austriamicrosystems AG is now ams AG The technical content of this austriamicrosystems datasheet is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: [email protected] Please visit our website at www.ams.com AS3658 D a ta S h e e t C o n f i d e n t i a l P o w e r a n d A u d i o M a n a g e m e n t U n i t f o r P o r ta b l e D e v i c e s System Control am lc s on A te G nt st il 2 Key Features al id The AS3658 is highly integrated power and audio management unit. The AS3658 is designed to include sophisticated audio features like high performance audio DAC and ADC. It has several analog and digital audio interface which are explained in detail in the following sections. The AS3658 is an integrated solution for power supply generation and monitoring, battery management including charging. - High Current (1.0A) Linear Charger with external pass transistor (no step down charger) - 0.1 Ω Battery switch for start-up and trickle charge - Integrated USB charger up to 880mA (can be used as wall adapter charger); current accuracy 440500mA for USB specification, in-circuit trimmable (±1.2% trimsteps) - Autonomous Battery Temperature Supervision (0ºC-45ºC or 0ºC- 50ºC) for 10k and 100k NTC - Charging Timeout (1h-8h in 30min steps) - Charging in Stanby mode - Completely Autonomous (no SW) Power Management Features lv 1 General Description - Serial Control Interface - On/Off Control Module with Boot-ROM / GPIO - Reset Generation for system controller - Programmable Interrupt Controller and Watchdog - Low power off mode (9µA; 2.5V LDO on) - 88 bit unique ID or Boot fuse array - Reset with long ON-Keypress (SW-Interuptable) - Touchscreen Interface (10 bit, interrupt) Supply Voltage Generation ni ca - 2 RF Programmable Low Noise LDOs (250mA) (1 LDO can be a current controlled switch for hotplug (200mA ± 40%)) - 1 RF Programmable Low Noise LDO (400mA) - 4 Programmable Dig. Low Power LDOs(200mA) - 2 General Purpose PWM DC/DC step up converter with three programmable current sinks (e.g. forwhite led); for current mode feedback is automatically slected (DCDC_CURR1,2,3) - 3 General Purpose high efficiency DC/DC step down converter (DCDC 1 support DVM) - 1 Low noise charge pump with 5V output voltage - 1 Ultra Low Power 2.5V LDO (always on) Current sinks Te ch - 4 programmable(8-bit) from 0.15mA to 38.25mA (±5% ) optional useable as GPIOs - 3 programmable high voltage (15V) (8-bit) from 0.15mA to 38.25mA (±5% ) - internal PWM generator (extended time range) (can control DCDC_CURR1,2,3) 10-bit 40µs Successive Approximation ADC - Two external Inputs (ADC_IN1, ADC_IN2) Battery Management - Wide Battery Supply Range 3.0…5.5V - On-Chip Bandgap Tuning for High Accuracy (±1%) - Thermal and Current Protection (int. sensor) - Standby Mode exit by interrupt e.g. Onkey/RTC Audio - 94dB Audio DAC, 16-48kHz sampling rate Two Digital Audio Inputs (2 x I2S interface) 2.9V low Noise LDO for Audio DAC Two Headphone Amplifier Output with GND separation - Two I2S Inputs and one I2S Output - I2S master mode with programmable sample rate (controlled by internal PLL) - GND Buffer for Headphone Amplifier - Line/ Headphone outputs with GND separation - Audio ADC, 82dB SNR with 16ksps - Microphone Bias Supply and Amplifier (mono) - 5 Band Adjustable Audio Equalizer (± 12dB in 3dB gain steps) - SPDIF Output - Audio Mixer and Gain Stages - PCM Interface Real Time Clock (RTC) - Alarm and Time function - Repeated Wakeup (every second or minute) - 32kHz output - Backup Battery Charger and Switchover Programmable System clock - 1.6 MHz to 2.3 MHz with 100 kHz steps Package - BGA124 8x8mm, 0.5mm pitch (can be assembled without micro via boards) - Full featured chemistry independent step down charger with Gas Gauge and Current limitation www.austriamicrosystems.com Revision 1v13 1 - 157 AS3658 Data Sheet Confidential - Applications 3 Applications The AS3658 is ideal for PDA, PMP, GPS-Navigation Systems and 1 Cell Li+ or 3 Cell NiMH powered devices. Figure 1. Blockdiagram AS3658 ) !"