
0.25
0.3
ns
tWCKH
WCLK High
0.98
1.11
1.31
ns
tWCKL
WCLK Low
2.29
2.61
3.07
ns
tWCKP
Minimum WCLK Period
tRSU
Read Setup
1.7
1.94
2.28
ns
tRHD
Read Hold
0
0
0
ns
tRCKH
RCLK High
0.95
1.08
1.27
ns
tRCKL
RCLK Low
2.46
2.8
3.29
ns
tRCKP
Minimum RCLK period
tCLRHF
Clear High
1.08
1.23
1.45
ns
tCLR2FF
Clear-to-flag (EMPTY/FULL)
2.02
2.3
2.7
ns
tCLR2AF
Clear-to-flag (AEMPTY/AFULL)
4.62
5.26
6.19
ns
tCK2FF
Clock-to-flag (EMPTY/FULL)
2.24
2.55
3
ns
tCK2AF
Clock-to-flag (AEMPTY/AFULL)
5.31
6.05
7.11
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
1.51
1.72
2.02
ns
tRCK2RD2
RCLK-To-OUT (Nonpipelined)
2.76
3.14
3.69
ns
4.58
5.22
4.92
6.14
5.6
ns
6.58
ns
Table 2-99 • Four FIFO Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
FIFO Module Timing
tWSU
Write Setup
2.37
2.7
3.17
ns
tWHD
Write Hold
0.22
0.25
0.3
ns
tWCKH
WCLK High
0.98
1.11
1.31
ns
tWCKL
WCLK Low
4.37
ns
tWCKP
Minimum WCLK Period
tRSU
Read Setup
3.08
3.51
4.13
ns
tRHD
Read Hold
0
0
0
ns
tRCKH
RCLK High
0.95
1.08
1.27
ns
tRCKL
RCLK Low
3.85
4.39
5.16
ns
tRCKP
Minimum RCLK period
tCLRHF
Clear High
1.08
1.23
1.45
ns
tCLR2FF
Clear-to-flag (EMPTY/FULL)
2.02
2.3
2.7
ns
tCLR2AF
Clear-to-flag (AEMPTY/AFULL)
4.62
5.26
6.19
ns
tCK2FF
Clock-to-flag (EMPTY/FULL)
2.24
2.55
3
ns
tCK2AF
Clock-to-flag (AEMPTY/AFULL)
5.31
6.05
7.11
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
2.49
2.83
3.33
ns
tRCK2RD2
RCLK-To-OUT (Nonpipelined)
3.36
3.82
4.5
ns
3.27
6.54
7.7
v2.7
3.72
7.44
8.74
8.78
ns
10.32
ns
2-87
Axcelerator Family FPGAs
Table 2-100 • Eight FIFO Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
FIFO Module Timing
tWSU
Write Setup
5.78
6.58
7.74
ns
tWHD
Write Hold
0.22
0.25
0.3
ns
tWCKH
WCLK High
0.98
1.11
1.31
ns
tWCKL
WCLK Low
6.68
7.6
8.94
ns
tWCKP
Minimum WCLK Period
tRSU
Read Setup
6.75
7.69
9.04
ns
tRHD
Read Hold
0
0
0
ns
tRCKH
RCLK High
0.95
1.08
1.27
ns
tRCKL
RCLK Low
7.51
8.55
10.05
ns
tRCKP
Minimum RCLK period
tCLRHF
Clear High
1.08
1.23
1.45
ns
tCLR2FF
Clear-to-flag (EMPTY/FULL)
2.02
2.3
2.7
ns
tCLR2AF
Clear-to-flag (AEMPTY/AFULL)
4.62
5.26
6.19
ns
tCK2FF
Clock-to-flag (EMPTY/FULL)
2.24
2.55
3
ns
tCK2AF
Clock-to-flag (AEMPTY/AFULL)
5.31
6.05
7.11
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
3.57
4.06
4.77
ns
tRCK2RD2
RCLK-To-OUT (Nonpipelined)
5.48
6.24
7.34
ns
13.36
15.2
15.02
17.88
17.1
ns
20.1
ns
Table 2-101 • Sixteen FIFO Blocks Cascaded
Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–2' Speed
Parameter
Description
Min.
Max.
'–1' Speed
Min.
Max.
'Std' Speed
Min.
Max.
Units
FIFO Module Timing
tWSU
Write Setup
16.54
18.84
22.15
ns
tWHD
Write Hold
0.22
0.25
0.3
ns
tWCKH
WCLK High
0.98
1.11
1.31
ns
tWCKL
WCLK Low
tWCKP
Minimum WCLK Period
tRSU
Read Setup
18.13
20.65
24.27
ns
tRHD
Read Hold
0
0
0
ns
tRCKH
RCLK High
0.95
1.08
1.27
ns
tRCKL
RCLK Low
18.75
21.36
25.11
ns
tRCKP
Minimum RCLK period
tCLRHF
Clear High
1.08
1.23
1.45
ns
tCLR2FF
Clear-to-flag (EMPTY/FULL)
2.02
2.3
2.7
ns
tCLR2AF
Clear-to-flag (AEMPTY/AFULL)
4.62
5.26
6.19
ns
tCK2FF
Clock-to-flag (EMPTY/FULL)
2.24
2.55
3
ns
tCK2AF
Clock-to-flag (AEMPTY/AFULL)
5.31
6.05
7.11
ns
tRCK2RD1
RCLK-To-OUT (Pipelined)
12.71
14.48
17.03
ns
tRCK2RD2
RCLK-To-OUT (Nonpipelined)
13.91
15.85
18.63
ns
2 -8 8
17.44
34.88
37.5
v2.7
19.86
39.72
23.35
46.7
42.72
ns
ns
50.22
ns
Axcelerator Family FPGAs
Building RAM and FIFO Modules
JTAG
RAM and FIFO modules can be generated and included
in a design in two different ways:
Axcelerator offers a JTAG interface that is compliant with
the IEEE 1149.1 standard. The user can employ the JTAG
interface for probing a design and performing any JTAG
Public Instructions as defined in the Table 2-102.
•
•
Using the SmartGen Core Generator where the
user defines the depth and width of the FIFO/
RAM, and then instantiates this block into the
design (please refer to Actel’s SmartGen,
FlashROM, Analog System Builder, and Flash
Memory System Builder User’s Guide for more
information).
Interface
The interface consists of four inputs: Test Mode Select
(TMS), Test Data In (TDI), Test Clock (TCK), TAP Controller
Reset (TRST), and an output, Test Data Out (TDO). TMS,
TDI, and TRST have on-chip pull-up resistors.
The alternative is to instantiate the RAM/FIFO
blocks manually, using inverters for polarity
control and tying all unused data bits to ground.
Table 2-102 • JTAG Instruction Code
Instruction (IR4:IR0)
Other Architectural Features
Binary Code
Extest
00000
Preload / Sample
00001
Intest
00010
Low Power Mode
USERCODE
00011
Although designed for high performance, the AX
architecture also allows the user to place the device into
a low power mode. Each I/O bank in an Axcelerator
device can be configured individually, when in low
power mode, to tristate all outputs, disable inputs, or
both. The low power mode is activated by asserting the
LP pin, which is grounded in normal operation.
IDCODE
00100
HIGHZ
01110
CLAMP
01111
Diagnostic
10000
Reserved
Bypass
While in the low power mode, the device is still fully
functional and all internal logic states are preserved. This
allows a user to disable all but a few signals and operate
the part in a low-frequency, watchdog mode if desired.
Please note, if the I/O bank is not disabled, differential I/Os
belonging to the I/O bank will still consume normal
power, even when operating in the low power mode.
All others
11111
TRST
TRST (Test-Logic Reset) is an active-low, asynchronous
reset signal to the TAP controller. The TRST input can be
used to reset the Test Access Port (TAP) Controller to the
TRST state. The TAP Controller can be held at this state
permanently by grounding the TRST pin. To hold the
JTAG TAP controller in the TRST state, it is recommended
to connect TRST to ground via a 1 kΩ resistor.
The Axcelerator device will resume normal operation
10μs after the LP pin is pulled Low.
There is an optional internal pull-up resistor available for
the TRST input that can be set by the user at
programming. Care should be exercised when using this
option in combination with an external tie-off to
ground.
To further reduce power consumption, the internal
charge pump can be bypassed and an external power
supply voltage can be used instead. This saves the
internal charge-pump operating current, resulting in no
DC current draw. The Axcelerator family devices have a
dedicated "VPUMP" pin that can be used to access an
external charge pump device. In normal chip operation,
when using the internal charge pump, VPUMP should be
tied to GND. When the voltage level on VPUMP is set to
3.3V, the internal charge pump is turned off, and the
VPUMP voltage will be used as the charge pump voltage.
Adequate voltage regulation (i.e. high drive, low output
impedance, and good decoupling) should be used at
VPUMP.
An on-chip power-on-reset (POWRST) circuit is included.
POWRST has the same function as "TRST," but it only
occurs at power-up or during recovery from a VCCA and/
or VCCDA voltage drop.
TDO
TDO is normally tristated, and it is active only when the
TAP controller is in the "Shift_DR" state or "Shift_IR"
state. The least significant bit of the selected register (i.e.
IR or DR) is clocked out to TDO first by the falling edge of
TCK.
In addition, any PLL in use can be powered down to
further reduce power consumption. This can be done
with the PowerDown pin driven Low. Driving this pin
High restarts the PLL with the output clock(s) being
stable once lock is restored.
TAP Controller
The TAP Controller is compliant with the IEEE Standard
1149.1. It is a state machine of 16 states that controls the
v2.7
2-89
Axcelerator Family FPGAs
Instruction Register (IR) and the Data Registers (such as
BSR, IDCODE, USRCODE, BYPASS, etc.). The TAP
Controller steps into one of the states depending on the
sequence of TMS at the rising edges of TCK.
Instruction Register (IR)
The IR has five bits (IR4 to IR0). At the TRST state, IR is
reset to IDCODE. Each time when IR is selected, it goes
through "select IR-Scan," "Capture-IR," "Shift-IR," all the
way through "Update-IR." When there is no test error,
the first five data bits coming out of TDO during the
"Shift-IR" will be "10111." If a test error occurs, the last
three bits will contain one to three zeroes corresponding
to negatively asserted signals: "TDO_ERRORB,"
"PROBA_ERRORB," and "PROBB_ERRORB." The error(s)
will be erased when the TAP is at the "Update-IR" or the
TRST state. When in user mode start-up sequence, if the
micro-probe has not been used, the "PROBA_ERRORB" is
used as a "Power-up done successfully" flag.
Data Registers (DRs)
Data registers are distributed throughout the chip. They
store testing/programming vectors. The MSB of a data
register is connected to TDI, while the LSB is connected
to TDO. There are different types of data registers.
Descriptions of the main registers are as follow:
Probing
Internal activities of the JTAG interface can be observed
via the Silicon Explorer II probes: "PRA," "PRB," "PRC,"
and "PRD."
Special Fuses
Security
Actel antifuse FPGAs, with FuseLock technology, offer
the highest level of design security available in a
programmable logic device. Since antifuse FPGAs are
live-at power-up, there is no bitstream that can be
intercepted, and no bitstream or programming data is
ever downloaded to the device during power-up, thus
making device cloning impossible. In addition, special
security fuses are hidden throughout the fabric of the
device and may be programmed by the user to thwart
attempts to reverse engineer the device by attempting
to exploit either the programming or probing interfaces.
Both invasive and noninvasive attacks against an
Axcelerator device that access or bypass these security
fuses will destroy access to the rest of the device. (refer
to the Design Security in Nonvolatile Flash and Antifuse
FPGAs white paper).
Look for this symbol to ensure your valuable IP is secure.
1. IDCODE:
The IDCODE is a 33-bit hard coded JTAG Silicon
Signature. It is a hardwired device ID code, which
contains the Actel identity, part number, and version
number in a specific JTAG format.
™
u e
2. USERCODE:
The USERCODE is a 32-bit programmable JTAG Silicon
Signature. It is a supplementary identity code for the
user to program information to distinguish different
programmed parts. USERCODE fuses will read out as
"zeroes" when not programmed, so only the "1" bits
need to be programmed.
3. Boundary-Scan Register (BSR):
Each I/O contains three Boundary-Scan Cells. Each cell
has a shift register bit, a latch, and two MUXes. The
boundary-scan cells are used for the Output-enable
(E), Output (O), and Input (I) registers. The bit order
of the boundary-scan cells for each of them is E-O-I.
The boundary-scan cells are then chained serially to
form the Boundary-Scan Register (BSR). The length of
the BSR is the number of I/Os in the die multiplied by
three.
4. Bypass Register (BYR):
This is the "1-bit" register. It is used to shorten the
TDI-TDO serial chain in board-level testing to only
one bit per device not being tested. It is also selected
for all "reserved" or unused instructions.
2 -9 0
v2.7
Figure 2-69 • FuseLock Logo
To ensure maximum security in Axcelerator devices, it is
recommended that the user program the device security
fuse (SFUS). When programmed, the Silicon Explorer II
testing probes are disabled to prevent internal probing,
and the programming interface is also disabled. All JTAG
public instructions are still accessible by the user.
For more information, refer to Actel’s Implementation of
Security in Actel Antifuse FPGAs application note.
Global Set Fuse
The Global Set Fuse determines if all R-cells and I/O
registers (InReg, OutReg, and EnReg) are either cleared
or preset by driving the GCLR and GPSET inputs of all Rcells and I/O Registers (Figure 2-31 on page 2-47). Default
setting is to clear all registers (GCLR = 0 and GPSET =1) at
device power-up. When the GBSETFUS option is checked
during FUSE file generation, all registers are preset
(GCLR = 1 and GPSET= 0). A local CLR or PRESET will take
precedence over this setting. Both pins are pulled High
during normal device operation. For use details, see the
Libero IDE online help.
Axcelerator Family FPGAs
Silicon Explorer II Probe Interface
Programming
Silicon Explorer II is an integrated hardware and
software solution that, in conjunction with the Designer
tools, allows users to examine any of the internal nets
(except I/O registers) of the device while it is operating in
a prototype or a production system. The user can probe
up to four nodes at a time without changing the
placement and routing of the design and without using
any additional device resources. Highlighted nets in
Designer’s ChipPlanner can be accessed using Silicon
Explorer II in order to observe their real time values.
Device programming is supported through the Silicon
Sculptor II, a single-site, robust and compact device
programmer for the PC. Up to four Silicon Sculptor IIs can
be daisy-chained and controlled from a single PC host.
With standalone software for the PC, Silicon Sculptor II is
designed to allow concurrent programming of multiple
units from the same PC when daisy-chained.
Silicon Sculptor II programs devices independently to
achieve the fastest programming times possible. Each
fuse is verified by Silicon Sculptor II to ensure correct
programming. Furthermore, at the end of programming,
there are integrity tests that are run to ensure that
programming was completed properly. Not only does it
test programmed and nonprogrammed fuses, Silicon
Sculptor II also provides a self-test to test its own
hardware extensively.
Silicon Explorer II's noninvasive method does not alter
timing or loading effects, thus shortening the debug
cycle. In addition, Silicon Explorer II does not require
relayout or additional MUXes to bring signals out to
external pins, which is necessary when using
programmable logic devices from other suppliers. By
eliminating multiple place-and-route program cycles, the
integrity of the design is maintained throughout the
debug process.
Programming an Axcelerator device using Silicon
Sculptor II is similar to programming any other antifuse
device. The procedure is as follows:
Each member of the Axcelerator family has four external
pads: PRA, PRB, PRC, and PRD. These can be used to bring
out four probe signals from the Axcelerator device (note
that the AX125 only has two probe signals that can be
observed: PRA and PRB). Each core tile has up to two
probe signals. To disallow probing, the SFUS security fuse
in the silicon signature has to be programmed (see
"Special Fuses" on page 2-90).
1. Load the .AFM file.
2. Select the device to be programmed.
3. Begin programming.
When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via our In-House
Programming Center.
Silicon Explorer II connects to the host PC using a
standard serial port connector. Connections to the circuit
board are achieved using a nine-pin D-Sub connector
(Figure 1-9 on page 1-7). Once the design has been
placed-and-routed, and the Axcelerator device has been
programmed, Silicon Explorer II can be connected and
the Explorer software can be launched.
In addition, BP
programmers that
Axcelerator devices.
Microsystems offers multi-site
provide qualified support for
For more details on programming the Axcelerator
devices, please refer to the Silicon Sculptor II User’s
Guide.
Silicon Explorer II comes with an additional optional PC
hosted tool that emulates an 18-channel logic analyzer.
Four channels are used to monitor four internal nodes,
and 14 channels are available to probe external signals.
The software included with the tool provides the user
with an intuitive interface that allows for easy viewing
and editing of signal waveforms.
v2.7
2-91
Axcelerator Family FPGAs
Package Pin Assignments
180-Pin CSP
A1 Ball Pad Corner
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 3-1 • 180-Pin CSP (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v2.7
3-1
Axcelerator Family FPGAs
180-Pin CSP
180-Pin CSP
AX125 Function
Pin Number
Bank 0
180-Pin CSP
AX125 Function
Pin Number
AX125 Function
Pin Number
IO32NB3F3
H11
IO59NB5F5
N2
IO59PB5F5
P2
IO00NB0F0
B3
IO32PB3F3
H12
IO00PB0F0
A3
IO34NB3F3
K14
IO02NB0F0
B4
IO34PB3F3
J14
IO60NB6F6
M1
IO02PB0F0
A4
IO36NB3F3
K13
IO60PB6F6
N1
IO07NB0F0/HCLKAN
B5
IO36PB3F3
J13
IO62NB6F6
K3
IO07PB0F0/HCLKAP
A5
IO38NB3F3
L13
IO62PB6F6
L3
IO08NB0F0/HCLKBN
B7
IO38PB3F3
L14
IO64NB6F6
L2
IO08PB0F0/HCLKBP
B6
IO40NB3F3
M13
IO64PB6F6
L1
IO40PB3F3
M14
IO66NB6F6
K2
Bank 1
Bank 6
IO09NB1F1/HCLKCN
C9
IO41NB3F3
K12
IO66PB6F6
K1
IO09PB1F1/HCLKCP
C8
IO41PB3F3
J12
IO68NB6F6
H3
IO10NB1F1/HCLKDN
A10
IO68PB6F6
J3
IO10PB1F1/HCLKDP
B10
IO42NB4F4
P13
IO70NB6F6
G4
IO11NB1F1
B11
IO42PB4F4
N13
IO70PB6F6
H4
IO11PB1F1
A11
IO43NB4F4
L12
IO71NB6F6
J1
IO15NB1F1
B12
IO43PB4F4
M12
IO71PB6F6
J2
IO15PB1F1
A12
IO46NB4F4
P12
IO17NB1F1
D12
IO46PB4F4
N12
IO72NB7F7
G2
IO17PB1F1
D11
IO47NB4F4
N11
IO72PB7F7
H2
IO47PB4F4
P11
IO74NB7F7
F3
Bank 2
Bank 7
IO18NB2F2
C13
IO49NB4F4/CLKEN
M11
IO74PB7F7
G3
IO18PB2F2
C12
IO49PB4F4/CLKEP
M10
IO76NB7F7
F1
IO19NB2F2
C14
IO50NB4F4/CLKFN
N9
IO76PB7F7
F2
IO19PB2F2
B14
IO50PB4F4/CLKFP
P9
IO78NB7F7
E1
IO20NB2F2
D13
IO78PB7F7
E2
IO20PB2F2
D14
IO51NB5F5/CLKGN
M7
IO79NB7F7
D2
IO22NB2F2
F12
IO51PB5F5/CLKGP
M8
IO79PB7F7
D1
IO22PB2F2
E12
IO52NB5F5/CLKHN
P5
IO83NB7F7
C1
IO24NB2F2
E13
IO52PB5F5/CLKHP
N5
IO83PB7F7
C2
IO24PB2F2
E14
IO53NB5F5
P4
IO26NB2F2
F13
IO53PB5F5
N4
VCCDA
B1
IO26PB2F2
F14
IO55NB5F5
P3
GND
A1
IO28NB2F2
G12
IO55PB5F5
N3
GND
A14
IO28PB2F2
G11
IO56NB5F5
M4
GND
A7
IO56PB5F5
M5
GND
A8
Bank 3
3 -2
Bank 4
Bank 5
Dedicated I/O
IO30NB3F3
H13
IO57NB5F5
M2
GND
E10
IO30PB3F3
G13
IO57PB5F5
M3
GND
E5
v2.7
Axcelerator Family FPGAs
180-Pin CSP
180-Pin CSP
AX125 Function
Pin Number
AX125 Function
Pin Number
GND
E6
VCCPLF
L8
GND
E9
VCCPLG
P6
GND
F10
VCCPLH
M6
GND
F5
VCCDA
B13
GND
G1
VCCDA
D3
GND
G14
VCCDA
E8
GND
H1
VCCDA
G5
GND
H14
VCCDA
H10
GND
J10
VCCDA
K7
GND
J5
VCCDA
L11
GND
K10
VCCDA
L4
GND
K5
VCCIB0
D5
GND
K6
VCCIB0
D6
GND
K9
VCCIB1
D10
GND
N14
VCCIB1
D9
GND
P1
VCCIB2
E11
GND
P14
VCCIB2
F11
GND
P7
VCCIB3
J11
GND
P8
VCCIB3
K11
GND/LP
C3
VCCIB4
L10
PRA
D8
VCCIB4
L9
PRB
B8
VCCIB5
L5
PRC
N8
VCCIB5
L6
PRD
N7
VCCIB6
J4
TCK
C4
VCCIB6
K4
TDI
E3
VCCIB7
E4
TDO
C5
VCCIB7
F4
TMS
D4
VCCDA
A2
TRST
B2
VCOMPLA
A6
VCCA
E7
VCOMPLB
D7
VCCA
G10
VCOMPLC
B9
VCCA
H5
VCOMPLD
C11
VCCA
K8
VCOMPLE
P10
VCCPLA
C6
VCOMPLF
M9
VCCPLB
C7
VCOMPLG
N6
VCCPLC
A9
VCOMPLH
L7
VCCPLD
C10
VPUMP
A13
VCCPLE
N10
v2.7
3-3
Axcelerator Family FPGAs
729-Pin PBGA
A1 Ball Pad Corner
27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
Figure 3-2 • 729-Pin PBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -4
v2.7
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
Bank 0
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO18PB0F1
C9
IO37NB1F3
C17
IO00NB0F0
E6
IO19NB0F1
E11
IO37PB1F3
C16
IO00PB0F0
F6
IO19PB0F1
F11
IO38NB1F3
B18
IO01NB0F0
G8
IO20NB0F1
G12
IO38PB1F3
B17
IO01PB0F0
G7
IO20PB0F1
H12
IO39NB1F3
A18
IO02NB0F0
D7
IO21NB0F1
D11
IO39PB1F3
A17
IO02PB0F0
E7
IO21PB0F1
D10
IO40NB1F3
H16
IO03NB0F0
D5
IO22NB0F2
A10
IO40PB1F3
G16
IO03PB0F0
E5
IO22PB0F2
A9
IO41NB1F4
B19
IO04NB0F0
G9
IO23NB0F2
B11
IO41PB1F4
A19
IO04PB0F0
H9
IO23PB0F2
B10
IO42NB1F4
C19
IO05NB0F0
E8
IO24NB0F2
G13
IO42PB1F4
C18
IO05PB0F0
F8
IO24PB0F2
H13
IO43NB1F4
D18
IO06NB0F0
C6
IO25NB0F2
C12
IO43PB1F4
D17
IO06PB0F0
D6
IO25PB0F2
C11
IO44NB1F4
H17
IO07NB0F0
B5
IO26NB0F2
E12
IO44PB1F4
G17
IO07PB0F0
C5
IO26PB0F2
D12
IO45NB1F4
F17
IO08NB0F0
A6
IO27NB0F2
E13
IO45PB1F4
E17
IO08PB0F0
A5
IO27PB0F2
F13
IO46NB1F4
B20
IO09NB0F0
E9
IO28NB0F2
G14
IO46PB1F4
A20
IO09PB0F0
F9
IO28PB0F2
H14
IO47NB1F4
C21
IO10NB0F0
G10
IO29NB0F2
A12
IO47PB1F4
C20
IO10PB0F0
H10
IO29PB0F2
B12
IO48NB1F4
H18
IO11NB0F0
B7
IO30NB0F2/HCLKAN
C13
IO48PB1F4
G18
IO11PB0F0
B6
IO30PB0F2/HCLKAP
D13
IO49NB1F4
F18
IO12NB0F1
C8
IO31NB0F2/HCLKBN
F14
IO49PB1F4
E18
IO12PB0F1
C7
IO31PB0F2/HCLKBP
E14
IO50NB1F4
D20
IO13NB0F1
E10
IO50PB1F4
D19
IO13PB0F1
F10
IO32NB1F3/HCLKCN
C14
IO51NB1F4
A22
IO14NB0F1
G11
IO32PB1F3/HCLKCP
B14
IO51PB1F4
A21
IO14PB0F1
H11
IO33NB1F3/HCLKDN
D16
IO52NB1F4
B22
IO15NB0F1
D9
IO33PB1F3/HCLKDP
D15
IO52PB1F4
B21
IO15PB0F1
D8
IO34NB1F3
B16
IO53NB1F4
F19
IO16NB0F1
A8
IO34PB1F3
A16
IO53PB1F4
E19
IO16PB0F1
A7
IO35NB1F3
E15
IO54NB1F5
F20
IO17NB0F1
B9
IO35PB1F3
F15
IO54PB1F5
E20
IO17PB0F1
B8
IO36NB1F3
H15
IO55NB1F5
E21
IO18NB0F1
C10
IO36PB1F3
G15
IO55PB1F5
D21
Bank 1
v2.7
3-5
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO56NB1F5
H19
IO74PB2F7
K21
IO93PB2F8
P27
IO56PB1F5
G19
IO75NB2F7
G27
IO94NB2F8
N19
IO57NB1F5
D22
IO75PB2F7
F27
IO94PB2F8
N20
IO57PB1F5
C22
IO76NB2F7
K23
IO95NB2F8
P23
IO58NB1F5
B23
IO76PB2F7
K22
IO95PB2F8
P22
IO58PB1F5
A23
IO77NB2F7
H26
IO59NB1F5
D23
IO77PB2F7
H25
IO96NB3F9
P25
IO59PB1F5
C23
IO78NB2F7
K25
IO96PB3F9
P24
IO60NB1F5
G21
IO78PB2F7
K24
IO97NB3F9
R26
IO60PB1F5
G20
IO79NB2F7
J26
IO97PB3F9
R27
IO61NB1F5
E23
IO79PB2F7
J25
IO98NB3F9
P21
IO61PB1F5
E22
IO80NB2F7
M20
IO98PB3F9
P20
IO62NB1F5
F22
IO80PB2F7
L20
IO99NB3F9
R24
IO62PB1F5
F21
IO81NB2F7
J27
IO99PB3F9
R25
IO63NB1F5
H20
IO81PB2F7
H27
IO100NB3F9
T26
IO63PB1F5
J19
IO82NB2F7
L23
IO100PB3F9
T27
IO82PB2F7
L22
IO101NB3F9
T24
Bank 2
3 -6
Bank 3
IO64NB2F6
J21
IO83NB2F7
L25
IO101PB3F9
T25
IO64PB2F6
H21
IO83PB2F7
L24
IO102NB3F9
R20
IO65NB2F6
F24
IO84NB2F7
N21
IO102PB3F9
R21
IO65PB2F6
F23
IO84PB2F7
M21
IO103NB3F9
R23
IO66NB2F6
F26
IO85NB2F8
K27
IO103PB3F9
R22
IO66PB2F6
F25
IO85PB2F8
K26
IO104NB3F9
U26
IO67NB2F6
E26
IO86NB2F8
M23
IO104PB3F9
U27
IO67PB2F6
E25
IO86PB2F8
M22
IO105NB3F9
U24
IO68NB2F6
J22
IO87NB2F8
M25
IO105PB3F9
U25
IO68PB2F6
H22
IO87PB2F8
M24
IO106NB3F9
R19
IO69NB2F6
G24
IO88NB2F8
L27
IO106PB3F9
P19
IO69PB2F6
G23
IO88PB2F8
L26
IO107NB3F10
V26
IO70NB2F6
K20
IO89NB2F8
M27
IO107PB3F10
V27
IO70PB2F6
J20
IO89PB2F8
M26
IO108NB3F10
T23
IO71NB2F6
G26
IO90NB2F8
N23
IO108PB3F10
T22
IO71PB2F6
G25
IO90PB2F8
N22
IO109NB3F10
V24
IO72NB2F6
J24
IO91NB2F8
N25
IO109PB3F10
