Pan Jit BZX55-C22 Axial lead zener diode Datasheet

DATA SHEET
BZX55-C SERIES
AXIAL LEAD ZENER DIODES
VOLTAGE
2.4 to 47 Volts
DO-35
500 mWatts
POWER
Unit: inch (mm)
FEATURES
.020(0.52)TYP.
1.02(26.0)MIN.
• Planar Die construction
• 500mW Power Dissipation
• Ideally Suited for Automated Assembly Processes
.153(3.9)MAX.
• Both normal and Pb free product are available :
Normal : 80~95% Sn, 5~20% Pb
Pb free: 98.5% Sn above
MECHANICAL DATA
.079(2.0)MAX.
1.02(26.0)MIN.
• Case: Molded glass DO-35
• Terminals: Solderable per MIL-STD-202, Method 208
• Polarity: See Diagram Below
• Approx. Weight: 0.13 grams
• Mounting Position: Any
• Ordering information: Suffix :” -35” to order DO-35 Package
• Packing information
B
- 2K per Bulk box
T/R - 10K per 13" plastic Reel
T/B - 5K per horiz. tape & Ammo box
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (TJ =25°C unless otherwise noted)
Parameter
Symbol
Value
Units
PTOT
500
mW
Junction Temperature
TJ
175
O
Storage Temperature Range
TS
-65 to +175
O
Power Dissipation at Tamb = 25
O
C
C
C
Valid provided that leads at a distance of 8mm from case are kept at ambient temperature.
Parameter
Thermal Resistance Junction to Ambient Air
Forward Voltage at IF = 100mA
Symbol
Min.
Typ.
Max.
Units
RthA
--
--
0.3
K/mW
VF
--
--
1
V
Valid provided that leads at a distance of 10 mm from case are kept at ambient temperature.
STAD-SEP.14.2004
PAGE . 1
Nominal Zener Voltage
Part Number
V Z @ IZT
Max Reverse
Leakage Current
Max. Zener Impedance
Z ZT @ IZT
Z ZK @ IZK
IR @ V R
marking
co d e
No m. V
M i n. V
M a x. V
Ω
mA
Ω
mA
uA
V
BZX55-C2V4
2.4
2.28
2.56
85
5.0
600
1.0
50
1.0
55C 2V 4
BZX55-C2V7
2.7
2.50
2.90
85
5.0
600
1.0
10
1.0
55C 2V 7
BZX55-C3V0
3.0
2.80
3.20
85
5.0
600
1.0
4.0
1.0
55C 3V 0
BZX55-C3V3
3.3
3.10
3.50
85
5.0
600
1.0
2.0
1.0
55C 3V 3
BZX55-C3V6
3.6
3.40
3.80
85
5.0
600
1.0
2.0
1.0
55C 3V 6
BZX55-C3V9
3.9
3.70
4.10
85
5.0
600
1.0
2.0
1.0
55C 3V 9
BZX55-C4V3
4.3
4.00
4.60
75
5.0
600
1.0
1.0
1.0
55C 4V 3
BZX55-C4V7
4.7
4.40
5.00
60
5.0
600
1.0
0.5
1.0
55C 4V 7
BZX55-C5V1
5.1
4.80
5.40
35
5.0
550
1.0
0.1
1.0
55C 5V 1
BZX55-C5V6
5.6
5.20
6.00
25
5.0
450
1.0
0.1
1.0
55C 5V 6
BZX55-C6V2
6.2
5.80
6.60
10
5.0
200
1.0
0.1
2.0
55C 6V 2
BZX55-C6V8
6.8
6.40
7.20
8
5.0
150
1.0
0.1
3.0
55C 6V 8
BZX55-C7V5
7.5
7.00
7.90
7
5.0
50
1.0
0.1
5.0
55C 7V 5
BZX55-C8V2
8.2
7.70
8.70
7
5.0
50
1.0
0.1
6.0
55C 8V 2
BZX55-C9V1
9.1
8.50
9.60
10
5.0
50
1.0
0.1
7.0
55C 9V 1
BZX55-C10
10.0
9.40
10.60
15
5.0
70
1.0
0.1
7.5
55C 10V
BZX55-C11
11.0
10.40
11.60
20
5.0
70
1.0
0.1
8.5
55C11V
BZX55-C12
12.0
11.40
12.70
20
5.0
90
1.0
0.1
9.0
55C 12V
BZX55-C13
13.0
12.40
14.10
26
5.0
110
1.0
0.1
10.0
55C 13V
BZX55-C15
15.0
13.80
15.60
30
5.0
110
1.0
0.1
11.0
55C 15V
BZX55-C16
16.0
15.30
17.10
40
5.0
170
1.0
0.1
12.0
55C 16V
BZX55-C18
18.0
16.80