#" $%& , * , *, " ) ,*!(" !.89 6. , ,& * 01,0 * 01,0 5!6 7# (!# ) ."4 4 "" !"#" *8"& "6. ,& * 01,0 * 01,0 3 ,& * 0%-03 ' 3& *) * 0%-03 ', ,& * 0%-03 ',& *+ & !"# & '( !# %%B. *) *" "" "64 (!#4@ = 6 .= *) 7; *) (!# + (!#" "" +, + 5." "9!6 * ,0: 7.4(/ , , ' 307 ?<7 %,7C <B.<A4 <A4 307 ?<7 !6A !0 "# -307 ?,7 . ).6 & .!4?& . * ).6" ! 7).6(/ . * !7 * !7 , 7!7 * 0#0')+"! 4&." Te ch "" :37C %B. 3%A4 ! 7 =!(.>" +6 46" + @ (!"& ' +6 46" ' . , ) ni '*3 ,& am lc s on A te G nt st il . !"/ '" * " "" "64 "!( "4 ca *+- lv *+, 2 *+- *+ al id ;0<-03<& ,;0<-03& www.austriamicrosystems.com Revision 1v13 2 - 157 AS3658 Data Sheet Confidential - Applications am lc s on A te G nt st il lv al id Figure 2. Application Diagram Te ch ni ca AS3658 www.austriamicrosystems.com Revision 1v13 3 - 157 AS3658 Data Sheet Confidential - Applications Table of Contents 1 General Description ..............................................................................................................................1 2 Key Features .........................................................................................................................................1 3 Applications ...........................................................................................................................................2 4 Pin Assignments ................................................................................................................................... 6 5 Absolute Maximum ratings 6 Electrical Characteristics ..................................................................................................................12 .....................................................................................................................13 7 Typical Operating Characteristics .......................................................................................................14 8 Detailed Description-Power Management Functions 8.1 Step Up DC/DC Converters 8.2 Current Sinks al id ...............................................................................................................................................7 ..........................................................................15 .........................................................................................................................15 lv 4.1 Pin Description ...............................................................................................................................................25 8.3 General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) 8.4 Backup Battery Charger .......................................................30 am lc s on A te G nt st il ..............................................................................................................................38 8.5 Smooth switchover Power Management Overview 8.6 Battery switch SINT (Vsupply, Battery) 8.7 External Step Down/Linear Charger 8.8 USB Charger .....................................................................................41 ........................................................................................................42 ............................................................................................................44 ...............................................................................................................................................48 8.9 Battery Charge Controller ............................................................................................................................51 8.10 Charger supervision functions ...................................................................................................................63 