V25
IO72PB2F6
J23
IO91PB2F8
N24
IO110NB3F10
T20
IO73NB2F6
H24
IO92NB2F8
N27
IO110PB3F10
T21
IO73PB2F6
H23
IO92PB2F8
N26
IO111NB3F10
W26
IO74NB2F7
L21
IO93NB2F8
P26
IO111PB3F10
W27
v2.7
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO112NB3F10
U22
IO130PB4F12
AB23
IO149PB4F13
AB17
IO112PB3F10
U23
IO131NB4F12
AC22
IO150NB4F13
AE18
IO113NB3F10
Y26
IO131PB4F12
AC23
IO150PB4F13
AE19
IO113PB3F10
Y27
IO132NB4F12
AD23
IO151NB4F13
AA16
IO114NB3F10
U20
IO132PB4F12
AD24
IO151PB4F13
Y16
IO114PB3F10
U21
IO133NB4F12
AF23
IO152NB4F14
AG18
IO115NB3F10
W24
IO133PB4F12
AE23
IO152PB4F14
AG19
IO115PB3F10
W25
IO134NB4F12
AC21
IO153NB4F14
AC16
IO116NB3F10
V22
IO134PB4F12
AB21
IO153PB4F14
AB16
IO116PB3F10
V23
IO135NB4F12
AC20
IO154NB4F14
AF17
IO117NB3F10
Y24
IO135PB4F12
AB20
IO154PB4F14
AF18
IO117PB3F10
Y25
IO136NB4F12
AD21
IO155NB4F14
AB15
IO118NB3F11
V20
IO136PB4F12
AD22
IO155PB4F14
AC15
IO118PB3F11
V21
IO137NB4F12
Y19
IO156NB4F14
AE16
IO119NB3F11
AA26
IO137PB4F12
AA19
IO156PB4F14
AE17
IO119PB3F11
AA27
IO138NB4F12
AE21
IO157NB4F14
Y15
IO120NB3F11
W22
IO138PB4F12
AE22
IO157PB4F14
AA15
IO120PB3F11
W23
IO139NB4F13
AF21
IO158NB4F14
AG16
IO121NB3F11
AA24
IO139PB4F13
AF22
IO158PB4F14
AG17
IO121PB3F11
AA25
IO140NB4F13
AG22
IO159NB4F14/CLKEN
AF15
IO122NB3F11
W20
IO140PB4F13
AG23
IO159PB4F14/CLKEP
AF16
IO122PB3F11
W21
IO141NB4F13
Y18
IO160NB4F14/CLKFN
AD14
IO123NB3F11
AB26
IO141PB4F13
AA18
IO160PB4F14/CLKFP
AD15
IO123PB3F11
AB27
IO142NB4F13
AE20
IO124NB3F11
Y22
IO142PB4F13
AD20
IO161NB5F15/CLKGN
AE14
IO124PB3F11
Y23
IO143NB4F13
AG20
IO161PB5F15/CLKGP
AE15
IO125NB3F11
AB24
IO143PB4F13
AG21
IO162NB5F15/CLKHN
AC13
IO125PB3F11
AB25
IO144NB4F13
AC19
IO162PB5F15/CLKHP
AD13
IO126NB3F11
AA22
IO144PB4F13
AB19
IO163NB5F15
Y14
IO126PB3F11
AA23
IO145NB4F13
AD18
IO163PB5F15
AA14
IO127NB3F11
AC26
IO145PB4F13
AD19
IO164NB5F15
AE13
IO127PB3F11
AC27
IO146NB4F13
AC18
IO164PB5F15
AF13
IO128NB3F11
Y20
IO146PB4F13
AB18
IO165NB5F15
AF12
IO128PB3F11
W19
IO147NB4F13
Y17
IO165PB5F15
AG12
IO147PB4F13
AA17
IO166NB5F15
AD12
Bank 4
Bank 5
IO129NB4F12
AA20
IO148NB4F13
AF19
IO166PB5F15
AE12
IO129PB4F12
Y21
IO148PB4F13
AF20
IO167NB5F15
Y13
IO130NB4F12
AB22
IO149NB4F13
AC17
IO167PB5F15
AA13
v2.7
3-7
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO168NB5F15
AD11
IO187NB5F17
Y9
IO205PB6F19
V8
IO168PB5F15
AE11
IO187PB5F17
AA9
IO206NB6F19
V5
IO169NB5F15
AG11
IO188NB5F17
AD6
IO206PB6F19
V6
IO169PB5F15
AF11
IO188PB5F17
AE6
IO207NB6F19
Y1
IO170NB5F15
AB11
IO189NB5F17
AB6
IO207PB6F19
AA1
IO170PB5F15
AC11
IO189PB5F17
AC6
IO208NB6F19
W4
IO171NB5F16
AF10
IO190NB5F17
AF5
IO208PB6F19
Y4
IO171PB5F16
AG10
IO190PB5F17
AG5
IO209NB6F19
T7
IO172NB5F16
AD10
IO191NB5F17
AA6
IO209PB6F19
U7
IO172PB5F16
AE10
IO191PB5F17
AA7
IO210NB6F19
W2
IO173NB5F16
Y12
IO192NB5F17
Y8
IO210PB6F19
Y2
IO173PB5F16
AA12
IO192PB5F17
AA8
IO211NB6F19
U5
IO174NB5F16
AB10
IO211PB6F19
U6
IO174PB5F16
AC10
IO193NB6F18
W8
IO212NB6F19
V3
IO175NB5F16
AF9
IO193PB6F18
Y7
IO212PB6F19
W3
IO175PB5F16
AG9
IO194NB6F18
AB5
IO213NB6F19
R9
IO176NB5F16
AD9
IO194PB6F18
AC5
IO213PB6F19
T8
IO176PB5F16
AE9
IO195NB6F18
AC2
IO214NB6F20
U4
IO177NB5F16
Y11
IO195PB6F18
AC3
IO214PB6F20
V4
IO177PB5F16
AA11
IO196NB6F18
AC4
IO215NB6F20
T5
IO178NB5F16
AF8
IO196PB6F18
AD4
IO215PB6F20
T6
IO178PB5F16
AG8
IO197NB6F18
Y5
IO216NB6F20
V1
IO179NB5F16
AD8
IO197PB6F18
Y6
IO216PB6F20
W1
IO179PB5F16
AE8
IO198NB6F18
AB3
IO217NB6F20
R7
IO180NB5F16
AB9
IO198PB6F18
AB4
IO217PB6F20
R8
IO180PB5F16
AC9
IO199NB6F18
V7
IO218NB6F20
U2
IO181NB5F17
Y10
IO199PB6F18
W7
IO218PB6F20
V2
IO181PB5F17
AA10
IO200NB6F18
AA4
IO219NB6F20
T1
IO182NB5F17
AF7
IO200PB6F18
AA5
IO219PB6F20
U1
IO182PB5F17
AG7
IO201NB6F18
W5
IO220NB6F20
R5
IO183NB5F17
AD7
IO201PB6F18
W6
IO220PB6F20
R6
IO183PB5F17
AE7
IO202NB6F18
AB1
IO221NB6F20
T3
IO184NB5F17
AC7
IO202PB6F18
AC1
IO221PB6F20
T4
IO184PB5F17
AC8
IO203NB6F19
Y3
IO222NB6F20
R2
IO185NB5F17
AF6
IO203PB6F19
AA3
IO222PB6F20
T2
IO185PB5F17
AG6
IO204NB6F19
AA2
IO223NB6F20
P8
IO186NB5F17
AB7
IO204PB6F19
AB2
IO223PB6F20
P9
IO186PB5F17
AB8
IO205NB6F19
U8
IO224NB6F20
R3
3 -8
Bank 6
v2.7
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO224PB6F20
R4
IO243NB7F22
J2
GND
AE1
IO243PB7F22
J1
GND
AE2
Bank 7
IO225NB7F21
P1
IO244NB7F22
J4
GND
AE25
IO225PB7F21
R1
IO244PB7F22
J3
GND
AE26
IO226NB7F21
P3
IO245NB7F22
H2
GND
AE27
IO226PB7F21
P2
IO245PB7F22
H1
GND
AE3
IO227NB7F21
N7
IO246NB7F22
H4
GND
AE5
IO227PB7F21
P7
IO246PB7F22
H3
GND
AF1
IO228NB7F21
P5
IO247NB7F23
L8
GND
AF2
IO228PB7F21
P4
IO247PB7F23
L7
GND
AF25
IO229NB7F21
N2
IO248NB7F23
J6
GND
AF26
IO229PB7F21
N1
IO248PB7F23
K6
GND
AF27
IO230NB7F21
N6
IO249NB7F23
H5
GND
AF3
IO230PB7F21
P6
IO249PB7F23
J5
GND
AG1
IO231NB7F21
N9
IO250NB7F23
G2
GND
AG2
IO231PB7F21
N8
IO250PB7F23
G1
GND
AG25
IO232NB7F21
N4
IO251NB7F23
K8
GND
AG26
IO232PB7F21
N3
IO251PB7F23
K7
GND
AG27
IO233NB7F21
M2
IO252NB7F23
G4
GND
AG3
IO233PB7F21
M1
IO252PB7F23
G3
GND
B1
IO234NB7F21
M4
IO253NB7F23
F2
GND
B2
IO234PB7F21
M3
IO253PB7F23
F1
GND
B25
IO235NB7F21
M5
IO254NB7F23
G6
GND
B26
IO235PB7F21
N5
IO254PB7F23
H6
GND
B27
IO236NB7F22
L2
IO255NB7F23
F5
GND
B3
IO236PB7F22
L1
IO255PB7F23
G5
GND
C1
IO237NB7F22
L4
IO256NB7F23
F3
GND
C2
IO237PB7F22
L3
IO256PB7F23
F4
GND
C25
IO238NB7F22
L6
IO257NB7F23
H7
GND
C26
IO238PB7F22
M6
IO257PB7F23
J7
GND
C27
IO239NB7F22
M8
GND
C3
IO239PB7F22
M7
GND
A1
GND
E27
IO240NB7F22
K2
GND
A2
GND
L11
IO240PB7F22
K1
GND
A25
GND
L12
IO241NB7F22
K4
GND
A26
GND
L13
IO241PB7F22
K3
GND
A27
GND
L14
IO242NB7F22
K5
GND
A3
GND
L15
IO242PB7F22
L5
GND
AC24
GND
L16
Dedicated I/O
v2.7
3-9
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
GND
L17
GND
U13
VCCPLG
AB13
GND
M11
GND
U14
VCCPLH
AG13
GND
M12
GND
U15
VCCDA
A11
GND
M13
GND
U16
VCCDA
AB12
GND
M14
GND
U17
VCCDA
AC12
GND
M15
GND/LP
J8
VCCDA
AC25
GND
M16
NC
U3
VCCDA
AD16
GND
M17
PRA
J14
VCCDA
AD17
GND
N11
PRB
D14
VCCDA
E16
GND
N12
PRC
V14
VCCDA
E2
GND
N13
PRD
AB14
VCCDA
E24
GND
N14
TCK
E4
VCCDA
F12
GND
N15
TDI
D4
VCCDA
F16
GND
N16
TDO
J9
VCCDA
F7
GND
N17
TMS
H8
VCCDA
K14
GND
P11
TRST
E3
VCCDA
P10
GND
P12
VCCA
AA21
VCCDA
P18
GND
P13
VCCA
AD5
VCCDA
W14
GND
P14
VCCA
E1
VCCDA
W9
GND
P15
VCCA
G22
VCCIB0
A4
GND
P16
VCCA
K10
VCCIB0
B4
GND
P17
VCCA
K11
VCCIB0
C4
GND
R11
VCCA
K17
VCCIB0
J10
GND
R12
VCCA
K18
VCCIB0
J11
GND
R13
VCCA
L10
VCCIB0
J12
GND
R14
VCCA
L18
VCCIB0
K12
GND
R15
VCCA
U10
VCCIB0
K13
GND
R16
VCCA
U18
VCCIB1
A24
GND
R17
VCCA
V10
VCCIB1
B24
GND
T11
VCCA
V11
VCCIB1
C24
GND
T12
VCCA
V17
VCCIB1
J16
GND
T13
VCCA
V18
VCCIB1
J17
GND
T14
VCCPLA
A13
VCCIB1
J18
GND
T15
VCCPLB
J13
VCCIB1
K15
GND
T16
VCCPLC
B15
VCCIB1
K16
GND
T17
VCCPLD
C15
VCCIB2
D25
GND
U11
VCCPLE
AG14
VCCIB2
D26
GND
U12
VCCPLF
AF14
VCCIB2
D27
3 -1 0
v2.7
Axcelerator Family FPGAs
729-Pin PBGA
729-Pin PBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
VCCIB2
K19
VCCIB7
D2
VCCIB2
L19
VCCIB7
D3
VCCIB2
M18
VCCIB7
K9
VCCIB2
M19
VCCIB7
L9
VCCIB2
N18
VCCIB7
M10
VCCIB3
AD25
VCCIB7
M9
VCCIB3
AD26
VCCIB7
N10
VCCIB3
AD27
VCOMPLA
B13
VCCIB3
R18
VCOMPLB
A14
VCCIB3
T18
VCOMPLC
A15
VCCIB3
T19
VCOMPLD
J15
VCCIB3
U19
VCOMPLE
AG15
VCCIB3
V19
VCOMPLF
W15
VCCIB4
AE24
VCOMPLG
AC14
VCCIB4
AF24
VCOMPLH
W13
VCCIB4
AG24
VPUMP
D24
VCCIB4
V15
VCCIB4
V16
VCCIB4
W16
VCCIB4
W17
VCCIB4
W18
VCCIB5
AE4
VCCIB5
AF4
VCCIB5
AG4
VCCIB5
V12
VCCIB5
V13
VCCIB5
W10
VCCIB5
W11
VCCIB5
W12
VCCIB6
AD1
VCCIB6
AD2
VCCIB6
AD3
VCCIB6
R10
VCCIB6
T10
VCCIB6
T9
VCCIB6
U9
VCCIB6
V9
VCCIB7
D1
v2.7
3-11
Axcelerator Family FPGAs
256-Pin FBGA
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Figure 3-3 • 256-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -1 2
v2.7
Axcelerator Family FPGAs
256-Pin FBGA
256-Pin FBGA
AX125 Function
Pin Number
Bank 0
256-Pin FBGA
AX125 Function
Pin Number
AX125 Function
Pin Number
IO21PB2F2
B16
IO44PB4F4
T15
IO01NB0F0
B4
IO22NB2F2
H13
IO45NB4F4
R12
IO01PB0F0
B3
IO22PB2F2
G13
IO45PB4F4
R13
IO03NB0F0
A4
IO23NB2F2
E16
IO46NB4F4
P11
IO03PB0F0
A3
IO23PB2F2
D16
IO46PB4F4
P12
IO04NB0F0
B6
IO25NB2F2
H15
IO47PB4F4
T11
IO04PB0F0
B5
IO25PB2F2
G15
IO48NB4F4
T12
IO06NB0F0
A6
IO26NB2F2
H14
IO48PB4F4
T13
IO06PB0F0
A5
IO26PB2F2
G14
IO49NB4F4/CLKEN
R9
IO07NB0F0/HCLKAN
B8
IO27NB2F2
G16
IO49PB4F4/CLKEP
R10
IO07PB0F0/HCLKAP
B7
IO27PB2F2
F16
IO50NB4F4/CLKFN
T8
IO08NB0F0/HCLKBN
A9
IO28NB2F2
K15
IO50PB4F4/CLKFP
T9
IO08PB0F0/HCLKBP
A8
IO28PB2F2
K16
IO29NB2F2
J16
IO51NB5F5/CLKGN
P7
IO29PB2F2
H16
IO51PB5F5/CLKGP
P8
IO52NB5F5/CLKHN
R6
Bank 1
Bank 5
IO09NB1F1/HCLKCN
C10
IO09PB1F1/HCLKCP
C9
IO10NB1F1/HCLKDN
B11
IO30NB3F3
K13
IO52PB5F5/CLKHP
R7
IO10PB1F1/HCLKDP
B10
IO30PB3F3
J13
IO54NB5F5
T5
IO12NB1F1
A13
IO31NB3F3
K14
IO54PB5F5
T6
IO12PB1F1
A12
IO31PB3F3
J14
IO55NB5F5
P5
IO13NB1F1
B13
IO33NB3F3
L15
IO55PB5F5
P6
IO13PB1F1
B12
IO33PB3F3
L16
IO56NB5F5
T3
IO14NB1F1
C12
IO35NB3F3
P16
IO56PB5F5
T4
IO14PB1F1
C11
IO35PB3F3
N16
IO57NB5F5
R3
IO15NB1F1
A15
IO36PB3F3
M16
IO57PB5F5
R4
IO15PB1F1
B14
IO37NB3F3
P15
IO58NB5F5
R1
IO16NB1F1
C15
IO37PB3F3
R16
IO58PB5F5
T2
IO16PB1F1
C14
IO39NB3F3
N15
IO59NB5F5
N4
IO17NB1F1
D13
IO39PB3F3
M15
IO59PB5F5
N5
IO17PB1F1
D12
IO40NB3F3
M13
IO40PB3F3
L13
IO60NB6F6
L4
Bank 2
Bank 3
Bank 6
IO18NB2F2
F13
IO41NB3F3
M14
IO60PB6F6
M4
IO18PB2F2
E13
IO41PB3F3
L14
IO61NB6F6
L3
IO19NB2F2
F14
IO61PB6F6
M3
IO19PB2F2
E14
IO42NB4F4
N12
IO63NB6F6
P2
IO20NB2F2
F15
IO42PB4F4
N13
IO63PB6F6
N2
IO20PB2F2
E15
IO43NB4F4
T14
IO64NB6F6
J4
IO21NB2F2
C16
IO43PB4F4
R14
IO64PB6F6
K4
Bank 4
v2.7
3-13
Axcelerator Family FPGAs
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
AX125 Function
Pin Number
AX125 Function
Pin Number
AX125 Function
Pin Number
IO65NB6F6
N1
GND
D15
PRD
P9
IO65PB6F6
P1
GND
E12
TCK
D5
IO67NB6F6
L2
GND
E5
TDI
C6
IO67PB6F6
M2
GND
F11
TDO
C4
IO69NB6F6
L1
GND
F6
TMS
C3
IO69PB6F6
M1
GND
G10
TRST
C5
IO70NB6F6
J3
GND
G7
VCCA
D14
IO70PB6F6
K3
GND
G8
VCCA
F10
IO71NB6F6
J2
GND
G9
VCCA
F4
IO71PB6F6
K2
GND
H10
VCCA
F7
GND
H7
VCCA
F8
Bank 7
IO72NB7F7
J1
GND
H8
VCCA
F9
IO72PB7F7
K1
GND
H9
VCCA
G11
IO73NB7F7
G2
GND
J10
VCCA
G6
IO73PB7F7
H2
GND
J7
VCCA
H11
IO74NB7F7
G3
GND
J8
VCCA
H6
IO74PB7F7
H3
GND
J9
VCCA
J11
IO75NB7F7
E1
GND
K10
VCCA
J6
IO75PB7F7
F1
GND
K7
VCCA
K11
IO76NB7F7
G1
GND
K8
VCCA
K6
IO77NB7F7
E2
GND
K9
VCCA
L10
IO77PB7F7
F2
GND
L11
VCCA
L7
IO78NB7F7
G4
GND
L6
VCCA
L8
IO78PB7F7
H4
GND
M12
VCCA
L9
IO79NB7F7
C1
GND
M5
VCCA
N3
IO79PB7F7
D1
GND
P13
VCCA
P14
IO81NB7F7
C2
GND
P3
VCCPLA
C7
IO81PB7F7
B1
GND
R15
VCCPLB
D6
IO82NB7F7
D2
GND
R2
VCCPLC
A10
IO82PB7F7
D3
GND
T1
VCCPLD
D10
IO83NB7F7
E3
GND
T16
VCCPLE
P10
IO83PB7F7
F3
GND/LP
D4
VCCPLF
N11
NC
A11
VCCPLG
T7
Dedicated I/O
3 -1 4
VCCDA
E4
NC
R11
VCCPLH
N7
GND
A1
NC
R5
VCCDA
A2
GND
A16
PRA
D8
VCCDA
C13
GND
B15
PRB
C8
VCCDA
D9
GND
B2
PRC
N9
VCCDA
H1
v2.7
Axcelerator Family FPGAs
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
AX250 Function
Pin Number
IO33PB2F2
E15
B4
IO35NB2F2
H13
IO01PB0F0
B3
IO35PB2F2
G13
P4
IO03NB0F0
A4
IO36NB2F2
E16
VCCIB0
E6
IO03PB0F0
A3
IO36PB2F2
D16
VCCIB0
E7
IO05NB0F0
B6
IO38NB2F2
H15
VCCIB0
E8
IO05PB0F0
B5
IO38PB2F2
G15
VCCIB1
E10
IO07NB0F0
A6
IO39NB2F2
H14
VCCIB1
E11
IO07PB0F0
A5
IO39PB2F2
G14
VCCIB1
E9
IO12NB0F0/HCLKAN
B8
IO40NB2F2
G16
VCCIB2
F12
IO12PB0F0/HCLKAP
B7
IO40PB2F2
F16
VCCIB2
G12
IO13NB0F0/HCLKBN
A9
IO43NB2F2
K15
VCCIB2
H12
IO13PB0F0/HCLKBP
A8
IO43PB2F2
K16
VCCIB3
J12
IO44NB2F2
J16
VCCIB3
K12
IO14NB1F1/HCLKCN
C10
IO44PB2F2
H16
VCCIB3
L12
IO14PB1F1/HCLKCP
C9
VCCIB4
M10
IO15NB1F1/HCLKDN
B11
IO45NB3F3
K13
VCCIB4
M11
IO15PB1F1/HCLKDP
B10
IO45PB3F3
J13
VCCIB4
M9
IO17NB1F1
A13
IO46NB3F3
K14
VCCIB5
M6
IO17PB1F1
A12
IO46PB3F3
J14
VCCIB5
M7
IO19NB1F1
B13
IO52NB3F3
L15
VCCIB5
M8
IO19PB1F1
B12
IO52PB3F3
L16
VCCIB6
J5
IO21NB1F1
C12
IO54NB3F3
P16
VCCIB6
K5
IO21PB1F1
C11
IO54PB3F3
N16
VCCIB6
L5
IO23NB1F1
A15
IO55PB3F3
M16
VCCIB7
F5
IO23PB1F1
B14
IO56NB3F3
P15
VCCIB7
G5
IO26NB1F1
C15
IO56PB3F3
R16
VCCIB7
H5
IO26PB1F1
C14
IO58NB3F3
N15
VCOMPLA
A7
IO27NB1F1
D13
IO58PB3F3
M15
VCOMPLB
D7
IO27PB1F1
D12
IO59NB3F3
M13
VCOMPLC
B9
IO59PB3F3
L13
VCOMPLD
D11
IO29NB2F2
F13
IO61NB3F3
M14
VCOMPLE
T10
IO29PB2F2
E13
IO61PB3F3
L14
VCOMPLF
N10
IO30NB2F2
F14
VCOMPLG
R8
IO30PB2F2
E14
IO62NB4F4
N12
VCOMPLH
N6
IO32NB2F2
C16
IO62PB4F4
N13
VPUMP
A14
IO32PB2F2
B16
IO63NB4F4
T14
IO33NB2F2
F15
IO63PB4F4
R14
AX125 Function
Pin Number
VCCDA
J15
VCCDA
N14
IO01NB0F0
VCCDA
N8
VCCDA
AX250 Function
Pin Number
Bank 0
Bank 1
Bank 2
v2.7
Bank 3
Bank 4
3-15
Axcelerator Family FPGAs
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
AX250 Function
Pin Number
AX250 Function
Pin Number
AX250 Function
Pin Number
IO66PB4F4
T15
IO98NB6F6
N1
GND
D15
IO67NB4F4
R12
IO98PB6F6
P1
GND
E12
IO67PB4F4
R13
IO100NB6F6
L2
GND
E5
IO69NB4F4
P11
IO100PB6F6
M2
GND
F11
IO69PB4F4
P12
IO102NB6F6
L1
GND
F6
IO70PB4F4
T11
IO102PB6F6
M1
GND
G10
IO73NB4F4
T12
IO103NB6F6
J3
GND
G7
IO73PB4F4
T13
IO103PB6F6
K3
GND
G8
IO74NB4F4/CLKEN
R9
IO104NB6F6
J2
GND
G9
IO74PB4F4/CLKEP
R10
IO104PB6F6
K2
GND
H10
IO75NB4F4/CLKFN
T8
GND
H7
IO75PB4F4/CLKFP
T9
Bank 5
Bank 7
IO107NB7F7
J1
GND
H8
IO107PB7F7
K1
GND
H9
IO76NB5F5/CLKGN
P7
IO108NB7F7
G2
GND
J10
IO76PB5F5/CLKGP
P8
IO108PB7F7
H2
GND
J7
IO77NB5F5/CLKHN
R6
IO111NB7F7
G3
GND
J8
IO77PB5F5/CLKHP
R7
IO111PB7F7
H3
GND
J9
IO79NB5F5
T5
IO112NB7F7
E1
GND
K10
IO79PB5F5
T6
IO112PB7F7
F1
GND
K7
IO81NB5F5
P5
IO113NB7F7
G1
GND
K8
IO81PB5F5
P6
IO114NB7F7
E2
GND
K9
IO83NB5F5
T3
IO114PB7F7
F2
GND
L11
IO83PB5F5
T4
IO115NB7F7
G4
GND
L6
IO85NB5F5
R3
IO115PB7F7
H4
GND
M12
IO85PB5F5
R4
IO116NB7F7
C1
GND
M5
IO88NB5F5
R1
IO116PB7F7
D1
GND
P13
IO88PB5F5
T2
IO117NB7F7
C2
GND
P3
IO89NB5F5
N4
IO117PB7F7
B1
GND
R15
IO89PB5F5
N5
IO118NB7F7
D2
GND
R2
IO118PB7F7
D3
GND
T1
Bank 6
3 -1 6
IO91NB6F6
L4
IO119NB7F7
E3
GND
T16
IO91PB6F6
M4
IO119PB7F7
F3
GND/LP
D4
IO92NB6F6
L3
PRA
D8
IO92PB6F6
M3
VCCDA
E4
PRB
C8
IO94NB6F6
P2
GND
A1
PRC
N9
IO94PB6F6
N2
GND
A16
PRD
P9
IO97NB6F6
J4
GND
B15
TCK
D5
IO97PB6F6
K4
GND
B2
TDI
C6
Dedicated I/O
v2.7
Axcelerator Family FPGAs
256-Pin FBGA
256-Pin FBGA
AX250 Function
Pin Number
AX250 Function
Pin Number
TDO
C4
VCCDA
N8
TMS
C3
VCCDA
P4
TRST
C5
VCCDA
R11
VCCA
D14
VCCDA
R5
VCCA
F10
VCCIB0
E6
VCCA
F4
VCCIB0
E7
VCCA
F7
VCCIB0
E8
VCCA
F8
VCCIB1
E10
VCCA
F9
VCCIB1
E11
VCCA
G11
VCCIB1
E9
VCCA
G6
VCCIB2
F12
VCCA
H11
VCCIB2
G12
VCCA
H6
VCCIB2
H12
VCCA
J11
VCCIB3
J12
VCCA
J6
VCCIB3
K12
VCCA
K11
VCCIB3
L12
VCCA
K6
VCCIB4
M10
VCCA
L10
VCCIB4
M11
VCCA
L7
VCCIB4
M9
VCCA
L8
VCCIB5
M6
VCCA
L9
VCCIB5
M7
VCCA
N3
VCCIB5
M8
VCCA
P14
VCCIB6
J5
VCCPLA
C7
VCCIB6
K5
VCCPLB
D6
VCCIB6
L5
VCCPLC
A10
VCCIB7
F5
VCCPLD
D10
VCCIB7
G5
VCCPLE
P10
VCCIB7
H5
VCCPLF
N11
VCOMPLA
A7
VCCPLG
T7
VCOMPLB
D7
VCCPLH
N7
VCOMPLC
B9
VCCDA
A11
VCOMPLD
D11
VCCDA
A2
VCOMPLE
T10
VCCDA
C13
VCOMPLF
N10
VCCDA
D9
VCOMPLG
R8
VCCDA
H1
VCOMPLH
N6
VCCDA
J15
VPUMP
A14
VCCDA
N14
v2.7
3-17
Axcelerator Family FPGAs
324-Pin FBGA
A1 Ball Pad Corner
18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Figure 3-4 • 324-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -1 8
v2.7
Axcelerator Family FPGAs
324-Pin FBGA
324-Pin FBGA
AX125 Function
Pin Number
Bank 0
AX125 Function
324-Pin FBGA
Pin Number
Bank 2
AX125 Function
Pin Number
IO36NB3F3
P16
IO00NB0F0
C5
IO18NB2F2
G14
IO36PB3F3
N16
IO00PB0F0
C4
IO18PB2F2
F14
IO37NB3F3
R17
IO01NB0F0
A3
IO19NB2F2
D16
IO37PB3F3
P17
IO01PB0F0
A2
IO19PB2F2
D15
IO38NB3F3
N14
IO02NB0F0
C7
IO20NB2F2
C18
IO38PB3F3
M14
IO02PB0F0
C6
IO20PB2F2
B18
IO39NB3F3
U18
IO03NB0F0
B5
IO21NB2F2
D17
IO39PB3F3
T18
IO03PB0F0
B4
IO21PB2F2
C17
IO40NB3F3
R16
IO04NB0F0
A5
IO22NB2F2
F17
IO40PB3F3
T17
IO04PB0F0
A4
IO22PB2F2
E17
IO41NB3F3
P13
IO05NB0F0
A7
IO23NB2F2
G16
IO41PB3F3
P14
IO05PB0F0
A6
IO23PB2F2
F16
IO06NB0F0
B7
IO24NB2F2
E18
IO42NB4F4
T13
IO06PB0F0
B6
IO24PB2F2
D18
IO42PB4F4
T14
IO07NB0F0/HCLKAN
C9
IO25NB2F2
G18
IO43NB4F4
U15
IO07PB0F0/HCLKAP
C8
IO25PB2F2
F18
IO43PB4F4
T15
IO08NB0F0/HCLKBN
B10
IO26NB2F2
H17
IO44NB4F4
U13
IO08PB0F0/HCLKBP
B9
IO26PB2F2
G17
IO44PB4F4
U14
IO27NB2F2
J16
IO45NB4F4
V15
Bank 1
Bank 4
IO09NB1F1/HCLKCN
D11
IO27PB2F2
H16
IO45PB4F4
V16
IO09PB1F1/HCLKCP
D10
IO28NB2F2
J18
IO46NB4F4
V13
IO10NB1F1/HCLKDN
C12
IO28PB2F2
H18
IO46PB4F4
V14
IO10PB1F1/HCLKDP
C11
IO29NB2F2
K17
IO47NB4F4
V12
IO11NB1F1
A15
IO29PB2F2
J17
IO47PB4F4
U12
IO11PB1F1
A14
IO48NB4F4
V10
IO12NB1F1
B14
IO30NB3F3
N18
IO48PB4F4
V11
IO12PB1F1
B13
IO30PB3F3
M18
IO49NB4F4/CLKEN
T10
IO13NB1F1
A17
IO31NB3F3
L18
IO49PB4F4/CLKEP
T11
IO13PB1F1
A16
IO31PB3F3
K18
IO50NB4F4/CLKFN
U9
IO14NB1F1
D13
IO32NB3F3
L16
IO50PB4F4/CLKFP
U10
IO14PB1F1
D12
IO32PB3F3
L17
IO15NB1F1
C14
IO33NB3F3
R18
IO51NB5F5/CLKGN
R8
IO15PB1F1
C13
IO33PB3F3
P18
IO51PB5F5/CLKGP
R9
IO16NB1F1
B16
IO34NB3F3
N15
IO52NB5F5/CLKHN
T7
IO16PB1F1
C15
IO34PB3F3
M15
IO52PB5F5/CLKHP
T8
IO17NB1F1
E14
IO35NB3F3
M16
IO53NB5F5
U6
IO17PB1F1
E13
IO35PB3F3
M17
IO53PB5F5
U7
Bank 3
v2.7
Bank 5
3-19
Axcelerator Family FPGAs
324-Pin FBGA
AX125 Function
Pin Number
AX125 Function
Pin Number
AX125 Function
Pin Number
IO54NB5F5
V8
IO72NB7F7
H4
GND
H11
IO54PB5F5
V9
IO72PB7F7
J4
GND
H8
IO55NB5F5
V6
IO73NB7F7
K2
GND
H9
IO55PB5F5
V7
IO73PB7F7
L2
GND
J10
IO56NB5F5
U4
IO74NB7F7
H2
GND
J11
IO56PB5F5
U5
IO74PB7F7
H1
GND
J8
IO57NB5F5
T4
IO75NB7F7
H3
GND
J9
IO57PB5F5
T5
IO75PB7F7
J3
GND
K10
IO58NB5F5
V4
IO76NB7F7
F2
GND
K11
IO58PB5F5
V5
IO76PB7F7
G2
GND
K8
IO59NB5F5
V2
IO77NB7F7
F1
GND
K9
IO59PB5F5
V3
IO77PB7F7
G1
GND
L10
IO78NB7F7
D2
GND
L11
Bank 6
IO60NB6F6
P5
IO78PB7F7
E2
GND
L8
IO60PB6F6
P6
IO79NB7F7
F3
GND
L9
IO61NB6F6
T2
IO79PB7F7
G3
GND
M12
IO61PB6F6
U3
IO80NB7F7
E3
GND
M7
IO62NB6F6
T1
IO80PB7F7
E4
GND
N13
IO62PB6F6
U1
IO81NB7F7
D1
GND
N6
IO63NB6F6
P1
IO81PB7F7
E1
GND
R14
IO63PB6F6
R1
IO82NB7F7
D3
GND
R4
IO64NB6F6
R3
IO82PB7F7
C2
GND
T16
IO64PB6F6
P3
IO83NB7F7
B1
GND
T3
IO65NB6F6
P2
IO83PB7F7
C1
GND
U17
IO65PB6F6
R2
GND
U2
IO66NB6F6
M3
VCCDA
F5
GND
V1
IO66PB6F6
N3
GND
A1
GND
V18
IO67NB6F6
M2
GND
A18
GND/LP
E5
IO67PB6F6
N2
GND
B17
NC
A10
IO68NB6F6
M1
GND
B2
NC
A11
IO68PB6F6
N1
GND
C16
NC
A12
IO69NB6F6
K4
GND
C3
NC
A13
IO69PB6F6
L4
GND
E16
NC
A8
IO70NB6F6
K1
GND
F13
NC
A9
IO70PB6F6
L1
GND
F6
NC
B12
IO71NB6F6
K3
GND
G12
NC
F15
IO71PB6F6
L3
GND
G7
NC
F4
GND
H10
NC
G15
Bank 7
3 -2 0
324-Pin FBGA
324-Pin FBGA
Dedicated I/O
v2.7
Axcelerator Family FPGAs
324-Pin FBGA
AX125 Function
324-Pin FBGA
324-Pin FBGA
Pin Number
AX125 Function
Pin Number
AX125 Function
Pin Number
NC
G4
VCCA
G11
VCCIB1
F11
NC
H14
VCCA
G5
VCCIB1
F12
NC
H15
VCCA
G8
VCCIB2
G13
NC
H5
VCCA
G9
VCCIB2
H13
NC
J1
VCCA
H12
VCCIB2
J13
NC
J14
VCCA
H7
VCCIB3
K13
NC
J15
VCCA
J12
VCCIB3
L13
NC
J5
VCCA
J7
VCCIB3
M13
NC
K14
VCCA
K12
VCCIB4
N10
NC
K15
VCCA
K7
VCCIB4
N11
NC
K5
VCCA
L12
VCCIB4
N12
NC
L14
VCCA
L7
VCCIB5
N7
NC
L15
VCCA
M10
VCCIB5
N8
NC
L5
VCCA
M11
VCCIB5
N9
NC
M4
VCCA
M8
VCCIB6
K6
NC
M5
VCCA
M9
VCCIB6
L6
NC
N17
VCCA
P4
VCCIB6
M6
NC
N4
VCCA
R15
VCCIB7
G6
NC
N5
VCCPLA
D8
VCCIB7
H6
NC
R12
VCCPLB
E7
VCCIB7
J6
NC
R13
VCCPLC
B11
VCOMPLA
B8
NC
R6
VCCPLD
E11
VCOMPLB
E8
NC
R7
VCCPLE
R11
VCOMPLC
C10
NC
T12
VCCPLF
P12
VCOMPLD
E12
NC
T6
VCCPLG
U8
VCOMPLE
U11
NC
U16
VCCPLH
P8
VCOMPLF
P11
NC
V17
VCCDA
B3
VCOMPLG
T9
PRA
E9
VCCDA
D14
VCOMPLH
P7
PRB
D9
VCCDA
E10
VPUMP
B15
PRC
P10
VCCDA
J2
PRD
R10
VCCDA
K16
TCK
E6
VCCDA
P15
TDI
D7
VCCDA
P9
TDO
D5
VCCDA
R5
TMS
D4
VCCIB0
F7
TRST
D6
VCCIB0
F8
VCCA
E15
VCCIB0
F9
VCCA
G10
VCCIB1
F10
v2.7
3-21
Axcelerator Family FPGAs
484-Pin FBGA
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Figure 3-5 • 484-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -2 2
v2.7
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
AX250 Function
Pin Number
Bank 0
AX250 Function
484-Pin FBGA
Pin Number
AX250 Function
Pin Number
IO18NB1F1
A14
IO36PB2F2
F21
IO00NB0F0
D7
IO18PB1F1
A13
IO37NB2F2
K19
IO00PB0F0
D6
IO19NB1F1
A16
IO37PB2F2
J19
IO01NB0F0
E7
IO19PB1F1
A15
IO38NB2F2
J20
IO01PB0F0
E6
IO20NB1F1
B16
IO38PB2F2
H20
IO02NB0F0
C5
IO20PB1F1
B15
IO39NB2F2
L16
IO02PB0F0
C4
IO21NB1F1
C17
IO39PB2F2
K16
IO03NB0F0
C7
IO21PB1F1
C16
IO40NB2F2
J21
IO03PB0F0
C6
IO22NB1F1
F15
IO40PB2F2
H21
IO04NB0F0
E9
IO22PB1F1
F14
IO41NB2F2
L17
IO04PB0F0
E8
IO23NB1F1
D16
IO41PB2F2
K17
IO05NB0F0
D9
IO23PB1F1
D15
IO42NB2F2
J22
IO05PB0F0
D8
IO24NB1F1
E16
IO42PB2F2
H22
IO06NB0F0
B7
IO24PB1F1
E15
IO43NB2F2
L18
IO06PB0F0
B6
IO25NB1F1
F18
IO43PB2F2
K18
IO07NB0F0
C9
IO25PB1F1
F17
IO44NB2F2
L20
IO07PB0F0
C8
IO26NB1F1
D18
IO44PB2F2
K20
IO08NB0F0
A7
IO26PB1F1
E17
IO08PB0F0
A6
IO27NB1F1
G16
IO45NB3F3
M19
IO09NB0F0
B9
IO27PB1F1
G15
IO45PB3F3
L19
IO09PB0F0
B8
IO46NB3F3
M21
IO10NB0F0
A9
IO28NB2F2
F19
IO46PB3F3
L21
IO10PB0F0
A8
IO28PB2F2
E19
IO47NB3F3
N17
IO11NB0F0
B10
IO29NB2F2
J16
IO47PB3F3
M17
IO11PB0F0
A10
IO29PB2F2
H16
IO48NB3F3
N18
IO12NB0F0/HCLKAN
E11
IO30NB2F2
E20
IO48PB3F3
N19
IO12PB0F0/HCLKAP
E10
IO30PB2F2
D20
IO49NB3F3
N16
IO13NB0F0/HCLKBN
D12
IO31NB2F2
J17
IO49PB3F3
M16
IO13PB0F0/HCLKBP
D11
IO31PB2F2
H17
IO50NB3F3
N20
IO32NB2F2
G20
IO50PB3F3
M20
Bank 1
Bank 2
Bank 3
IO14NB1F1/HCLKCN
F13
IO32PB2F2
F20
IO51NB3F3
P21
IO14PB1F1/HCLKCP
F12
IO33NB2F2
H19
IO51PB3F3
N21
IO15NB1F1/HCLKDN
E14
IO33PB2F2
G19
IO52NB3F3
P18
IO15PB1F1/HCLKDP
E13
IO34NB2F2
E22
IO52PB3F3
P19
IO16NB1F1
C13
IO34PB2F2
D22
IO53NB3F3
R20
IO16PB1F1
C12
IO35NB2F2
J18
IO53PB3F3
P20
IO17NB1F1
B14
IO35PB2F2
H18
IO54NB3F3
T21
IO17PB1F1
B13
IO36NB2F2
G21
IO54PB3F3
R21
v2.7
3-23
Axcelerator Family FPGAs
484-Pin FBGA
AX250 Function
484-Pin FBGA
Pin Number
Pin Number
AX250 Function
Pin Number
IO55NB3F3
R17
IO73PB4F4
AB13
IO91PB6F6
R7
IO55PB3F3
P17
IO74NB4F4/CLKEN
V12
IO92NB6F6
U5
IO56NB3F3
U20
IO74PB4F4/CLKEP
V13
IO92PB6F6
T5
IO56PB3F3
T20
IO75NB4F4/CLKFN
W11
IO93NB6F6
P6
IO57NB3F3
T18
IO75PB4F4/CLKFP
W12
IO93PB6F6
R6
IO57PB3F3
R18
IO94NB6F6
T4
IO58NB3F3
U19
IO76NB5F5/CLKGN
U10
IO94PB6F6
U4
IO58PB3F3
T19
IO76PB5F5/CLKGP
U11
IO95NB6F6
P5
IO59NB3F3
R16
IO77NB5F5/CLKHN
V9
IO95PB6F6
R5
IO59PB3F3
P16
IO77PB5F5/CLKHP
V10
IO96NB6F6
T3
IO60NB3F3
W20
IO78NB5F5
AA9
IO96PB6F6
U3
IO60PB3F3
V20
IO78PB5F5
AA10
IO97NB6F6
P3
IO61NB3F3
U18
IO79NB5F5
AB9
IO97PB6F6
R3
IO61PB3F3
V19
IO79PB5F5
AB10
IO98NB6F6
R2
IO80NB5F5
AA7
IO98PB6F6
T2
Bank 4
3 -2 4
AX250 Function
484-Pin FBGA
Bank 5
IO62NB4F4
T15
IO80PB5F5
AA8
IO99NB6F6
P4
IO62PB4F4
T16
IO81NB5F5
W8
IO99PB6F6
R4
IO63NB4F4
W17
IO81PB5F5
W9
IO100NB6F6
P1
IO63PB4F4
V17
IO82NB5F5
AB5
IO100PB6F6
R1
IO64NB4F4
V15
IO82PB5F5
AB6
IO101NB6F6
M7
IO64PB4F4
V16
IO83NB5F5
AA5
IO101PB6F6