19.10
50
5.0
170
1.0
0.1
14.0
55C 18V
BZX55-C20
20.0
18.80
21.20
55
5.0
220
1.0
0.1
15.0
55C 20V
BZX55-C22
22.0
20.80
23.30
55
5.0
220
1.0
0.1
17.0
55C 22V
BZX55-C24
24.0
22.80
25.60
80
5.0
220
1.0
0.1
18.0
55C 24V
BZX55-C27
27.0
25.10
28.90
80
5.0
220
1.0
0.1
20.0
55C 27V
BZX55-C30
30.0
28.00
32.00
80
5.0
220
1.0
0.1
22.0
55C 30V
BZX55-C33
33.0
31.00
35.00
80
5.0
220
1.0
0.1
24.0
55C 33V
BZX55-C36
36.0
34.00
38.00
80
5.0
220
1.0
0.1
27.0
55C 36V
BZX55-C39
39.0
37.00
41.00
90
2.5
500
1.0
0.1
30.0
55C 39V
BZX55-C43
43.0
40.00
46.00
90
2.5
600
1.0
0.1
33.0
55C 43V
BZX55-C47
47.0
44.00
50.00
110
2.5
700
1.0
0.1
36.0
55C 47V
STAD-SEP.14.2004
PAGE . 2
1.3
VZtn – RelativeVoltageChange
500
400
300
l
l
200
100
0
5
10
TK VZ =10 x 10–4/K
8 x 10–4/K
6 x 10–4/K
1.1
4 x 10–4/K
2 x 10–4/K
0
1.0
–2 x 10–4/K
–4 x 10–4/K
0.9
0.8
–60
20
15
l – Lead Length ( mm )
500
400
300
200
100
0
40
80
120
160
200
Tamb – Ambient Temperature(°C )
95 9602
60
120
180
240
Fig. 4 Typical Change of Working Voltage vs. Junction
Temperature
600
0
0
Tj – Junction Temperature (°C )
95 9599
Fig. 1 Thermal Resistance vs. Lead Length
Ptot –Total Power Dissipation ( mW)
1.2
TL=constant
0
95 9611
15
10
5
I Z=5mA
0
–5
0
10
20
30
40
50
V Z – Z-Voltage ( V )
95 9600
Fig. 2 Total Power Dissipation vs. Ambient Temperature
Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage
1000
200
CD – Diode Capacitance ( pF )
VZ –VoltageChange( mV )
V Ztn=V Zt/V Z(25°C)
TK VZ –Temperature Coefficient of VZ ( 10–4 /K)
RthJA –Therm.Resist.Junction/ Ambient ( K/W)
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
Tj =25°C
100
I Z=5mA
10
150
V R=2V
Tj =25°C
100
1
50
0
0
95 9598
5
10
15
20
25
V Z – Z-Voltage ( V )
Fig. 3 Typical Change of Working Voltage under Operating
Conditions at Tamb=25°C
STAD-SEP.14.2004
0
95 9601
5
10
15
20
25
V Z – Z-Voltage ( V )
Fig. 6 Diode Capacitance vs. Z-Voltage
PAGE . 3
50
10
40
IZ – Z-Current ( mA)
I F – Forward Current ( mA)
100
Tj =25°C
1
0.1
30
20
10
0.01
0
0.001
0
0.2
0.4
0.6
0.8
15
1.0
V F – Forward Voltage ( V )
95 9605
r Z – Differential Z-Resistance ( Ω )
IZ – Z-Current ( mA)
Ptot=500mW
Tamb=25°C
60
25
40
20
1000
I Z=1mA
100
0
5mA
10 10mA
Tj =25°C
1
0
4
8
12
16
20
0
V Z – Z-Voltage ( V )
95 9604
35
30
V Z – Z-Voltage ( V )
Fig. 9 Z-Current vs. Z-Voltage
100
80
20
95 9607
Fig. 7 Forward Current vs. Forward Voltage
5
10
15
20
25
V Z – Z-Voltage ( V )
95 9606
Fig. 8 Z-Current vs. Z-Voltage
Zthp –ThermalResistancefor PulseCond.(K/W)
Ptot=500mW
Tamb=25°C
Fig. 10 Differential Z-Resistance vs. Z-Voltage
1000
tp/T=0.5
100
tp/T=0.2
Single Pulse
10
RthJA=300K/W
T=Tjmax–Tamb
tp/T=0.01
tp/T=0.1
tp/T=0.02
tp/T=0.05
1
10–1
95 9603
i ZM =(–VZ+(V Z2+4rzj x T/Zthp)1/2)/(2rzj)
100
101
102
tp – Pulse Length ( ms )
Fig. 11 Thermal Response
STAD-SEP.14.2004
PAGE . 4
Similar pages