8.11 Step Down DC/DC Converters ...................................................................................................................67 8.12 Low Dropout Regulators (LDO) .................................................................................................................78 8.13 5V Charge Pump .......................................................................................................................................85 9 Detailed Description- Audio Functions 9.1 Audio Paths ................................................................................................87 .................................................................................................................................................87 9.2 Common mode voltage generation of HP_CM, LINE_CM 9.3 Audio Setup Registers ...........................................................................89 .................................................................................................................................90 9.4 ADC, DAC and Digital Audio Input ...............................................................................................................91 9.5 I2S master mode and PCM Mode ...............................................................................................................95 .....................................................................................................................................................98 ca 9.6 Line Input 9.7 Five Band Equalizer 9.8 Microphone Input ....................................................................................................................................99 ......................................................................................................................................105 ....................................................................................................................................108 ni 9.9 Audio Output Mixer 9.10 Line Output .............................................................................................................................................109 ch 9.11 Headphone Output 9.12 SPDIF output ................................................................................................................................... 112 ........................................................................................................................................... 115 10 Detailed Description - System Functions Te 10.1 2C Serial Interface ................................................................................................................................... 116 10.2 Reset generator and XON-Key 10.3 Interrupt Controller ........................................................................................ 116 ................................................................................................................118 ...................................................................................................................................124 10.4 Startup ......................................................................................................................................................129 10.5 Protection Functions 10.6 Watchdog ................................................................................................................................134 ................................................................................................................................................135 10.7 General Purpose 10 Bit ADC ...................................................................................................................136 10.8 Internal References (V, I, fclk) ..................................................................................................................139 www.austriamicrosystems.com Revision 1v13 4 - 157 AS3658 Data Sheet Confidential - Applications 10.9 Real-Time Clock (RTC) Module 10.10 Touchpen Interface ................................................................................................................................... 