N7
IO65NB4F4
Y19
IO83PB5F5
AA6
IO102NB6F6
N2
IO65PB4F4
W18
IO84NB5F5
U8
IO102PB6F6
P2
IO66NB4F4
AB18
IO84PB5F5
U9
IO103NB6F6
M6
IO66PB4F4
AB19
IO85NB5F5
Y6
IO103PB6F6
N6
IO67NB4F4
W15
IO85PB5F5
Y7
IO104NB6F6
M4
IO67PB4F4
W16
IO86NB5F5
W6
IO104PB6F6
N4
IO68NB4F4
U14
IO86PB5F5
W7
IO105NB6F6
M5
IO68PB4F4
U15
IO87NB5F5
Y4
IO105PB6F6
N5
IO69NB4F4
AA16
IO87PB5F5
Y5
IO106NB6F6
M3
IO69PB4F4
AA17
IO88NB5F5
V6
IO106PB6F6
N3
IO70NB4F4
AB14
IO88PB5F5
V7
IO70PB4F4
AB15
IO89NB5F5
T7
IO107NB7F7
M2
IO71NB4F4
Y14
IO89PB5F5
T8
IO107PB7F7
N1
IO71PB4F4
W14
IO108NB7F7
L3
IO72NB4F4
AA14
IO90NB6F6
V4
IO108PB7F7
L2
IO72PB4F4
AA15
IO90PB6F6
W5
IO109NB7F7
K2
IO73NB4F4
AA13
IO91NB6F6
P7
IO109PB7F7
K1
Bank 6
v2.7
Bank 7
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
AX250 Function
Pin Number
AX250 Function
484-Pin FBGA
Pin Number
AX250 Function
Pin Number
IO110NB7F7
K5
GND
AA21
GND
M22
IO110PB7F7
L5
GND
AA22
GND
N10
IO111NB7F7
K6
GND
AB1
GND
N11
IO111PB7F7
L6
GND
AB11
GND
N12
IO112NB7F7
K4
GND
AB12
GND
N13
IO112PB7F7
K3
GND
AB2
GND
P14
IO113NB7F7
K7
GND
AB21
GND
P9
IO113PB7F7
L7
GND
AB22
GND
R15
IO114NB7F7
H1
GND
B1
GND
R8
IO114PB7F7
J1
GND
B2
GND
U16
IO115NB7F7
H2
GND
B21
GND
U6
IO115PB7F7
J2
GND
B22
GND
V18
IO116NB7F7
H4
GND
C20
GND
V5
IO116PB7F7
J4
GND
C3
GND
W19
IO117NB7F7
H5
GND
D19
GND
W4
IO117PB7F7
J5
GND
D4
GND
Y20
IO118NB7F7
F2
GND
E18
GND
Y3
IO118PB7F7
G2
GND
E5
GND/LP
G7
IO119NB7F7
H6
GND
G18
NC
A17
IO119PB7F7
J6
GND
H15
NC
A18
IO120NB7F7
F1
GND
H8
NC
A19
IO120PB7F7
G1
GND
J14
NC
A4
IO121NB7F7
F4
GND
J9
NC
A5
IO121PB7F7
G4
GND
K10
NC
AA11
IO122NB7F7
G5
GND
K11
NC
AA12
IO122PB7F7
G6
GND
K12
NC
AA18
IO123NB7F7
F5
GND
K13
NC
AA19
IO123PB7F7
E4
GND
L1
NC
AA4
GND
L10
NC
AB16
Dedicated I/O
VCCDA
H7
GND
L11
NC
AB17
GND
A1
GND
L12
NC
AB4
GND
A11
GND
L13
NC
AB7
GND
A12
GND
L22
NC
AB8
GND
A2
GND
M1
NC
B11
GND
A21
GND
M10
NC
B12
GND
A22
GND
M11
NC
B17
GND
AA1
GND
M12
NC
B18
GND
AA2
GND
M13
NC
B19
v2.7
3-25
Axcelerator Family FPGAs
484-Pin FBGA
AX250 Function
3 -2 6
484-Pin FBGA
Pin Number
AX250 Function
484-Pin FBGA
Pin Number
AX250 Function
Pin Number
NC
B4
NC
V3
VCCA
N9
NC
B5
NC
W1
VCCA
P10
NC
C10
NC
W2
VCCA
P11
NC
C11
NC
W21
VCCA
P12
NC
C14
NC
W22
VCCA
P13
NC
C15
NC
W3
VCCA
T6
NC
C18
NC
Y10
VCCA
U17
NC
C19
NC
Y11
VCCPLA
F10
NC
D1
NC
Y12
VCCPLB
G9
NC
D2
NC
Y13
VCCPLC
D13
NC
D21
NC
Y15
VCCPLD
G13
NC
D3
NC
Y16
VCCPLE
U13
NC
E1
NC
Y17
VCCPLF
T14
NC
E2
NC
Y18
VCCPLG
W10
NC
E21
NC
Y8
VCCPLH
T10
NC
E3
NC
Y9
VCCDA
D14
NC
F22
PRA
G11
VCCDA
D5
NC
F3
PRB
F11
VCCDA
F16
NC
G22
PRC
T12
VCCDA
G12
NC
G3
PRD
U12
VCCDA
L4
NC
H3
TCK
G8
VCCDA
M18
NC
J3
TDI
F9
VCCDA
T11
NC
K21
TDO
F7
VCCDA
T17
NC
K22
TMS
F6
VCCDA
U7
NC
N22
TRST
F8
VCCDA
V14
NC
P22
VCCA
G17
VCCDA
V8
NC
R19
VCCA
J10
VCCIB0
A3
NC
R22
VCCA
J11
VCCIB0
B3
NC
T1
VCCA
J12
VCCIB0
H10
NC
T22
VCCA
J13
VCCIB0
H11
NC
U1
VCCA
J7
VCCIB0
H9
NC
U2
VCCA
K14
VCCIB1
A20
NC
U21
VCCA
K9
VCCIB1
B20
NC
U22
VCCA
L14
VCCIB1
H12
NC
V1
VCCA
L9
VCCIB1
H13
NC
V2
VCCA
M14
VCCIB1
H14
NC
V21
VCCA
M9
VCCIB2
C21
NC
V22
VCCA
N14
VCCIB2
C22
v2.7
Axcelerator Family FPGAs
484-Pin FBGA
AX250 Function
484-Pin FBGA
484-Pin FBGA
Pin Number
AX500 Function
Pin Number
Bank 0
AX500 Function
Pin Number
IO20PB0F1/HCLKBP
D11
VCCIB2
J15
VCCIB2
K15
IO00NB0F0
E3
VCCIB2
L15
IO00PB0F0
D3
IO21NB1F2/HCLKCN
F13
VCCIB3
M15
IO01NB0F0
E7
IO21PB1F2/HCLKCP
F12
VCCIB3
N15
IO01PB0F0
E6
IO22NB1F2/HCLKDN
E14
VCCIB3
P15
IO02NB0F0
C5
IO22PB1F2/HCLKDP
E13
VCCIB3
Y21
IO02PB0F0
C4
IO24NB1F2
A14
VCCIB3
Y22
IO03NB0F0
D7
IO24PB1F2
A13
VCCIB4
AA20
IO03PB0F0
D6
IO25NB1F2
B14
VCCIB4
AB20
IO04NB0F0
B5
IO25PB1F2
B13
VCCIB4
R12
IO04PB0F0
B4
IO26NB1F2
C15
VCCIB4
R13
IO05NB0F0
C7
IO27NB1F2
A16
VCCIB4
R14
IO05PB0F0
C6
IO27PB1F2
A15
VCCIB5
AA3
IO06NB0F0
A5
IO28NB1F2
B16
VCCIB5
AB3
IO06PB0F0
A4
IO28PB1F2
B15
VCCIB5
R10
IO07NB0F0
A7
IO29NB1F2
D16
VCCIB5
R11
IO07PB0F0
A6
IO29PB1F2
D15
VCCIB5
R9
IO08NB0F0
B7
IO30NB1F2
A18
VCCIB6
M8
IO08PB0F0
B6
IO30PB1F2
A17
VCCIB6
N8
IO10NB0F0
B9
IO31NB1F2
F15
VCCIB6
P8
IO10PB0F0
B8
IO31PB1F2
F14
VCCIB6
Y1
IO11NB0F0
E9
IO32NB1F3
C17
VCCIB6
Y2
IO11PB0F0
E8
IO32PB1F3
C16
VCCIB7
C1
IO12NB0F1
D9
IO33NB1F3
E16
VCCIB7
C2
IO12PB0F1
D8
IO33PB1F3
E15
VCCIB7
J8
IO13NB0F1
C9
IO34NB1F3
B18
VCCIB7
K8
IO13PB0F1
C8
IO34PB1F3
B17
VCCIB7
L8
IO14NB0F1
A9
IO35NB1F3
B19
VCOMPLA
D10
IO14PB0F1
A8
IO35PB1F3
A19
VCOMPLB
G10
IO15NB0F1
B10
IO36NB1F3
C19
VCOMPLC
E12
IO15PB0F1
A10
IO36PB1F3
C18
VCOMPLD
G14
IO16NB0F1
B12
IO37NB1F3
F18
VCOMPLE
W13
IO16PB0F1
B11
IO37PB1F3
F17
VCOMPLF
T13
IO18NB0F1
C13
IO38NB1F3
D18
VCOMPLG
V11
IO18PB0F1
C12
IO38PB1F3
E17
VCOMPLH
T9
IO19NB0F1/HCLKAN
E11
IO39NB1F3
E21
VPUMP
D17
IO19PB0F1/HCLKAP
E10
IO39PB1F3
D21
IO20NB0F1/HCLKBN
D12
IO40NB1F3
E20
v2.7
Bank 1
3-27
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
IO40PB1F3
D20
IO60NB2F5
M21
IO79NB3F7
T18
IO41NB1F3
G16
IO60PB2F5
L21
IO79PB3F7
R18
IO41PB1F3
G15
IO61NB2F5
L16
IO80NB3F7
W20
IO61PB2F5
K16
IO80PB3F7
V20
Bank 2
3 -2 8
IO42NB2F4
F19
IO62NB2F5
M19
IO81NB3F7
U19
IO42PB2F4
E19
IO62PB2F5
L19
IO81PB3F7
T19
IO43NB2F4
J16
IO82NB3F7
U18
IO43PB2F4
H16
IO63NB3F6
N16
IO82PB3F7
V19
IO44NB2F4
E22
IO63PB3F6
M16
IO83NB3F7
R16
IO44PB2F4
D22
IO64NB3F6
P22
IO83PB3F7
P16
IO45NB2F4
H19
IO64PB3F6
N22
IO45PB2F4
G19
IO65NB3F6
N20
IO84NB4F8
AB18
IO46NB2F4
G22
IO65PB3F6
M20
IO84PB4F8
AB19
IO46PB2F4
F22
IO66NB3F6
P21
IO85NB4F8
T15
IO47NB2F4
J17
IO66PB3F6
N21
IO85PB4F8
T16
IO47PB2F4
H17
IO67NB3F6
N18
IO86NB4F8
AA18
IO48NB2F4
G20
IO67PB3F6
N19
IO86PB4F8
AA19
IO48PB2F4
F20
IO68NB3F6
T22
IO87NB4F8
W17
IO49NB2F4
J18
IO68PB3F6
R22
IO87PB4F8
V17
IO49PB2F4
H18
IO69NB3F6
N17
IO88NB4F8
Y19
IO50NB2F4
G21
IO69PB3F6
M17
IO88PB4F8
W18
IO50PB2F4
F21
IO70NB3F6
T21
IO89NB4F8
U14
IO51NB2F4
K19
IO70PB3F6
R21
IO89PB4F8
U15
IO51PB2F4
J19
IO71NB3F6
P18
IO90NB4F8
Y17
IO52NB2F5
J21
IO71PB3F6
P19
IO90PB4F8
Y18
IO52PB2F5
H21
IO72NB3F6
R20
IO91NB4F8
V15
IO53NB2F5
J20
IO72PB3F6
P20
IO91PB4F8
V16
IO53PB2F5
H20
IO73PB3F6
R19
IO92PB4F8
AB17
IO54NB2F5
J22
IO74NB3F7
V21
IO93NB4F8
Y15
IO54PB2F5
H22
IO74PB3F7
U21
IO93PB4F8
Y16
IO55NB2F5
L17
IO75NB3F7
V22
IO94NB4F9
AA16
IO55PB2F5
K17
IO75PB3F7
U22
IO94PB4F9
AA17
IO56NB2F5
K21
IO76NB3F7
U20
IO95NB4F9
AB14
IO56PB2F5
K22
IO76PB3F7
T20
IO95PB4F9
AB15
IO58NB2F5
L20
IO77NB3F7
R17
IO96NB4F9
W15
IO58PB2F5
K20
IO77PB3F7
P17
IO96PB4F9
W16
IO59NB2F5
L18
IO78NB3F7
W21
IO97NB4F9
AA13
IO59PB2F5
K18
IO78PB3F7
W22
IO97PB4F9
AB13
Bank 3
v2.7
Bank 4
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
IO98NB4F9
AA14
IO119NB5F11
AA4
IO139NB6F13
N2
IO98PB4F9
AA15
IO119PB5F11
AB4
IO139PB6F13
P2
IO100NB4F9
Y14
IO120NB5F11
Y4
IO140NB6F13
P3
IO100PB4F9
W14
IO120PB5F11
Y5
IO140PB6F13
R3
IO101NB4F9
Y12
IO121NB5F11
W6
IO141NB6F13
M6
IO101PB4F9
Y13
IO121PB5F11
W7
IO141PB6F13
N6
IO102NB4F9
AA11
IO122NB5F11
V3
IO142NB6F13
P1
IO102PB4F9
AA12
IO122PB5F11
W3
IO142PB6F13
R1
IO103NB4F9/CLKEN
V12
IO123NB5F11
T7
IO143NB6F13
M5
IO103PB4F9/CLKEP
V13
IO123PB5F11
T8
IO143PB6F13
N5
IO104NB4F9/CLKFN
W11
IO124NB5F11
V4
IO144NB6F13
M4
IO104PB4F9/CLKFP
W12
IO124PB5F11
W5
IO144PB6F13
N4
IO125NB5F11
V6
IO145NB6F13
M7
IO125PB5F11
V7
IO145PB6F13
N7
IO146NB6F13
M3
IO146PB6F13
N3
Bank 5
IO105NB5F10/CLKGN
U10
IO105PB5F10/CLKGP
U11
IO106NB5F10/CLKHN
V9
IO126NB6F12
V2
IO106PB5F10/CLKHP
V10
IO126PB6F12
W2
IO107NB5F10
Y10
IO127NB6F12
P7
IO147NB7F14
K7
IO107PB5F10
Y11
IO127PB6F12
R7
IO147PB7F14
L7
IO108NB5F10
AA9
IO128NB6F12
V1
IO148NB7F14
M2
IO108PB5F10
AA10
IO128PB6F12
W1
IO148PB7F14
N1
IO110NB5F10
AB9
IO129NB6F12
U5
IO149NB7F14
K5
IO110PB5F10
AB10
IO129PB6F12
T5
IO149PB7F14
L5
IO111NB5F10
Y8
IO130NB6F12
T1
IO150NB7F14
L3
IO111PB5F10
Y9
IO130PB6F12
U1
IO150PB7F14
L2
IO112NB5F10
AB7
IO131NB6F12
P6
IO151NB7F14
K6
IO113NB5F10
W8
IO131PB6F12
R6
IO151PB7F14
L6
IO113PB5F10
W9
IO132NB6F12
T4
IO152NB7F14
K2
IO114NB5F11
AA7
IO132PB6F12
U4
IO152PB7F14
K1
IO114PB5F11
AA8
IO133NB6F12
U2
IO153NB7F14
K4
IO115NB5F11
AB5
IO134NB6F12
T3
IO153PB7F14
K3
IO115PB5F11
AB6
IO134PB6F12
U3
IO154NB7F14
H3
IO116NB5F11
Y6
IO135NB6F12
P5
IO154PB7F14
J3
IO116PB5F11
Y7
IO135PB6F12
R5
IO155NB7F14
H5
IO117NB5F11
U8
IO136NB6F13
R2
IO155PB7F14
J5
IO117PB5F11
U9
IO136PB6F13
T2
IO156NB7F14
H4
IO118NB5F11
AA5
IO138NB6F13
P4
IO156PB7F14
J4
IO118PB5F11
AA6
IO138PB6F13
R4
IO157NB7F14
H2
Bank 6
v2.7
Bank 7
3-29
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
IO157PB7F14
J2
GND
AB22
GND
R15
IO158NB7F15
H1
GND
B1
GND
R8
IO158PB7F15
J1
GND
B2
GND
U16
IO159NB7F15
F1
GND
B21
GND
U6
IO159PB7F15
G1
GND
B22
GND
V18
IO160NB7F15
F2
GND
C20
GND
V5
IO160PB7F15
G2
GND
C3
GND
W19
IO161NB7F15
H6
GND
D19
GND
W4
IO161PB7F15
J6
GND
D4
GND
Y20
IO162NB7F15
F3
GND
E18
GND
Y3
IO162PB7F15
G3
GND
E5
GND/LP
G7
IO163NB7F15
G5
GND
G18
NC
AB8
IO163PB7F15
G6
GND
H15
NC
AB16
IO164NB7F15
D1
GND
H8
NC
C10
IO164PB7F15
E1
GND
J14
NC
C11
IO165NB7F15
F4
GND
J9
NC
C14
IO165PB7F15
G4
GND
K10
PRA
G11
IO166NB7F15
D2
GND
K11
PRB
F11
IO166PB7F15
E2
GND
K12
PRC
T12
IO167NB7F15
F5
GND
K13
PRD
U12
IO167PB7F15
E4
GND
L1
TCK
G8
GND
L10
TDI
F9
Dedicated I/O
3 -3 0
VCCDA
H7
GND
L11
TDO
F7
GND
A1
GND
L12
TMS
F6
GND
A11
GND
L13
TRST
F8
GND
A12
GND
L22
VCCA
G17
GND
A2
GND
M1
VCCA
J10
GND
A21
GND
M10
VCCA
J11
GND
A22
GND
M11
VCCA
J12
GND
AA1
GND
M12
VCCA
J13
GND
AA2
GND
M13
VCCA
J7
GND
AA21
GND
M22
VCCA
K14
GND
AA22
GND
N10
VCCA
K9
GND
AB1
GND
N11
VCCA
L14
GND
AB11
GND
N12
VCCA
L9
GND
AB12
GND
N13
VCCA
M14
GND
AB2
GND
P14
VCCA
M9
GND
AB21
GND
P9
VCCA
N14
v2.7
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
VCCA
N9
VCCIB2
J15
VCCA
P10
VCCIB2
K15
VCCA
P11
VCCIB2
L15
VCCA
P12
VCCIB3
M15
VCCA
P13
VCCIB3
N15
VCCA
T6
VCCIB3
P15
VCCA
U17
VCCIB3
Y21
VCCPLA
F10
VCCIB3
Y22
VCCPLB
G9
VCCIB4
AA20
VCCPLC
D13
VCCIB4
AB20
VCCPLD
G13
VCCIB4
R12
VCCPLE
U13
VCCIB4
R13
VCCPLF
T14
VCCIB4
R14
VCCPLG
W10
VCCIB5
AA3
VCCPLH
T10
VCCIB5
AB3
VCCDA
D14
VCCIB5
R10
VCCDA
D5
VCCIB5
R11
VCCDA
F16
VCCIB5
R9
VCCDA
G12
VCCIB6
M8
VCCDA
L4
VCCIB6
N8
VCCDA
M18
VCCIB6
P8
VCCDA
T11
VCCIB6
Y1
VCCDA
T17
VCCIB6
Y2
VCCDA
U7
VCCIB7
C1
VCCDA
V14
VCCIB7
C2
VCCDA
V8
VCCIB7
J8
VCCIB0
A3
VCCIB7
K8
VCCIB0
B3
VCCIB7
L8
VCCIB0
H10
VCOMPLA
D10
VCCIB0
H11
VCOMPLB
G10
VCCIB0
H9
VCOMPLC
E12
VCCIB1
A20
VCOMPLD
G14
VCCIB1
B20
VCOMPLE
W13
VCCIB1
H12
VCOMPLF
T13
VCCIB1
H13
VCOMPLG
V11
VCCIB1
H14
VCOMPLH
T9
VCCIB2
C21
VPUMP
D17
VCCIB2
C22
v2.7
3-31
Axcelerator Family FPGAs
484-Pin FBGA
AX1000 Function
484-Pin FBGA
Pin Number
Bank 0
484-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO32PB1F3/HCLKCP
F12
IO68NB2F6
J16
IO01NB0F0
E3
IO33NB1F3/HCLKDN
E14
IO68PB2F6
H16
IO01PB0F0
D3
IO33PB1F3/HCLKDP
E13
IO70NB2F6
J17
IO02NB0F0
E7
IO34NB1F3
C13
IO70PB2F6
H17
IO02PB0F0
E6
IO34PB1F3
C12
IO74NB2F7
J18
IO05NB0F0
D2
IO37NB1F3
B14
IO74PB2F7
H18
IO05PB0F0
E2
IO37PB1F3
B13
IO75NB2F7
G20
IO06NB0F0
C5
IO38NB1F3
A16
IO75PB2F7
F20
IO06PB0F0
C4
IO38PB1F3
A15
IO79NB2F7
H19
IO12NB0F1
D7
IO40NB1F3
C15
IO79PB2F7
G19
IO12PB0F1
D6
IO42NB1F4
A18
IO80NB2F7
L16
IO13NB0F1
B5
IO42PB1F4
A17
IO80PB2F7
K16
IO13PB0F1
B4
IO43NB1F4
B16
IO84NB2F7
L17
IO14NB0F1
E9
IO43PB1F4
B15
IO84PB2F7
K17
IO14PB0F1
E8
IO44NB1F4
B18
IO85NB2F8
G21
IO15NB0F1
C7
IO44PB1F4
B17
IO85PB2F8
F21
IO15PB0F1
C6
IO45NB1F4
B19
IO86NB2F8
G22
IO16NB0F1
A5
IO45PB1F4
A19
IO86PB2F8
F22
IO16PB0F1
A4
IO46NB1F4
C19
IO87NB2F8
J20
IO17NB0F1
B7
IO46PB1F4
C18
IO87PB2F8
H20
IO17PB0F1
B6
IO48NB1F4
F15
IO88NB2F8
L18
IO18NB0F1
A7
IO48PB1F4
F14
IO88PB2F8
K18
IO18PB0F1
A6
IO49NB1F4
D16
IO89NB2F8
K19
IO19NB0F1
C9
IO49PB1F4
D15
IO89PB2F8
J19
IO19PB0F1
C8
IO50NB1F4
C17
IO90NB2F8
J21
IO20NB0F1
D9
IO50PB1F4
C16
IO90PB2F8
H21
IO20PB0F1
D8
IO51NB1F4
E22
IO91NB2F8
J22
IO21NB0F1
B9
IO51PB1F4
D22
IO91PB2F8
H22
IO21PB0F1
B8
IO52NB1F4
E16
IO93NB2F8
K21
IO22NB0F2
A9
IO52PB1F4
E15
IO93PB2F8
K22
IO22PB0F2
A8
IO57NB1F5
E21
IO94NB2F8
L20
IO23NB0F2
B10
IO57PB1F5
D21
IO94PB2F8
K20
IO23PB0F2
A10
IO60NB1F5
G16
IO95NB2F8
M21
IO95PB2F8
L21
IO26NB0F2
A14
IO60PB1F5
G15
IO26PB0F2
A13
IO61NB1F5
D18
IO29NB0F2
B12
IO61PB1F5
E17
IO29PB0F2
B11
IO63NB1F5
E20
IO96PB3F9
M16
IO30NB0F2/HCLKAN
E11
IO63PB1F5
D20
IO97NB3F9
M19
IO96NB3F9
N16
IO30PB0F2/HCLKAP
E10
IO97PB3F9
L19
IO31NB0F2/HCLKBN
D12
IO64NB2F6
F18
IO98NB3F9
P22
IO31PB0F2/HCLKBP
D11
IO64PB2F6
F17
IO98PB3F9
N22
IO67NB2F6
F19
IO99NB3F9
N20
IO67PB2F6
E19
IO99PB3F9
M20
Bank 1
IO32NB1F3/HCLKCN
3 -3 2
F13
Bank 2
Bank 3
v2.7
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO100NB3F9
N17
IO140NB4F13
U18
IO171NB5F16
W8
IO100PB3F9
M17
IO140PB4F13
V19
IO171PB5F16
W9
IO101NB3F9
P21
IO142NB4F13
W20
IO172NB5F16
Y8
IO101PB3F9
N21
IO142PB4F13
V20
IO172PB5F16
Y9
IO103NB3F9
R20
IO143NB4F13
W15
IO173NB5F16
U8
IO103PB3F9
P20
IO143PB4F13
W16
IO173PB5F16
U9
IO104NB3F9
N18
IO144NB4F13
AA18
IO174NB5F16
AA7
IO104PB3F9
N19
IO144PB4F13
AA19
IO174PB5F16
AA8
IO105NB3F9
T22
IO145NB4F13
U14
IO175NB5F16
AB5
IO105PB3F9
R22
IO145PB4F13
U15
IO175PB5F16
AB6
IO106NB3F9
R17
IO146NB4F13
Y15
IO176NB5F16
AA5
IO106PB3F9
P17
IO146PB4F13
Y16
IO176PB5F16
AA6
IO107NB3F10
T21
IO147NB4F13
AB18
IO177NB5F16
AA4
IO107PB3F10
R21
IO147PB4F13
AB19
IO177PB5F16
AB4
IO110NB3F10
V22
IO149NB4F13
Y14
IO178NB5F16
Y6
IO110PB3F10
U22
IO149PB4F13
W14
IO178PB5F16
Y7
IO113NB3F10
V21
IO150NB4F13
AA16
IO179NB5F16
T7
IO113PB3F10
U21
IO150PB4F13
AA17
IO179PB5F16
T8
IO114NB3F10
P18
IO152NB4F14
AA14
IO180NB5F16
W6
IO114PB3F10
P19
IO152PB4F14
AA15
IO180PB5F16
W7
IO116PB3F10
R19
IO154NB4F14
AB14
IO181NB5F17
Y4
IO117NB3F10
U20
IO154PB4F14
AB15
IO181PB5F17
Y5
IO117PB3F10
T20
IO155NB4F14
AA13
IO184NB5F17
AB7
IO118NB3F11
T18
IO155PB4F14
AB13
IO187NB5F17
V3
IO118PB3F11
R18
IO158NB4F14
Y12
IO187PB5F17
W3
IO121NB3F11
U19
IO158PB4F14
Y13
IO188NB5F17
V4
IO121PB3F11
T19
IO159NB4F14/CLKEN
V12
IO188PB5F17
W5
IO124NB3F11
R16
IO159PB4F14/CLKEP
V13
IO192NB5F17
V6
IO192PB5F17
V7
IO124PB3F11
P16
IO160NB4F14/CLKFN
W11
IO127NB3F11
W21
IO160PB4F14/CLKFP
W12
IO127PB3F11
W22
Bank 4
Bank 5
Bank 6
IO194NB6F18
V2
IO161NB5F15/CLKGN
U10
IO194PB6F18
W2
AB17
IO161PB5F15/CLKGP
U11
IO195NB6F18
U5
IO132NB4F12
Y19
IO162NB5F15/CLKHN
V9
IO195PB6F18
T5
IO132PB4F12
W18
IO162PB5F15/CLKHP
V10
IO200NB6F18
T4
IO133NB4F12
W17
IO163NB5F15
Y10
IO200PB6F18
U4
IO133PB4F12
V17
IO163PB5F15
Y11
IO201NB6F18
P6
IO135NB4F12
T15
IO167NB5F15
AA11
IO201PB6F18
R6
IO129PB4F12
IO135PB4F12
T16
IO167PB5F15
AA12
IO203NB6F19
U2
IO138NB4F12
Y17
IO169NB5F15
AA9
IO204NB6F19
T3
IO138PB4F12
Y18
IO169PB5F15
AA10
IO204PB6F19
U3
IO139NB4F13
V15
IO170NB5F15
AB9
IO205NB6F19
P5
IO139PB4F13
V16
IO170PB5F15
AB10
IO205PB6F19
R5
v2.7
3-33
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO208NB6F19
V1
IO234NB7F21
F1
GND
B2
IO208PB6F19
W1
IO234PB7F21
G1
GND
B21
IO209NB6F19
P7
IO235NB7F21
F2
GND
B22
IO209PB6F19
R7
IO235PB7F21
G2
GND
C20
IO212NB6F19
P4
IO236NB7F22
H3
GND
C3
IO212PB6F19
R4
IO236PB7F22
J3
GND
D19
IO214NB6F20
P3
IO237NB7F22
K7
GND
D4
IO214PB6F20
R3
IO237PB7F22
L7
GND
E18
IO215NB6F20
M6
IO241NB7F22
H6
GND
E5
IO215PB6F20
N6
IO241PB7F22
J6
GND
G18
IO216NB6F20
R2
IO242NB7F22
H4
GND
H15
IO216PB6F20
T2
IO242PB7F22
J4
GND
H8
IO217NB6F20
T1
IO243NB7F22
H5
GND
J14
IO217PB6F20
U1
IO243PB7F22
J5
GND
J9
IO219NB6F20
M5
IO246NB7F22
F3
GND
K10
IO219PB6F20
N5
IO246PB7F22
G3
GND
K11
IO220NB6F20
P1
IO250NB7F23
F4
GND
K12
IO220PB6F20
R1
IO250PB7F23
G4
GND
K13
IO221NB6F20
N2
IO253NB7F23
G5
GND
L1
IO221PB6F20
P2
IO253PB7F23
G6
GND
L10
IO222NB6F20
M3
IO254NB7F23
D1
GND
L11
IO222PB6F20
N3
IO254PB7F23
E1
GND
L12
IO223NB6F20
M7
IO257NB7F23
F5
GND
L13
IO257PB7F23
E4
GND
L22
GND
M1
H7
GND
M10
IO223PB6F20
N7
IO224NB6F20
M4
IO224PB6F20
N4
VCCDA
GND
A1
GND
M11
IO225NB7F21
M2
GND
A11
GND
M12
Bank 7
3 -3 4
Dedicated I/O
IO225PB7F21
N1
GND
A12
GND
M13
IO226NB7F21
K2
GND
A2
GND
M22
IO226PB7F21
K1
GND
A21
GND
N10
IO228NB7F21
L3
GND
A22
GND
N11
IO228PB7F21
L2
GND
AA1
GND
N12
IO229NB7F21
K5
GND
AA2
GND
N13
IO229PB7F21
L5
GND
AA21
GND
P14
IO230NB7F21
H1
GND
AA22
GND
P9
IO230PB7F21
J1
GND
AB1
GND
R15
IO231NB7F21
H2
GND
AB11
GND
R8
IO231PB7F21
J2
GND
AB12
GND
U16
IO232NB7F21
K4
GND
AB2
GND
U6
IO232PB7F21
K3
GND
AB21
GND
V18
IO233NB7F21
K6
GND
AB22
GND
V5
IO233PB7F21
L6
GND
B1
GND
W19
v2.7
Axcelerator Family FPGAs
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
GND
W4
VCCDA
C10
VCCIB5
R9
GND
Y20
VCCDA
C11
VCCIB6
M8
GND
Y3
VCCDA
C14
VCCIB6
N8
GND/LP
G7
VCCDA
D14
VCCIB6
P8
PRA
G11
VCCDA
D5
VCCIB6
Y1
PRB
F11
VCCDA
F16
VCCIB6
Y2
PRC
T12
VCCDA
G12
VCCIB7
C1
PRD
U12
VCCDA
L4
VCCIB7
C2
TCK
G8
VCCDA
M18
VCCIB7
J8
TDI
F9
VCCDA
T11
VCCIB7
K8
TDO
F7
VCCDA
T17
VCCIB7
L8
TMS
F6
VCCDA
U7
VCOMPLA
D10
TRST
F8
VCCDA
V14
VCOMPLB
G10
VCCA
G17
VCCDA
V8
VCOMPLC
E12
VCCA
J10
VCCIB0
A3
VCOMPLD
G14
VCCA
J11
VCCIB0
B3
VCOMPLE
W13
VCCA
J12
VCCIB0
H10
VCOMPLF
T13
VCCA
J13
VCCIB0
H11
VCOMPLG
V11
VCCA
J7
VCCIB0
H9
VCOMPLH
T9
VCCA
K14
VCCIB1
A20
VPUMP
D17
VCCA
K9
VCCIB1
B20
VCCA
L14
VCCIB1
H12
VCCA
L9
VCCIB1
H13
VCCA
M14
VCCIB1
H14
VCCA
M9
VCCIB2
C21
VCCA
N14
VCCIB2
C22
VCCA
N9
VCCIB2
J15
VCCA
P10
VCCIB2
K15
VCCA
P11
VCCIB2
L15
VCCA
P12
VCCIB3
M15
VCCA
P13
VCCIB3
N15
VCCA
T6
VCCIB3
P15
VCCA
U17
VCCIB3
Y21
VCCPLA
F10
VCCIB3
Y22
VCCPLB
G9
VCCIB4
AA20
VCCPLC
D13
VCCIB4
AB20
VCCPLD
G13
VCCIB4
R12
VCCPLE
U13
VCCIB4
R13
VCCPLF
T14
VCCIB4
R14
VCCPLG
W10
VCCIB5
AA3
VCCPLH
T10
VCCIB5
AB3
VCCDA
AB16
VCCIB5
R10
VCCDA
AB8
VCCIB5
R11
v2.7
3-35
Axcelerator Family FPGAs
676-Pin FBGA
A1 Ball Pad Corner
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7 6
5 4
3
2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Figure 3-6 • 676-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -3 6
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
AX500 Function
676-Pin FBGA
Pin Number
676-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
IO19NB0F1/HCLKAN
A12
IO38NB1F3
B23
IO00NB0F0
F8
IO19PB0F1/HCLKAP
B12
IO38PB1F3
A23
IO00PB0F0
E8
IO20NB0F1/HCLKBN
C13
IO39NB1F3
E21
IO01NB0F0
A5
IO20PB0F1/HCLKBP
B13
IO39PB1F3
E20
IO01PB0F0
A4
IO40NB1F3
D23
IO02NB0F0
E7
IO21NB1F2/HCLKCN
C15
IO40PB1F3
C23
IO02PB0F0
E6
IO21PB1F2/HCLKCP
C14
IO41NB1F3
D25
IO03NB0F0
D6
IO22NB1F2/HCLKDN
A15
IO41PB1F3
C25
IO03PB0F0
D5
IO22PB1F2/HCLKDP
B15
IO04NB0F0
B5
IO23NB1F2
F15
IO42NB2F4
G24
IO04PB0F0
C5
IO23PB1F2
G15
IO42PB2F4
G23
IO05NB0F0
B6
IO24NB1F2
B16
IO43NB2F4
G26
IO05PB0F0
C6
IO24PB1F2
A16
IO43PB2F4
F26
IO06NB0F0
C7
IO25NB1F2
A18
IO44NB2F4
F25
IO06PB0F0
D7
IO25PB1F2
A17
IO44PB2F4
E25
IO07NB0F0
A7
IO26NB1F2
D16
IO45NB2F4
J21
IO07PB0F0
A6
IO26PB1F2
E16
IO45PB2F4
J22
IO08NB0F0
C8
IO27NB1F2
F16
IO46NB2F4
H25
IO08PB0F0
D8
IO27PB1F2
G16
IO46PB2F4
G25
IO09NB0F0
F10
IO28NB1F2
C18
IO47NB2F4
K23
IO09PB0F0
F9
IO28PB1F2
C17
IO47PB2F4
J23
IO10NB0F0
B8
IO29NB1F2
B19
IO48NB2F4
J24
IO10PB0F0
B7
IO29PB1F2
B18
IO48PB2F4
H24
IO11NB0F0
D10
IO30NB1F2
D19
IO49NB2F4
K21
Bank 0
Bank 1
Bank 2
IO11PB0F0
E10
IO30PB1F2
C19
IO49PB2F4
K22
IO12NB0F1
B9
IO31NB1F2
F17
IO50NB2F4
K25
IO12PB0F1
C9
IO31PB1F2
E17
IO50PB2F4
J25
IO13NB0F1
F11
IO32NB1F3
B20
IO51NB2F4
L20
IO13PB0F1
G11
IO32PB1F3
A20
IO51PB2F4
L21
IO14NB0F1
D11
IO33NB1F3
B22
IO52NB2F5
K26
IO14PB0F1
E11
IO33PB1F3
B21
IO52PB2F5
J26
IO15NB0F1
B10
IO34NB1F3
D20
IO53NB2F5
L23
IO15PB0F1
C10
IO34PB1F3
C20
IO53PB2F5
L22
IO16NB0F1
A10
IO35NB1F3
D21
IO54NB2F5
L24
IO16PB0F1
A9
IO35PB1F3
C21
IO54PB2F5
K24
IO17NB0F1
F12
IO36NB1F3
D22
IO55NB2F5
M20
IO17PB0F1
G12
IO36PB1F3
C22
IO55PB2F5
M21
IO18NB0F1
C12
IO37NB1F3
F19
IO56NB2F5
L26
IO18PB0F1
C11
IO37PB1F3
E19
IO56PB2F5
L25
v2.7
3-37
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
AX500 Function
Pin Number
AX500 Function
IO57NB2F5
M23
IO57PB2F5
M22
IO58NB2F5
Pin Number
AX500 Function
Pin Number
IO76NB3F7
Y23
IO95NB4F9
AC17
IO76PB3F7
W23
IO95PB4F9
AC18
M26
IO77NB3F7
V21
IO96NB4F9
AD18
IO58PB2F5
M25
IO77PB3F7
U21
IO96PB4F9
AD19
IO59NB2F5
N22
IO78NB3F7
AB25
IO97NB4F9
AA16
IO59PB2F5
N23
IO78PB3F7
AA25
IO97PB4F9
Y16
IO60NB2F5
N24
IO79NB3F7
AC26
IO98NB4F9
AE17
IO60PB2F5
M24
IO79PB3F7
AB26
IO98PB4F9
AE18
IO61NB2F5
N20
IO80NB3F7
AC24
IO99NB4F9
AC16
IO61PB2F5
N21
IO80PB3F7
AB24
IO99PB4F9
AB16
IO62NB2F5
P25
IO81NB3F7
AB23
IO100NB4F9
AF17
IO62PB2F5
N25
IO81PB3F7
AA23
IO100PB4F9
AF18
IO82NB3F7
AA22
IO101NB4F9
AA15
Bank 3
3 -3 8
676-Pin FBGA
IO63NB3F6
T26
IO82PB3F7
Y22
IO101PB4F9
Y15
IO63PB3F6
R26
IO83NB3F7
AE26
IO102NB4F9
AC15
IO64NB3F6
R24
IO83PB3F7
AD26
IO102PB4F9
AB15
IO64PB3F6
P24
IO103NB4F9/CLKEN
AE16
IO65NB3F6
P20
IO84NB4F8
AB21
IO103PB4F9/CLKEP
AF16
IO65PB3F6
P21
IO84PB4F8
AA21
IO104NB4F9/CLKFN
AE14
IO66NB3F6
T25
IO85NB4F8
AE23
IO104PB4F9/CLKFP
AE15
IO66PB3F6
R25
IO85PB4F8
AE24
IO67NB3F6
T23
IO86NB4F8
AC21
IO105NB5F10/CLKGN
AE12
IO67PB3F6
R23
IO86PB4F8
AC22
IO105PB5F10/CLKGP
AE13
IO68NB3F6
V26
IO87NB4F8
AF22
IO106NB5F10/CLKHN
AE11
Bank 4
Bank 5
IO68PB3F6
U26
IO87PB4F8
AF23
IO106PB5F10/CLKHP
AF11
IO69NB3F6
V25
IO88NB4F8
AD22
IO107NB5F10
Y12
IO69PB3F6
U25
IO88PB4F8
AD23
IO107PB5F10
AA13
IO70NB3F6
Y25
IO89NB4F8
AC19
IO108NB5F10
AC12
IO70PB3F6
W25
IO89PB4F8
AC20
IO108PB5F10
AB12
IO71NB3F6
W24
IO90NB4F8
AE21
IO109NB5F10
AC10
IO71PB3F6
V24
IO90PB4F8
AE22
IO109PB5F10
AC11
IO72NB3F6
V23
IO91NB4F8
AA17
IO110NB5F10
AF9
IO72PB3F6
U23
IO91PB4F8
AA18
IO110PB5F10
AF10
IO73NB3F6
T21
IO92NB4F8
AD20
IO111NB5F10
Y11
IO73PB3F6
T20
IO92PB4F8
AD21
IO111PB5F10
AA12
IO74NB3F7
AA26
IO93NB4F8
AF20
IO112NB5F10
AE9
IO74PB3F7
Y26
IO93PB4F8
AF21
IO112PB5F10
AE10
IO75NB3F7
AA24
IO94NB4F9
AE19
IO113NB5F10
AC9
IO75PB3F7
Y24
IO94PB4F9
AE20
IO113PB5F10
AD9
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
AX500 Function
676-Pin FBGA
Pin Number
AX500 Function
IO114NB5F11
AF6
IO114PB5F11
AF7
IO115NB5F11
676-Pin FBGA
Pin Number
AX500 Function
Pin Number
IO133NB6F12
V4
IO152NB7F14
M5
IO133PB6F12
W4
IO152PB7F14
M4
AA10
IO134NB6F12
V3
IO153NB7F14
M7
IO115PB5F11
AB10
IO134PB6F12
W3
IO153PB7F14
M6
IO116NB5F11
AE7
IO135NB6F12
V1
IO154NB7F14
K2
IO116PB5F11
AE8
IO135PB6F12
V2
IO154PB7F14
L2
IO117NB5F11
AD7
IO136NB6F13
U4
IO155NB7F14
K3
IO117PB5F11
AD8
IO136PB6F13
U5
IO155PB7F14
L3
IO118NB5F11
AC7
IO137NB6F13
T6
IO156NB7F14
L5
IO118PB5F11
AC8
IO137PB6F13
T7
IO156PB7F14
L4
IO119NB5F11
AD6
IO138NB6F13
T5
IO157NB7F14
L6
IO119PB5F11
AE6
IO138PB6F13
T4
IO157PB7F14
L7
IO120NB5F11
AE5
IO139NB6F13
R6
IO158NB7F15
J1
IO120PB5F11
AF5
IO139PB6F13
R7
IO158PB7F15
K1
IO121NB5F11
AF4
IO140NB6F13
T3
IO159NB7F15
J4
IO121PB5F11
AE4
IO140PB6F13
U3
IO159PB7F15
K4
IO122NB5F11
AC5
IO141NB6F13
U1
IO160NB7F15
H2
IO122PB5F11
AC6
IO141PB6F13