148 12 Package Drawings and Marking .....................................................................................................154 12.1 Pinout Drawing (Top view) CTBGA 8x8mm 13 Ordering Information .............................................................................................155 .......................................................................................................................156 Document Revision History Table 1. Revision History Rev Description of Changes 1v00 - 9.1; 12 1v10 - updated package drawings - updated audio path drawings 12,13 1v11 - updated packagemarkings and ordering information 12,13 1v12 23.3.2009 Author pkm pkm 23.9.2009 pkm - updated packagemarkings and ordering information 23.10.2009 pkm - typo corrections 23.9.2010 pkm am lc s on A te G nt st il 15.4.2009 Te ch ni ca 1v13 Date lv Chapter al id 11 Register map ...............................................................................................................140 ................................................................................................................................143 www.austriamicrosystems.com Revision 1v13 5 - 157 AS3658 Data Sheet Confidential - Pin Assignments 4 Pin Assignments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A NC/ VSS _CP LRC LK1 SCL K3 VI2S SDO 1 VCP _N VCP _P VCP _OU T VDI G34 _IN VDI G1_I N LOU T_R LINE _CM HPL 1 NC/ BV SS B SDI2 SCLK1 SDI1 SDA VSS_C P VCP_I N VDIG_ 2 VDIG2 _IN VDIG_ 1 LOUT_ L HP_C M C Q32k SCLK2 D DCDC _SENS E_P1 MCLK 2 E VSUP PLY_4 F VSUP PLY_3 G LX3 H PGND 3 PGND 2 J LX2 VSS_C H K VSUP PLY_1 VSUP PLY_2 L LX1 VOFF_ B M PGND 1 VGAT E N PGAT E1 P NC/ VSSA MCLK 1 LRCLK 2 al id VDIG_ 3 HPR1 HPL2 ALVD D HP_ CM_ PWR AVDD LINR lv VDIG_ 4 LRCLK 3 am lc s on A te G nt st il BVSS XRES ET SPDIF XINT MICS VDAC LINL DCDC _SENS E_N2 DCDC _SENS E_P2 VSSA MICN VSUP PLY_6 DCDC _FB1 FB3 VSSA MICP VBAT_ SW12 VREF BAT_S W AGND ISENS N ISEN SP GND_ SENS E RBIA S V_BAT VBA CK DCDC _FB2 FB2 VSSA FB1 CURR 4_GPI O4 VSUP PLY_5 XON CH_S ENSE_ N VCUR R_GPI O CURR 1_GPI O1 VSS_C URR DCDC _CUR R1 CURR 3_GPI O3 CURR 2_GPI O2 DCDC _CUR R3 GND_ SW RPRO GRAM CREF DCDC _CUR R2 ADC_I N1 ADC_I N2 VRF_2 VCHA RGER V2_5 VSUP_ USB V_USB VRF1_ IN VRF_1 VRF23 _IN VRF_3 XIN32 VSU P_S W12 VSU P_S W12 VBAT _SW 12 XOU T32 NC/ VSS A Te ch ni CH_S ENSE_ P SCL ca DCDC _SENS E_N1 DCDC _GATE 1 DCDC _GATE 2 SDO3 HPR 2 www.austriamicrosystems.com Revision 1v13 6 - 157 AS3658 Data Sheet Confidential 4.1 - Pin Assignments Pin Description Table 2. Pin list CTBGA124, 8x8MM (AS3658) Pin Number Pin Type V_USB P8 P USB voltage supply input VSUP_USB P7 P Supply output of USB charger (connect to Vsupply) VCHARGER N11 P High voltage input coming from the charger; if the charger is used connect a ceramic capacitor of 1µF VGATE M2 A Switch ON control pin for the external PMOS Fet transistor of the charger step down converter VOFF_B L2 A Switch OFF control pin for the external PMOS Fet transistor of the charger step down Buck converter VSS_CH J2 P Ground pad of Step down Charger Pin Name Supply Description VSUP_SW12 VSUP_SW12 BAT_SW CH_SENSE_N CH_SENSE_P ISENSP ISENSN Serial Interface SCL SDA Control Interfaces lv P VBAT Battery switch input1 (battery side) J14 P VBAT Battery switch input2 (battery side) G14 P VSUPPLY Battery switch input1 (supply side) H14 P VSUPPLY Battery switch input2 (supply side) J13 A P3 A VSUPPLY Charger step down converter, external shunt resistor negative connection P2 A VSUPPLY Charger step down converter, external shunt resistor positive connection K14 A V2_5 Positive sensing input voltage for the external charging current shunt resistor K13 A V2_5 Negative sensing input voltage for the external charging current shunt resistor D6 DI B5 DIO VSUPPLY SDA input / output in I2C mode F7 OD VSUPPLY Bidirectional Reset Pin – add an external pull-up resistor to the digital supply ni XRESET am lc s on A te G nt st il VBAT_SW12 H13 Battery switch output for external PMOS VSUPPLY SCL input in I2C mode ca VBAT_SW12 al id Charger F8 OD VSUPPLY Interrupt Pin - add an external pull-up resistor to the digital supply XON N4 IPU V2_5 Input pin to startup the system (power on), internal pull-up, apply zenerzap-programming voltage here Q32K C1 OD XIN32 P13 A V2_5 32kHz crystal oscillator input XOUT32 N14 A V2_5 32kHz crystal oscillator output ch XINT Te RTC www.austriamicrosystems.com VSUPPLY 32kHz oscillator digital output Revision 1v13 7 - 157 AS3658 Data Sheet Confidential - Pin Assignments Table 2. Pin list CTBGA124, 8x8MM (AS3658) Pin Number Pin Type VSUPPLY_5 N3 P V_BAT M13 P VBAT Battery supply for Reference blocks. RPROGRAM L9 A V2_5 Select register setup at startup. V2_5 N12 P CREF L10 A V2_5 Reference voltage bypass capacitor connection RBIAS L14 A V2_5 Internal Bias Reference Resistor (connect 220kΩ resistor) GND_SENSE L13 P VSSA GND reference for analog blocks (connect to GND plane separate) ADC_IN1 N8 A V2_5 Analog input1 for ADC10 Pin Name Supply Description Internal Refs CURR1_GPIO1 CURR2_GPIO2 CURR3_GPIO3 CURR4_GPIO4 DCDC_CURR1 DCDC_CURR2 DCDC_CURR3 VCURR_GPIO VSS_CURR_GPIO al id lv am lc s on A te G nt st il VBACK Current Sinks Internal regulator analogue output Analog input2 for ADC10 N9 A M14 A N5 A VCURR_ Current sink 1, or GPIO1 A VCURR_ Current sink 2, or GPIO2 A VCURR_ Current sink 3, or GPIO3 A VCURR_ Current sink 4, or GPIO4 A VCURR_ Step up DC/DC converter2 current source 1 A VCURR_ Step up DC/DC converter2 current source 2 L7 A VCURR_ Step up DC/DC converter2 current source 3 P4 A P6 N6 L5 L6 N7 V2_5 Backup battery connection GPIO GPIO GPIO GPIO GPIO GPIO GPIO Supply voltage of GPIOs and current sinks ca ADC_IN2 Supply for voltage Measurement, always connect to VSUPPLY P5 A VCURR_ Ground pad of Current sink / GPIO pads GPIO ni General Purpose DC/DC Step up Converter 1 and 2 Supply for DCDC step up and control interface, always connect to VSUPPLY E1 P DCDC_FB1 H4 A VSUPPLY Step up DC/DC converter1 feedback input DCDC_GATE1 F2 A VSUPPLY Step up DC/DC converter1 control for external mosfet DCDC_SENSE_P1 D1 A VSUPPLY Step up DC/DC converter1 external shunt resistor positive connection DCDC_SENSE_P2 G6 A VSUPPLY Step up DC/DC converter2 external shunt resistor positive connection DCDC_SENSE_N1 E2 A VSUPPLY Step up DC/DC converter1 external shunt resistor negative connection DCDC_SENSE_N2 G4 A VSUPPLY Step up DC/DC converter2 external shunt resistor negative connection Te ch VSUPPLY_4 www.austriamicrosystems.com Revision 1v13 8 - 157 AS3658 Data Sheet Confidential - Pin Assignments Table 2. Pin list CTBGA124, 8x8MM (AS3658) Pin Name Pin Number Pin Type DCDC_GATE2 G2 A VSUPPLY Step up DC/DC converter2 control for external mosfet DCDC_FB2 J4 A VSUPPLY Step up DC/DC converter2 feedback input Supply Description Linear Regulators (LDOs) al id Supply Pad for RF1 LDO (VRF_1), always connect to Supply>3.0V VRF1_IN P9 P VSUPPLY VRF_1 P10 A Output voltage of one of the RF LDO’s; can be used as HighVRF1_IN Side Switch, if used as LDO connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) VRF23_IN P11 P VSUPPLY VRF_2 N10 A Output voltage of one of the RF LDO’s; can be used as HighVRF23_IN Side Switch, if used as LDO connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) VDIG_1 VDIG2_IN VDIG_2 VDIG34_IN VDIG_3 VDIG_4 Charge Pump VCP_IN VCP_N lv A Output voltage of one of the RF LDO’s; can be used as