U2
IO160PB7F15
J2
IO123NB5F11
AD4
IO142NB6F13
R2
IO161NB7F15
K6
IO123PB5F11
AD5
IO142PB6F13
T2
IO161PB7F15
K5
IO124NB5F11
AB6
IO143NB6F13
P3
IO162NB7F15
H3
IO124PB5F11
AB7
IO143PB6F13
R3
IO162PB7F15
J3
IO125NB5F11
AE3
IO144NB6F13
P5
IO163NB7F15
G2
IO125PB5F11
AF3
IO144PB6F13
P4
IO163PB7F15
G1
IO145NB6F13
P6
IO164NB7F15
G4
IO126NB6F12
Bank 6
AB3
IO145PB6F13
P7
IO164PB7F15
H4
IO126PB6F12
AC3
IO146NB6F13
R1
IO165NB7F15
F3
IO127NB6F12
AA2
IO146PB6F13
T1
IO165PB7F15
G3
IO127PB6F12
AB2
IO166NB7F15
E2
IO128NB6F12
AC2
IO147NB7F14
N6
IO166PB7F15
F2
IO128PB6F12
AD2
IO147PB7F14
N7
IO167NB7F15
F5
IO129NB6F12
Y1
IO148NB7F14
N5
IO167PB7F15
G5
IO129PB6F12
AA1
IO148PB7F14
N4
IO130NB6F12
Y3
IO149NB7F14
N2
GND
A1
IO130PB6F12
AA3
IO149PB7F14
N3
GND
A13
IO131NB6F12
U6
IO150NB7F14
L1
GND
A14
IO131PB6F12
V6
IO150PB7F14
M1
GND
A19
IO132NB6F12
W2
IO151NB7F14
M2
GND
A26
IO132PB6F12
Y2
IO151PB7F14
M3
GND
A8
Bank 7
v2.7
Dedicated I/O
3-39
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
GND
AC23
GND
L16
GND
T11
GND
AC4
GND
L17
GND
T12
GND
AD24
GND
M10
GND
T13
GND
AD3
GND
M11
GND
T14
GND
AE2
GND
M12
GND
T15
GND
AE25
GND
M13
GND
T16
GND
AF1
GND
M14
GND
T17
GND
AF13
GND
M15
GND
U10
GND
AF14
GND
M16
GND
U11
GND
AF19
GND
M17
GND
U12
GND
AF26
GND
N1
GND
U13
GND
AF8
GND
N10
GND
U14
GND
B2
GND
N11
GND
U15
GND
B25
GND
N12
GND
U16
GND
B26
GND
N13
GND
U17
GND
C24
GND
N14
GND
V18
GND
C3
GND
N15
GND
V9
GND
G20
GND
N16
GND
W1
GND
G7
GND
N17
GND
W19
GND
H1
GND
N26
GND
W26
GND
H19
GND
P1
GND
W8
GND
H26
GND
P10
GND
Y20
GND
H8
GND
P11
GND
Y7
GND
J18
GND
P12
GND/LP
C2
GND
J9
GND
P13
NC
A11
GND
K10
GND
P14
NC
A21
GND
K11
GND
P15
NC
A22
GND
K12
GND
P16
NC
A24
GND
K13
GND
P17
NC
A25
GND
K14
GND
P26
NC
AA11
GND
K15
GND
R10
NC
AA19
GND
K16
GND
R11
NC
AA20
GND
K17
GND
R12
NC
AA4
GND
L10
GND
R13
NC
AA5
GND
L11
GND
R14
NC
AA6
GND
L12
GND
R15
NC
AA7
GND
L13
GND
R16
NC
AA8
GND
L14
GND
R17
NC
AA9
GND
L15
GND
T10
NC
AB1
3 -4 0
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
NC
AB11
NC
E9
NC
Y6
NC
AB17
NC
F1
PRA
E13
NC
AB18
NC
F18
PRB
B14
NC
AB19
NC
F20
PRC
Y14
NC
AB20
NC
F21
PRD
AD14
NC
AB8
NC
F22
TCK
E5
NC
AB9
NC
F23
TDI
B3
NC
AC1
NC
F24
TDO
G6
NC
AC13
NC
F4
TMS
D4
NC
AC14
NC
F6
TRST
A2
NC
AC25
NC
F7
VCCA
AB4
NC
AD1
NC
G21
VCCA
AF24
NC
AD11
NC
G22
VCCA
C1
NC
AD16
NC
H21
VCCA
C26
NC
AD25
NC
H22
VCCA
J10
NC
AE1
NC
H23
VCCA
J11
NC
AF2
NC
H5
VCCA
J12
NC
AF25
NC
H6
VCCA
J13
NC
B11
NC
J5
VCCA
J14
NC
B24
NC
J6
VCCA
J15
NC
B4
NC
P22
VCCA
J16
NC
C16
NC
R20
VCCA
J17
NC
C4
NC
R21
VCCA
K18
NC
D1
NC
R22
VCCA
K9
NC
D13
NC
R4
VCCA
L18
NC
D14
NC
R5
VCCA
L9
NC
D17
NC
T22
VCCA
M18
NC
D18
NC
T24
VCCA
M9
NC
D2
NC
U22
VCCA
N18
NC
D26
NC
U24
VCCA
N9
NC
D3
NC
V22
VCCA
P18
NC
D9
NC
V5
VCCA
P9
NC
E1
NC
W21
VCCA
R18
R9
NC
E18
NC
W22
VCCA
NC
E23
NC
W5
VCCA
T18
NC
E24
NC
W6
VCCA
T9
NC
E26
NC
Y21
VCCA
U18
NC
E3
NC
Y4
VCCA
U9
NC
E4
NC
Y5
VCCA
V10
v2.7
3-41
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
3 -4 2
VCCA
V11
VCCIB2
K20
VCCIB7
K7
VCCA
V12
VCCIB2
L19
VCCIB7
K8
VCCA
V13
VCCIB2
M19
VCCIB7
L8
VCCA
V14
VCCIB2
N19
VCCIB7
M8
VCCA
V15
VCCIB3
P19
VCCIB7
N8
VCCA
V16
VCCIB3
R19
VCCPLA
E12
VCCA
V17
VCCIB3
T19
VCCPLB
F13
VCCDA
A3
VCCIB3
U19
VCCPLC
E15
VCCDA
AB22
VCCIB3
U20
VCCPLD
G14
VCCDA
AB5
VCCIB3
V19
VCCPLE
AF15
VCCDA
AD10
VCCIB3
V20
VCCPLF
AA14
VCCDA
AD13
VCCIB3
W20
VCCPLG
AF12
VCCDA
AD17
VCCIB4
W14
VCCPLH
AB13
VCCDA
B1
VCCIB4
W15
VCOMPLA
D12
VCCDA
B17
VCCIB4
W16
VCOMPLB
G13
VCCDA
D24
VCCIB4
W17
VCOMPLC
D15
VCCDA
E14
VCCIB4
W18
VCOMPLD
F14
VCCDA
P2
VCCIB4
Y17
VCOMPLE
AD15
VCCDA
P23
VCCIB4
Y18
VCOMPLF
AB14
VCCIB0
G10
VCCIB4
Y19
VCOMPLG
AD12
VCCIB0
G8
VCCIB5
W10
VCOMPLH
Y13
VCCIB0
G9
VCCIB5
W11
VPUMP
E22
VCCIB0
H10
VCCIB5
W12
VCCIB0
H11
VCCIB5
W13
VCCIB0
H12
VCCIB5
W9
VCCIB0
H13
VCCIB5
Y10
VCCIB0
H9
VCCIB5
Y8
VCCIB1
G17
VCCIB5
Y9
VCCIB1
G18
VCCIB6
P8
VCCIB1
G19
VCCIB6
R8
VCCIB1
H14
VCCIB6
T8
VCCIB1
H15
VCCIB6
U7
VCCIB1
H16
VCCIB6
U8
VCCIB1
H17
VCCIB6
V7
VCCIB1
H18
VCCIB6
V8
VCCIB2
H20
VCCIB6
W7
VCCIB2
J19
VCCIB7
H7
VCCIB2
J20
VCCIB7
J7
VCCIB2
K19
VCCIB7
J8
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
AX1000 Function
676-Pin FBGA
Pin Number
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO24NB0F2
D11
IO51NB1F4
D19
IO00NB0F0
B4
IO24PB0F2
E11
IO51PB1F4
C19
IO00PB0F0
C4
IO26NB0F2
C12
IO52NB1F4
D20
IO02NB0F0
E7
IO26PB0F2
C11
IO52PB1F4
C20
IO02PB0F0
E6
IO28NB0F2
F12
IO54NB1F5
B22
IO03NB0F0
D6
IO28PB0F2
G12
IO54PB1F5
B21
IO03PB0F0
D5
IO30NB0F2/HCLKAN
A12
IO55NB1F5
D21
IO04NB0F0
B5
IO30PB0F2/HCLKAP
B12
IO55PB1F5
C21
IO04PB0F0
C5
IO31NB0F2/HCLKBN
C13
IO56NB1F5
F19
IO05NB0F0
A5
IO31PB0F2/HCLKBP
B13
IO05PB0F0
A4
IO06NB0F0
F7
IO32NB1F3/HCLKCN
IO06PB0F0
F6
IO07NB0F0
Bank 0
IO56PB1F5
E19
IO57NB1F5
B23
C15
IO57PB1F5
A23
IO32PB1F3/HCLKCP
C14
IO58NB1F5
D22
B6
IO33NB1F3/HCLKDN
A15
IO58PB1F5
C22
IO07PB0F0
C6
IO33PB1F3/HCLKDP
B15
IO59NB1F5
B24
IO08NB0F0
C7
IO35NB1F3
B16
IO59PB1F5
A24
IO08PB0F0
D7
IO35PB1F3
A16
IO60NB1F5
E21
IO10NB0F0
F8
IO36NB1F3
F15
IO60PB1F5
E20
IO10PB0F0
E8
IO36PB1F3
G15
IO62NB1F5
D23
IO11NB0F0
A7
IO38NB1F3
F16
IO62PB1F5
C23
IO11PB0F0
A6
IO38PB1F3
G16
IO63NB1F5
F21
IO12NB0F1
C8
IO40NB1F3
A18
IO63PB1F5
F20
IO12PB0F1
D8
IO40PB1F3
A17
IO13NB0F1
B8
IO41NB1F4
C18
Bank 1
Bank 2
IO64NB2F6
H21
IO13PB0F1
B7
IO41PB1F4
C17
IO64PB2F6
G21
IO14NB0F1
D9
IO42NB1F4
D16
IO65NB2F6
G22
IO14PB0F1
E9
IO42PB1F4
E16
IO65PB2F6
F22
IO16NB0F1
F10
IO44NB1F4
D18
IO66NB2F6
F24
IO16PB0F1
F9
IO44PB1F4
D17
IO66PB2F6
F23
IO18NB0F1
B9
IO45NB1F4
B19
IO67NB2F6
E24
IO18PB0F1
C9
IO45PB1F4
B18
IO67PB2F6
E23
IO19NB0F1
A10
IO46NB1F4
B20
IO68NB2F6
H23
IO19PB0F1
A9
IO46PB1F4
A20
IO68PB2F6
H22
IO20NB0F1
D10
IO48NB1F4
F17
IO69NB2F6
D25
IO20PB0F1
E10
IO48PB1F4
E17
IO69PB2F6
C25
IO21NB0F1
B10
IO49NB1F4
A22
IO70NB2F6
G24
IO21PB0F1
C10
IO49PB1F4
A21
IO70PB2F6
G23
IO22NB0F2
F11
IO50NB1F4
E18
IO71NB2F6
F25
IO22PB0F2
G11
IO50PB1F4
F18
IO71PB2F6
E25
v2.7
3-43
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO72NB2F6
G26
IO95PB2F8
N25
IO72PB2F6
F26
IO73NB2F6
E26
IO98NB3F9
IO73PB2F6
D26
IO74NB2F7
3 -4 4
AX1000 Function
Pin Number
IO119PB3F11
AA25
IO120NB3F11
W22
P20
IO120PB3F11
V22
IO98PB3F9
P21
IO121NB3F11
Y23
J21
IO99NB3F9
R24
IO121PB3F11
W23
IO74PB2F7
J22
IO99PB3F9
P24
IO122NB3F11
AA24
IO75NB2F7
J24
IO100NB3F9
R22
IO122PB3F11
Y24
IO75PB2F7
H24
IO100PB3F9
P22
IO123NB3F11
AE26
IO76NB2F7
K23
IO101NB3F9
T26
IO123PB3F11
AD26
Bank 3
IO76PB2F7
J23
IO101PB3F9
R26
IO124NB3F11
Y21
IO77NB2F7
H25
IO102NB3F9
R21
IO124PB3F11
W21
IO77PB2F7
G25
IO102PB3F9
R20
IO125NB3F11
AD25
IO78NB2F7
K25
IO103NB3F9
T25
IO125PB3F11
AC25
IO78PB2F7
J25
IO103PB3F9
R25
IO126NB3F11
AB23
IO80NB2F7
K21
IO105NB3F9
V26
IO126PB3F11
AA23
IO80PB2F7
K22
IO105PB3F9
U26
IO127NB3F11
AC24
IO81NB2F7
K26
IO106NB3F9
T23
IO127PB3F11
AB24
IO81PB2F7
J26
IO106PB3F9
R23
IO128NB3F11
AA22
IO82NB2F7
L24
IO107NB3F10
U24
IO128PB3F11
Y22
IO82PB2F7
K24
IO107PB3F10
T24
IO83NB2F7
L23
IO108NB3F10
U22
IO129NB4F12
AB21
IO83PB2F7
L22
IO108PB3F10
T22
IO129PB4F12
AA21
IO84NB2F7
L20
IO109NB3F10
V25
IO131NB4F12
AD22
IO84PB2F7
L21
IO109PB3F10
U25
IO131PB4F12
AD23
IO86NB2F8
L26
IO110NB3F10
T21
IO132NB4F12
AE23
IO86PB2F8
L25
IO110PB3F10
T20
IO132PB4F12
AE24
IO88NB2F8
M23
IO112NB3F10
V23
IO133NB4F12
AB20
IO88PB2F8
M22
IO112PB3F10
U23
IO133PB4F12
AA20
IO89NB2F8
M26
IO113NB3F10
Y25
IO134NB4F12
AC21
IO89PB2F8
M25
IO113PB3F10
W25
IO134PB4F12
AC22
IO90NB2F8
M20
IO114NB3F10
V21
IO135NB4F12
AF22
IO90PB2F8
M21
IO114PB3F10
U21
IO135PB4F12
AF23
IO91NB2F8
N24
IO115NB3F10
W24
IO137NB4F12
AB19
Bank 4
IO91PB2F8
M24
IO115PB3F10
V24
IO137PB4F12
AA19
IO92NB2F8
N22
IO116NB3F10
AA26
IO139NB4F13
AC19
IO92PB2F8
N23
IO116PB3F10
Y26
IO139PB4F13
AC20
IO94NB2F8
N20
IO118NB3F11
AC26
IO140NB4F13
AE21
IO94PB2F8
N21
IO118PB3F11
AB26
IO140PB4F13
AE22
IO95NB2F8
P25
IO119NB3F11
AB25
IO141NB4F13
AD20
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
AX1000 Function
Pin Number
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO141PB4F13
AD21
IO167PB5F15
AA12
IO192NB5F17
AA6
IO143NB4F13
AB17
IO168NB5F15
AF9
IO192PB5F17
AA7
IO143PB4F13
AB18
IO168PB5F15
AF10
IO144NB4F13
AE19
IO169NB5F15
AB11
IO193NB6F18
Y5
IO144PB4F13
AE20
IO169PB5F15
AA11
IO193PB6F18
AA5
IO145NB4F13
AC17
IO171NB5F16
AE9
IO194NB6F18
AB3
IO145PB4F13
AC18
IO171PB5F16
AE10
IO194PB6F18
AC3
IO146NB4F13
AD18
IO173NB5F16
AC10
IO195NB6F18
Y4
IO146PB4F13
AD19
IO173PB5F16
AC11
IO195PB6F18
AA4
IO147NB4F13
AA17
IO174NB5F16
AE7
IO196NB6F18
AC2
IO147PB4F13
AA18
IO174PB5F16
AE8
IO196PB6F18
AD2
IO148NB4F13
AF20
IO175NB5F16
AC9
IO197NB6F18
W6
IO148PB4F13
AF21
IO175PB5F16
AD9
IO197PB6F18
Y6
IO149NB4F13
AA16
IO176NB5F16
AF6
IO198NB6F18
AD1
IO149PB4F13
Y16
IO176PB5F16
AF7
IO198PB6F18
AE1
IO151NB4F13
AC16
IO177NB5F16
AA10
IO199NB6F18
AA2
IO151PB4F13
AB16
IO177PB5F16
AB10
IO199PB6F18
AB2
IO153NB4F14
AE17
IO179NB5F16
AD7
IO200NB6F18
Y3
IO153PB4F14
AE18
IO179PB5F16
AD8
IO200PB6F18
AA3
IO154NB4F14
AF17
IO180NB5F16
AC7
IO201NB6F18
V5
IO154PB4F14
AF18
IO180PB5F16
AC8
IO201PB6F18
W5
IO155NB4F14
AA15
IO181NB5F17
AA9
IO202NB6F18
AB1
IO155PB4F14
Y15
IO181PB5F17
AB9
IO202PB6F18
AC1
IO157NB4F14
AC15
IO183NB5F17
AD6
IO203NB6F19
V4
Bank 6
IO157PB4F14
AB15
IO183PB5F17
AE6
IO203PB6F19
W4
IO159NB4F14/CLKEN
AE16
IO184NB5F17
AE5
IO204NB6F19
V3
IO159PB4F14/CLKEP
AF16
IO184PB5F17
AF5
IO204PB6F19
W3
IO160NB4F14/CLKFN
AE14
IO185NB5F17
AA8
IO205NB6F19
U6
IO160PB4F14/CLKFP
AE15
IO185PB5F17
AB8
IO205PB6F19
V6
IO187NB5F17
AC5
IO206NB6F19
W2
Bank 5
IO161NB5F15/CLKGN
AE12
IO187PB5F17
AC6
IO206PB6F19
Y2
IO161PB5F15/CLKGP
AE13
IO188NB5F17
AD4
IO207NB6F19
U4
IO162NB5F15/CLKHN
AE11
IO188PB5F17
AD5
IO207PB6F19
U5
IO162PB5F15/CLKHP
AF11
IO189NB5F17
AB6
IO208NB6F19
Y1
IO163NB5F15
AC12
IO189PB5F17
AB7
IO208PB6F19
AA1
IO163PB5F15
AB12
IO190NB5F17
AF4
IO209NB6F19
T6
IO165NB5F15
Y12
IO190PB5F17
AE4
IO209PB6F19
T7
IO165PB5F15
AA13
IO191NB5F17
AE3
IO211NB6F19
T3
IO167NB5F15
Y11
IO191PB5F17
AF3
IO211PB6F19
U3
v2.7
3-45
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
IO212NB6F19
V1
IO212PB6F19
V2
IO213NB6F19
Pin Number
AX1000 Function
Pin Number
IO237NB7F22
L6
GND
A14
IO237PB7F22
L7
GND
A19
T5
IO238NB7F22
K3
GND
A26
IO213PB6F19
T4
IO238PB7F22
L3
GND
A8
IO214NB6F20
U1
IO240NB7F22
J1
GND
AC23
IO214PB6F20
U2
IO240PB7F22
K1
GND
AC4
IO215NB6F20
R6
IO241NB7F22
K6
GND
AD24
IO215PB6F20
R7
IO241PB7F22
K5
GND
AD3
IO217NB6F20
R5
IO242NB7F22
H2
GND
AE2
IO217PB6F20
R4
IO242PB7F22
J2
GND
AE25
IO218NB6F20
R2
IO243NB7F22
J4
GND
AF1
IO218PB6F20
T2
IO243PB7F22
K4
GND
AF13
IO219NB6F20
P3
IO244NB7F22
H3
GND
AF14
IO219PB6F20
R3
IO244PB7F22
J3
GND
AF19
IO220NB6F20
R1
IO245NB7F22
G2
GND
AF26
IO220PB6F20
T1
IO245PB7F22
G1
GND
AF8
IO221NB6F20
P6
IO247NB7F23
J6
GND
B2
IO221PB6F20
P7
IO247PB7F23
J5
GND
B25
IO223NB6F20
P5
IO248NB7F23
E1
GND
B26
IO223PB6F20
P4
IO248PB7F23
F1
GND
C24
IO249NB7F23
E2
GND
C3
Bank 7
3 -4 6
676-Pin FBGA
IO225NB7F21
N5
IO249PB7F23
F2
GND
G20
IO225PB7F21
N4
IO250NB7F23
G4
GND
G7
IO226NB7F21
N2
IO250PB7F23
H4
GND
H1
IO226PB7F21
N3
IO251NB7F23
F3
GND
H19
IO227NB7F21
N6
IO251PB7F23
G3
GND
H26
IO227PB7F21
N7
IO253NB7F23
H6
GND
H8
IO229NB7F21
M7
IO253PB7F23
H5
GND
J18
IO229PB7F21
M6
IO254NB7F23
D2
GND
J9
IO231NB7F21
M5
IO254PB7F23
D1
GND
K10
IO231PB7F21
M4
IO255NB7F23
E4
GND
K11
IO232NB7F21
L1
IO255PB7F23
F4
GND
K12
IO232PB7F21
M1
IO256NB7F23
D3
GND
K13
IO233NB7F21
M2
IO256PB7F23
E3
GND
K14
IO233PB7F21
M3
IO257NB7F23
F5
GND
K15
IO235NB7F21
K2
IO257PB7F23
G5
GND
K16
IO235PB7F21
L2
GND
K17
IO236NB7F22
L5
GND
A1
GND
L10
IO236PB7F22
L4
GND
A13
GND
L11
Dedicated I/O
v2.7
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
GND
L12
GND
R15
TCK
E5
GND
L13
GND
R16
TDI
B3
GND
L14
GND
R17
TDO
G6
GND
L15
GND
T10
TMS
D4
GND
L16
GND
T11
TRST
A2
GND
L17
GND
T12
VCCA
AB4
GND
M10
GND
T13
VCCA
AF24
GND
M11
GND
T14
VCCA
C1
GND
M12
GND
T15
VCCA
C26
GND
M13
GND
T16
VCCA
J10
GND
M14
GND
T17
VCCA
J11
GND
M15
GND
U10
VCCA
J12
GND
M16
GND
U11
VCCA
J13
GND
M17
GND
U12
VCCA
J14
GND
N1
GND
U13
VCCA
J15
GND
N10
GND
U14
VCCA
J16
GND
N11
GND
U15
VCCA
J17
GND
N12
GND
U16
VCCA
K18
GND
N13
GND
U17
VCCA
K9
GND
N14
GND
V18
VCCA
L18
GND
N15
GND
V9
VCCA
L9
GND
N16
GND
W1
VCCA
M18
GND
N17
GND
W19
VCCA
M9
GND
N26
GND
W26
VCCA
N18
GND
P1
GND
W8
VCCA
N9
GND
P10
GND
Y20
VCCA
P18
GND
P11
GND
Y7
VCCA
P9
GND
P12
GND/LP
C2
VCCA
R18
GND
P13
NC
A25
VCCA
R9
GND
P14
NC
AC13
VCCA
T18
GND
P15
NC
AC14
VCCA
T9
GND
P16
NC
AF2
VCCA
U18
GND
P17
NC
AF25
VCCA
U9
V10
GND
P26
NC
D13
VCCA
GND
R10
NC
D14
VCCA
V11
GND
R11
PRA
E13
VCCA
V12
GND
R12
PRB
B14
VCCA
V13
GND
R13
PRC
Y14
VCCA
V14
GND
R14
PRD
AD14
VCCA
V15
v2.7
3-47
Axcelerator Family FPGAs
676-Pin FBGA
676-Pin FBGA
676-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
3 -4 8
VCCA
V16
VCCIB1
H15
VCCIB6
U7
VCCA
V17
VCCIB1
H16
VCCIB6
U8
VCCPLA
E12
VCCIB1
H17
VCCIB6
V7
VCCPLB
F13
VCCIB1
H18
VCCIB6
V8
VCCPLC
E15
VCCIB2
H20
VCCIB6
W7
VCCPLD
G14
VCCIB2
J19
VCCIB7
H7
VCCPLE
AF15
VCCIB2
J20
VCCIB7
J7
VCCPLF
AA14
VCCIB2
K19
VCCIB7
J8
VCCPLG
AF12
VCCIB2
K20
VCCIB7
K7
VCCPLH
AB13
VCCIB2
L19
VCCIB7
K8
VCCDA
A11
VCCIB2
M19
VCCIB7
L8
VCCDA
A3
VCCIB2
N19
VCCIB7
M8
VCCDA
AB22
VCCIB3
P19
VCCIB7
N8
VCCDA
AB5
VCCIB3
R19
VCOMPLA
D12
VCCDA
AD10
VCCIB3
T19
VCOMPLB
G13
VCCDA
AD11
VCCIB3
U19
VCOMPLC
D15
VCCDA
AD13
VCCIB3
U20
VCOMPLD
F14
VCCDA
AD16
VCCIB3
V19
VCOMPLE
AD15
VCCDA
AD17
VCCIB3
V20
VCOMPLF
AB14
VCCDA
B1
VCCIB3
W20
VCOMPLG
AD12
VCCDA
B11
VCCIB4
W14
VCOMPLH
Y13
VCCDA
B17
VCCIB4
W15
VPUMP
E22
VCCDA
C16
VCCIB4
W16
VCCDA
D24
VCCIB4
W17
VCCDA
E14
VCCIB4
W18
VCCDA
P2
VCCIB4
Y17
VCCDA
P23
VCCIB4
Y18
VCCIB0
G10
VCCIB4
Y19
VCCIB0
G8
VCCIB5
W10
VCCIB0
G9
VCCIB5
W11
VCCIB0
H10
VCCIB5
W12
VCCIB0
H11
VCCIB5
W13
VCCIB0
H12
VCCIB5
W9
VCCIB0
H13
VCCIB5
Y10
VCCIB0
H9
VCCIB5
Y8
VCCIB1
G17
VCCIB5
Y9
VCCIB1
G18
VCCIB6
P8
VCCIB1
G19
VCCIB6
R8
VCCIB1
H14
VCCIB6
T8
v2.7
Axcelerator Family FPGAs
896-Pin FBGA
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Figure 3-7 • 896-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v2.7
3-49
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
Bank 0
3 -5 0
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO18PB0F1
E11
IO37NB1F3
B19
IO00NB0F0
D6
IO19NB0F1
C12
IO37PB1F3
A19
IO00PB0F0
E6
IO19PB0F1
C11
IO38NB1F3
H18
IO01NB0F0
A5
IO20NB0F1
F12
IO38PB1F3
J18
IO01PB0F0
B5
IO20PB0F1
G12
IO39NB1F3
B20
IO02NB0F0
G9
IO21NB0F1
D12
IO39PB1F3
A20
IO02PB0F0
G8
IO21PB0F1
E12
IO40NB1F3
C20
IO03NB0F0
F8
IO22NB0F2
H13
IO40PB1F3
C19
IO03PB0F0
F7
IO22PB0F2
J13
IO41NB1F4
E20
IO04NB0F0
D7
IO23NB0F2
A12
IO41PB1F4
E19
IO04PB0F0
E7
IO23PB0F2
A11
IO42NB1F4
F18
IO05NB0F0
C7
IO24NB0F2
F13
IO42PB1F4
G18
IO05PB0F0
C6
IO24PB0F2
G13
IO43NB1F4
A22
IO06NB0F0
H9
IO25NB0F2
B13
IO43PB1F4
A21
IO06PB0F0
H8
IO25PB0F2
B12
IO44NB1F4
F20
IO07NB0F0
D8
IO26NB0F2
E14
IO44PB1F4
F19
IO07PB0F0
E8
IO26PB0F2
E13
IO45NB1F4
D21
IO08NB0F0
E9
IO27NB0F2
B14
IO45PB1F4
D20
IO08PB0F0
F9
IO27PB0F2
A14
IO46NB1F4
D22
IO09NB0F0
A7
IO28NB0F2
H14
IO46PB1F4
C22
IO09PB0F0
B7
IO28PB0F2
J14
IO47NB1F4
A25
IO10NB0F0
H10
IO29NB0F2
B15
IO47PB1F4
A24
IO10PB0F0
G10
IO29PB0F2
A15
IO48NB1F4
H19
IO11NB0F0
C9
IO30NB0F2/HCLKAN
C14
IO48PB1F4
G19
IO11PB0F0
C8
IO30PB0F2/HCLKAP
D14
IO49NB1F4
C24
IO12NB0F1
E10
IO31NB0F2/HCLKBN
E15
IO49PB1F4
C23
IO12PB0F1
F10
IO31PB0F2/HCLKBP
D15
IO50NB1F4
G20
IO13NB0F1
D10
IO50PB1F4
H20
IO13PB0F1
D9
IO32NB1F3/HCLKCN
E17
IO51NB1F4
F21
IO14NB0F1
F11
IO32PB1F3/HCLKCP
E16
IO51PB1F4
E21
IO14PB0F1
G11
IO33NB1F3/HCLKDN
C17
IO52NB1F4
F22
IO15NB0F1
A10
IO33PB1F3/HCLKDP
D17
IO52PB1F4
E22
IO15PB0F1
A9
IO34NB1F3
A17
IO53NB1F4
B25
IO16NB0F1
H12
IO34PB1F3
B17
IO53PB1F4
B24
IO16PB0F1
H11
IO35NB1F3
D18
IO54NB1F5
D24
IO17NB0F1
B11
IO35PB1F3
C18
IO54PB1F5
D23
IO17PB0F1
B10
IO36NB1F3
H17
IO55NB1F5
F23
IO18NB0F1
D11
IO36PB1F3
J17
IO55PB1F5
E23
Bank 1
v2.7
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO56NB1F5
H21
IO74PB2F7
L24
IO93PB2F8
R30
IO56PB1F5
G21
IO75NB2F7
L26
IO94NB2F8
R22
IO57NB1F5
D25
IO75PB2F7
K26
IO94PB2F8
R23
IO57PB1F5
C25
IO76NB2F7
M25
IO95NB2F8
T27
IO58NB1F5
F24
IO76PB2F7
L25
IO95PB2F8
R27
IO58PB1F5
E24
IO77NB2F7
K27
IO59NB1F5
D26
IO77PB2F7
J27
IO96NB3F9
T29
IO59PB1F5
C26
IO78NB2F7
M27
IO96PB3F9
T30
IO60NB1F5
G23
IO78PB2F7
L27
IO97NB3F9
U29
IO60PB1F5
G22
IO79NB2F7
K30
IO97PB3F9
U30
IO61NB1F5
B27
IO79PB2F7
K29
IO98NB3F9
T22
IO61PB1F5
A27
IO80NB2F7
M23
IO98PB3F9
T23
IO62NB1F5
F25
IO80PB2F7
M24
IO99NB3F9
U26
IO62PB1F5
E25
IO81NB2F7
M28
IO99PB3F9
T26
IO63NB1F5
H23
IO81PB2F7
L28
IO100NB3F9
U24
IO63PB1F5
H22
IO82NB2F7
N26
IO100PB3F9
T24
IO82PB2F7
M26
IO101NB3F9
V28
Bank 2
Bank 3
IO64NB2F6
K23
IO83NB2F7
N25
IO101PB3F9
U28
IO64PB2F6
J23
IO83PB2F7
N24
IO102NB3F9
U23
IO65NB2F6
J24
IO84NB2F7
N22
IO102PB3F9
U22
IO65PB2F6
H24
IO84PB2F7
N23
IO103NB3F9
V27
IO66NB2F6
H26
IO85NB2F8
M29
IO103PB3F9
U27
IO66PB2F6
H25
IO85PB2F8
L29
IO104NB3F9
W29
IO67NB2F6
G26
IO86NB2F8
N28
IO104PB3F9
V29
IO67PB2F6
G25
IO86PB2F8
N27
IO105NB3F9
Y28
IO68NB2F6
K25
IO87NB2F8
P29
IO105PB3F9
W28
IO68PB2F6
K24
IO87PB2F8
P30
IO106NB3F9
V25
IO69NB2F6
F27
IO88NB2F8
P25
IO106PB3F9
U25
IO69PB2F6
E27
IO88PB2F8
P24
IO107NB3F10
W26
IO70NB2F6
J26
IO89NB2F8
P28
IO107PB3F10
V26
IO70PB2F6
J25
IO89PB2F8
P27
IO108NB3F10
W24
IO71NB2F6
H27
IO90NB2F8
P22
IO108PB3F10
V24
IO71PB2F6
G27
IO90PB2F8
P23
IO109NB3F10
Y27
IO72NB2F6
J28
IO91NB2F8
R26
IO109PB3F10
W27
IO72PB2F6
H28
IO91PB2F8
P26
IO110NB3F10
V23
IO73NB2F6
G28
IO92NB2F8
R24
IO110PB3F10
V22
IO73PB2F6
F28
IO92PB2F8
R25
IO111NB3F10
AA29
IO74NB2F7
L23
IO93NB2F8
R29
IO111PB3F10
Y29
v2.7
3-51
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO112NB3F10
Y25
IO130PB4F12
AK27
IO149PB4F13
AB18
IO112PB3F10
W25
IO131NB4F12
AF24
IO150NB4F13
AK21
IO113NB3F10
AB27
IO131PB4F12
AF25
IO150PB4F13
AJ21
IO113PB3F10
AA27
IO132NB4F12
AG25
IO151NB4F13
AE18
IO114NB3F10
Y23
IO132PB4F12
AG26
IO151PB4F13
AD18
IO114PB3F10
W23
IO133NB4F12
AD22
IO152NB4F14
AJ20
IO115NB3F10
AA26
IO133PB4F12
AC22
IO152PB4F14
AK20
IO115PB3F10
Y26
IO134NB4F12
AE23
IO153NB4F14
AG19
IO116NB3F10
AC28
IO134PB4F12
AE24
IO153PB4F14
AG20
IO116PB3F10
AB28
IO135NB4F12
AH24
IO154NB4F14
AH19
IO117NB3F10
AE29
IO135PB4F12
AH25
IO154PB4F14
AH20
IO117PB3F10
AD29
IO136NB4F12
AJ25
IO155NB4F14
AC17
IO118NB3F11
AE28
IO136PB4F12
AJ26
IO155PB4F14
AB17
IO118PB3F11
AD28
IO137NB4F12
AD21
IO156NB4F14
AK19
IO119NB3F11
AD27
IO137PB4F12
AC21
IO156PB4F14
AJ19
IO119PB3F11
AC27
IO138NB4F12
AK24
IO157NB4F14
AE17
IO120NB3F11
AA24
IO138PB4F12
AK25
IO157PB4F14
AD17
IO120PB3F11
Y24
IO139NB4F13
AE21
IO158NB4F14
AJ17
IO121NB3F11
AB25
IO139PB4F13
AE22
IO158PB4F14
AJ18
IO121PB3F11
AA25
IO140NB4F13
AG23
IO159NB4F14/CLKEN
AG18
IO122NB3F11
AC26
IO140PB4F13
AG24
IO159PB4F14/CLKEP
AH18
IO122PB3F11
AB26
IO141NB4F13
AF22
IO160NB4F14/CLKFN
AG16
IO123NB3F11
AG28
IO141PB4F13
AF23
IO160PB4F14/CLKFP
AG17
IO123PB3F11
AF28
IO142NB4F13
AJ23
IO124NB3F11
AB23
IO142PB4F13
AJ24
IO161NB5F15/CLKGN
AG14
IO124PB3F11
AA23
IO143NB4F13
AD19
IO161PB5F15/CLKGP
AG15
IO125NB3F11
AF27
IO143PB4F13
AD20
IO162NB5F15/CLKHN
AG13
IO125PB3F11
AE27
IO144NB4F13
AG21
IO162PB5F15/CLKHP
AH13
IO126NB3F11
AD25
IO144PB4F13
AG22
IO163NB5F15
AE14
IO126PB3F11
AC25
IO145NB4F13
AE19
IO163PB5F15
AD14
IO127NB3F11
AE26
IO145PB4F13
AE20
IO164NB5F15
AJ12
IO127PB3F11
AD26
IO146NB4F13
AF20
IO164PB5F15
AJ13
IO128NB3F11
AC24
IO146PB4F13
AF21
IO165NB5F15
AB14
IO128PB3F11
AB24
IO147NB4F13
AC19
IO165PB5F15
AC15
IO147PB4F13
AC20
IO166NB5F15
AK11
Bank 4
3 -5 2
Bank 5
IO129NB4F12
AD23
IO148NB4F13
AH22
IO166PB5F15
AK12
IO129PB4F12
AC23
IO148PB4F13
AH23
IO167NB5F15
AB13
IO130NB4F12
AK26
IO149NB4F13
AC18
IO167PB5F15
AC14
v2.7
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO168NB5F15
AH11
IO187NB5F17
AE7
IO205PB6F19
Y8
IO168PB5F15
AH12
IO187PB5F17
AE8
IO206NB6F19
AA4
IO169NB5F15
AD13
IO188NB5F17
AF6
IO206PB6F19
AB4
IO169PB5F15
AC13
IO188PB5F17
AF7
IO207NB6F19
W6
IO170NB5F15
AJ10
IO189NB5F17
AD8
IO207PB6F19
W7
IO170PB5F15
AJ11
IO189PB5F17
AD9
IO208NB6F19
AB3
IO171NB5F16
AG11
IO190NB5F17
AH6
IO208PB6F19
AC3
IO171PB5F16
AG12
IO190PB5F17
AG6
IO209NB6F19
V8
IO172NB5F16
AK9
IO191NB5F17
AG5
IO209PB6F19
V9
IO172PB5F16
AK10
IO191PB5F17
AH5
IO210NB6F19
AA2
IO173NB5F16
AE12
IO192NB5F17
AC8
IO210PB6F19
AA1
IO173PB5F16
AE13
IO192PB5F17
AC9
IO211NB6F19
V5
IO174NB5F16
AG9
IO211PB6F19
W5
IO174PB5F16
AG10
IO193NB6F18
AB7
IO212NB6F19
Y3
IO175NB5F16
AE11
IO193PB6F18
AC7
IO212PB6F19
Y4
IO175PB5F16
AF11
IO194NB6F18
AD5
IO213NB6F19
V7
IO176NB5F16
AH8
IO194PB6F18
AE5
IO213PB6F19
V6
IO176PB5F16
AH9
IO195NB6F18
AB6
IO214NB6F20
W3
IO177NB5F16
AC12
IO195PB6F18
AC6
IO214PB6F20
W4
IO177PB5F16
AD12
IO196NB6F18
AE4
IO215NB6F20
U8
IO178NB5F16
AJ7
IO196PB6F18
AF4
IO215PB6F20
U9
IO178PB5F16
AJ8
IO197NB6F18
AA8
IO216NB6F20
W1
IO179NB5F16
AF9
IO197PB6F18
AB8
IO216PB6F20
W2
IO179PB5F16
AF10
IO198NB6F18
AF3
IO217NB6F20
U7
IO180NB5F16
AE9
IO198PB6F18
AG3
IO217PB6F20
U6
IO180PB5F16
AE10
IO199NB6F18
AC4
IO218NB6F20
U4
IO181NB5F17
AC11
IO199PB6F18
AD4
IO218PB6F20
V4
IO181PB5F17
AD11
IO200NB6F18
AB5
IO219NB6F20
T5
IO182NB5F17
AK6
IO200PB6F18
AC5
IO219PB6F20
U5
IO182PB5F17
AK7
IO201NB6F18
Y7
IO220NB6F20
U3
IO183NB5F17
AF8
IO201PB6F18
AA7
IO220PB6F20
V3
IO183PB5F17
AG8
IO202NB6F18
AD3
IO221NB6F20
T8
IO184NB5F17
AG7
IO202PB6F18
AE3
IO221PB6F20
T9
IO184PB5F17
AH7
IO203NB6F19
Y6
IO222NB6F20
U2
IO185NB5F17
AC10
IO203PB6F19
AA6
IO222PB6F20
V2
IO185PB5F17
AD10
IO204NB6F19
Y5
IO223NB6F20
T7
IO186NB5F17
AJ5
IO204PB6F19
AA5
IO223PB6F20
T6
IO186PB5F17
AJ6
IO205NB6F19
W8
IO224NB6F20
R2
Bank 6
v2.7
3-53
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO224PB6F20
T2
IO243NB7F22
L6
GND
AA21
IO243PB7F22
M6
GND
AA28
Bank 7
3 -5 4
IO225NB7F21
R7
IO244NB7F22
K5
GND
AA3
IO225PB7F21
R6
IO244PB7F22
L5
GND
AB2
IO226NB7F21
R4
IO245NB7F22
J4
GND
AB22
IO226PB7F21
R5
IO245PB7F22
J3
GND
AB29
IO227NB7F21
R8
IO246NB7F22
G2
GND
AB9
IO227PB7F21
R9
IO246PB7F22
H2
GND
AC1
IO228NB7F21
P1
IO247NB7F23
L8
GND
AC30
IO228PB7F21
R1
IO247PB7F23
L7
GND
AE25
IO229NB7F21
P9
IO248NB7F23
G3
GND
AE6
IO229PB7F21
P8
IO248PB7F23
H3
GND
AF26
IO230NB7F21
N2
IO249NB7F23
G4
GND
AF5
IO230PB7F21
P2
IO249PB7F23
H4
GND
AG27
IO231NB7F21
P7
IO250NB7F23
J6
GND
AG4
IO231PB7F21
P6
IO250PB7F23
K6
GND
AH10
IO232NB7F21
N3
IO251NB7F23
H5
GND
AH15
IO232PB7F21
P3
IO251PB7F23
J5
GND
AH16
IO233NB7F21
P4
IO252NB7F23
F2
GND
AH21
IO233PB7F21
P5
IO252PB7F23
F1
GND
AH28
IO234NB7F21
L1