HighVRF23_IN Side Switch, if used as LDO connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) A10 P VSUPPLY Supply Pad for DIG1 LDO (VDIG_1) B10 A VDIG1_IN B9 P VSUPPLY Supply Pad for DIG2 LDO (VDIG_2) B8 A VDIG2_IN A9 P VSUPPLY Supply Pad for DIG3 and DIG4 LDO (VDIG_3, VDIG_4) D8 A VDIG3_IN Output voltage of one of the DIG LDO’s. Connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) D7 A VDIG4_IN Output voltage of one of the DIG LDO’s. Connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) B7 P VSUPPLY Supply Pad for Charge Pump, always connect to Supply>3.0V A6 A VSUPPLY HVS charge pump flying capacitor positive side A7 A ni VCP_P am lc s on A te G nt st il VDIG1_IN P12 ca VRF_3 Supply Pad for RF2 and RF3 LDO (VRF_2, VRF_3), always connect to Supply>3.0V Output voltage of one of the DIG LDO’s. Connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) Output voltage of one of the DIG LDO’s. Connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) HVS charge pump flying capacitor negative side Charge pump output, connect a ceramic capacitor of 2.2µF (+100%/-50%) A8 A VSS_CP B6 A VSUPPLY Ground pad of charge pump N1 A VSUPPLY Gate output for external PMOS.(DCDC step down controller 1) VSUPPLY_1 K1 P Supply Pad for DCDC_Step down converter1, always connect to VSUPPLY LX1 L1 A VSUPPLY DC/DC step down converter1 output FB1 K4 A VSUPPLY DC/DC step down converter1 feedback PGND1 M1 A VSUPPLY Power Ground of DCDC step down converter1 ch VCP_OUT DCDC Step Down Converters Te PGATE1 www.austriamicrosystems.com Revision 1v13 9 - 157 AS3658 Data Sheet Confidential - Pin Assignments Table 2. Pin list CTBGA124, 8x8MM (AS3658) Pin Name Pin Number Pin Type VSUPPLY_2 K2 P LX2 J1 A VSUPPLY DC/DC step down converter2 output FB2 J7 A VSUPPLY DC/DC step down converter2 feedback PGND2 H2 A VSUPPLY Power Ground of DCDC step down converter2 VSUPPLY_3 F1 P LX3 G1 A VSUPPLY DC/DC step down converter3 output FB3 H6 A VSUPPLY DC/DC step down converter3 feedback PGND3 H1 A VSUPPLY Power Ground of DCDC step down converter3 VI2S SDI1 SDO1 SCLK1 LRCLK1 MCLK1 SDI2 SCLK2 LRCLK2 MCLK2 SDO3(X-) SCLK3(X+) al id lv Supply Pad for DCDC_Step down converter3, always connect to VSUPPLY am lc s on A te G nt st il VSUPPLY_6 Description Supply Pad for DCDC_Step down converter2, always connect to VSUPPLY G13 P Supply for VI2S Regulator A4 P Supply Pad for I2S Interface, Connect to VDAC Supply B4 I VI2S I2S_1 Data input to DAC A5 O VI2S I2S_1 Data output from ADC B3 I/O VI2S I2S_1 Shift clock input or output A2 I/O VI2S I2S_1 Left/Right clock input or output D9 I/O VI2S Master clock input or output for I2S1: DAC (128*Fsdac or 256 *Fsdac) B1 I VI2S I2S_2 Data input to DAC C2 I VI2S I2S_2 Shift clock D10 I VI2S I2S_2 Left/Right clock D2 I VI2S Master clock input for I2S2: DAC (128*Fsdac or 256 *Fsdac) D5 I/O VI2S I2S_3 Data output (if touchpen interface disabled) Touchpen Interface X- Input/Output (if touchpen interface enabled) ca Audio Supply A3 I/O VI2S I2S_3 Shift clock output (if touchpen interface disabled) Touchpen Interface X+ Input/Output (if touchpen interface enabled) I/O VI2S I2S_3 Left/Right clock output (if touchpen interface disabled) Touchpen Interface Y- Input/Output (if touchpen interface enabled) SPDIF(Y+) F4 I/O VI2S SPDIF digital output (if touchpen interface disabled) Touchpen Interface Y+ Input/Output (if touchpen interface enabled) AGND K11 A VDAC CM voltage bypass capacitor connection (1.45V) VREF J11 A VDAC VDAC voltage bypass capacitor connection (2.9V) LINL F14 A VDAC Line input left channel. LINR E14 A VDAC Line input right channel GND_SW L8 O ni E4 Te ch LRCLK3(Y-) www.austriamicrosystems.com VSUPPLY Digital output for controlling the external NMOS Revision 1v13 10 - 157 AS3658 Data Sheet Confidential - Pin Assignments Table 2. Pin list CTBGA124, 8x8MM (AS3658) Pin Name Pin Number Pin Type