IO253NB7F23
K8
GND
AH3
IO234PB7F21
M1
IO253PB7F23
K7
GND
AJ1
IO235NB7F21
M4
IO254NB7F23
F4
GND
AJ2
IO235PB7F21
N4
IO254PB7F23
F3
GND
AJ22
IO236NB7F22
N7
IO255NB7F23
G6
GND
AJ29
IO236PB7F22
N6
IO255PB7F23
H6
GND
AJ30
IO237NB7F22
N8
IO256NB7F23
F5
GND
AJ9
IO237PB7F22
N9
IO256PB7F23
G5
GND
AK13
IO238NB7F22
M5
IO257NB7F23
H7
GND
AK18
IO238PB7F22
N5
IO257PB7F23
J7
GND
AK2
IO239NB7F22
L2
GND
AK23
IO239PB7F22
M2
GND
A13
GND
AK29
IO240NB7F22
L3
GND
A18
GND
AK8
IO240PB7F22
M3
GND
A2
GND
B1
IO241NB7F22
M8
GND
A23
GND
B2
IO241PB7F22
M7
GND
A29
GND
B22
IO242NB7F22
K4
GND
A8
GND
B29
IO242PB7F22
L4
GND
AA10
GND
B30
Dedicated I/O
v2.7
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
GND
B9
GND
N17
GND
U18
GND
C10
GND
N18
GND
U19
GND
C15
GND
N19
GND
V1
GND
C16
GND
N30
GND
V12
GND
C21
GND
P12
GND
V13
GND
C28
GND
P13
GND
V14
GND
C3
GND
P14
GND
V15
GND
D27
GND
P15
GND
V16
GND
D28
GND
P16
GND
V17
GND
D4
GND
P17
GND
V18
GND
E26
GND
P18
GND
V19
GND
E5
GND
P19
GND
V30
GND
H1
GND
R12
GND
W12
GND
H30
GND
R13
GND
W13
GND
J2
GND
R14
GND
W14
GND
J22
GND
R15
GND
W15
GND
J29
GND
R16
GND
W16
GND
J9
GND
R17
GND
W17
GND
K10
GND
R18
GND
W18
GND
K21
GND
R19
GND
W19
GND
K28
GND
R28
GND
Y11
GND
K3
GND
R3
GND
Y20
GND
L11
GND
T12
GND/LP
E4
GND
L20
GND
T13
NC
A16
GND
M12
GND
T14
NC
A26
GND
M13
GND
T15
NC
A4
GND
M14
GND
T16
NC
A6
GND
M15
GND
T17
NC
AA30
GND
M16
GND
T18
NC
AB1
GND
M17
GND
T19
NC
AB30
GND
M18
GND
T28
NC
AC2
GND
M19
GND
T3
NC
AC29
GND
N1
GND
U12
NC
AD1
GND
N12
GND
U13
NC
AD2
GND
N13
GND
U14
NC
AD30
GND
N14
GND
U15
NC
AE1
GND
N15
GND
U16
NC
AE15
GND
N16
GND
U17
NC
AE16
v2.7
3-55
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
NC
AE2
NC
E2
VCCA
L13
NC
AE30
NC
E29
VCCA
L14
NC
AF1
NC
E30
VCCA
L15
NC
AF2
NC
F15
VCCA
L16
NC
AF29
NC
F16
VCCA
L17
NC
AF30
NC
F29
VCCA
L18
NC
AG1
NC
F30
VCCA
L19
NC
AG2
NC
G1
VCCA
M11
NC
AG29
NC
G29
VCCA
M20
NC
AG30
NC
G30
VCCA
N11
NC
AH27
NC
H29
VCCA
N20
NC
AH4
NC
J1
VCCA
P11
NC
AJ14
NC
J30
VCCA
P20
NC
AJ15
NC
K1
VCCA
R11
NC
AJ16
NC
K2
VCCA
R20
NC
AJ27
NC
L30
VCCA
T11
NC
AJ4
NC
M30
VCCA
T20
NC
AK14
NC
N29
VCCA
U11
NC
AK15
NC
T1
VCCA
U20
NC
AK16
NC
U1
VCCA
V11
NC
AK17
NC
W30
VCCA
V20
NC
AK22
NC
Y1
VCCA
W11
NC
AK4
NC
Y2
VCCA
W20
NC
AK5
NC
Y30
VCCA
Y12
NC
B16
PRA
G15
VCCA
Y13
NC
B18
PRB
D16
VCCA
Y14
NC
B21
PRC
AB16
VCCA
Y15
NC
B23
PRD
AF16
VCCA
Y16
NC
B26
TCK
G7
VCCA
Y17
NC
B4
TDI
D5
VCCA
Y18
NC
B6
TDO
J8
VCCA
Y19
NC
B8
TMS
F6
VCCPLA
G14
NC
C27
TRST
C4
VCCPLB
H15
NC
D1
VCCA
AD6
VCCPLC
G17
NC
D2
VCCA
AH26
VCCPLD
J16
NC
D29
VCCA
E28
VCCPLE
AH17
NC
D30
VCCA
E3
VCCPLF
AC16
NC
E1
VCCA
L12
VCCPLG
AH14
3 -5 6
v2.7
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
VCCPLH
AD15
VCCIB2
C29
VCCIB5
AJ3
VCCDA
AD24
VCCIB2
C30
VCCIB5
AK3
VCCDA
AD7
VCCIB2
K22
VCCIB6
AA9
VCCDA
AF12
VCCIB2
L21
VCCIB6
AH1
VCCDA
AF13
VCCIB2
L22
VCCIB6
AH2
VCCDA
AF15
VCCIB2
M21
VCCIB6
T10
VCCDA
AF18
VCCIB2
M22
VCCIB6
U10
VCCDA
AF19
VCCIB2
N21
VCCIB6
V10
VCCDA
C13
VCCIB2
P21
VCCIB6
W10
VCCDA
C5
VCCIB2
R21
VCCIB6
W9
VCCDA
D13
VCCIB3
AA22
VCCIB6
Y10
VCCDA
D19
VCCIB3
AH29
VCCIB6
Y9
VCCDA
D3
VCCIB3
AH30
VCCIB7
C1
VCCDA
E18
VCCIB3
T21
VCCIB7
C2
VCCDA
F26
VCCIB3
U21
VCCIB7
K9
VCCDA
G16
VCCIB3
V21
VCCIB7
L10
VCCDA
T25
VCCIB3
W21
VCCIB7
L9
VCCDA
T4
VCCIB3
W22
VCCIB7
M10
VCCIB0
A3
VCCIB3
Y21
VCCIB7
M9
VCCIB0
B3
VCCIB3
Y22
VCCIB7
N10
VCCIB0
J10
VCCIB4
AA16
VCCIB7
P10
VCCIB0
J11
VCCIB4
AA17
VCCIB7
R10
VCCIB0
J12
VCCIB4
AA18
VCOMPLA
F14
VCCIB0
K11
VCCIB4
AA19
VCOMPLB
J15
VCCIB0
K12
VCCIB4
AA20
VCOMPLC
F17
VCCIB0
K13
VCCIB4
AB19
VCOMPLD
H16
VCCIB0
K14
VCCIB4
AB20
VCOMPLE
AF17
VCCIB0
K15
VCCIB4
AB21
VCOMPLF
AD16
VCCIB1
A28
VCCIB4
AJ28
VCOMPLG
AF14
VCCIB1
B28
VCCIB4
AK28
VCOMPLH
AB15
VCCIB1
J19
VCCIB5
AA11
VPUMP
G24
VCCIB1
J20
VCCIB5
AA12
VCCIB1
J21
VCCIB5
AA13
VCCIB1
K16
VCCIB5
AA14
VCCIB1
K17
VCCIB5
AA15
VCCIB1
K18
VCCIB5
AB10
VCCIB1
K19
VCCIB5
AB11
VCCIB1
K20
VCCIB5
AB12
v2.7
3-57
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
Bank 0
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO18PB0F1
C8
IO42NB0F3/HCLKBN
E15
IO42PB0F3/HCLKBP
D15
IO00NB0F0
B4
IO19NB0F1
D11
IO00PB0F0
A4
IO19PB0F1
E11
IO01NB0F0
F8
IO20PB0F1
B8
IO43NB1F4/HCLKCN
E17
IO01PB0F0
F7
IO21NB0F1
H12
IO43PB1F4/HCLKCP
E16
IO02NB0F0
D6
IO21PB0F1
H11
IO44NB1F4/HCLKDN
C17
IO02PB0F0
E6
IO23NB0F2
A10
IO44PB1F4/HCLKDP
D17
IO04NB0F0
A5
IO23PB0F2
A9
IO45NB1F4
A16
IO04PB0F0
B5
IO25NB0F2
F12
IO45PB1F4
B16
IO05NB0F0
H8
IO25PB0F2
G12
IO47NB1F4
H17
IO05PB0F0
G8
IO26NB0F2
B11
IO47PB1F4
J17
IO06NB0F0
D7
IO26PB0F2
B10
IO48NB1F4
A17
IO06PB0F0
E7
IO27NB0F2
D12
IO48PB1F4
B17
IO07NB0F0
D8
IO27PB0F2
E12
IO49NB1F4
H18
IO07PB0F0
E8
IO28NB0F2
C12
IO49PB1F4
J18
IO08NB0F0
C7
IO28PB0F2
C11
IO51NB1F4
F18
IO08PB0F0
C6
IO30NB0F2
A12
IO51PB1F4
G18
IO09NB0F0
G9
IO30PB0F2
A11
IO52NB1F4
B18
IO09PB0F0
H9
IO31NB0F2
F13
IO53NB1F4
D18
IO10NB0F0
A6
IO31PB0F2
G13
IO53PB1F4
C18
IO10PB0F0
B6
IO33NB0F2
H13
IO55NB1F5
H19
IO11NB0F0
H10
IO33PB0F2
J13
IO55PB1F5
G19
IO11PB0F0
G10
IO34NB0F3
B13
IO56NB1F5
B19
IO12NB0F1
E9
IO34PB0F3
B12
IO56PB1F5
A19
IO12PB0F1
F9
IO37NB0F3
E14
IO57NB1F5
E20
IO13NB0F1
E10
IO37PB0F3
E13
IO57PB1F5
E19
IO13PB0F1
F10
IO38NB0F3
B14
IO58NB1F5
C20
IO15NB0F1
F11
IO38PB0F3
A14
IO58PB1F5
C19
IO15PB0F1
G11
IO39NB0F3
H14
IO59NB1F5
B20
IO16NB0F1
A7
IO39PB0F3
J14
IO59PB1F5
A20
IO16PB0F1
B7
IO40NB0F3
B15
IO61NB1F5
F20
IO17NB0F1
D10
IO40PB0F3
A15
IO61PB1F5
F19
IO17PB0F1
D9
IO41NB0F3/HCLKAN
C14
IO62NB1F5
A22
IO18NB0F1
C9
IO41PB0F3/HCLKAP
D14
IO62PB1F5
A21
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -5 8
896-Pin FBGA
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Bank 1
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO63NB1F5
D21
IO83NB1F7
F24
IO99PB2F9
L24
IO63PB1F5
D20
IO83PB1F7
E24
IO100NB2F9
K27
IO65NB1F6
G20
IO84NB1F7
D26
IO100PB2F9
J27
IO65PB1F6
H20
IO84PB1F7
C26
IO101PB2F9
J30
IO66NB1F6
B23
IO85NB1F7
F25
IO102NB2F9
E30
IO66PB1F6
B21
IO85PB1F7
E25
IO102PB2F9
D30
IO67NB1F6
H21
IO103NB2F9
L26
IO67PB1F6
G21
IO86NB2F8
G26
IO103PB2F9
K26
IO68NB1F6
D22
IO86PB2F8
G25
IO104NB2F9
F29
IO68PB1F6
C22
IO87NB2F8
K23
IO105NB2F9
M25
IO69NB1F6
A25
IO87PB2F8
J23
IO105PB2F9
L25
IO69PB1F6
A24
IO88NB2F8
J24
IO106NB2F9
K30
IO70NB1F6
F22
IO88PB2F8
H24
IO106PB2F9
K29
IO70PB1F6
E22
IO89NB2F8
E29
IO107NB2F10
M23
IO71NB1F6
F21
IO89PB2F8
D29
IO107PB2F10
M24
IO71PB1F6
E21
IO90NB2F8
F27
IO109NB2F10
M27
IO73NB1F6
C24
IO90PB2F8
E27
IO109PB2F10
L27
IO73PB1F6
C23
IO91NB2F8
H26
IO110NB2F10
M28
IO74NB1F6
D24
IO91PB2F8
H25
IO110PB2F10
L28
IO74PB1F6
D23
IO92NB2F8
G28
IO111NB2F10
N22
IO75NB1F6
H23
IO92PB2F8
F28
IO111PB2F10
N23
IO75PB1F6
H22
IO93NB2F8
J26
IO112NB2F10
M29
IO76NB1F7
B25
IO93PB2F8
J25
IO112PB2F10
L29
IO76PB1F7
B24
IO94NB2F8
H27
IO113NB2F10
N26
IO78NB1F7
B26
IO94PB2F8
G27
IO113PB2F10
M26
IO78PB1F7
A26
IO95NB2F8
H29
IO114NB2F10
M30
IO79NB1F7
F23
IO95PB2F8
G29
IO114PB2F10
L30
IO79PB1F7
E23
IO96NB2F9
G30
IO115NB2F10
N28
IO80NB1F7
D25
IO96PB2F9
F30
IO115PB2F10
N27
IO80PB1F7
C25
IO97NB2F9
K25
IO117NB2F10
N25
IO81NB1F7
G23
IO97PB2F9
K24
IO117PB2F10
N24
IO81PB1F7
G22
IO98NB2F9
J28
IO118NB2F11
N29
IO82NB1F7
B27
IO98PB2F9
H28
IO119NB2F11
P22
IO82PB1F7
A27
IO99NB2F9
L23
IO119PB2F11
P23
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Bank 2
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-59
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO121NB2F11
P25
IO139PB3F13
U25
IO159NB3F14
AB25
IO121PB2F11
P24
IO141NB3F13
V23
IO159PB3F14
AA25
IO122NB2F11
P28
IO141PB3F13
V22
IO160NB3F14
AE30
IO122PB2F11
P27
IO142NB3F13
W29
IO160PB3F14
AD30
IO123NB2F11
R26
IO142PB3F13
V29
IO161NB3F15
AE29
IO123PB2F11
P26
IO143NB3F13
W26
IO161PB3F15
AD29
IO124NB2F11
P29
IO143PB3F13
V26
IO162NB3F15
AD27
IO124PB2F11
P30
IO145NB3F13
W24
IO162PB3F15
AC27
IO125NB2F11
R22
IO145PB3F13
V24
IO163NB3F15
AC26
IO125PB2F11
R23
IO146NB3F13
W27
IO163PB3F15
AB26
IO127NB2F11
R24
IO146PB3F13
W28
IO164NB3F15
AE28
IO127PB2F11
R25
IO147NB3F13
Y28
IO164PB3F15
AD28
IO128NB2F11
R29
IO147PB3F13
Y27
IO165NB3F15
AC24
IO128PB2F11
R30
IO148NB3F13
Y30
IO165PB3F15
AB24
IO148PB3F13
W30
IO166NB3F15
AG28
Bank 3
IO129NB3F12
T27
IO149NB3F13
Y25
IO166PB3F15
AF28
IO129PB3F12
R27
IO149PB3F13
W25
IO167NB3F15
AE26
IO130NB3F12
T29
IO150NB3F14
AA29
IO167PB3F15
AD26
IO130PB3F12
T30
IO150PB3F14
Y29
IO168NB3F15
AD25
IO131NB3F12
T22
IO151NB3F14
AC29
IO168PB3F15
AC25
IO131PB3F12
T23
IO152NB3F14
AA26
IO169NB3F15
AF27
IO132NB3F12
U26
IO152PB3F14
Y26
IO169PB3F15
AE27
IO132PB3F12
T26
IO153NB3F14
Y23
IO170NB3F15
AB23
IO133NB3F12
U24
IO153PB3F14
W23
IO170PB3F15
AA23
IO133PB3F12
T24
IO154NB3F14
AB30
IO135NB3F12
U23
IO154PB3F14
AA30
IO171NB4F16
AG29
IO135PB3F12
U22
IO155NB3F14
AB27
IO171PB4F16
AG30
IO136NB3F12
U29
IO155PB3F14
AA27
IO172NB4F16
AF24
IO136PB3F12
U30
IO156NB3F14
AC28
IO172PB4F16
AF25
IO137NB3F12
V28
IO156PB3F14
AB28
IO173NB4F16
AG25
IO137PB3F12
U28
IO157NB3F14
AA24
IO173PB4F16
AG26
IO138NB3F12
V27
IO157PB3F14
Y24
IO174NB4F16
AJ25
IO138PB3F12
U27
IO158NB3F14
AF29
IO174PB4F16
AJ26
IO139NB3F13
V25
IO158PB3F14
AF30
IO175NB4F16
AK26
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -6 0
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Bank 4
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO175PB4F16
AK27
IO196PB4F18
AD20
IO216PB5F20
AC15
IO176NB4F16
AE23
IO197NB4F18
AJ20
IO217NB5F20
AK15
IO176PB4F16
AE24
IO197PB4F18
AK20
IO217PB5F20
AJ15
IO177NB4F16
AH24
IO198NB4F18
AC19
IO218NB5F20
AE14
IO177PB4F16
AH25
IO198PB4F18
AC20
IO218PB5F20
AD14
IO178NB4F16
AD23
IO199NB4F18
AG19
IO219NB5F20
AK14
IO178PB4F16
AC23
IO199PB4F18
AG20
IO219PB5F20
AJ14
IO179PB4F16
AJ27
IO200NB4F18
AH19
IO222NB5F20
AB13
IO180NB4F16
AG23
IO200PB4F18
AH20
IO222PB5F20
AC14
IO180PB4F16
AG24
IO201NB4F18
AK19
IO223NB5F21
AJ12
IO181NB4F17
AK24
IO201PB4F18
AJ19
IO223PB5F21
AJ13
IO181PB4F17
AK25
IO202NB4F18
AC18
IO225NB5F21
AH11
IO182NB4F17
AD22
IO202PB4F18
AB18
IO225PB5F21
AH12
IO182PB4F17
AC22
IO206NB4F19
AE18
IO226NB5F21
AC13
IO183NB4F17
AF22
IO206PB4F19
AD18
IO226PB5F21
AD13
IO183PB4F17
AF23
IO207NB4F19
AJ17
IO227NB5F21
AE12
IO184NB4F17
AE21
IO207PB4F19
AJ18
IO227PB5F21
AE13
IO184PB4F17
AE22
IO208NB4F19
AE17
IO228NB5F21
AG11
IO185NB4F17
AJ23
IO208PB4F19
AD17
IO228PB5F21
AG12
IO185PB4F17
AJ24
IO209NB4F19
AK17
IO229NB5F21
AK11
IO187NB4F17
AH22
IO210NB4F19
AC17
IO229PB5F21
AK12
IO187PB4F17
AH23
IO210PB4F19
AB17
IO230NB5F21
AC12
IO188NB4F17
AD21
IO211NB4F19
AJ16
IO230PB5F21
AD12
IO188PB4F17
AC21
IO211PB4F19
AK16
IO232NB5F21
AE11
IO189PB4F17
AK22
IO212NB4F19/CLKEN
AG18
IO232PB5F21
AF11
IO190NB4F17
AF20
IO212PB4F19/CLKEP
AH18
IO233NB5F21
AJ10
IO190PB4F17
AF21
IO213NB4F19/CLKFN
AG16
IO233PB5F21
AJ11
IO191NB4F17
AG21
IO213PB4F19/CLKFP
AG17
IO234NB5F21
AC11
IO191PB4F17
AG22
IO234PB5F21
AD11
IO192NB4F17
AE19
IO214NB5F20/CLKGN
AG14
IO236NB5F22
AK9
IO192PB4F17
AE20
IO214PB5F20/CLKGP
AG15
IO236PB5F22
AK10
IO195NB4F18
AK21
IO215NB5F20/CLKHN
AG13
IO237NB5F22
AG9
IO195PB4F18
AJ21
IO215PB5F20/CLKHP
AH13
IO237PB5F22
AG10
IO196NB4F18
AD19
IO216NB5F20
AB14
IO238NB5F22
AF9
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Bank 5
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-61
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO238PB5F22
AF10
IO273PB6F25
AE2*
IO239NB5F22
AH8
IO257NB6F24
AE4
IO274NB6F25
W8
IO239PB5F22
AH9
IO257PB6F24
AF4
IO274PB6F25
Y8
IO240NB5F22
AC10
IO258NB6F24
AB7
IO275NB6F25
Y5
IO240PB5F22
AD10
IO258PB6F24
AC7
IO275PB6F25
AA5
IO242NB5F22
AE9
IO259NB6F24
AD5
IO277NB6F25
AA2
IO242PB5F22
AE10
IO259PB6F24
AE5
IO277PB6F25
AA1
IO243NB5F22
AJ7
IO260NB6F24
AF1
IO278NB6F26
W6
IO243PB5F22
AJ8
IO260PB6F24
AF2
IO278PB6F26
W7
IO244NB5F22
AK6
IO261NB6F24
AF3
IO279NB6F26
Y3
IO244PB5F22
AK7
IO261PB6F24
AG3
IO279PB6F26
Y4
IO245NB5F23
AF8
IO262NB6F24
AC4
IO280NB6F26
V8
IO245PB5F23
AG8
IO262PB6F24
AD4
IO280PB6F26
V9
IO246NB5F23
AD8
IO263NB6F24
AD3
IO281NB6F26
Y1
IO246PB5F23
AD9
IO263PB6F24
AE3
IO281PB6F26
Y2
IO247NB5F23
AG7
IO264NB6F24
AB6
IO282NB6F26
V5
IO247PB5F23
AH7
IO264PB6F24
AC6
IO282PB6F26
W5
IO248NB5F23
AK5
IO265NB6F24
AD1
IO284NB6F26
V7
IO249NB5F23
AJ5
IO265PB6F24
AE1
IO284PB6F26
V6
IO249PB5F23
AJ6
IO266NB6F24
AA8
IO285NB6F26
W3
IO250NB5F23
AC8
IO266PB6F24
AB8
IO285PB6F26
W4
IO250PB5F23
AC9
IO267NB6F25
AB5
IO286NB6F26
U8
IO251NB5F23
AH6
IO267PB6F25
AC5
IO286PB6F26
U9
IO251PB5F23
AG6
IO268NB6F25
AB3
IO287NB6F26
W1
IO252NB5F23
AF6
IO268PB6F25
AC3
IO287PB6F26
W2
IO252PB5F23
AF7
IO269NB6F25
AC2
IO288NB6F26
U7
IO253NB5F23
AG2
IO269PB6F25
AD2
IO288PB6F26
U6
IO253PB5F23
AG1
IO270NB6F25
Y7
IO290NB6F27
U4
IO254NB5F23
AE7
IO270PB6F25
AA7
IO290PB6F27
V4
IO254PB5F23
AE8
IO271NB6F25
AA4
IO291NB6F27
U3
IO255NB5F23
AG5
IO271PB6F25
AB4
IO291PB6F27
V3
IO255PB5F23
AH5
IO272NB6F25
Y6
IO292NB6F27
T5
IO256NB5F23
AJ4
IO272PB6F25
AA6
IO292PB6F27
U5
IO256PB5F23
AK4
IO273NB6F25
AB1*
IO293NB6F27
U2
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -6 2
AX2000 Function
896-Pin FBGA
Pin Number
Bank 6
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO293PB6F27
V2
IO315NB7F29
L2
IO334NB7F31
G4
IO294NB6F27
T8
IO315PB7F29
M2
IO334PB7F31
H4
IO294PB6F27
T9
IO316NB7F29
N7
IO335NB7F31
F2
IO296NB6F27
T1
IO316PB7F29
N6
IO335PB7F31
F1
IO296PB6F27
U1
IO317NB7F29
L3
IO336NB7F31
H5
IO298NB6F27
T7
IO317PB7F29
M3
IO336PB7F31
J5
IO298PB6F27
T6
IO318NB7F29
N8
IO337NB7F31
E2
IO299NB6F27
R2
IO318PB7F29
N9
IO337PB7F31
E1
IO299PB6F27
T2
IO320NB7F29
L6
IO338NB7F31
H7
IO320PB7F29
M6
IO338PB7F31
J7
Bank 7
IO300NB7F28
R8
IO321NB7F30
K4
IO339NB7F31
F4
IO300PB7F28
R9
IO321PB7F30
L4
IO339PB7F31
F3
IO302NB7F28
R4
IO322NB7F30
M8
IO340NB7F31
F5
IO302PB7F28
R5
IO322PB7F30
M7
IO340PB7F31
G5
IO303NB7F28
P1
IO323NB7F30
J1
IO341NB7F31
G6
IO303PB7F28
R1
IO323PB7F30
K1
IO341PB7F31
H6
IO304NB7F28
R7
IO324NB7F30
K5
IO304PB7F28
R6
IO324PB7F30
L5
GND
A13
IO306NB7F28
N2
IO326NB7F30
G1*
GND
A18
IO306PB7F28
P2
IO326PB7F30
K2*
GND
A2
IO307NB7F28
N3
IO327NB7F30
J4
GND
A23
IO307PB7F28
P3
IO327PB7F30
J3
GND
A29
IO308NB7F28
P9
IO328NB7F30
L8
GND
A8
IO308PB7F28
P8
IO328PB7F30
L7
GND
AA10
IO309NB7F28
P4
IO329NB7F30
G2
GND
AA21
IO309PB7F28
P5
IO329PB7F30
H2
GND
AA28
IO310NB7F29
P7
IO330NB7F30
G3
GND
AA3
IO310PB7F29
P6
IO330PB7F30
H3
GND
AB2
IO311NB7F29
L1
IO331NB7F30
K8
GND
AB22
IO311PB7F29
M1
IO331PB7F30
K7
GND
AB29
IO312NB7F29
M5
IO332NB7F31
J6
GND
AB9
IO312PB7F29
N5
IO332PB7F31
K6
GND
AC1
IO313NB7F29
M4
IO333NB7F31
D1
GND
AC30
IO313PB7F29
N4
IO333PB7F31
D2
GND
AE25
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Dedicated I/O
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-63
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
GND
AE6
GND
C3
GND
N19
GND
AF26
GND
D27
GND
N30
GND
AF5
GND
D28
GND
P12
GND
AG27
GND
D4
GND
P13
GND
AG4
GND
E26
GND
P14
GND
AH10
GND
E5
GND
P15
GND
AH15
GND
H1
GND
P16
GND
AH16
GND
H30
GND
P17
GND
AH21
GND
J2
GND
P18
GND
AH28
GND
J22
GND
P19
GND
AH3
GND
J29
GND
R12
GND
AJ1
GND
J9
GND
R13
GND
AJ2
GND
K10
GND
R14
GND
AJ22
GND
K21
GND
R15
GND
AJ29
GND
K28
GND
R16
GND
AJ30
GND
K3
GND
R17
GND
AJ9
GND
L11
GND
R18
GND
AK13
GND
L20
GND
R19
GND
AK18
GND
M12
GND
R28
GND
AK2
GND
M13
GND
R3
GND
AK23
GND
M14
GND
T12
GND
AK29
GND
M15
GND
T13
GND
AK8
GND
M16
GND
T14
GND
B1
GND
M17
GND
T15
GND
B2
GND
M18
GND
T16
GND
B22
GND
M19
GND
T17
GND
B29
GND
N1
GND
T18
GND
B30
GND
N12
GND
T19
GND
B9
GND
N13
GND
T28
GND
C10
GND
N14
GND
T3
GND
C15
GND
N15
GND
U12
GND
C16
GND
N16
GND
U13
GND
C21
GND
N17
GND
U14
GND
C28
GND
N18
GND
U15
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -6 4
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
GND
U16
VCCA
AD6
VCCA
Y18
GND
U17
VCCA
AH26
VCCA
Y19
GND
U18
VCCA
E28
VCCDA
AD24
GND
U19
VCCA
E3
VCCDA
AD7
GND
V1
VCCA
L12
VCCDA
AE15
GND
V12
VCCA
L13
VCCDA
AE16
GND
V13
VCCA
L14
VCCDA
AF12
GND
V14
VCCA
L15
VCCDA
AF13
GND
V15
VCCA
L16
VCCDA
AF15
GND
V16
VCCA
L17
VCCDA
AF18
GND
V17
VCCA
L18
VCCDA
AF19
GND
V18
VCCA
L19
VCCDA
AH27
GND
V19
VCCA
M11
VCCDA
AH4
GND
V30
VCCA
M20
VCCDA
C13
GND
W12
VCCA
N11
VCCDA
C27
GND
W13
VCCA
N20
VCCDA
C5
GND
W14
VCCA
P11
VCCDA
D13
GND
W15
VCCA
P20
VCCDA
D19
GND
W16
VCCA
R11
VCCDA
D3
GND
W17
VCCA
R20
VCCDA
E18
GND
W18
VCCA
T11
VCCDA
F15
GND
W19
VCCA
T20
VCCDA
F16
GND
Y11
VCCA
U11
VCCDA
F26
GND
Y20
VCCA
U20
VCCDA
G16
GND/LP
E4
VCCA
V11
VCCDA
T25
PRA
G15
VCCA
V20
VCCDA
T4
PRB
D16
VCCA
W11
VCCIB0
A3
PRC
AB16
VCCA
W20
VCCIB0
B3
PRD
AF16
VCCA
Y12
VCCIB0
J10
TCK
G7
VCCA
Y13
VCCIB0
J11
TDI
D5
VCCA
Y14
VCCIB0
J12
TDO
J8
VCCA
Y15
VCCIB0
K11
TMS
F6
VCCA
Y16
VCCIB0
K12
TRST
C4
VCCA
Y17
VCCIB0
K13
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-65
Axcelerator Family FPGAs
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
VCCIB0
K14
VCCIB4
AA18
VCCIB7
M9
VCCIB0
K15
VCCIB4
AA19
VCCIB7
N10
VCCIB1
A28
VCCIB4
AA20
VCCIB7
P10
VCCIB1
B28
VCCIB4
AB19
VCCIB7
R10
VCCIB1
J19
VCCIB4
AB20
VCCPLA
G14
VCCIB1
J20
VCCIB4
AB21
VCCPLB
H15
VCCIB1
J21
VCCIB4
AJ28
VCCPLC
G17
VCCIB1
K16
VCCIB4
AK28
VCCPLD
J16
VCCIB1
K17
VCCIB5
AA11
VCCPLE
AH17
VCCIB1
K18
VCCIB5
AA12
VCCPLF
AC16
VCCIB1
K19
VCCIB5
AA13
VCCPLG
AH14
VCCIB1
K20
VCCIB5
AA14
VCCPLH
AD15
VCCIB2
C29
VCCIB5
AA15
VCOMPLA
F14
VCCIB2
C30
VCCIB5
AB10
VCOMPLB
J15
VCCIB2
K22
VCCIB5
AB11
VCOMPLC
F17
VCCIB2
L21
VCCIB5
AB12
VCOMPLD
H16
VCCIB2
L22
VCCIB5
AJ3
VCOMPLE
AF17
VCCIB2
M21
VCCIB5
AK3
VCOMPLF
AD16
VCCIB2
M22
VCCIB6
AA9
VCOMPLG
AF14
VCCIB2
N21
VCCIB6
AH1
VCOMPLH
AB15
VCCIB2
P21
VCCIB6
AH2
VPUMP
G24
VCCIB2
R21
VCCIB6
T10
VCCIB3
AA22
VCCIB6
U10
VCCIB3
AH29
VCCIB6
V10
VCCIB3
AH30
VCCIB6
W10
VCCIB3
T21
VCCIB6
W9
VCCIB3
U21
VCCIB6
Y10
VCCIB3
V21
VCCIB6
Y9
VCCIB3
W21
VCCIB7
C1
VCCIB3
W22
VCCIB7
C2
VCCIB3
Y21
VCCIB7
K9
VCCIB3
Y22
VCCIB7
L10
VCCIB4
AA16
VCCIB7
L9
VCCIB4
AA17
VCCIB7
M10
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -6 6
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
1152-Pin FBGA
A1 Ball Pad Corner
34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
AL
AM
AN
AP
Figure 3-8 • 1152-Pin FBGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v2.7
3-67
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
Bank 0
3 -6 8
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO19NB0F1
F13
IO38PB0F3
C16
IO00NB0F0
D6
IO19PB0F1
G13
IO39NB0F3
K16
IO00PB0F0
C6
IO20NB0F1
A10
IO39PB0F3
L16
IO01NB0F0
H10
IO20PB0F1
A9
IO40NB0F3
D17
IO01PB0F0
H9
IO21NB0F1
K14
IO40PB0F3
C17
IO02NB0F0
F8
IO21PB0F1
K13
IO41NB0F3/HCLKAN
E16
IO02PB0F0
G8
IO22NB0F2
B11
IO41PB0F3/HCLKAP
F16
IO03NB0F0
A6
IO22PB0F2
B10
IO42NB0F3/HCLKBN
G17
IO03PB0F0
B6
IO23NB0F2
C12
IO42PB0F3/HCLKBP
F17
IO04NB0F0
C7
IO23PB0F2
C11
IO04PB0F0
D7
IO24NB0F2
A12
IO43NB1F4/HCLKCN
G19
IO05NB0F0
K10
IO24PB0F2
A11
IO43PB1F4/HCLKCP
G18
IO05PB0F0
J10
IO25NB0F2
H14
IO44NB1F4/HCLKDN
E19
IO06NB0F0
F9
IO25PB0F2
J14
IO44PB1F4/HCLKDP
F19
IO06PB0F0
G9
IO26NB0F2
D13
IO45NB1F4
C18
IO07NB0F0
F10
IO26PB0F2
D12
IO45PB1F4
D18
IO07PB0F0
G10
IO27NB0F2
F14
IO46NB1F4
A18
IO08NB0F0
E9
IO27PB0F2
G14
IO46PB1F4
B18
IO08PB0F0
E8
IO28NB0F2
E14
IO47NB1F4
K19
IO09NB0F0
J11
IO28PB0F2
E13
IO47PB1F4
L19
IO09PB0F0
K11
IO29NB0F2
B13
IO48NB1F4
C19
IO10NB0F0
C8
IO29PB0F2
B12
IO48PB1F4
D19
IO10PB0F0
D8
IO30NB0F2
C14
IO49NB1F4
K20
IO11NB0F0
K12
IO30PB0F2
C13
IO49PB1F4
L20
IO11PB0F0
J12
IO31NB0F2
H15
IO50NB1F4
A19
IO12NB0F1
G11
IO31PB0F2
J15
IO50PB1F4
B19
Bank 1
IO12PB0F1
H11
IO32NB0F2
A14
IO51NB1F4
H20
IO13NB0F1
G12
IO32PB0F2
B14
IO51PB1F4
J20
IO13PB0F1
H12
IO33NB0F2
K15
IO52NB1F4
B20
IO14NB0F1
A7
IO33PB0F2
L15
IO52PB1F4
A20
IO14PB0F1
B7
IO34NB0F3
D15
IO53NB1F4
F20
IO15NB0F1
H13
IO34PB0F3
D14
IO53PB1F4
E20
IO15PB0F1
J13
IO35NB0F3
A15
IO54NB1F5
B21
IO16NB0F1
C9
IO35PB0F3
B15
IO54PB1F5
A21
IO16PB0F1
D9
IO36NB0F3
B16
IO55NB1F5
K21
IO17NB0F1
F12
IO36PB0F3
A16
IO55PB1F5
J21
IO17PB0F1
F11
IO37NB0F3
G16
IO56NB1F5
D21
IO18NB0F1
E11
IO37PB0F3
G15
IO56PB1F5
C21
IO18PB0F1
E10
IO38NB0F3
D16
IO57NB1F5
G22
v2.7
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO57PB1F5
G21
IO77NB1F7
B29
IO96NB2F9
J32
IO58NB1F5
E22
IO77PB1F7
A29
IO96PB2F9
H32
IO58PB1F5
E21
IO78NB1F7
D28
IO97NB2F9
M27
IO59NB1F5
D22
IO78PB1F7
C28
IO97PB2F9
M26
IO59PB1F5
C22
IO79NB1F7
H25
IO98NB2F9
L30
IO60NB1F5
B23
IO79PB1F7
G25
IO98PB2F9
K30
IO60PB1F5
A23
IO80NB1F7
F27
IO99NB2F9
N25
IO61NB1F5
H22
IO80PB1F7
E27
IO99PB2F9
N26
IO61PB1F5
H21
IO81NB1F7
J25
IO100NB2F9
M29
IO62NB1F5
C24
IO81PB1F7
J24
IO100PB2F9
L29
IO62PB1F5
C23
IO82NB1F7
D29
IO101NB2F9
L33
IO63NB1F5
F23
IO82PB1F7
C29
IO101PB2F9
L32
IO63PB1F5
F22
IO83NB1F7
H26
IO102NB2F9
K34
IO64NB1F6
B24
IO83PB1F7
G26
IO102PB2F9
K33
IO64PB1F6
A24
IO84NB1F7
F28
IO103NB2F9
N28
IO65NB1F6
J22
IO84PB1F7
E28
IO103PB2F9
M28
IO65PB1F6
K22
IO85NB1F7
H27
IO104NB2F9
M34
IO66NB1F6
B25
IO85PB1F7
G27
IO104PB2F9
L34
IO66PB1F6
A25
IO105NB2F9
P27
IO67NB1F6
K23
IO86NB2F8
J28
IO105PB2F9
N27
IO67PB1F6
J23
IO86PB2F8
J27
IO106NB2F9
M32
IO68NB1F6
F24
IO87NB2F8
M25
IO106PB2F9
M31
IO68PB1F6
E24
IO87PB2F8
L25
IO107NB2F10
P25
IO69NB1F6
C27
IO88NB2F8
L26
IO107PB2F10
P26
IO69PB1F6
C26
IO88PB2F8
K26
IO108NB2F10
N33
IO70NB1F6
H24
IO89NB2F8
G31
IO108PB2F10
M33
Bank 2
IO70PB1F6
G24
IO89PB2F8
F31
IO109NB2F10
P29
IO71NB1F6
H23
IO90NB2F8
H29
IO109PB2F10
N29
IO71PB1F6
G23
IO90PB2F8
G29
IO110NB2F10
P30
IO72NB1F6
B28
IO91NB2F8
K28
IO110PB2F10
N30
IO72PB1F6
A28
IO91PB2F8
K27
IO111NB2F10
R24
IO73NB1F6
E26
IO92NB2F8
J30
IO111PB2F10
R25
IO73PB1F6
E25
IO92PB2F8
H30
IO112NB2F10
P31
IO74NB1F6
F26
IO93NB2F8
L28
IO112PB2F10
N31
IO74PB1F6
F25
IO93PB2F8
L27
IO113NB2F10
R28
IO75NB1F6
K25
IO94NB2F8
K29
IO113PB2F10
P28
IO75PB1F6
K24
IO94PB2F8
J29
IO114NB2F10
P32
IO76NB1F7
D27
IO95NB2F8
K31
IO114PB2F10
N32
IO76PB1F7
D26
IO95PB2F8
J31
IO115NB2F10
R30
v2.7
3-69
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO115PB2F10
R29
IO134PB3F12
V33
IO154NB3F14
AD32
IO116NB2F10
P34
IO135NB3F12
W25
IO154PB3F14
AC32
IO116PB2F10
P33
IO135PB3F12
W24
IO155NB3F14
AD29
IO117NB2F10
R27
IO136NB3F12
W31
IO155PB3F14
AC29
IO117PB2F10
R26
IO136PB3F12
W32
IO156NB3F14
AE30
IO118NB2F11
R34
IO137NB3F12
Y30
IO156PB3F14
AD30
IO118PB2F11
R33
IO137PB3F12
W30
IO157NB3F14
AC26
IO119NB2F11
T24
IO138NB3F12
Y29
IO157PB3F14
AB26
IO119PB2F11
T25
IO138PB3F12
W29
IO158NB3F14
AH33
IO120NB2F11
T33
IO139NB3F13
Y27
IO158PB3F14
AG33
IO120PB2F11
T34
IO139PB3F13
W27
IO159NB3F14
AD27
IO121NB2F11
T27
IO140NB3F13
AA33
IO159PB3F14
AC27
IO121PB2F11
T26
IO140PB3F13
Y33
IO160NB3F14
AG32
IO122NB2F11
T30
IO141NB3F13
Y25
IO160PB3F14
AF32
IO122PB2F11
T29
IO141PB3F13
Y24
IO161NB3F15
AG31
IO123NB2F11
U28
IO142NB3F13
AA31
IO161PB3F15
AF31
IO123PB2F11
T28
IO142PB3F13
Y31
IO162NB3F15
AF29
IO124NB2F11
T31
IO143NB3F13
AA28
IO162PB3F15
AE29
IO124PB2F11
T32
IO143PB3F13
Y28
IO163NB3F15
AE28
IO125NB2F11
U24
IO144NB3F13
AA34
IO163PB3F15
AD28
IO125PB2F11
U25
IO144PB3F13
Y34
IO164NB3F15
AG30
IO126NB2F11
U33
IO145NB3F13
AA26
IO164PB3F15
AF30
IO126PB2F11
U34
IO145PB3F13
Y26
IO165NB3F15
AE26
IO127NB2F11
U26
IO146NB3F13
AA29
IO165PB3F15
AD26
IO127PB2F11
U27
IO146PB3F13
AA30
IO166NB3F15
AJ30
IO128NB2F11
U31
IO147NB3F13
AB30
IO166PB3F15
AH30
IO128PB2F11
U32
Bank 3
3 -7 0
IO147PB3F13
AB29
IO167NB3F15
AG28
IO148NB3F13
AB32
IO167PB3F15
AF28
IO129NB3F12
V29
IO148PB3F13
AA32
IO168NB3F15
AF27
IO129PB3F12
U29
IO149NB3F13
AB27
IO168PB3F15
AE27
IO130NB3F12
V31
IO149PB3F13
AA27
IO169NB3F15
AH29
IO130PB3F12
V32
IO150NB3F14
AC31
IO169PB3F15
AG29
IO131NB3F12
V24
IO150PB3F14
AB31
IO170NB3F15
AD25
IO131PB3F12
V25
IO151NB3F14
AD33
IO170PB3F15
AC25
IO132NB3F12
W28
IO151PB3F14
AC33
IO132PB3F12
V28
IO152NB3F14
AC28
IO171NB4F16
AP29
IO133NB3F12
W26
IO152PB3F14
AB28
IO171PB4F16
AN29
IO133PB3F12
V26
IO153NB3F14
AB25
IO172NB4F16
AH26
IO134NB3F12
W33
IO153PB3F14
AA25
IO172PB4F16
AH27
v2.7
Bank 4
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO173NB4F16
AJ27
IO192PB4F17
AG22
IO212NB4F19/CLKEN
AJ20
IO173PB4F16
AJ28
IO193NB4F18
AP23
IO212PB4F19/CLKEP
AK20
IO174NB4F16
AL27
IO193PB4F18
AP24
IO213NB4F19/CLKFN
AJ18
IO174PB4F16
AL28
IO194NB4F18
AN22
IO213PB4F19/CLKFP
AJ19
IO175NB4F16
AM28
IO194PB4F18
AN23
IO175PB4F16
AM29
IO195NB4F18
AM23
IO176NB4F16
AG25
IO195PB4F18
AL23
IO214PB5F20/CLKGP
AJ17
IO176PB4F16
AG26
IO196NB4F18
AF21
IO215NB5F20/CLKHN
AJ15
IO177NB4F16
AK26
IO196PB4F18
AF22
IO215PB5F20/CLKHP
AK15
IO177PB4F16
AK27
IO197NB4F18
AL22
IO216NB5F20
AD16
IO178NB4F16
AF25
IO197PB4F18
AM22
IO216PB5F20
AE17
IO178PB4F16
AE25
IO198NB4F18
AE21
IO217NB5F20
AM17
IO179NB4F16
AP28
IO198PB4F18
AE22
IO217PB5F20
AL17
IO179PB4F16
AN28
IO199NB4F18
AJ21
IO218NB5F20
AG16
IO180NB4F16
AJ25
IO199PB4F18
AJ22
IO218PB5F20
AF16
IO180PB4F16
AJ26
IO200NB4F18
AK21
IO219NB5F20
AM16
IO181NB4F17
AM26
IO200PB4F18
AK22
IO219PB5F20
AL16
IO181PB4F17
AM27
IO201NB4F18
AM21
IO220NB5F20
AP16
IO182NB4F17
AF24
IO201PB4F18
AL21
IO220PB5F20
AN16
IO182PB4F17
AE24
IO202NB4F18
AE20
IO221NB5F20
AN15
IO183NB4F17
AH24
IO202PB4F18
AD20
IO221PB5F20
AP15
IO183PB4F17
AH25
IO203NB4F19
AN21
IO222NB5F20
AD15
IO184NB4F17
AG23
IO203PB4F19
AP21
IO222PB5F20
AE16
IO184PB4F17
AG24
IO204NB4F19
AP20
IO223NB5F21
AL14
IO185NB4F17
AL25
IO204PB4F19
AN20
IO223PB5F21
AL15
IO185PB4F17
AL26
IO205NB4F19
AN19
IO224NB5F21
AN14
Bank 5
IO214NB5F20/CLKGN
AJ16
IO186NB4F17
AP25
IO205PB4F19
AP19
IO224PB5F21
AP14
IO186PB4F17
AP26
IO206NB4F19
AG20
IO225NB5F21
AK13
IO187NB4F17
AK24
IO206PB4F19
AF20
IO225PB5F21
AK14
IO187PB4F17
AK25
IO207NB4F19
AL19
IO226NB5F21
AE15
IO188NB4F17
AF23
IO207PB4F19
AL20
IO226PB5F21
AF15
IO188PB4F17
AE23
IO208NB4F19
AG19
IO227NB5F21
AG14
IO189NB4F17
AN24
IO208PB4F19
AF19
IO227PB5F21
AG15
IO189PB4F17
AM24
IO209NB4F19
AN18
IO228NB5F21
AJ13
IO190NB4F17
AH22
IO209PB4F19
AP18
IO228PB5F21
AJ14
IO190PB4F17
AH23
IO210NB4F19
AE19
IO229NB5F21
AM13
IO191NB4F17
AJ23
IO210PB4F19
AD19
IO229PB5F21
AM14
IO191PB4F17
AJ24
IO211NB4F19
AL18
IO230NB5F21
AE14
IO192NB4F17
AG21
IO211PB4F19
AM18
IO230PB5F21
AF14
v2.7
3-71
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO231NB5F21
AN12
IO250PB5F23
AE11
IO269PB6F25
AF4
IO231PB5F21
AP12
IO251NB5F23
AK8
IO270NB6F25
AB9
IO232NB5F21
AG13
IO251PB5F23
AJ8
IO270PB6F25
AC9
IO232PB5F21
AH13
IO252NB5F23
AH8
IO271NB6F25
AC6
IO233NB5F21
AL12
IO252PB5F23
AH9
IO271PB6F25
AD6
IO233PB5F21
AL13
IO253NB5F23
AN6
IO272NB6F25
AB8
IO234NB5F21
AE13
IO253PB5F23
AP6
IO272PB6F25
AC8
IO234PB5F21
AF13
IO254NB5F23
AG9
IO273NB6F25
AE1
IO235NB5F22
AN11
IO254PB5F23
AG10
IO273PB6F25
AE2
IO235PB5F22
AP11
IO255NB5F23
AJ7
IO274NB6F25
AA10
IO236NB5F22
AM11
IO255PB5F23
AK7
IO274PB6F25
AB10
IO236PB5F22
AM12
IO256NB5F23
AL6
IO275NB6F25
AB7
IO237NB5F22
AJ11
IO256PB5F23
AM6
IO275PB6F25
AC7
IO237PB5F22
AJ12
IO276NB6F25
AD1
IO238NB5F22
AH11
IO257NB6F24
AG6
IO276PB6F25
AD2
IO238PB5F22
AH12
IO257PB6F24
AH6
IO277NB6F25
AC4
IO239NB5F22
AK10
IO258NB6F24
AD9
IO277PB6F25
AC3
IO239PB5F22
AK11
IO258PB6F24
AE9
IO278NB6F26
AA8
IO240NB5F22
AE12
IO259NB6F24
AF7
IO278PB6F26
AA9
IO240PB5F22
AF12
IO259PB6F24
AG7
IO279NB6F26
AB5
IO241NB5F22
AN10
IO260NB6F24
AH3
IO279PB6F26
AB6
IO241PB5F22
AP10
IO260PB6F24
AH4
IO280NB6F26
Y10
IO242NB5F22
AG11
IO261NB6F24
AH5
IO280PB6F26
Y11
IO242PB5F22
AG12
IO261PB6F24
AJ5
IO281NB6F26
AB3
IO243NB5F22
AL9
IO262NB6F24
AE6
IO281PB6F26
AB4
IO243PB5F22
AL10
IO262PB6F24
AF6
IO282NB6F26
Y7
IO244NB5F22
AM8
IO263NB6F24
AF5
IO282PB6F26
AA7
IO244PB5F22
AM9
IO263PB6F24
AG5
IO283NB6F26
AC2
IO245NB5F23
AH10
IO264NB6F24
AD8
IO283PB6F26
AC1
IO245PB5F23
AJ10
IO264PB6F24
AE8
IO284NB6F26
Y9
IO246NB5F23
AF10
IO265NB6F24
AF3
IO284PB6F26
Y8
IO246PB5F23
AF11
IO265PB6F24
AG3
IO285NB6F26
AA5
IO247NB5F23
AJ9
IO266NB6F24
AC10
IO285PB6F26
AA6
IO247PB5F23
AK9
IO266PB6F24
AD10
IO286NB6F26
W10
IO248NB5F23
AN7
IO267NB6F25
AD7
IO286PB6F26
W11
IO248PB5F23
AP7
IO267PB6F25
AE7
IO287NB6F26
AA3
IO249NB5F23
AL7
IO268NB6F25
AD5
IO287PB6F26
AA4
IO249PB5F23
AL8
IO268PB6F25
AE5
IO288NB6F26
W9
IO250NB5F23
AE10
IO269NB6F25
AE4
IO288PB6F26
W8
3 -7 2
Bank 6
v2.7
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO289NB6F27
AA1
IO308NB7F28
T11
IO327PB7F30
L5
IO289PB6F27
AA2
IO308PB7F28
T10
IO328NB7F30
N10
IO290NB6F27
W6
IO309NB7F28
T6
IO328PB7F30
N9
IO290PB6F27
Y6
IO309PB7F28
T7
IO329NB7F30
J4
IO291NB6F27
W5
IO310NB7F29
T9
IO329PB7F30
K4
IO291PB6F27
Y5
IO310PB7F29
T8
IO330NB7F30
J5
IO292NB6F27
V7
IO311NB7F29
N3
IO330PB7F30
K5
IO292PB6F27
W7
IO311PB7F29
P3
IO331NB7F30
M10
IO293NB6F27
W4
IO312NB7F29
P7
IO331PB7F30
M9
IO293PB6F27
Y4
IO312PB7F29
R7
IO332NB7F31
L8
IO294NB6F27
V10
IO313NB7F29
P6
IO332PB7F31
M8
IO294PB6F27
V11
IO313PB7F29
R6
IO333NB7F31
F2
IO295NB6F27
Y1
IO314NB7F29
M2
IO333PB7F31
F1
IO295PB6F27
Y2
IO314PB7F29
N2
IO334NB7F31
J6
IO296NB6F27
W1
IO315NB7F29
N4
IO334PB7F31
K6
IO296PB6F27
W2
IO315PB7F29
P4
IO335NB7F31
H4
IO297NB6F27
V1
IO316NB7F29
R9
IO335PB7F31
H3
IO297PB6F27
V2
IO316PB7F29
R8
IO336NB7F31
K7
IO298NB6F27
V9
IO317NB7F29
N5
IO336PB7F31
L7
IO298PB6F27
V8
IO317PB7F29
P5
IO337NB7F31
G4
IO299NB6F27
U4
IO318NB7F29
R10
IO337PB7F31
G3
IO299PB6F27
V4
IO318PB7F29
R11
IO338NB7F31
K9
IO319NB7F29
L2
IO338PB7F31
L9
Bank 7
IO300NB7F28
U10
IO319PB7F29
L1
IO339NB7F31
H6
IO300PB7F28
U11
IO320NB7F29
N8
IO339PB7F31
H5
IO301NB7F28
U2
IO320PB7F29
P8
IO340NB7F31
H7
IO301PB7F28
U1
IO321NB7F30
M6
IO340PB7F31
J7
IO302NB7F28
U6
IO321PB7F30
N6
IO341NB7F31
J8
IO302PB7F28
U7
IO322NB7F30
P10
IO341PB7F31
K8
IO303NB7F28
T3
IO322PB7F30
P9
IO303PB7F28
U3
IO323NB7F30
L3
GND
A13
IO304NB7F28
U9
IO323PB7F30
M3
GND
A2
IO304PB7F28
U8
IO324NB7F30
M7
GND
A22
IO305NB7F28
R2
IO324PB7F30
N7
GND
A27
IO305PB7F28
R1
IO325NB7F30
K2
GND
A3
IO306NB7F28
R4
IO325PB7F30
K1
GND
A31
IO306PB7F28
T4
IO326NB7F30
G2
GND
A32
IO307NB7F28
R5
IO326PB7F30
H2
GND
A33
IO307PB7F28
T5
IO327NB7F30
L6
GND
A4
v2.7
Dedicated I/O
3-73
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
GND
A8
GND
AL1
GND
AP33
GND
AA14
GND
AL11
GND
AP4
GND
AA15
GND
AL2
GND
AP8
GND
AA16
GND
AL24
GND
B1
GND
AA17
GND
AL3
GND
B2
GND
AA18
GND
AL31
GND
B26
GND
AA19
GND
AL32
GND
B3
GND
AA20
GND
AL33
GND
B31
GND
AA21
GND
AL34
GND
B32
GND
AB1
GND
AL4
GND
B33
GND
AB13
GND
AM1
GND
B34
GND
AB22
GND
AM10
GND
B4
GND
AB34
GND
AM15
GND
B9
GND
AC12
GND
AM2
GND
C1
GND
AC23
GND
AM20
GND
C10
GND
AC30
GND
AM25
GND
C15
GND
AC5
GND
AM3
GND
C2
GND
AD11
GND
AM31
GND
C20
GND
AD24
GND
AM32
GND
C25
GND
AD31
GND
AM33
GND
C3
GND
AD4
GND
AM34
GND
C31
GND
AE3
GND
AM4
GND
C32
GND
AE32
GND
AN1
GND
C33
GND
AF2
GND
AN2
GND
C34
GND
AF33
GND
AN26
GND
C4
GND
AG1
GND
AN3
GND
D1
GND
AG27
GND
AN31
GND
D11
GND
AG34
GND
AN32
GND
D2
GND
AG8
GND
AN33
GND
D24
GND
AH28
GND
AN34
GND
D3
GND
AH7
GND
AN4
GND
D31
GND
AJ29
GND
AN9
GND
D32
GND
AJ6
GND
AP13
GND
D33
GND
AK12
GND
AP2
GND
D34
GND
AK17
GND
AP22
GND
D4
GND
AK18
GND
AP27
GND
E12
GND
AK23
GND
AP3
GND
E17
GND
AK30
GND
AP31
GND
E18
GND
AK5
GND
AP32
GND
E23
3 -7 4
v2.7
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
GND
E30
GND
R20
GND
W21
GND
E5
GND
R21
GND
Y14
GND
F29
GND
R3
GND
Y15
GND
F30
GND
R32
GND
Y16
GND
F6
GND
T14
GND
Y17
GND
G28
GND
T15
GND
Y18
GND
G7
GND
T16
GND
Y19
GND
H1
GND
T17
GND
Y20
GND
H34
GND
T18
GND
Y21
GND
J2
GND
T19
GND
Y3
GND
J33
GND
T20
GND
Y32
GND
K3
GND
T21
GND/LP
G6
GND
K32
GND
U14
NC
A17
GND
L11
GND
U15
NC
A26
GND
L24
GND
U16
NC
AB2
GND
L31
GND
U17
NC
AB33
GND
L4
GND
U18
NC
AC34
GND
M12
GND
U19
NC
AD3
GND
M23
GND
U20
NC
AD34
GND
M30
GND
U21
NC
AE31
GND
M5
GND
U30
NC
AE33
GND
N1
GND
U5
NC
AE34
GND
N13
GND
V14
NC
AF1
GND
N22
GND
V15
NC
AF34
GND
N34
GND
V16
NC
AG2
GND
P14
GND
V17
NC
AG4
GND
P15
GND
V18
NC
AH1
GND
P16
GND
V19
NC
AH2
GND
P17
GND
V20
NC
AH31
GND
P18
GND
V21
NC
AH32
GND
P19
GND
V30
NC
AH34
GND
P20
GND
V5
NC
AJ1
GND
P21
GND
W14
NC
AJ2
GND
R14
GND
W15
NC
AJ3
GND
R15
GND
W16
NC
AJ31
GND
R16
GND
W17
NC
AJ32
GND
R17
GND
W18
NC
AJ33
GND
R18
GND
W19
NC
AJ34
GND
R19
GND
W20
NC
AJ4
v2.7
3-75
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
NC
AL29
NC
V3
VCCA
T13
NC
AM19
NC
V34
VCCA
T22
NC
AM7
NC
W3
VCCA
U13
NC
AN13
NC
W34
VCCA
U22
NC
AN17
PRA
J17
VCCA
V13
NC
AN25
PRB
F18
VCCA
V22
NC
AN27
PRC
AD18
VCCA
W13
NC
AN8
PRD
AH18
VCCA
W22
NC
AP17
TCK
J9
VCCA
Y13
NC
AP9
TDI
F7
VCCA
Y22
NC
B17
TDO
L10
VCCDA
AF26
NC
B22
TMS
H8
VCCDA
AF9
NC
B27
TRST
E6
VCCDA
AG17
NC
B8
VCCA
AA13
VCCDA
AG18
NC
D10
VCCA
AA22
VCCDA
AH14
NC
D20
VCCA
AB14
VCCDA
AH15
NC
D23
VCCA
AB15
VCCDA
AH17
NC
D25
VCCA
AB16
VCCDA
AH20
NC
F3
VCCA
AB17
VCCDA
AH21
NC
F32
VCCA
AB18
VCCDA
AK29
NC
F33
VCCA
AB19
VCCDA
AK6
NC
F34
VCCA
AB20
VCCDA
E15
NC
F4
VCCA
AB21
VCCDA
E29
NC
G1
VCCA
AF8
VCCDA
E7
NC
G32
VCCA
AK28
VCCDA
F15
NC
G33
VCCA
G30
VCCDA
F21
NC
G34
VCCA
G5
VCCDA
F5
NC
H31
VCCA
N14
VCCDA
G20
NC
H33
VCCA
N15
VCCDA
H17
NC
J1
VCCA
N16
VCCDA
H18
NC
J3
VCCA
N17
VCCDA
H28
NC
J34
VCCA
N18
VCCDA
J18
NC
M1
VCCA
N19
VCCDA
V27
NC
M4
VCCA
N20
VCCDA
V6
NC
P1
VCCA
N21
VCCIB0
A5
NC
P2
VCCA
P13
VCCIB0
B5
NC
R31
VCCA
P22
VCCIB0
C5
NC
T1
VCCA
R13
VCCIB0
D5
NC
T2
VCCA
R22
VCCIB0
L12
3 -7 6
v2.7
Axcelerator Family FPGAs
1152-Pin FBGA
1152-Pin FBGA
1152-Pin FBGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
VCCIB0
L13
VCCIB3
AK34
VCCIB6
Y12
VCCIB0
L14
VCCIB3
V23
VCCIB7
E1
VCCIB0
M13
VCCIB3
W23
VCCIB7
E2
VCCIB0
M14
VCCIB3
Y23
VCCIB7
E3
VCCIB0
M15
VCCIB4
AC18
VCCIB7
E4
VCCIB0
M16
VCCIB4
AC19
VCCIB7
M11
VCCIB0
M17
VCCIB4
AC20
VCCIB7
N11
VCCIB1
A30
VCCIB4
AC21
VCCIB7
N12
VCCIB1
B30
VCCIB4
AC22
VCCIB7
P11
VCCIB1
C30
VCCIB4
AD21
VCCIB7
P12
VCCIB1
D30
VCCIB4
AD22
VCCIB7
R12
VCCIB1
L21
VCCIB4
AD23
VCCIB7
T12
VCCIB1
L22
VCCIB4
AL30
VCCIB7
U12
VCCIB1
L23
VCCIB4
AM30
VCCPLA
J16
VCCIB1
M18
VCCIB4
AN30
VCCPLB
K17
VCCIB1
M19
VCCIB4
AP30
VCCPLC
J19
VCCIB1
M20
VCCIB5
AC13
VCCPLD
L18
VCCIB1
M21
VCCIB5
AC14
VCCPLE
AK19
VCCIB1
M22
VCCIB5
AC15
VCCPLF
AE18
VCCIB2
E31
VCCIB5
AC16
VCCPLG
AK16
VCCIB2
E32
VCCIB5
AC17
VCCPLH
AF17
VCCIB2
E33
VCCIB5
AD12
VCOMPLA
H16
VCCIB2
E34
VCCIB5
AD13
VCOMPLB
L17
VCCIB2
M24
VCCIB5
AD14
VCOMPLC
H19
VCCIB2
N23
VCCIB5
AL5
VCOMPLD
K18
VCCIB2
N24
VCCIB5
AM5
VCOMPLE
AH19
VCCIB2
P23
VCCIB5
AN5
VCOMPLF
AF18
VCCIB2
P24
VCCIB5
AP5
VCOMPLG
AH16
VCCIB2
R23
VCCIB6
AA11
VCOMPLH
AD17
VCCIB2
T23
VCCIB6
AA12
VPUMP
J26
VCCIB2
U23
VCCIB6
AB11
VCCIB3
AA23
VCCIB6
AB12
VCCIB3
AA24
VCCIB6
AC11
VCCIB3
AB23
VCCIB6
AK1
VCCIB3
AB24
VCCIB6
AK2
VCCIB3
AC24
VCCIB6
AK3
VCCIB3
AK31
VCCIB6
AK4
VCCIB3
AK32
VCCIB6
V12
VCCIB3
AK33
VCCIB6
W12
v2.7
3-77
Axcelerator Family FPGAs
208-Pin PQFP
208
1
208-Pin PQFP
Figure 3-9 • 208-Pin PQFP
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -7 8
v2.7
Axcelerator Family FPGAs
208-Pin PQFP
208-Pin PQFP
AX250 Function
Pin Number
Bank 0
AX250 Function
208-Pin PQFP
Pin Number
AX250 Function
Pin Number
IO44NB2F2
131
IO77PB5F5/CLKHP
71
IO44PB2F2
133
IO78NB5F5
66
IO78PB5F5
67
IO02NB0F0
197
IO03NB0F0
198
IO03PB0F0
199
IO45NB3F3
127
IO86NB5F5
62
IO12NB0F0/HCLKAN
191
IO45PB3F3
129
IO87NB5F5
60
IO12PB0F0/HCLKAP
192
IO46NB3F3
126
IO87PB5F5
61
IO13NB0F0/HCLKBN
185
IO46PB3F3
128
IO88NB5F5
56
IO13PB0F0/HCLKBP
186
IO48NB3F3
122
IO88PB5F5
57
IO48PB3F3
123
IO89NB5F5
54
IO89PB5F5
55
Bank 1
Bank 3
IO14NB1F1/HCLKCN
180
IO50NB3F3
120
IO14PB1F1/HCLKCP
181
IO50PB3F3
121
IO15NB1F1/HCLKDN
174
IO55NB3F3
116
IO91NB6F6
47
IO15PB1F1/HCLKDP
175
IO55PB3F3
117
IO91PB6F6
49
IO16NB1F1
170
IO57NB3F3
114
IO92NB6F6
48
IO16PB1F1
171
IO57PB3F3
115
IO92PB6F6
50
IO24NB1F1
165
IO59NB3F3
110
IO93NB6F6
42
IO24PB1F1
166
IO59PB3F3
111
IO93PB6F6
43
IO26NB1F1
161
IO60NB3F3
108
IO94PB6F6
44
IO26PB1F1
162
IO60PB3F3
109
IO96NB6F6
40
IO27NB1F1
159
IO61NB3F3
106
IO96PB6F6
41
IO27PB1F1
160
IO61PB3F3
107
IO101NB6F6
35
IO101PB6F6
36
Bank 2
Bank 4
Bank 6
IO29NB2F2
151
IO62NB4F4
100
IO102PB6F6
37
IO29PB2F2
153
IO62PB4F4
103
IO103NB6F6
33
IO30NB2F2
152
IO63NB4F4
101
IO103PB6F6
34
IO30PB2F2
154
IO63PB4F4
102
IO105NB6F6
28
IO31PB2F2
148
IO64NB4F4
96
IO105PB6F6
30
IO32NB2F2
146
IO64PB4F4
97
IO106NB6F6
27
IO32PB2F2
147
IO72NB4F4
91
IO106PB6F6
29
IO34NB2F2
144
IO72PB4F4
92
IO34PB2F2
145
IO74NB4F4/CLKEN
87
IO107NB7F7
23
IO39NB2F2
139
IO74PB4F4/CLKEP
88
IO107PB7F7
25
IO39PB2F2
140
IO75NB4F4/CLKFN
81
IO108NB7F7
22
IO40PB2F2
141
IO75PB4F4/CLKFP
82
IO108PB7F7
24
IO41NB2F2
137
IO110NB7F7
18
IO41PB2F2
138
IO76NB5F5/CLKGN
76
IO110PB7F7
19
IO43NB2F2
132
IO76PB5F5/CLKGP
77
IO112NB7F7
16
IO43PB2F2
134
IO77NB5F5/CLKHN
70
IO112PB7F7
17
Bank 5
v2.7
Bank 7
3-79
Axcelerator Family FPGAs
208-Pin PQFP
AX250 Function
Pin Number
AX250 Function
Pin Number
AX250 Function
Pin Number
IO117NB7F7
12
GND
125
VCCPLG
74
IO117PB7F7
13
GND
136
VCCPLH
72
IO119NB7F7
10
GND
143
VCCIB0
193
IO119PB7F7
11
GND
150
VCCIB0
200
IO121PB7F7
7
GND
155
VCCIB1
163
IO122NB7F7
5
GND
164
VCCIB1
172
IO122PB7F7
6
GND
169
VCCIB2
135
IO123NB7F7
3
GND
173
VCCIB2
149
IO123PB7F7
4
GND
194
VCCIB3
112
GND
196
VCCIB3
124
Dedicated I/O
3 -8 0
208-Pin PQFP
208-Pin PQFP
VCCDA
1
GND
201
VCCIB4
89
VCCDA
26
GND/LP
208
VCCIB4
98
VCCDA
53
PRA
184
VCCIB5
58
VCCDA
63
PRB
183
VCCIB5
68
VCCDA
78
PRC
80
VCCIB6
31
VCCDA
95
PRD
79
VCCIB6
45
VCCDA
105
TCK
205
VCCIB7
8
VCCDA
130
TDI
204
VCCIB7
20
VCCDA
157
TDO
203
VCOMPLA
190
VCCDA
167
TMS
206
VCOMPLB
188
VCCDA
182
TRST
207
VCOMPLC
179
VCCDA
202
VCCA
2
VCOMPLD
177
GND
104
VCCA
52
VCOMPLE
86
GND
9
VCCA
156
VCOMPLF
84
GND
15
VCCA
14
VCOMPLG
75
GND
21
VCCA
38
VCOMPLH
73
GND
32
VCCA
64
VPUMP
158
GND
39
VCCA
93
GND
46
VCCA
118
GND
51
VCCA
142
GND
59
VCCA
168
GND
65
VCCA
195
GND
69
VCCPLA
189
GND
90
VCCPLB
187
GND
94
VCCPLC
178
GND
99
VCCPLD
176
GND
113
VCCPLE
85
GND
119
VCCPLF
83
v2.7
Axcelerator Family FPGAs
208-Pin PQFP
208-Pin PQFP
AX500 Function
Pin Number
Bank 0
208-Pin PQFP
AX500 Function
Pin Number
AX500 Function
Pin Number
IO62NB2F5
131
IO106PB5F10/CLKHP
71
IO62PB2F5
133
IO107NB5F10
66
IO107PB5F10
67
IO03NB0F0
198
IO03PB0F0
199
IO04NB0F0
197
IO63NB3F6
127
IO119NB5F11
62
IO19NB0F1/HCLKAN
191
IO63PB3F6
129
IO121NB5F11
60
IO19PB0F1/HCLKAP
192
IO64NB3F6
126
IO121PB5F11
61
IO20NB0F1/HCLKBN
185
IO64PB3F6
128
IO123NB5F11
56
IO20PB0F1/HCLKBP
186
IO66NB3F6
122
IO123PB5F11
57
IO66PB3F6
123
IO125NB5F11
54
IO125PB5F11
55
Bank 1
Bank 3
IO21NB1F2/HCLKCN
180
IO68NB3F6
120
IO21PB1F2/HCLKCP
181
IO68PB3F6
121
IO22NB1F2/HCLKDN
174
IO77NB3F7
116
IO127NB6F12
47
IO22PB1F2/HCLKDP
175
IO77PB3F7
117
IO127PB6F12
49
IO23NB1F2
170
IO79NB3F7
114
IO128NB6F12
48
IO23PB1F2
171
IO79PB3F7
115
IO128PB6F12
50
IO37NB1F3
165
IO81NB3F7
110
IO129NB6F12
42
IO37PB1F3
166
IO81PB3F7
111
IO129PB6F12
43
IO39NB1F3
161
IO82NB3F7
108
IO130PB6F12
44
IO39PB1F3
162
IO82PB3F7
109
IO132NB6F12
40
IO41NB1F3
159
IO83NB3F7
106
IO132PB6F12
41
IO41PB1F3
160
IO83PB3F7
107
IO141NB6F13
35
IO141PB6F13
36
Bank 2
Bank 4
Bank 6
IO43NB2F4
151
IO84PB4F8
103
IO142PB6F13
37
IO43PB2F4
153
IO85NB4F8
100
IO143NB6F13
33
IO44NB2F4
152
IO86NB4F8
101
IO143PB6F13
34
IO44PB2F4
154
IO86PB4F8
102
IO145NB6F13
28
IO45PB2F4
148
IO87NB4F8
96
IO145PB6F13
30
IO46NB2F4
146
IO87PB4F8
97
IO146NB6F13
27
IO46PB2F4
147
IO101NB4F9
91
IO146PB6F13
29
IO48NB2F4
144
IO101PB4F9
92
IO48PB2F4
145
IO103NB4F9/CLKEN
87
IO147NB7F14
23
IO57NB2F5
139
IO103PB4F9/CLKEP
88
IO147PB7F14
25
IO57PB2F5
140
IO104NB4F9/CLKFN
81
IO148NB7F14
22
IO58PB2F5
141
IO104PB4F9/CLKFP
82
IO148PB7F14
24
IO59NB2F5
137
IO150NB7F14
18
IO59PB2F5
138
IO105NB5F10/CLKGN
76
IO150PB7F14
19
IO61NB2F5
132
IO105PB5F10/CLKGP
77
IO152NB7F14
16
IO61PB2F5
134
IO106NB5F10/CLKHN
70
IO152PB7F14
17
Bank 5
v2.7
Bank 7
3-81
Axcelerator Family FPGAs
208-Pin PQFP
208-Pin PQFP
208-Pin PQFP
AX500 Function
Pin Number
AX500 Function
Pin Number
AX500 Function
Pin Number
IO161NB7F15
12
GND
125
VCCPLG
74
IO161PB7F15
13
GND
143
VCCPLH
72
IO163NB7F15
10
GND
136
VCCIB0
200
IO163PB7F15
11
GND
150
VCCIB0
193
IO165PB7F15
7
GND
155
VCCIB1
172
IO166NB7F15
5
GND
164
VCCIB1
163
IO166PB7F15
6
GND
169
VCCIB2
149
IO167NB7F15
3
GND
173
VCCIB2
135
IO167PB7F15
4
GND
194
VCCIB3
124
GND
196
VCCIB3
112
Dedicated I/O
3 -8 2
VCCDA
1
GND
201
VCCIB4
98
VCCDA
26
GND/LP
208
VCCIB4
89
VCCDA
53
PRA
184
VCCIB5
68
VCCDA
63
PRB
183
VCCIB5
58
VCCDA
78
PRC
80
VCCIB6
45
VCCDA
95
PRD
79
VCCIB6
31
VCCDA
105
TCK
205
VCCIB7
20
VCCDA
130
TDI
204
VCCIB7
8
VCCDA
157
TDO
203
VCOMPLA
190
VCCDA
167
TMS
206
VCOMPLB
188
VCCDA
182
TRST
207
VCOMPLC
179
VCCDA
202
VCCA
2
VCOMPLD
177
GND
104
VCCA
14
VCOMPLE
86
GND
9
VCCA
38
VCOMPLF
84
GND
15
VCCA
52
VCOMPLG
75
GND
21
VCCA
64
VCOMPLH
73
GND
32
VCCA
93
VPUMP
158
GND
39
VCCA
118
GND
46
VCCA
142
GND
51
VCCA
156
GND
59
VCCA
168
GND
65
VCCA
195
GND
69
VCCPLA
189
GND
90
VCCPLB
187
GND
94
VCCPLC
178
GND
99
VCCPLD
176
GND
113
VCCPLE
85
GND
119
VCCPLF
83
v2.7
Axcelerator Family FPGAs
208-Pin CQFP
208
1
208-Pin PQFP
Figure 3-10 • 208-Pin CQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
v2.7
3-83
Axcelerator Family FPGAs
208-Pin CQFP
208-Pin CQFP
AX250 Function
Pin #
Bank 0
AX250 Function
Pin #
AX250 Function
Pin #
IO43PB2F2
134
IO76PB5F5/CLKGP
77
IO02NB0F0
197
IO44NB2F2
131
IO77NB5F5/CLKHN
70
IO03NB0F0
198
IO44PB2F2
133
IO77PB5F5/CLKHP
71
IO03PB0F0
199
IO78NB5F5
66
IO12NB0F0/HCLKAN
191
IO45NB3F3
127
IO78PB5F5
67
IO12PB0F0/HCLKAP
192
IO45PB3F3
129
IO86NB5F5
62
IO13NB0F0/HCLKBN
185
IO46NB3F3
126
IO87NB5F5
60
IO13PB0F0/HCLKBP
186
IO46PB3F3
128
IO87PB5F5
61
IO48NB3F3
122
IO88NB5F5
56
Bank 1
Bank 3
IO14NB1F1/HCLKCN
180
IO48PB3F3
123
IO88PB5F5
57
IO14PB1F1/HCLKCP
181
IO50NB3F3
120
IO89NB5F5
54
IO15NB1F1/HCLKDN
174
IO50PB3F3
121
IO89PB5F5
55
IO15PB1F1/HCLKDP
175
IO55NB3F3
116
IO16NB1F1
170
IO55PB3F3
117
IO91NB6F6
47
IO16PB1F1
171
IO57NB3F3
114
IO91PB6F6
49
IO24NB1F1
165
IO57PB3F3
115
IO92NB6F6
48
IO24PB1F1
166
IO59NB3F3
110
IO92PB6F6
50
IO26NB1F1
161
IO59PB3F3
111
IO93NB6F6
42
IO26PB1F1
162
IO60NB3F3
108
IO93PB6F6
43
IO27NB1F1
159
IO60PB3F3
109
IO94PB6F6
44
IO27PB1F1
160
IO61NB3F3
106
IO96NB6F6
40
IO61PB3F3
107
IO96PB6F6
41
IO101NB6F6
35
Bank 2
3 -8 4
208-Pin CQFP
Bank 6
IO29NB2F2
151
IO29PB2F2
153
IO62NB4F4
100
IO101PB6F6
36
IO30NB2F2
152
IO62PB4F4
103
IO102PB6F6
37
IO30PB2F2
154
IO63NB4F4
101
IO103NB6F6
33
IO31PB2F2
148
IO63PB4F4
102
IO103PB6F6
34
IO32NB2F2
146
IO64NB4F4
96
IO105NB6F6
28
IO32PB2F2
147
IO64PB4F4
97
IO105PB6F6
30
IO34NB2F2
144
IO72NB4F4
91
IO106NB6F6
27
IO34PB2F2
145
IO72PB4F4
92
IO106PB6F6
29
IO39NB2F2
139
IO74NB4F4/CLKEN
87
IO39PB2F2
140
IO74PB4F4/CLKEP
88
IO107NB7F7
23
IO40PB2F2
141
IO75NB4F4/CLKFN
81
IO107PB7F7
25
IO41NB2F2
137
IO75PB4F4/CLKFP
82
IO108NB7F7
22
IO41PB2F2
138
Bank 5
IO108PB7F7
24
IO43NB2F2
132
IO76NB5F5/CLKGN
IO110NB7F7
18
Bank 4
v2.7
76
Bank 7
Axcelerator Family FPGAs
208-Pin CQFP
208-Pin CQFP
208-Pin CQFP
AX250 Function
Pin #
AX250 Function
Pin #
AX250 Function
Pin #
IO110PB7F7
19
GND
194
VCCIB0
200
IO112NB7F7
16
GND
196
VCCIB1
163
IO112PB7F7
17
GND
201
VCCIB1
172
IO117NB7F7
12
GND/LP
208
VCCIB2
135
IO117PB7F7
13
PRA
184
VCCIB2
149
IO119NB7F7
10
PRB
183
VCCIB3
112
IO119PB7F7
11
PRC
80
VCCIB3
124
IO121PB7F7
7
PRD
79
VCCIB4
89
IO122NB7F7
5
TCK
205
VCCIB4
98
IO122PB7F7
6
TDI
204
VCCIB5
58
IO123NB7F7
3
TDO
203
VCCIB5
68
IO123PB7F7
4
TMS
206
VCCIB6
31
TRST
207
VCCIB6
45
Dedicated I/O
GND
9
VCCA
2
VCCIB7
8
GND
15
VCCA
14
VCCIB7
20
GND
21
VCCA
38
VCCPLA
189
GND
32
VCCA
52
VCCPLB
187
GND
39
VCCA
64
VCCPLC
178
GND
46
VCCA
93
VCCPLD
176
GND
51
VCCA
118
VCCPLE
85
GND
59
VCCA
142
VCCPLF
83
GND
65
VCCA
156
VCCPLG
74
GND
69
VCCA
168
VCCPLH
72
GND
90
VCCA
195
VCOMPLA
190
GND
94
VCCDA
1
VCOMPLB
188
GND
99
VCCDA
26
VCOMPLC
179
GND
104
VCCDA
53
VCOMPLD
177
GND
113
VCCDA
63
VCOMPLE
86
GND
119
VCCDA
78
VCOMPLF
84
GND
125
VCCDA
95
VCOMPLG
75
GND
136
VCCDA
105
VCOMPLH
73
GND
143
VCCDA
130
VPUMP
158
GND
150
VCCDA
157
GND
155
VCCDA
167
GND
164
VCCDA
182
GND
169
VCCDA
202
GND
173
VCCIB0
193
v2.7
3-85
Axcelerator Family FPGAs
208 CQFP
208 CQFP
AX500 Function
Pin #
Bank 0
AX500 Function
Pin #
AX500 Function
Pin #
IO61PB2F5
134
IO105PB5F10/CLKGP
77
IO03NB0F0
198
IO62NB2F5
131
IO106NB5F10/CLKHN
70
IO03PB0F0
199
IO62PB2F5
133
IO106PB5F10/CLKHP
71
IO04NB0F0
197
IO107NB5F10
66
IO19NB0F1/HCLKAN
191
IO63NB3F6
127
IO107PB5F10
67
IO19PB0F1/HCLKAP
192
IO63PB3F6
129
IO119NB5F11
62
IO20NB0F1/HCLKBN
185
IO64NB3F6
126
IO121NB5F11
60
IO20PB0F1/HCLKBP
186
IO64PB3F6
128
IO121PB5F11
61
IO66NB3F6
122
IO123NB5F11
56
Bank 1
Bank 3
IO21NB1F2/HCLKCN
180
IO66PB3F6
123
IO123PB5F11
57
IO21PB1F2/HCLKCP
181
IO68NB3F6
120
IO125NB5F11
54
IO22NB1F2/HCLKDN
174
IO68PB3F6
121
IO125PB5F11
55
IO22PB1F2/HCLKDP
175
IO77NB3F7
116
IO23NB1F2
170
IO77PB3F7
117
IO127NB6F12
47
IO23PB1F2
171
IO79NB3F7
114
IO127PB6F12
49
IO37NB1F3
165
IO79PB3F7
115
IO128NB6F12
48
IO37PB1F3
166
IO81NB3F7
110
IO128PB6F12
50
IO39NB1F3
161
IO81PB3F7
111
IO129NB6F12
42
IO39PB1F3
162
IO82NB3F7
108
IO129PB6F12
43
IO41NB1F3
159
IO82PB3F7
109
IO130PB6F12
44
IO41PB1F3
160
IO83NB3F7
106
IO132NB6F12
40
IO83PB3F7
107
IO132PB6F12
41
IO141NB6F13
35
Bank 2
3 -8 6
208 CQFP
Bank 6
IO43NB2F4
151
IO43PB2F4
153
IO84PB4F8
103
IO141PB6F13
36
IO44NB2F4
152
IO85NB4F8
100
IO142PB6F13
37
IO44PB2F4
154
IO86NB4F8
101
IO143NB6F13
33
IO45PB2F4
148
IO86PB4F8
102
IO143PB6F13
34
IO46NB2F4
146
IO87NB4F8
96
IO145NB6F13
28
IO46PB2F4
147
IO87PB4F8
97
IO145PB6F13
30
IO48NB2F4
144
IO101NB4F9
91
IO146NB6F13
27
IO48PB2F4
145
IO101PB4F9
92
IO146PB6F13
29
IO57NB2F5
139
IO103NB4F9/CLKEN
87
IO57PB2F5
140
IO103PB4F9/CLKEP
88
IO147NB7F14
23
IO58PB2F5
141
IO104NB4F9/CLKFN
81
IO147PB7F14
25
IO59NB2F5
137
IO104PB4F9/CLKFP
82
IO148NB7F14
22
IO59PB2F5
138
Bank 5
IO148PB7F14
24
IO61NB2F5
132
IO150NB7F14
18
Bank 4
IO105NB5F10/CLKGN
v2.7
76
Bank 7
Axcelerator Family FPGAs
208 CQFP
208 CQFP
208 CQFP
AX500 Function
Pin #
AX500 Function
Pin #
AX500 Function
Pin #
IO150PB7F14
19
GND
173
VCCIB0
200
IO152NB7F14
16
GND
194
VCCIB1
163
IO152PB7F14
17
GND
196
VCCIB1
172
IO161NB7F15
12
GND
201
VCCIB2
135
IO161PB7F15
13
GND/LP
208
VCCIB2
149
IO163NB7F15
10
PRA
184
VCCIB3
112
IO163PB7F15
11
PRB
183
VCCIB3
124
IO165PB7F15
7
PRC
80
VCCIB4
89
IO166NB7F15
5
PRD
79
VCCIB4
98
IO166PB7F15
6
TCK
205
VCCIB5
58
IO167NB7F15
3
TDI
204
VCCIB5
68
IO167PB7F15
4
TDO
203
VCCIB6
31
TMS
206
VCCIB6
45
Dedicated I/O
VCCDA
1
TRST
207
VCCIB7
8
GND
9
VCCA
2
VCCIB7
20
GND
15
VCCA
14
VCCPLA
189
GND
21
VCCA
38
VCCPLB
187
GND
32
VCCA
52
VCCPLC
178
GND
39
VCCA
64
VCCPLD
176
GND
46
VCCA
93
VCCPLE
85
GND
51
VCCA
118
VCCPLF
83
GND
59
VCCA
142
VCCPLG
74
GND
65
VCCA
156
VCCPLH
72
GND
69
VCCA
168
VCOMPLA
190
GND
90
VCCA
195
VCOMPLB
188
GND
94
VCCDA
26
VCOMPLC
179
GND
99
VCCDA
53
VCOMPLD
177
GND
104
VCCDA
63
VCOMPLE
86
GND
113
VCCDA
78
VCOMPLF
84
GND
119
VCCDA
95
VCOMPLG
75
GND
125
VCCDA
105
VCOMPLH
73
GND
136
VCCDA
130
VPUMP
158
GND
143
VCCDA
157
GND
150
VCCDA
167
GND
155
VCCDA
182
GND
164
VCCDA
202
GND
169
VCCIB0
193
v2.7
3-87
Axcelerator Family FPGAs
268
267
266
265
339
338
337
336
335
334
333
332
331
352
351
350
349
352-Pin CQFP
Pin 1
1
2
3
4
264
263
262
261
Ceramic
Tie Bar
41
42
43
44
45
46
47
48
49
223
222
221
220
219
218
217
216
215
352-Pin CQFP
180
179
178
177
173
174
175
176
127
128
129
130
131
132
133
134
135
89
90
91
92
85
86
87
88
Figure 3-11 • 352-Pin CQFP (Top View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -8 8
v2.7
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
AX250 Function
Pin #
Bank 0
352-Pin CQFP
AX250 Function
Pin #
AX250 Function
Pin #
IO25NB1F1
271
IO46PB3F3
220
IO00NB0F0
341
IO25PB1F1
272
IO47NB3F3
213
IO00PB0F0
342
IO27NB1F1
269
IO47PB3F3
214
IO01NB0F0
343
IO27PB1F1
270
IO48NB3F3
211
IO02NB0F0
337
IO48PB3F3
212
IO02PB0F0
338
IO29NB2F2
261
IO49NB3F3
207
IO04NB0F0
335
IO29PB2F2
262
IO49PB3F3
208
IO04PB0F0
336
IO30NB2F2
259
IO51NB3F3
205
IO06NB0F0
331
IO30PB2F2
260
IO51PB3F3
206
IO06PB0F0
332
IO31NB2F2
255
IO52NB3F3
201
IO08NB0F0
325
IO31PB2F2
256
IO52PB3F3
202
IO08PB0F0
326
IO33NB2F2
249
IO53NB3F3
199
IO10NB0F0
323
IO33PB2F2
250
IO53PB3F3
200
IO10PB0F0
324
IO34NB2F2
253
IO54NB3F3
195
IO12NB0F0/HCLKAN
319
IO34PB2F2
254
IO54PB3F3
196
IO12PB0F0/HCLKAP
320
IO35NB2F2
247
IO55NB3F3
193
IO13NB0F0/HCLKBN
313
IO35PB2F2
248
IO55PB3F3
194
IO13PB0F0/HCLKBP
314
IO36NB2F2
243
IO56NB3F3
187
IO36PB2F2
244
IO56PB3F3
188
Bank 1
Bank 2
IO14NB1F1/HCLKCN
305
IO37NB2F2
241
IO57NB3F3
189
IO14PB1F1/HCLKCP
306
IO37PB2F2
242
IO57PB3F3
190
IO15NB1F1/HCLKDN
299
IO38NB2F2
237
IO59NB3F3
183
IO15PB1F1/HCLKDP
300
IO38PB2F2
238
IO59PB3F3
184
IO16NB1F1
289
IO39NB2F2
235
IO60NB3F3
181
IO16PB1F1
290
IO39PB2F2
236
IO60PB3F3
182
IO17NB1F1
295
IO41NB2F2
231
IO61NB3F3
179
IO17PB1F1
296
IO41PB2F2
232
IO61PB3F3
180
IO18NB1F1
287
IO42NB2F2
229
IO18PB1F1
288
IO42PB2F2
230
IO62NB4F4
172
IO20NB1F1
283
IO43NB2F2
225
IO62PB4F4
173
IO20PB1F1
284
IO43PB2F2
226
IO64NB4F4
166
IO22NB1F1
277
IO44NB2F2
223
IO64PB4F4
167
IO22PB1F1
278
IO44PB2F2
224
IO65NB4F4
170
IO23NB1F1
281
IO65PB4F4
171
IO23PB1F1
282
IO45NB3F3
217
IO66NB4F4
164
IO24NB1F1
275
IO45PB3F3
218
IO66PB4F4
165
IO24PB1F1
276
IO46NB3F3
219
IO67NB4F4
160
Bank 3
v2.7
Bank 4
3-89
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
AX250 Function
Pin #
AX250 Function
Pin #
AX250 Function
Pin #
IO67PB4F4
161
IO90PB6F6
86
IO110PB7F7
35
IO68NB4F4
158
IO91NB6F6
84
IO111NB7F7
30
IO68PB4F4
159
IO91PB6F6
85
IO111PB7F7
31
IO70NB4F4
154
IO92NB6F6
78
IO113NB7F7
28
IO70PB4F4
155
IO92PB6F6
79
IO113PB7F7
29
IO72NB4F4
152
IO93NB6F6
82
IO114NB7F7
24
IO72PB4F4
153
IO93PB6F6
83
IO114PB7F7
25
IO73NB4F4
146
IO95NB6F6
76
IO115NB7F7
22
IO73PB4F4
147
IO95PB6F6
77
IO115PB7F7
23
IO74NB4F4/CLKEN
142
IO96NB6F6
72
IO116NB7F7
18
IO74PB4F4/CLKEP
143
IO96PB6F6
73
IO116PB7F7
19
IO75NB4F4/CLKFN
136
IO97NB6F6
70
IO117NB7F7
16
IO75PB4F4/CLKFP
137
IO97PB6F6
71
IO117PB7F7
17
IO98NB6F6
66
IO118NB7F7
12
Bank 5
IO76NB5F5/CLKGN
128
IO98PB6F6
67
IO118PB7F7
13
IO76PB5F5/CLKGP
129
IO99NB6F6
64
IO119NB7F7
10
IO77NB5F5/CLKHN
122
IO99PB6F6
65
IO119PB7F7
11
IO77PB5F5/CLKHP
123
IO100NB6F6
60
IO121NB7F7
6
IO78NB5F5
112
IO100PB6F6
61
IO121PB7F7
7
IO78PB5F5
113
IO101NB6F6
58
IO123NB7F7
4
IO79NB5F5
118
IO101PB6F6
59
IO123PB7F7
5
IO79PB5F5
119
IO103NB6F6
54
Dedicated I/O
IO80NB5F5
110
IO103PB6F6
55
GND
1
IO80PB5F5
111
IO104NB6F6
52
GND
9
IO82NB5F5
106
IO104PB6F6
53
GND
15
IO82PB5F5
107
IO105NB6F6
48
GND
21
IO84NB5F5
100
IO105PB6F6
49
GND
27
IO84PB5F5
101
IO106NB6F6
46
GND
33
IO85NB5F5
104
IO106PB6F6
47
GND
39
IO85PB5F5
105
Bank 7
GND
45
IO86NB5F5
98
IO107NB7F7
40
GND
51
IO86PB5F5
99
IO107PB7F7
41
GND
57
IO87NB5F5
94
IO108NB7F7
42
GND
63
IO87PB5F5
95
IO108PB7F7
43
GND
69
IO89NB5F5
92
IO109NB7F7
36
GND
75
IO89PB5F5
93
IO109PB7F7
37
GND
81
IO110NB7F7
34
GND
88
Bank 6
3 -9 0
352-Pin CQFP
v2.7
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX250 Function
Pin #
AX250 Function
Pin #
AX250 Function
Pin #
GND
89
GND
334
VCCA
209
GND
97
GND
340
VCCA
233
GND
103
GND
345
VCCA
251
GND
109
GND
352
VCCA
263
GND
115
NC
91
VCCA
279
GND
121
NC
117
VCCA
291
GND
133
NC
130
VCCA
329
GND
145
NC
131
VCCA
339
GND
151
NC
148
VCCDA
2
GND
157
NC
174
VCCDA
44
GND
163
NC
268
VCCDA
90
GND
169
NC
294
VCCDA
116
GND
176
NC
307
VCCDA
132
GND
177
NC
308
VCCDA
149
GND
186
NC
327
VCCDA
178
GND
192
NC
328
VCCDA
221
GND
198
PRA
312
VCCDA
266
GND
204
PRB
311
VCCDA
293
GND
210
PRC
135
VCCDA
309
GND
216
PRD
134
VCCDA
346
GND
222
TCK
349
VCCIB0
321
GND
228
TDI
348
VCCIB0
333
GND
234
TDO
347
VCCIB0
344
GND
240
TMS
350
VCCIB1
273
GND
246
TRST
351
VCCIB1
285
GND
252
VCCA
3
VCCIB1
297
GND
258
VCCA
14
VCCIB2
227
GND
264
VCCA
32
VCCIB2
239
GND
265
VCCA
56
VCCIB2
245
GND
274
VCCA
74
VCCIB2
257
GND
280
VCCA
87
VCCIB3
185
GND
286
VCCA
102
VCCIB3
197
GND
292
VCCA
114
VCCIB3
203
GND
298
VCCA
150
VCCIB3
215
GND
310
VCCA
162
VCCIB4
144
GND
322
VCCA
175
VCCIB4
156
GND
330
VCCA
191
VCCIB4
168
v2.7
3-91
Axcelerator Family FPGAs
352-Pin CQFP
3 -9 2
352-Pin CQFP
352-Pin CQFP
AX500 Function
Pin #
IO37NB1F3
271
343
IO37PB1F3
272
IO03NB0F0
341
IO41NB1F3
269
50
IO03PB0F0
342
IO41PB1F3
270
VCCIB6
62
IO05NB0F0
337
VCCIB6
68
IO05PB0F0
338
IO43NB2F4
261
VCCIB6
80
IO07NB0F0
335
IO43PB2F4
262
VCCIB7
8
IO07PB0F0
336
IO45NB2F4
259
VCCIB7
20
IO09NB0F0
331
IO45PB2F4
260
VCCIB7
26
IO09PB0F0
332
IO47NB2F4
255
VCCIB7
38
IO15NB0F1
325
IO47PB2F4
256
VCCPLA
317
IO15PB0F1
326
IO49NB2F4
253
VCCPLB
315
IO17NB0F1
323
IO49PB2F4
254
VCCPLC
303
IO17PB0F1
324
IO50NB2F4
247
VCCPLD
301
IO19NB0F1/HCLKAN
319
IO50PB2F4
248
VCCPLE
140
IO19PB0F1/HCLKAP
320
IO51NB2F4
249
VCCPLF
138
IO20NB0F1/HCLKBN
313
IO51PB2F4
250
VCCPLG
126
IO20PB0F1/HCLKBP
314
IO53NB2F5
243
VCCPLH
124
Bank 1
IO53PB2F5
244
VCOMPLA
318
IO21NB1F2/HCLKCN
305
IO54NB2F5
241
VCOMPLB
316
IO21PB1F2/HCLKCP
306
IO54PB2F5
242
VCOMPLC
304
IO22NB1F2/HCLKDN
299
IO55NB2F5
237
VCOMPLD
302
IO22PB1F2/HCLKDP
300
IO55PB2F5
238
VCOMPLE
141
IO23NB1F2
289
IO57NB2F5
235
VCOMPLF
139
IO23PB1F2
290
IO57PB2F5
236
VCOMPLG
127
IO24NB1F2
295
IO58NB2F5
231
VCOMPLH
125
IO24PB1F2
296
IO58PB2F5
232
VPUMP
267
IO25NB1F2
287
IO59NB2F5
229
IO25PB1F2
288
IO59PB2F5
230
IO27NB1F2
283
IO61NB2F5
225
IO27PB1F2
284
IO61PB2F5
226
IO29NB1F2
281
IO62NB2F5
223
IO29PB1F2
282
IO62PB2F5
224
IO31NB1F2
277
IO31PB1F2
278
IO63NB3F6
217
IO35NB1F3
275
IO63PB3F6
218
IO35PB1F3
276
IO64NB3F6
219
AX250 Function
Pin #
VCCIB5
96
VCCIB5
108
IO00PB0F0
VCCIB5
120
VCCIB6
AX500 Function
Pin #
Bank 0
v2.7
Bank 2
Bank 3
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX500 Function
Pin #
AX500 Function
Pin #
AX500 Function
Pin #
IO64PB3F6
220
IO95PB4F9
161
IO126PB6F12
86
IO65NB3F6
213
IO97NB4F9
158
IO127NB6F12
84
IO65PB3F6
214
IO97PB4F9
159
IO127PB6F12
85
IO67NB3F6
207
IO99NB4F9
154
IO129NB6F12
82
IO67PB3F6
208
IO99PB4F9
155
IO129PB6F12
83
IO68NB3F6
211
IO100NB4F9
146
IO131NB6F12
78
IO68PB3F6
212
IO100PB4F9
147
IO131PB6F12
79
IO69NB3F6
205
IO101NB4F9
152
IO133NB6F12
76
IO69PB3F6
206
IO101PB4F9
153
IO133PB6F12
77
IO71NB3F6
201
IO103NB4F9/CLKEN
142
IO134NB6F12
72
IO71PB3F6
202
IO103PB4F9/CLKEP
143
IO134PB6F12
73
IO73NB3F6
199
IO104NB4F9/CLKFN
136
IO135NB6F12
70
IO73PB3F6
200
IO104PB4F9/CLKFP
137
IO135PB6F12
71
IO75NB3F7
193
Bank 5
IO137NB6F13
66
IO75PB3F7
194
IO105NB5F10/CLKGN
128
IO137PB6F13
67
IO76NB3F7
195
IO105PB5F10/CLKGP
129
IO138NB6F13
64
IO76PB3F7
196
IO106NB5F10/CLKHN
122
IO138PB6F13
65
IO77NB3F7
189
IO106PB5F10/CLKHP
123
IO139NB6F13
60
IO77PB3F7
190
IO107NB5F10
118
IO139PB6F13
61
IO79NB3F7
187
IO107PB5F10
119
IO141NB6F13
54
IO79PB3F7
188
IO114NB5F11
112
IO141PB6F13
55
IO80NB3F7
183
IO114PB5F11
113
IO142NB6F13
58
IO80PB3F7
184
IO115NB5F11
110
IO142PB6F13
59
IO81NB3F7
181
IO115PB5F11
111
IO143NB6F13
52
IO81PB3F7
182
IO116NB5F11
106
IO143PB6F13
53
IO83NB3F7
179
IO116PB5F11
107
IO145NB6F13
48
IO83PB3F7
180
IO117NB5F11
104
IO145PB6F13
49
IO117PB5F11
105
IO146NB6F13
46
IO146PB6F13
47
Bank 4
IO85NB4F8
172
IO119NB5F11
100
IO85PB4F8
173
IO119PB5F11
101
IO87NB4F8
170
IO121NB5F11
98
IO147NB7F14
40
IO87PB4F8
171
IO121PB5F11
99
IO147PB7F14
41
IO89NB4F8
166
IO123NB5F11
94
IO148NB7F14
42
IO89PB4F8
167
IO123PB5F11
95
IO148PB7F14
43
IO94NB4F9
164
IO125NB5F11
92
IO149NB7F14
36
IO94PB4F9
165
IO125PB5F11
93
IO149PB7F14
37
IO95NB4F9
160
IO151NB7F14
30
Bank 6
v2.7
Bank 7
3-93
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
AX500 Function
Pin #
AX500 Function
Pin #
AX500 Function
Pin #
IO151PB7F14
31
GND
89
GND
334
IO152NB7F14
34
GND
97
GND
340
IO152PB7F14
35
GND
103
GND
345
IO153NB7F14
28
GND
109
GND/LP
352
IO153PB7F14
29
GND
115
NC
91
IO155NB7F14
24
GND
121
NC
117
IO155PB7F14
25
GND
133
NC
130
IO157NB7F14
22
GND
145
NC
131
IO157PB7F14
23
GND
151
NC
148
IO159NB7F15
16
GND
157
NC
174
IO159PB7F15
17
GND
163
NC
268
IO160NB7F15
18
GND
169
NC
294
IO160PB7F15
19
GND
176
NC
307
IO161NB7F15
12
GND
177
NC
308
IO161PB7F15
13
GND
186
NC
327
IO163NB7F15
10
GND
192
NC
328
IO163PB7F15
11
GND
198
PRA
312
IO165NB7F15
6
GND
204
PRB
311
IO165PB7F15
7
GND
210
PRC
135
IO167NB7F15
4
GND
216
PRD
134
IO167PB7F15
5
GND
222
TCK
349
GND
228
TDI
348
Dedicated I/O
3 -9 4
352-Pin CQFP
GND
1
GND
234
TDO
347
GND
9
GND
240
TMS
350
GND
15
GND
246
TRST
351
GND
21
GND
252
VCCA
3
GND
27
GND
258
VCCA
14
GND
33
GND
264
VCCA
32
GND
39
GND
265
VCCA
56
GND
45
GND
274
VCCA
74
GND
51
GND
280
VCCA
87
GND
57
GND
286
VCCA
102
GND
63
GND
292
VCCA
114
GND
69
GND
298
VCCA
150
GND
75
GND
310
VCCA
162
GND
81
GND
322
VCCA
175
GND
88
GND
330
VCCA
191
v2.7
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX500 Function
Pin #
AX500 Function
Pin #
VCCA
209
VCCIB5
96
VCCA
233
VCCIB5
108
IO02NB0F0
341
VCCA
251
VCCIB5
120
IO02PB0F0
342
VCCA
263
VCCIB6
50
IO03PB0F0
343
VCCA
279
VCCIB6
62
IO04NB0F0
337
VCCA
291
VCCIB6
68
IO04PB0F0
338
VCCA
329
VCCIB6
80
IO08NB0F0
331
VCCA
339
VCCIB7
8
IO08PB0F0
332
VCCDA
2
VCCIB7
20
IO09NB0F0
335
VCCDA
44
VCCIB7
26
IO09PB0F0
336
VCCDA
90
VCCIB7
38
IO24NB0F2
325
VCCDA
116
VCCPLA
317
IO24PB0F2
326
VCCDA
132
VCCPLB
315
IO25NB0F2
323
VCCDA
149
VCCPLC
303
IO25PB0F2
324
VCCDA
178
VCCPLD
301
IO30NB0F2/HCLKAN
319
VCCDA
221
VCCPLE
140
IO30PB0F2/HCLKAP
320
VCCDA
266
VCCPLF
138
IO31NB0F2/HCLKBN
313
VCCDA
293
VCCPLG
126
IO31PB0F2/HCLKBP
314
VCCDA
309
VCCPLH
124
Bank 1
VCCDA
346
VCOMPLA
318
IO32NB1F3/HCLKCN
305
VCCIB0
321
VCOMPLB
316
IO32PB1F3/HCLKCP
306
VCCIB0
333
VCOMPLC
304
IO33NB1F3/HCLKDN
299
VCCIB0
344
VCOMPLD
302
IO33PB1F3/HCLKDP
300
VCCIB1
273
VCOMPLE
141
IO38NB1F3
295
VCCIB1
285
VCOMPLF
139
IO38PB1F3
296
VCCIB1
297
VCOMPLG
127
IO54NB1F5
287
VCCIB2
227
VCOMPLH
125
IO54PB1F5
288
VCCIB2
239
VPUMP
267
IO55NB1F5
289
VCCIB2
245
IO55PB1F5
290
VCCIB2
257
IO56NB1F5
281
VCCIB3
185
IO56PB1F5
282
VCCIB3
197
IO57NB1F5
283
VCCIB3
203
IO57PB1F5
284
VCCIB3
215
IO59NB1F5
277
VCCIB4
144
IO59PB1F5
278
VCCIB4
156
IO60NB1F5
275
VCCIB4
168
IO60PB1F5
276
v2.7
AX1000 Function
Pin #
Bank 0
3-95
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
AX1000 Function
Pin #
AX1000 Function
Pin #
AX1000 Function
Pin #
IO61NB1F5
271
IO97PB3F9
220
IO134PB4F12
161
IO61PB1F5
272
IO99NB3F9
213
IO136NB4F12
158
IO63NB1F5
269
IO99PB3F9
214
IO136PB4F12
159
IO63PB1F5
270
IO108NB3F10
211
IO137NB4F12
154
IO108PB3F10
212
IO137PB4F12
155
Bank 2
IO64NB2F6
259
IO109NB3F10
207
IO138NB4F12
152
IO64PB2F6
260
IO109PB3F10
208
IO138PB4F12
153
IO67NB2F6
261
IO111NB3F10
205
IO153NB4F14
146
IO67PB2F6
262
IO111PB3F10
206
IO153PB4F14
147
IO68NB2F6
255
IO112NB3F10
199
IO159NB4F14/CLKEN
142
IO68PB2F6
256
IO112PB3F10
200
IO159PB4F14/CLKEP
143
IO69NB2F6
253
IO113NB3F10
201
IO160NB4F14/CLKFN
136
IO69PB2F6
254
IO113PB3F10
202
IO160PB4F14/CLKFP
137
IO74NB2F7
249
IO115NB3F10
195
Bank 5
IO74PB2F7
250
IO115PB3F10
196
IO161NB5F15/CLKGN
128
IO75NB2F7
247
IO116NB3F10
193
IO161PB5F15/CLKGP
129
IO75PB2F7
248
IO116PB3F10
194
IO162NB5F15/CLKHN
122
IO76NB2F7
243
IO117NB3F10
189
IO162PB5F15/CLKHP
123
IO76PB2F7
244
IO117PB3F10
190
IO167NB5F15
118
IO77NB2F7
241
IO124NB3F11
183
IO167PB5F15
119
IO77PB2F7
242
IO124PB3F11
184
IO183NB5F17
110
IO78NB2F7
237
IO125NB3F11
187
IO183PB5F17
111
IO78PB2F7
238
IO125PB3F11
188
IO184NB5F17
112
IO79NB2F7
235
IO127NB3F11
181
IO184PB5F17
113
IO79PB2F7
236
IO127PB3F11
182
IO185NB5F17
104
IO82NB2F7
231
IO128NB3F11
179
IO185PB5F17
105
IO82PB2F7
232
IO128PB3F11
180
IO186NB5F17
106
IO83NB2F7
229
IO186PB5F17
107
IO83PB2F7
230
IO130NB4F12
172
IO187NB5F17
98
IO94NB2F8
225
IO130PB4F12
173
IO187PB5F17
99
IO94PB2F8
226
IO131NB4F12
170
IO188NB5F17
100
IO95NB2F8
223
IO131PB4F12
171
IO188PB5F17
101
IO95PB2F8
224
IO132NB4F12
166
IO190NB5F17
94
IO132PB4F12
167
IO190PB5F17
95
Bank 3
3 -9 6
352-Pin CQFP
Bank 4
IO96NB3F9
217
IO133NB4F12
164
IO192NB5F17
92
IO96PB3F9
218
IO133PB4F12
165
IO192PB5F17
93
IO97NB3F9
219
IO134NB4F12
160
v2.7
Bank 6
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX1000 Function
Pin #
AX1000 Function
Pin #
AX1000 Function
Pin #
IO193PB6F18
86
IO238PB7F22
37
GND
89
IO194NB6F18
84
IO240NB7F22
30
GND
97
IO194PB6F18
85
IO240PB7F22
31
GND
103
IO196NB6F18
78
IO241NB7F22
28
GND
109
IO196PB6F18
79
IO241PB7F22
29
GND
115
IO197NB6F18
82
IO242NB7F22
24
GND
121
IO197PB6F18
83
IO242PB7F22
25
GND
133
IO198NB6F18
76
IO244NB7F22
22
GND
145
IO198PB6F18
77
IO244PB7F22
23
GND
151
IO203NB6F19
72
IO245NB7F22
18
GND
157
IO203PB6F19
73
IO245PB7F22
19
GND
163
IO204NB6F19
70
IO246NB7F22
16
GND
169
IO204PB6F19
71
IO246PB7F22
17
GND
176
IO205NB6F19
66
IO249NB7F23
12
GND
177
IO205PB6F19
67
IO249PB7F23
13
GND
186
IO206NB6F19
64
IO250NB7F23
10
GND
192
IO206PB6F19
65
IO250PB7F23
11
GND
198
IO207NB6F19
60
IO256NB7F23
4
GND
204
IO207PB6F19
61
IO256PB7F23
5
GND
210
IO208NB6F19
58
IO257NB7F23
6
GND
216
IO208PB6F19
59
IO257PB7F23
7
GND
222
IO211NB6F19
54
Dedicated I/O
GND
228
IO211PB6F19
55
GND
1
GND
234
IO212NB6F19
52
GND
9
GND
240
IO212PB6F19
53
GND
15
GND
246
IO223NB6F20
48
GND
21
GND
252
IO223PB6F20
49
GND
27
GND
258
IO224NB6F20
46
GND
33
GND
264
IO224PB6F20
47
GND
39
GND
265
GND
45
GND
274
Bank 7
IO225NB7F21
40
GND
51
GND
280
IO225PB7F21
41
GND
57
GND
286
IO226NB7F21
42
GND
63
GND
292
IO226PB7F21
43
GND
69
GND
298
IO237NB7F22
34
GND
75
GND
310
IO237PB7F22
35
GND
81
GND
322
IO238NB7F22
36
GND
88
GND
330
v2.7
3-97
Axcelerator Family FPGAs
352-Pin CQFP
3 -9 8
352-Pin CQFP
352-Pin CQFP
AX1000 Function
Pin #
AX1000 Function
Pin #
AX1000 Function
Pin #
GND
334
VCCA
291
VCCIB5
96
GND
340
VCCA
329
VCCIB5
108
GND
345
VCCA
339
VCCIB5
120
GND
352
VCCDA
2
VCCIB6
50
NC
91
VCCDA
44
VCCIB6
62
NC
130
VCCDA
90
VCCIB6
68
NC
131
VCCDA
116
VCCIB6
80
NC
174
VCCDA
117
VCCIB7
8
NC
268
VCCDA
132
VCCIB7
20
NC
307
VCCDA
148
VCCIB7
26
NC
308
VCCDA
149
VCCIB7
38
PRA
312
VCCDA
178
VCCPLA
317
PRB
311
VCCDA
221
VCCPLB
315
PRC
135
VCCDA
266
VCCPLC
303
PRD
134
VCCDA
293
VCCPLD
301
TCK
349
VCCDA
294
VCCPLE
140
TDI
348
VCCDA
309
VCCPLF
138
TDO
347
VCCDA
327
VCCPLG
126
TMS
350
VCCDA
328
VCCPLH
124
TRST
351
VCCDA
346
VCOMPLA
318
VCCA
3
VCCIB0
321
VCOMPLB
316
VCCA
14
VCCIB0
333
VCOMPLC
304
VCCA
32
VCCIB0
344
VCOMPLD
302
VCCA
56
VCCIB1
273
VCOMPLE
141
VCCA
74
VCCIB1
285
VCOMPLF
139
VCCA
87
VCCIB1
297
VCOMPLG
127
VCCA
102
VCCIB2
227
VCOMPLH
125
VCCA
114
VCCIB2
239
VPUMP
267
VCCA
150
VCCIB2
245
VCCA
162
VCCIB2
257
VCCA
175
VCCIB3
185
VCCA
191
VCCIB3
197
VCCA
209
VCCIB3
203
VCCA
233
VCCIB3
215
VCCA
251
VCCIB4
144
VCCA
263
VCCIB4
156
VCCA
279
VCCIB4
168
v2.7
Axcelerator Family FPGAs
352-Pin CQFP
AX2000 Function
352-Pin CQFP
Pin Number
AX2000 Function
352-Pin CQFP
Pin Number
Bank 2
Bank 0
AX2000 Function
Pin Number
IO142PB3F13
208
IO01NB0F0
341
IO87NB2F8
261
IO145NB3F13
199
IO01PB0F0
342
IO87PB2F8
262
IO145PB3F13
200
IO02PB0F0
343
IO88NB2F8
255
IO146NB3F13
201
IO04NB0F0
337
IO88PB2F8
256
IO146PB3F13
202
IO04PB0F0
338
IO89NB2F8
259
IO147NB3F13
193
IO05NB0F0
335
IO89PB2F8
260
IO147PB3F13
194
IO05PB0F0
336
IO91NB2F8
253
IO148NB3F13
195
IO08NB0F0
331
IO91PB2F8
254
IO148PB3F13
196
IO08PB0F0
332
IO99NB2F9
249
IO149NB3F13
189
IO37NB0F3
325
IO99PB2F9
250
IO149PB3F13
190
IO37PB0F3
326
IO100NB2F9
247
IO161NB3F15
183
IO38NB0F3
323
IO100PB2F9
248
IO161PB3F15
184
IO38PB0F3
324
IO107NB2F10
243
IO163NB3F15
187
IO41NB0F3/HCLKAN
319
IO107PB2F10
244
IO163PB3F15
188
IO41PB0F3/HCLKAP
320
IO110NB2F10
241
IO165NB3F15
181
IO42NB0F3/HCLKBN
313
IO110PB2F10
242
IO165PB3F15
182
IO42PB0F3/HCLKBP
314
IO111NB2F10
237
IO167NB3F15
179
IO111PB2F10
238
IO167PB3F15
180
Bank 1
IO43NB1F4/HCLKCN
305
IO112NB2F10
235
IO43PB1F4/HCLKCP
306
IO112PB2F10
236
IO181NB4F17
172
IO44NB1F4/HCLKDN
299
IO113NB2F10
231
IO181PB4F17
173
IO44PB1F4/HCLKDP
300
IO113PB2F10
232
IO182NB4F17
170
IO48NB1F4
295
IO114NB2F10
229
IO182PB4F17
171
IO48PB1F4
296
IO114PB2F10
230
IO183NB4F17
166
IO65NB1F6
283
IO115NB2F10
225
IO183PB4F17
167
IO65PB1F6
284
IO115PB2F10
226
IO184NB4F17
164
IO66NB1F6
289
IO117NB2F10
223
IO184PB4F17
165
IO66PB1F6
290
IO117PB2F10
224
IO185NB4F17
160
IO68NB1F6
287
IO185PB4F17
161
IO68PB1F6
288
IO190NB4F17
158
Bank 3
IO129NB3F12
219
Bank 4
IO69NB1F6
275
IO129PB3F12
220
IO190PB4F17
159
IO69PB1F6
276
IO132NB3F12
217
IO191NB4F17
154
IO70NB1F6
281
IO132PB3F12
218
IO191PB4F17
155
IO70PB1F6
282
IO137NB3F12
213
IO192NB4F17
152
IO71NB1F6
277
IO137PB3F12
214
IO192PB4F17
153
IO71PB1F6
278
IO139NB3F13
211
IO207NB4F19
146
IO73NB1F6
269
IO139PB3F13
212
IO207PB4F19
147
IO73PB1F6
270
IO141NB3F13
205
IO212NB4F19/CLKEN
142
IO74NB1F6
271
IO141PB3F13
206
IO212PB4F19/CLKEP
143
IO74PB1F6
272
IO142NB3F13
207
IO213NB4F19/CLKFN
136
v2.7
3-99
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
IO213PB4F19/CLKFP
137
IO282PB6F26
65
IO341PB7F31
5
IO284NB6F26
60
Bank 5
Dedicated I/O
IO214NB5F20/CLKGN
128
IO284PB6F26
61
GND
1
IO214PB5F20/CLKGP
129
IO285NB6F26
58
GND
9
IO215NB5F20/CLKHN
122
IO285PB6F26
59
GND
15
IO215PB5F20/CLKHP
123
IO286NB6F26
54
GND
21
IO217NB5F20
118
IO286PB6F26
55
GND
27
IO217PB5F20
119
IO287NB6F26
52
GND
33
IO236NB5F22
110
IO287PB6F26
53
GND
39
IO236PB5F22
111
IO294NB6F27
48
GND
45
IO237NB5F22
112
IO294PB6F27
49
GND
51
IO237PB5F22
113
IO296NB6F27
46
GND
57
IO238NB5F22
104
IO296PB6F27
47
GND
63
IO238PB5F22
105
GND
69
IO239NB5F22
106
42
GND
75
IO300NB7F28
IO239PB5F22
107
IO300PB7F28
43
GND
81
IO240NB5F22
100
IO303NB7F28
40
GND
88
IO240PB5F22
101
IO303PB7F28
41
GND
89
IO242NB5F22
94
IO310NB7F29
34
GND
97
IO242PB5F22
95
IO310PB7F29
35
GND
103
IO243NB5F22
98
IO311NB7F29
36
GND
109
IO243PB5F22
99
IO311PB7F29
37
GND
115
IO244NB5F22
92
IO312NB7F29
28
GND
121
IO244PB5F22
93
Bank 6
3 -1 0 0
Bank 7
IO312PB7F29
29
GND
133
IO315NB7F29
30
GND
145
IO257PB6F24
86
IO315PB7F29
31
GND
151
IO258NB6F24
84
IO316NB7F29
22
GND
157
IO258PB6F24
85
IO316PB7F29
23
GND
163
IO261NB6F24
82
IO317NB7F29
24
GND
169
IO261PB6F24
83
IO317PB7F29
25
GND
176
IO262NB6F24
78
IO318NB7F29
18
GND
177
IO262PB6F24
79
IO318PB7F29
19
GND
186
IO265NB6F24
76
IO320NB7F29
16
GND
192
IO265PB6F24
77
IO320PB7F29
17
GND
198
IO279NB6F26
72
IO334NB7F31
10
GND
204
IO279PB6F26
73
IO334PB7F31
11
GND
210
IO280NB6F26
70
IO335NB7F31
12
GND
216
IO280PB6F26
71
IO335PB7F31
13
GND
222
IO281NB6F26
66
IO338NB7F31
6
GND
228
IO281PB6F26
67
IO338PB7F31
7
GND
234
IO282NB6F26
64
IO341NB7F31
4
GND
240
v2.7
Axcelerator Family FPGAs
352-Pin CQFP
352-Pin CQFP
352-Pin CQFP
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
GND
246
VCCA
263
VCCIB3
203
GND
252
VCCA
279
VCCIB3
215
GND
258
VCCA
291
VCCIB4
144
GND
264
VCCA
329
VCCIB4
156
GND
265
VCCA
339
VCCIB4
168
GND
274
VCCDA
2
VCCIB5
96
GND
280
VCCDA
44
VCCIB5
108
GND
286
VCCDA
90
VCCIB5
120
GND
292
VCCDA
91
VCCIB6
50
GND
298
VCCDA
116
VCCIB6
62
GND
310
VCCDA
117
VCCIB6
68
GND
322
VCCDA
130
VCCIB6
80
GND
330
VCCDA
131
VCCIB7
8
GND
334
VCCDA
132
VCCIB7
20
GND
340
VCCDA
148
VCCIB7
26
GND
345
VCCDA
149
VCCIB7
38
GND
352
VCCDA
174
VCCPLA
317
PRA
312
VCCDA
178
VCCPLB
315
PRB
311
VCCDA
221
VCCPLC
303
PRC
135
VCCDA
266
VCCPLD
301
PRD
134
VCCDA
268
VCCPLE
140
TCK
349
VCCDA
293
VCCPLF
138
TDI
348
VCCDA
294
VCCPLG
126
TDO
347
VCCDA
307
VCCPLH
124
TMS
350
VCCDA
308
VCOMPLA
318
TRST
351
VCCDA
309
VCOMPLB
316
VCCA
3
VCCDA
327
VCOMPLC
304
VCCA
14
VCCDA
328
VCOMPLD
302
VCCA
32
VCCDA
346
VCOMPLE
141
VCCA
56
VCCIB0
321
VCOMPLF
139
VCCA
74
VCCIB0
333
VCOMPLG
127
VCCA
87
VCCIB0
344
VCOMPLH
125
VCCA
102
VCCIB1
273
VPUMP
267
VCCA
114
VCCIB1
285
VCCA
150
VCCIB1
297
VCCA
162
VCCIB2
227
VCCA
175
VCCIB2
239
VCCA
191
VCCIB2
245
VCCA
209
VCCIB2
257
VCCA
233
VCCIB3
185
VCCA
251
VCCIB3
197
v2.7
3-101
Axcelerator Family FPGAs
624-Pin CCGA
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7 6
5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
Figure 3-12 • 624-Pin CCGA (Bottom View)
Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.
3 -1 0 2
v2.7
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
Bank 0
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO23PB0F2
F11
IO43NB1F4
A16
IO00NB0F0
F8
IO24NB0F2
D7
IO43PB1F4
A15
IO00PB0F0
F7
IO24PB0F2
E7
IO44NB1F4
A20
IO02NB0F0
G7
IO25PB0F2
B12
IO44PB1F4
A19
IO02PB0F0
G6
IO26NB0F2
H11
IO45NB1F4
B17
IO04NB0F0
E9
IO26PB0F2
G11
IO45PB1F4
B16
IO04PB0F0
D8
IO27NB0F2
C11
IO46NB1F4
G17
IO06NB0F0
G9
IO27PB0F2
B8
IO46PB1F4
H17
IO06PB0F0
G8
IO28NB0F2
J13
IO47NB1F4
A17
IO07PB0F0
B6
IO28PB0F2
K13
IO48NB1F4
C19
IO08NB0F0
F10
IO29NB0F2
J8
IO48PB1F4
C18
IO08PB0F0
F9
IO29PB0F2
J7
IO49NB1F4
B20
IO09PB0F0
C7
IO30NB0F2/HCLKAN
G13
IO49PB1F4
B19
IO10NB0F0
H8
IO30PB0F2/HCLKAP
G12
IO50NB1F4
H20
IO10PB0F0
H7
IO31NB0F2/HCLKBN
C13
IO50PB1F4
H19
IO11NB0F0
D10
IO31PB0F2/HCLKBP
C12
IO51NB1F4
A22
IO11PB0F0
D9
IO51PB1F4
A21
IO12NB0F1
B5
IO32NB1F3/HCLKCN
G15
IO52NB1F4
C21
IO12PB0F1
B4
IO32PB1F3/HCLKCP
G14
IO52PB1F4
C20
IO13NB0F1
A7
IO33NB1F3/HCLKDN
B14
IO53NB1F4
B22
IO13PB0F1
A6
IO33PB1F3/HCLKDP
B13
IO53PB1F4
B21
IO14NB0F1
C9
IO34NB1F3
G16
IO54NB1F5
J18
IO14PB0F1
C8
IO34PB1F3
H16
IO54PB1F5
J19
IO15PB0F1
B7
IO35NB1F3
C17
IO55NB1F5
D18
IO16NB0F1
A5
IO35PB1F3
B18
IO55PB1F5
D17
IO16PB0F1
A4
IO36NB1F3
H18
IO56NB1F5
F20
IO17NB0F1
A9
IO36PB1F3
H15
IO56PB1F5
F19
IO17PB0F1
B9
IO37NB1F3
H13
IO58NB1F5
E17
IO18NB0F1
D12
IO38NB1F3
E15
IO58PB1F5
F17
IO18PB0F1
D11
IO38PB1F3
F15
IO60NB1F5
D20
IO20NB0F1
B11
IO39NB1F3
D14
IO60PB1F5
D19
IO20PB0F1
B10
IO39PB1F3
C14
IO62NB1F5
E18
IO21NB0F1
A11
IO40NB1F3
D16
IO62PB1F5
F18
IO21PB0F1
A10
IO40PB1F3
D15
IO63NB1F5
G19
IO22NB0F2
H10
IO41NB1F4
F16
IO63PB1F5
G18
IO22PB0F2
H9
IO42NB1F4
G21
IO23NB0F2
E11
IO42PB1F4
G20
Bank 1
v2.7
Bank 2
IO64NB2F6
M17
3-103
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO64PB2F6
G22
IO87NB2F8
L24
IO108NB3F10
R25
IO65NB2F6
J21
IO87PB2F8
K24
IO108PB3F10
P25
IO65PB2F6
J20
IO88NB2F8
G24
IO109NB3F10
U25
IO66NB2F6
L23
IO88PB2F8
F24
IO109PB3F10
T25
IO66PB2F6
K20
IO89NB2F8
J25
IO110NB3F10
U24
IO67NB2F6
F23
IO90NB2F8
G25
IO110PB3F10
U23
IO67PB2F6
E23
IO90PB2F8
F25
IO112NB3F10
T24
IO68NB2F6
L18
IO91NB2F8
L25
IO112PB3F10
R24
IO68PB2F6
K18
IO91PB2F8
K25
IO113NB3F10
Y25
IO70NB2F6
E24
IO92NB2F8
J24
IO113PB3F10
W25
IO70PB2F6
D24
IO92PB2F8
H24
IO114NB3F10
V23
IO71NB2F6
H23
IO93PB2F8
J23
IO114PB3F10
V24
IO71PB2F6
G23
IO94NB2F8
N24
IO116NB3F10
AA24
IO72NB2F6
L19
IO94PB2F8
M24
IO116PB3F10
Y24
IO72PB2F6
K19
IO95NB2F8
N25
IO117NB3F10
AB25
IO74NB2F7
J22
IO95PB2F8
M25
IO117PB3F10
AA25
IO74PB2F7
H22
IO118NB3F11
T20
IO75NB2F7
N23
IO96NB3F9
T18
IO118PB3F11
R21
IO75PB2F7
M23
IO96PB3F9
R18
IO120NB3F11
W22
IO76NB2F7
N17
IO97NB3F9
N20
IO120PB3F11
W23
IO76PB2F7
N16
IO97PB3F9
P24
IO122NB3F11
V22
IO77NB2F7
L22
IO98NB3F9
P20
IO122PB3F11
U22
IO77PB2F7
K22
IO98PB3F9
P19
IO124NB3F11
Y23
IO78NB2F7
M19
IO99NB3F9
P21
IO124PB3F11
AA23
IO78PB2F7
M18
IO100NB3F9
T22
IO126NB3F11
V21
IO79NB2F7
N19
IO100PB3F9
W24
IO126PB3F11
U21
IO79PB2F7
N18
IO101NB3F9
R22
IO128NB3F11
Y22
IO80NB2F7
L21
IO101PB3F9
P22
IO128PB3F11
Y21
IO80PB2F7
L20
IO102NB3F9
U19
IO82NB2F7
P18
IO102PB3F9
T19
IO129NB4F12
W20
IO82PB2F7
P17
IO104NB3F9
V20
IO129PB4F12
Y20
IO83NB2F7
N22
IO104PB3F9
U20
IO131NB4F12
V19
IO83PB2F7
M22
IO105NB3F9
R23
IO131PB4F12
W19
IO84NB2F7
M20
IO105PB3F9
P23
IO133NB4F12
Y18
IO84PB2F7
M21
IO106NB3F9
R19
IO133PB4F12
Y19
IO86NB2F8
E25
IO106PB3F9
R20
IO135NB4F12
W18
IO86PB2F8
D25
IO107NB3F10
AB24
IO135PB4F12
V18
3 -1 0 4
Bank 3
v2.7
Bank 4
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO137NB4F12
Y17
IO157PB4F14
AC18
IO178PB5F16
W6
IO137PB4F12
AA17
IO158NB4F14
AC15
IO179NB5F16
Y10
IO138NB4F12
AB19
IO158PB4F14
AC19
IO179PB5F16
W10
IO138PB4F12
AB18
IO159NB4F14/CLKEN
W14
IO180NB5F16
Y7
IO139NB4F13
AA19
IO159PB4F14/CLKEP
W15
IO180PB5F16
W7
IO139PB4F13
U18
IO160NB4F14/CLKFN
AC13
IO181NB5F17
AD9
IO140NB4F13
AC20
IO160PB4F14/CLKFP
AD13
IO181PB5F17
AD10
IO140PB4F13
AC21
IO182NB5F17
AE10
IO141NB4F13
AD17
IO161NB5F15/CLKGN
W13
IO182PB5F17
AE11
IO141PB4F13
AD18
IO161PB5F15/CLKGP
Y13
IO183NB5F17
AD7
IO142NB4F13
AD21
IO162NB5F15/CLKHN
AC12
IO183PB5F17
AD8
IO142PB4F13
AD22
IO162PB5F15/CLKHP
AD12
IO184NB5F17
AB9
IO143NB4F13
AB17
IO163NB5F15
V9
IO185NB5F17
AE6
IO143PB4F13
AC17
IO163PB5F15
V10
IO185PB5F17
AE7
IO144PB4F13
AE22
IO164NB5F15
V11
IO186NB5F17
AE4
IO145NB4F13
AE15
IO164PB5F15
T13
IO186PB5F17
AE5
IO145PB4F13
AE16
IO165NB5F15
U13
IO187NB5F17
AA9
IO146NB4F13
AD19
IO165PB5F15
V13
IO187PB5F17
Y9
IO146PB4F13
AD20
IO167NB5F15
W11
IO188NB5F17
U8
IO147NB4F13
AD15
IO167PB5F15
W12
IO189NB5F17
AD5
IO147PB4F13
AD16
IO168NB5F15
AB6
IO189PB5F17
AD6
IO148PB4F13
AE21
IO168PB5F15
AA6
IO191NB5F17
AC5
IO149NB4F13
AD14
IO169NB5F15
V8
IO191PB5F17
AC6
IO149PB4F13
AC14
IO169PB5F15
V7
IO192NB5F17
AB7
IO150NB4F13
AE19
IO171NB5F16
W8
IO192PB5F17
AC7
IO150PB4F13
AE20
IO171PB5F16
W9
IO151NB4F13
V17
IO172NB5F16
AB8
IO193NB6F18
U6
IO151PB4F13
W17
IO172PB5F16
AC8
IO193PB6F18
U5
IO152NB4F14
AB16
IO173NB5F16
AA11
IO194NB6F18
Y3
IO152PB4F14
W16
IO173PB5F16
Y11
IO194PB6F18
AA3
IO153NB4F14
Y15
IO174NB5F16
AB10
IO195NB6F18
V6
IO153PB4F14
Y16
IO174PB5F16
AB11
IO195PB6F18
W4
IO155NB4F14
V15
IO175NB5F16
AC9
IO197NB6F18
R5
IO155PB4F14
V16
IO175PB5F16
AE9
IO197PB6F18
U3
IO156NB4F14
AB14
IO177NB5F16
AA8
IO198NB6F18
P6
IO156PB4F14
AB15
IO177PB5F16
Y8
IO199NB6F18
Y5
IO157NB4F14
AE14
IO178NB5F16
Y6
IO199PB6F18
W5
Bank 5
v2.7
Bank 6
3-105
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
IO200NB6F18
V3
IO221PB6F20
P4
IO244NB7F22
P9
IO200PB6F18
W3
IO223NB6F20
M2
IO244PB7F22
N6
IO201NB6F18
T7
IO223PB6F20
N2
IO245NB7F22
K8
IO201PB6F18
U7
IO224NB6F20
N3
IO245PB7F22
L8
IO202NB6F18
V2
IO224PB6F20
P3
IO246NB7F22
F3
IO203NB6F19
W2
IO246PB7F22
E3
IO203PB6F19
Y2
IO225NB7F21
J2
IO247NB7F23
K7
IO204NB6F19
AA1
IO225PB7F21
J1
IO247PB7F23
K6
IO204PB6F19
AB1
IO226PB7F21
G2
IO248NB7F23
D2
IO205NB6F19
R6
IO227NB7F21
H3
IO249NB7F23
G4
IO205PB6F19
T6
IO227PB7F21
H2
IO249PB7F23
G3
IO206NB6F19
W1
IO229NB7F21
K2
IO251NB7F23
N10
IO206PB6F19
Y1
IO229PB7F21
L2
IO251PB7F23
N9
IO207NB6F19
T2
IO230NB7F21
K1
IO253NB7F23
H4
IO207PB6F19
U2
IO230PB7F21
L1
IO253PB7F23
J4
IO208NB6F19
T1
IO231NB7F21
E2
IO255NB7F23
J6
IO208PB6F19
U1
IO231PB7F21
F2
IO255PB7F23
J5
IO209NB6F19
AA2
IO232NB7F21
F1
IO257NB7F23
H5
IO209PB6F19
AB2
IO232PB7F21
G1
IO257PB7F23
H6
IO210NB6F19
P5
IO233NB7F21
L3
IO211NB6F19
M1
IO233PB7F21
M3
GND
K5
IO211PB6F19
N1
IO234NB7F21
D1
GND
A18
IO212NB6F19
P1
IO234PB7F21
E1
GND
A2
IO212PB6F19
R1
IO235NB7F21
K4
GND
A24
IO213NB6F19
R8
IO235PB7F21
L4
GND
A25
IO213PB6F19
T8
IO236NB7F22
M6
GND
A8
IO215NB6F20
U4
IO237NB7F22
N8
GND
AA10
IO215PB6F20
V4
IO237PB7F22
N7
GND
AA16
IO216NB6F20
P8
IO238NB7F22
M5
GND
AA18
IO216PB6F20
R3
IO239NB7F22
L6
GND
AA21
IO217NB6F20
P7
IO239PB7F22
L5
GND
AA5
IO217PB6F20
R7
IO240NB7F22
M4
GND
AB22
IO219NB6F20
R4
IO241NB7F22
L7
GND
AB4
IO219PB6F20
T4
IO241PB7F22
M7
GND
AC10
IO220NB6F20
P2
IO242NB7F22
J3
GND
AC16
IO220PB6F20
R2
IO243NB7F22
M9
GND
AC23
IO221NB6F20
N4
IO243PB7F22
M8
GND
AC3
3 -1 0 6
Bank 7
v2.7
Dedicated I/O
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
GND
AD1
GND
M12
TCK
F5
GND
AD2
GND
M13
TDI
C5
GND
AD24
GND
M14
TDO
F6
GND
AD25
GND
M15
TMS
D6
GND
AE1
GND
N11
TRST
E6
GND
AE18
GND
N12
VCCA
AB20
GND
AE2
GND
N13
VCCA
F22
GND
AE24
GND
N14
VCCA
F4
GND
AE25
GND
N15
VCCA
J17
GND
AE8
GND
P11
VCCA
J9
GND
B1
GND
P12
VCCA
K10
GND
B2
GND
P13
VCCA
K11
GND
B24
GND
P14
VCCA
K15
GND
B25
GND
P15
VCCA
K16
GND
C10
GND
R11
VCCA
L10
GND
C16
GND
R12
VCCA
L16
GND
C23
GND
R13
VCCA
R10
GND
C3
GND
R14
VCCA
R16
GND
D22
GND
R15
VCCA
T10
GND
D4
GND
T21
VCCA
T11
GND
E10
GND
T23
VCCA
T15
GND
E16
GND
T3
VCCA
T16
GND
E21
GND
T5
VCCA
U17
GND
E5
GND
V1
VCCA
U9
GND/LP
E8
GND
V25
VCCA
Y4
GND
H1
GND
V5
VCCDA
A12
GND
H21
NC
A14
VCCDA
AA13
GND
H25
NC
AA20
VCCDA
AA15
GND
K21
NC
AB13
VCCDA
AA7
GND
K23
NC
AD4
VCCDA
AC11
GND
K3
NC
AE12
VCCDA
AD11
GND
L11
NC
F21
VCCDA
AE17
GND
L12
NC
G10
VCCDA
B15
GND
L13
PRA
F13
VCCDA
C15
GND
L14
PRB
A13
VCCDA
C6
GND
L15
PRC
AB12
VCCDA
D13
GND
M11
PRD
AE13
VCCDA
E13
v2.7
3-107
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
624-Pin CCGA
AX1000 Function
Pin Number
AX1000 Function
Pin Number
AX1000 Function
Pin Number
VCCDA
E19
VCCIB4
T14
VCOMPLF
V14
VCCDA
G5
VCCIB4
U15
VCOMPLG
AA12
VCCDA
N21
VCCIB4
U16
VCOMPLH
V12
VCCDA
N5
VCCIB5
AB5
VPUMP
E20
VCCDA
W21
VCCIB5
AC4
VCCIB0
A3
VCCIB5
AD3
VCCIB0
B3
VCCIB5
AE3
VCCIB0
C4
VCCIB5
T12
VCCIB0
D5
VCCIB5
U10
VCCIB0
J10
VCCIB5
U11
VCCIB0
J11
VCCIB6
AA4
VCCIB0
K12
VCCIB6
AB3
VCCIB1
A23
VCCIB6
AC1
VCCIB1
B23
VCCIB6
AC2
VCCIB1
C22
VCCIB6
P10
VCCIB1
D21
VCCIB6
R9
VCCIB1
J15
VCCIB6
T9
VCCIB1
J16
VCCIB7
C1
VCCIB1
K14
VCCIB7
C2
VCCIB2
C24
VCCIB7
D3
VCCIB2
C25
VCCIB7
E4
VCCIB2
D23
VCCIB7
K9
VCCIB2
E22
VCCIB7
L9
VCCIB2
K17
VCCIB7
M10
VCCIB2
L17
VCCPLA
E12
VCCIB2
M16
VCCPLB
J12
VCCIB3
AA22
VCCPLC
E14
VCCIB3
AB23
VCCPLD
H14
VCCIB3
AC24
VCCPLE
Y14
VCCIB3
AC25
VCCPLF
U14
VCCIB3
P16
VCCPLG
Y12
VCCIB3
R17
VCCPLH
U12
VCCIB3
T17
VCOMPLA
F12
VCCIB4
AB21
VCOMPLB
H12
VCCIB4
AC22
VCOMPLC
F14
VCCIB4
AD23
VCOMPLD
J14
VCCIB4
AE23
VCOMPLE
AA14
3 -1 0 8
v2.7
Axcelerator Family FPGAs
624-Pin CCGA
624-Pin CCGA
AX2000 Function
Pin Number
Bank 0
AX2000 Function
624-Pin CCGA
Pin Number
AX2000 Function
Pin Number
IO30NB0F2
B11
IO57PB1F5
D15
IO00NB0F0
D7*
IO30PB0F2
B10
IO58NB1F5
A22
IO00PB0F0
E7*
IO31NB0F2
E11
IO58PB1F5
A21
IO01NB0F0
G7
IO31PB0F2
F11
IO59NB1F5
F16
IO01PB0F0
G6
IO33NB0F2
D12
IO61NB1F5
G17
IO02NB0F0
B5
IO33PB0F2
D11
IO61PB1F5
H17
IO02PB0F0
B4
IO34NB0F3
A11
IO62NB1F5
B17
IO04PB0F0
C7
IO34PB0F3
A10
IO62PB1F5
B16
IO05NB0F0
F8
IO37NB0F3
J13
IO63NB1F5
H18
IO05PB0F0
F7
IO37PB0F3
K13
IO65NB1F6
C17
IO06NB0F0
H8
IO38NB0F3
H11
IO66PB1F6
B18
IO06PB0F0
H7
IO38PB0F3
G11
IO67NB1F6
J18
IO11NB0F0
J8
IO40PB0F3
B12
IO67PB1F6
J19
IO11PB0F0
J7
IO41NB0F3/HCLKAN
G13
IO68NB1F6
B20
IO12PB0F1
B6
IO41PB0F3/HCLKAP
G12
IO68PB1F6
B19
IO13NB0F1
E9*
IO42NB0F3/HCLKBN
C13
IO69NB1F6
E17
IO13PB0F1
D8*
IO42PB0F3/HCLKBP
C12
IO69PB1F6
F17
IO15NB0F1
C9
IO70NB1F6
B22
IO15PB0F1
C8
IO43NB1F4/HCLKCN
G15
IO70PB1F6
B21
IO16NB0F1
A5
IO43PB1F4/HCLKCP
G14
IO71PB1F6
G18
IO16PB0F1
A4
IO44NB1F4/HCLKDN
B14
IO73NB1F6
G19
IO17NB0F1
D10
IO44PB1F4/HCLKDP
B13
IO74NB1F6
C19
IO17PB0F1
D9
IO45NB1F4
H13
IO74PB1F6
C18
IO18NB0F1
A7
IO47NB1F4
D14
IO75NB1F6
D18
IO18PB0F1
A6
IO47PB1F4
C14
IO75PB1F6
D17
IO19NB0F1
G9
IO48NB1F4
A16
IO76NB1F7
C21
IO19PB0F1
G8
IO48PB1F4
A15
IO76PB1F7
C20
IO20PB0F1
B7
IO49PB1F4
H15
IO79NB1F7
H20
IO23NB0F2
F10
IO51NB1F4
E15
IO79PB1F7
H19
IO23PB0F2
F9
IO51PB1F4
F15
IO80NB1F7
E18
IO26NB0F2
C11*
IO52NB1F4
A17
IO80PB1F7
F18
IO26PB0F2
B8*
IO55NB1F5
G16
IO81NB1F7
G21
IO27NB0F2
H10
IO55PB1F5
H16
IO81PB1F7
G20
IO27PB0F2
H9
IO56NB1F5
A20
IO82NB1F7
F20
IO28NB0F2
A9
IO56PB1F5
A19
IO82PB1F7
F19
IO28PB0F2
B9
IO57NB1F5
D16
IO85NB1F7
D20*
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Bank 1
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-109
Axcelerator Family FPGAs
624-Pin CCGA
AX2000 Function
IO85PB1F7
624-Pin CCGA
Pin Number
D19*
Bank 2
Pin Number
AX2000 Function
Pin Number
IO112NB2F10
L24
IO146NB3F13
T24
IO112PB2F10
K24
IO146PB3F13
R24
IO86NB2F8
F23
IO113NB2F10
N17
IO147NB3F13
T20
IO86PB2F8
E23
IO115NB2F10
M20
IO147PB3F13
R20
IO87NB2F8
H23
IO115PB2F10
M21
IO148NB3F13
U25
IO87PB2F8
G23
IO117NB2F10
N19
IO148PB3F13
T25
IO88NB2F8
E24
IO117PB2F10
N18
IO149NB3F13
T22
IO88PB2F8
D24
IO118NB2F11
J25
IO153NB3F14
U19
IO89NB2F8
M17*
IO121NB2F11
N24
IO153PB3F14
T19
IO89PB2F8
G22*
IO121PB2F11
M24
IO154NB3F14
Y25
IO91NB2F8
J22
IO122NB2F11
L25
IO154PB3F14
W25
IO91PB2F8
H22
IO122PB2F11
K25
IO157NB3F14
V20
IO92NB2F8
L18
IO123NB2F11
N22
IO157PB3F14
U20
IO92PB2F8
K18
IO123PB2F11
M22
IO158NB3F14
AB25
IO96NB2F9
G24
IO124NB2F11
N23
IO158PB3F14
AA25
IO96PB2F9
F24
IO124PB2F11
M23
IO160PB3F14
W24
IO97NB2F9
J21
IO127NB2F11
P18
IO161NB3F15
U24
IO97PB2F9
J20
IO127PB2F11
P17
IO161PB3F15
U23
IO98PB2F9
J23
IO128NB2F11
N25
IO162NB3F15
AA24
IO99NB2F9
L19
IO128PB2F11
M25
IO162PB3F15
Y24
IO99PB2F9
K19
IO163NB3F15
V22
IO100NB2F9
E25
IO129NB3F12
N20
IO163PB3F15
U22
IO100PB2F9
D25
IO130PB3F12
P24
IO164NB3F15
V23
IO103PB2F9
K20
IO131NB3F12
P21
IO164PB3F15
V24
IO105NB2F9
M19
IO133NB3F12
P20
IO166NB3F15
AB24
IO105PB2F9
M18
IO133PB3F12
P19
IO167NB3F15
V21
IO106NB2F9
J24
IO138NB3F12
R23
IO167PB3F15
U21
IO106PB2F9
H24
IO138PB3F12
P23
IO168NB3F15
Y23
IO107NB2F10
L23*
IO139NB3F13
R22
IO168PB3F15
AA23
IO107PB2F10
N16*
IO139PB3F13
P22
IO169NB3F15
W22*
IO109NB2F10
L22
IO141NB3F13
R19
IO169PB3F15
W23*
IO109PB2F10
K22
IO142NB3F13
R25
IO170NB3F15
Y22
IO110NB2F10
G25
IO142PB3F13
P25
IO170PB3F15
Y21
IO110PB2F10
F25
IO143PB3F13
R21
IO111NB2F10
L21
IO145NB3F13
T18
IO171NB4F16
AC20*
IO111PB2F10
L20
IO145PB3F13
R18
IO171PB4F16
AC21*
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -1 1 0
AX2000 Function
624-Pin CCGA
Bank 3
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Bank 4
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
624-Pin CCGA
AX2000 Function
624-Pin CCGA
Pin Number
AX2000 Function
624-Pin CCGA
Pin Number
AX2000 Function
Pin Number
IO172NB4F16
W20
IO206NB4F19
AB14
IO229PB5F21
AD10
IO172PB4F16
Y20
IO206PB4F19
AB15
IO230NB5F21
V11
IO173NB4F16
AD21
IO207NB4F19
AE15
IO233NB5F21
AD7
IO173PB4F16
AD22
IO207PB4F19
AE16
IO233PB5F21
AD8
IO174NB4F16
AA19
IO208PB4F19
W16
IO234NB5F21
V9
IO176NB4F16
Y18
IO209NB4F19
AE14
IO234PB5F21
V10
IO176PB4F16
Y19
IO210NB4F19
V15
IO236NB5F22
AC9
IO177NB4F16
AB19
IO210PB4F19
V16
IO238NB5F22
W8
IO177PB4F16
AB18
IO211NB4F19
AD14
IO238PB5F22
W9
IO182NB4F17
V19
IO211PB4F19
AC14
IO239NB5F22
AE4
IO182PB4F17
W19
IO212NB4F19/CLKEN
W14
IO239PB5F22
AE5
IO183PB4F17
AC19
IO212PB4F19/CLKEP
W15
IO240NB5F22
AB9
IO184NB4F17
AB17
IO213NB4F19/CLKFN
AC13
IO242NB5F22
AA9
IO184PB4F17
AC17
IO213PB4F19/CLKFP
AD13
IO242PB5F22
Y9
IO185NB4F17
AD19
IO243NB5F22
AD5
IO185PB4F17
AD20
IO214NB5F20/CLKGN
W13
IO243PB5F22
AD6
IO187PB4F17
AC18
IO214PB5F20/CLKGP
Y13
IO244NB5F22
U8
IO188NB4F17
Y17
IO215NB5F20/CLKHN
AC12
IO246NB5F23
AB8
IO188PB4F17
AA17
IO215PB5F20/CLKHP
AD12
IO246PB5F23
AC8
IO189PB4F17
AE22
IO216NB5F20
U13
IO247NB5F23
AB7
IO191NB4F17
W18
IO216PB5F20
V13
IO247PB5F23
AC7
IO191PB4F17
V18
IO217NB5F20
AE10
IO250NB5F23
AA8
IO192PB4F17
U18
IO217PB5F20
AE11
IO250PB5F23
Y8
IO195PB4F18
AE21
IO218NB5F20
W11
IO251NB5F23
V8
IO196NB4F18
AB16
IO218PB5F20
W12
IO251PB5F23
V7
IO197NB4F18
AD17
IO222NB5F20
AA11
IO252NB5F23
Y7
Bank 5
IO197PB4F18
AD18
IO222PB5F20
Y11
IO252PB5F23
W7
IO198NB4F18
V17
IO223PB5F21
AE9
IO253NB5F23
AC5
IO198PB4F18
W17
IO225NB5F21
AE6
IO253PB5F23
AC6
IO199NB4F18
AE19
IO225PB5F21
AE7
IO254NB5F23
Y6
IO199PB4F18
AE20
IO226NB5F21
Y10
IO254PB5F23
W6
IO200NB4F18
AC15
IO226PB5F21
W10
IO256NB5F23
AB6*
IO201NB4F18
AD15
IO227PB5F21
T13
IO256PB5F23
AA6*
IO201PB4F18
AD16
IO228NB5F21
AB10
IO202NB4F18
Y15
IO228PB5F21
AB11
IO257NB6F24
Y3
IO202PB4F18
Y16
IO229NB5F21
AD9
IO257PB6F24
AA3
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Bank 6
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-111
Axcelerator Family FPGAs
624-Pin CCGA
AX2000 Function
624-Pin CCGA
Pin Number
Pin Number
AX2000 Function
Pin Number
IO258NB6F24
V3
IO288NB6F26
P5
IO321NB7F30
J2
IO258PB6F24
W3
IO290NB6F27
P6
IO321PB7F30
J1
IO259NB6F24
AA2
IO291NB6F27
P1
IO323NB7F30
L7
IO259PB6F24
AB2
IO291PB6F27
R1
IO323PB7F30
M7
IO260NB6F24
V6*
IO292NB6F27
P7
IO324NB7F30
M9
IO260PB6F24
W4*
IO292PB6F27
R7
IO324PB7F30
M8
IO262NB6F24
U4
IO293NB6F27
M1
IO327NB7F30
F1
IO262PB6F24
V4
IO293PB6F27
N1
IO327PB7F30
G1
IO263NB6F24
Y5
IO294NB6F27
P8
IO328NB7F30
K7
IO263PB6F24
W5
IO296NB6F27
N3
IO328PB7F30
K6
IO268NB6F25
U6
IO296PB6F27
P3
IO329NB7F30
D1
IO268PB6F25
U5
IO298NB6F27
N4
IO329PB7F30
E1
IO269PB6F25
U3
IO298PB6F27
P4
IO331PB7F30
G2
IO272NB6F25
T2
IO299NB6F27
M2
IO332NB7F31
H3
IO272PB6F25
U2
IO299PB6F27
N2
IO332PB7F31
H2
IO273NB6F25
W2
IO333NB7F31
E2
IO273PB6F25
Y2
IO300NB7F28
P9*
IO333PB7F31
F2
IO274NB6F25
R6
IO300PB7F28
N6*
IO334NB7F31
H4
IO274PB6F25
T6
IO302NB7F28
M6
IO334PB7F31
J4
IO275NB6F25
T7
IO304NB7F28
N8
IO335NB7F31
H5
IO275PB6F25
U7
IO304PB7F28
N7
IO335PB7F31
H6
IO277NB6F25
V2
IO308NB7F28
M4
IO337NB7F31
D2
IO278NB6F26
R4
IO309NB7F28
L3
IO338NB7F31
J6
IO278PB6F26
T4
IO309PB7F28
M3
IO338PB7F31
J5
IO279PB6F26
R3
IO310NB7F29
N10
IO339NB7F31
F3
IO280NB6F26
R5
IO310PB7F29
N9
IO339PB7F31
E3
IO281NB6F26
AA1
IO311NB7F29
K1
IO340NB7F31
G4*
IO281PB6F26
AB1
IO311PB7F29
L1
IO340PB7F31
G3*
IO284NB6F26
R8
IO313NB7F29
M5
IO341NB7F31
K8
IO284PB6F26
T8
IO316NB7F29
L6
IO341PB7F31
L8
IO285NB6F26
W1
IO316PB7F29
L5
IO285PB6F26
Y1
IO317NB7F29
K2
GND
K5
IO286NB6F26
P2
IO317PB7F29
L2
GND
A18
IO286PB6F26
R2
IO318NB7F29
K4
GND
A2
IO287NB6F26
T1
IO318PB7F29
L4
GND
A24
IO287PB6F26
U1
IO320NB7F29
J3
GND
A25
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -1 1 2
AX2000 Function
624-Pin CCGA
Bank 7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
Dedicated I/O
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
624-Pin CCGA
AX2000 Function
624-Pin CCGA
Pin Number
AX2000 Function
624-Pin CCGA
Pin Number
AX2000 Function
Pin Number
GND
A8
GND
E8
GND
V1
GND
AA10
GND
H1
GND
V25
GND
AA16
GND
H21
GND
V5
GND
AA18
GND
H25
PRA
F13
GND
AA21
GND
K21
PRB
A13
GND
AA5
GND
K23
PRC
AB12
GND
AB22
GND
K3
PRD
AE13
GND
AB4
GND
L11
TCK
F5
GND
AC10
GND
L12
TDI
C5
GND
AC16
GND
L13
TDO
F6
GND
AC23
GND
L14
TMS
D6
GND
AC3
GND
L15
TRST
E6
GND
AD1
GND
M11
VCCA
AB20
GND
AD2
GND
M12
VCCA
F22
GND
AD24
GND
M13
VCCA
F4
GND
AD25
GND
M14
VCCA
J17
GND
AE1
GND
M15
VCCA
J9
GND
AE18
GND
N11
VCCA
K10
GND
AE2
GND
N12
VCCA
K11
GND
AE24
GND
N13
VCCA
K15
GND
AE25
GND
N14
VCCA
K16
GND
AE8
GND
N15
VCCA
L10
GND
B1
GND
P11
VCCA
L16
GND
B2
GND
P12
VCCA
R10
GND
B24
GND
P13
VCCA
R16
GND
B25
GND
P14
VCCA
T10
GND
C10
GND
P15
VCCA
T11
GND
C16
GND
R11
VCCA
T15
GND
C23
GND
R12
VCCA
T16
GND
C3
GND
R13
VCCA
U17
GND
D22
GND
R14
VCCA
U9
GND
D4
GND
R15
VCCA
Y4
GND
E10
GND
T21
VCCDA
A12
GND
E16
GND
T23
VCCDA
A14
GND
E21
GND
T3
VCCDA
AA13
GND
E5
GND
T5
VCCDA
AA15
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3-113
Axcelerator Family FPGAs
624-Pin CCGA
AX2000 Function
Pin Number
AX2000 Function
Pin Number
AX2000 Function
Pin Number
VCCDA
AA20
VCCIB2
D23
VCCIB7
E4
VCCDA
AA7
VCCIB2
E22
VCCIB7
K9
VCCDA
AB13
VCCIB2
K17
VCCIB7
L9
VCCDA
AC11
VCCIB2
L17
VCCIB7
M10
VCCDA
AD11
VCCIB2
M16
VCCPLA
E12
VCCDA
AD4
VCCIB3
AA22
VCCPLB
J12
VCCDA
AE12
VCCIB3
AB23
VCCPLC
E14
VCCDA
AE17
VCCIB3
AC24
VCCPLD
H14
VCCDA
B15
VCCIB3
AC25
VCCPLE
Y14
VCCDA
C15
VCCIB3
P16
VCCPLF
U14
VCCDA
C6
VCCIB3
R17
VCCPLG
Y12
VCCDA
D13
VCCIB3
T17
VCCPLH
U12
VCCDA
E13
VCCIB4
AB21
VCOMPLA
F12
VCCDA
E19
VCCIB4
AC22
VCOMPLB
H12
VCCDA
F21
VCCIB4
AD23
VCOMPLC
F14
VCCDA
G10
VCCIB4
AE23
VCOMPLD
J14
VCCDA
G5
VCCIB4
T14
VCOMPLE
AA14
VCCDA
N21
VCCIB4
U15
VCOMPLF
V14
VCCDA
N5
VCCIB4
U16
VCOMPLG
AA12
VCCDA
W21
VCCIB5
AB5
VCOMPLH
V12
VCCIB0
A3
VCCIB5
AC4
VPUMP
E20
VCCIB0
B3
VCCIB5
AD3
VCCIB0
C4
VCCIB5
AE3
VCCIB0
D5
VCCIB5
T12
VCCIB0
J10
VCCIB5
U10
VCCIB0
J11
VCCIB5
U11
VCCIB0
AA4
K12
VCCIB6
VCCIB1
A23
VCCIB6
AB3
VCCIB1
B23
VCCIB6
AC1
VCCIB1
C22
VCCIB6
AC2
VCCIB1
D21
VCCIB6
P10
VCCIB1
J15
VCCIB6
R9
VCCIB1
J16
VCCIB6
T9
VCCIB1
K14
VCCIB7
C1
VCCIB2
C24
VCCIB7
C2
VCCIB2
C25
VCCIB7
D3
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
3 -1 1 4
624-Pin CCGA
624-Pin CCGA
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
v2.7
* Not routed on the same package layer
and to adjacent LGA pads as its differential
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous Version
v2.6
v2.5
v2.4
v2.3
v2.2
v2.1
Changes in Current Version (v2.7)
Page
RoHS-compliant information was added to the "Ordering Information".
ii
ACTgen was changed to SmartGen because ACTgen was obsolete.
N/A
In Table 2-4, the units for the PLOAD, P10, and PI/O were updated from mW/MHz to mW/MHz.
2-2
In the "Pin Descriptions"section, the HCLK and CLK descriptions were updated to include tie-off
information.
2-9
The "Global Resource Distribution" section was updated.
2-59
The " 624-Pin CCGA" table was updated.
3-103
A note was added to Table 2-2.
2-1
In the "Package Thermal Characteristics", the temperature was changed from 150°C to 125°C.
2-6
Revised ordering information and timing data to reflect phase out of –3 speed grade options.
Table 2-3 was updated.
2
The "Packaging Data" section is new.
iii
Table 2-2 was updated.
2-1
"VCCDA Supply Voltage" was updated.
2-9
"PRA/B/C/D Probe A/B/C/D" was updated.
2-10
The "User I/Os" was updated.
2-10
Figure 1-3 was updated.
1-3
Table 2-2 was updated.
2-1
The "Power-Up/Down Sequence" section was updated.
2-1
Table 2-4 was updated.
2-2
Table 2-5 was updated.
2-3
The "Timing Characteristics" section was added.
2-7
Table 2-7 was updated.
2-7
Figure 2-1 was updated.
2-8
The External Setup and Clock-to-Out (Pad-to-Pad) equations in the "Hardwired Clock – Using
LVTTL 24mA High Slew Clock I/O" section were updated.
2-8
The External Setup and Clock-to-Out (Pad-to-Pad) in the "Routed Clock – Using LVTTL 24mA
High Slew Clock I/O" section were updated.
2-8
The "Global Pins" section was updated.
2-9
The "User I/Os" section was updated.
2-10
Table 2-17 was updated.
2-17
Figure 2-8 was updated.
2-18
Figure 2-13 and Figure 2-14 were updated.
2-21
v2.7
4-1
Axcelerator Family FPGAs
Previous Version
v2.1 (continued)
Changes in Current Version (v2.7)
The following timing parameters were renamed in I/O timing characteristic tables from
Table 2-21 to Table 2-59:
Page
2-22 to 2-41
tIOCLKQ > tICLKQ
tIOCLKY > tOCLKQ
Timing numbers were updated from Table 2-21 to Table 2-77.
v2.0
Advanced v1.6
The "R-Cell" section was updated.
2-47
Figure 2-59 was updated.
2-74
Figure 2-60 was updated.
2-75
Figure 2-67 was updated.
2-85
Figure 2-68 was updated.
2-86
Table 2-88 to Table 2-92 were updated.
2-75 to 2-79
Table 2-97 to Table 2-101 were updated.
2-86 to 2-88
The "TRST" section was updated.
2-89
The "Global Set Fuse" section was added.
2-90
A footnote was added to "896-Pin FBGA" for the AX2000 regarding pins AB1, AE2, G1, and
K2.
3-49
Pinouts for the AX250, AX500 and AX1000 were added for "352-Pin CQFP".
3-88
Pinout for the AX1000 was added for "624-Pin CCGA".
3-102
Table 2-78 was updated.
2-58
The "Low Power Mode" section was updated.
2-89
Table 1-1 has been updated.
i
"Ordering Information" section has been updated.
ii
The "Device Resources" section has been updated.
ii
The "Temperature Grade Offerings" section is new.
iii
The "Speed Grade and Temperature Grade Matrix" section has been updated.
iii
Table 2-9 has been updated.
2-11
Table 2-10 has been updated.
2-11
Table 2-1 has been updated.
2-1
Table 2-2 has been updated.
2-1
Table 2-3 has been updated.
2-2
Table 2-4 has been updated.
2-2
Table 2-5 has been updated.
2-3
The "Power Estimation Example" section has been updated.
2-5
The "Thermal Characteristics" section has been updated.
2-6
The "Package Thermal Characteristics" section has been updated.
2-6
The "Timing Characteristics" section has been updated.
2-7
The "Pin Descriptions" section has been updated.
2-9
Timing numbers have been updated from the "3.3V LVTTL" section to the "Timing
Characteristics" section. Many AC Loads were updated as well.
Timing characteristics for the "Hardwired Clocks" section were updated.
4 -2
2-22 to 2-58
v2.7
2-22 to 2-48
2-55
Axcelerator Family FPGAs
Previous Version
Advanced v0.6
(continued)
Advanced v1.5
Changes in Current Version (v2.7)
Page
Timing characteristics for the "Routed Clocks" section were updated.
Table 2-88 to Table 2-91 were updated.
2-75 to 2-78
Table 2-97 to Table 2-98were updated.
2-86 to 2-87
The "Low Power Mode" section was updated.
2-89
The "Interface" section was updated.
2-89
The "Data Registers (DRs)" section was updated.
2-90
The "Security" section was updated.
2-90
The "Silicon Explorer II Probe Interface" section was updated.
2-91
The "Programming" section was updated.
2-91
In the "208-Pin PQFP" (AX500) section, pins 2, 52, and 156 changed from VCCDA to VCCA.
For pins 170 and 171, the I/O names refer to pair 23 instead of 24.
3-78
The following changes were made in the "676-Pin FBGA"(AX500) section:
AE2, AE25
Change from NC to GND.
AF2, AF25
Changed from GND to NC
AB4, AF24, C1, C26 Changed from VCCDA to VCCA
AD15
Change from VCCDA to VCOMPLE
AD17
Changed from VCOMPLE to VCCDA
3-36
In the "896-Pin FBGA" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.
3-49
The "352-Pin CQFP" section is new.
3-88
The "624-Pin CCGA" section is new.
3-102
All I/O FIFO capability was removed.
n/a
Table 1-1 was updated.
i
Figure 1-9 and was updated.
Advanced v1.4
Advanced v1.3
2-57
1-7
Figure 2-5 was updated.
2-14
The "Using an I/O Register" section was updated.
2-14
The AX250 and AX1000 descriptions were added to the "484-Pin FBGA"section.
3-22
Table 2-3 was updated.
2-2
Figure 2-1 was updated.
2-8
Figure 2-48 was updated.
2-63
Figure 2-52 was updated.
2-68
In the "208-Pin PQFP" table, pin 196 was missing, but it has been added in this version with a
function of GND.
3-78
The following pins in the "484-Pin FBGA" table for AX500 were changed:
3-22
Pin G7 is GND/LP
Pins AB8, C10, C11, C14, AB16 are NC.
The "676-Pin FBGA" table was updated.
3-36
v2.7
4-3
Axcelerator Family FPGAs
Previous Version
Advanced v1.2
Changes in Current Version (v2.7)
The "Device Resources" section was updated for the CS180.
The "Programmable Interconnect Element" and Figure 1-2 was new.
Advanced v1.1
ii
1-1 and 1-2
The "180-Pin CSP" table is new.
3-1
The "208-Pin PQFP" tables for the AX500 were updated. The following pins were not defined
in the previous version:
GND 21
IO106PB5F10/CLKHP 71
GND 136
3-78
Table 1-1 was updated.
i
"Ordering Information", "Device Resources" and the Product Plan table were updated.
ii
Figure 1-3 was updated.
1-3
The "Design Environment" section was updated.
1-6
Figure 1-8 was new.
1-6
Table 2-3 was updated.
2-2
"Package Thermal Characteristics" was updated.
2-6
Figure 2-2 was updated.
2-9
Table 2-8 was updated.
2-11
Figure 2-11 was updated.
2-20
The timing characteristics tables from pages 2-22 to 2-49 were updated.
The "Global Resources" section was updated.
The timing characteristics tables from pages 2-86 to 2-87 were updated.
4 -4
Page
2-22 to 2-49
2-55
2-86 to 2-87
The "208-Pin PQFP" tables are new.
3-78
The "256-Pin FBGA" tables are new.
3-12
The "324-Pin FBGA" tables are new.
3-18
v2.7
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production,” and “Web-only.” The
definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a advanced datasheet (advanced or production) containing general
product information. This brief gives an overview of specific device and family information.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could
require an approved export license prior to export from the United States. An export includes release of product or
disclosure of technology to a foreign national inside or outside the United States.
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
w w w. a c t e l . c o m
Actel Corporation
Actel Europe Ltd.
Actel Japan
Actel Hong Kong
2061 Stierlin Court
Mountain View, CA
94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600
River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
5172160-15/11.08
Similar pages