Supply VDAC F13 A VDAC 2.9V Output voltage of one of DAC LDO; Connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%) HP_CM B12 A AVDD Bypass capacitor connection of common mode voltage of Audio headphone amplifier (AVDD/2) HP_CM_PWR D14 A AVDD Buffered voltage of HP_CM LINE_CM A12 A ALVDD Bypass capacitor connection of common mode voltage of Audio line out amplifier (ALVDD/2) LOUT_L B11 A ALVDD Line out output Left channel LOUT_R A11 A ALVDD Line out output Right channel ALVDD D13 P Supply pad of Line out amplifier AVDD E13 P Supply pad of headphone amplifier HPL1 A13 A AVDD Headphone output1 left channel C13 A AVDD Headphone output1 right channel C14 A AVDD Headphone output2 left channel B14 A AVDD Headphone output2 right channel G11 A VDAC Microphone Input N H11 A VDAC Microphone Input P F11 A E11 P G9 VSS Analog Ground Pad H9 VSS Analog Ground Pad J8 VSS Analog Ground Pad A1 VSS Analog Ground Pad P1 VSS Analog Ground Pad P14 VSS Analog Ground Pad A14 VSS Power ground of headphone amplifier HPR2 MICN MICP MICS VSS BVSS VSSA VSSA VSSA NC/VSS_CP NC/VSSA NC/VSSA NC/BVSS al id lv am lc s on A te G nt st il HPL2 VSUPPLY Microphone Supply (2.95V) / Remote Input AVDD ca HPR1 Description Power ground of headphone amplifier ni Note: The following are the Pin Types I: Digital Input Pin ch IPD: Digital Input Pin with internal pull-down resistor IPU: Digital Input Pin with internal pull-up resistor IODPU: Digital Input / Open Drain Output Pin with internal pull-up resistor O: Digital Output Pin Te OD: Digital Open Drain Output Pin; requires external pull-up resistor IO: Digital Input / Output Pin A: Analog Pin P: Power Pin www.austriamicrosystems.com Revision 1v13 11 - 157 AS3658 Data Sheet Confidential - Absolute Maximum ratings 5 Absolute Maximum ratings Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical Characteristics on page 13 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. al id Table 3. Absolute Maximum Ratings Parameter Min Max Unit Note High voltage pins (VIN_HV) -0.3 17.0 V Applicable for high voltage pins 5V pins (VIN_MV) -0.3 7.0 V Applicable for pins 5V-pins 3.3V pins (VIN_LV) -0.3 5.0 V Applicable for 3.3V-Pins Input pin current (IIN) -25 +25 mA At 25 ºC, Norm: Jedec 78 Storage Temperature Range (Tstrg) -55 125 ºC Humidity 5 85 % Noncondens -1000 1000 V Norm: MIL 883 E Method 3015; Setup Applicable for pins: all 1 W TA = 70ºC 0.72 W TA = 84ºC 260 °C IPC/JEDEC J-STD-020C, reflects moisture sensitivity level only The lead finish for Pb-free leaded packages is matte tin (100% Sn). 235 245 °C TPEAK 30 45 s DWell, above 217 °C 1 Represents a max. floor live time of 168h 2 lv 3 am lc s on A te G nt st il Electrostatic discharge 1kV (VESD) Total Power Dissipation Package Body Temperature 5 Solder Profile 1 Moisture Sensitive Level 3 4 ch ni ca 1. HV pins VCHARGER, VGATE, VOFF_B, DCDC_CURR1, DCDC_CURR2, DCDC_CURR3 2. 5V pins are V_USB, CH_SENSE_N, CH_SENSE_P, VSUP_SW1, VSUP_SW2, VBAT_SW1, VBAT_SW2, V_BAT, SCL, SDA, XRESET, XINT, VSUPPLY_3, CURR1_GPIO1…CURR4_GPIO4, DCDC_GATE1, DCDC_GATE2, DCDC_SENSE_P1, DCDCSENSE_P2, DCDC_SENSE_N1, DCDC_SENSE_N2, DCDC_FB1, DCDC_FB2, VCL, VCP_OUT, VCP_N, VCP_P, VCP_IN, VCP_IN, VRF1, VREF1_IN, VRF2, VRF23_IN, VRF3, VDIG1, VDIG1_IN, VDIG2, VDIG2_IN, VDIG34_IN, VDIG_3, VDIG_4, PGATE1 VSUPPLY_1, VSUPPLY_2, LX1, LX2, GND_SW, VSUPPLY_4, LINE_CM, HP_CM_PWR, HP_CM, HPLx, HPRx, ALVDD, AVDD, LSP_R, BVSS, LSP_L, AVDD, VSUPPLY_5, VSUPPLY_6 3. 3.3V pins are ISENSEP, ISENSEN, ADC_INx, RPROGRAM, V2_5, CREF, ON, VI2S, SDIx, SCLKx, MCLKx, LRCLKx, SDOx, SPDIF, AGND, VREF, LINL,LINR, VDAC, Q32K, XIN32, XOUT32, VBACK, MICS, MICN, MICP 4. The following pins are connected to ESD setup: Te VSUPPLY_1...VSUPPLY_6, VCP_IN, VRF1_IN, VRF2_IN, VCURR connected together VDIG1_IN, VDIG2_IN, VDIG34_IN connected together AVDD, ALVDD connected together VBAT_SW1 and VBAT_SW2 connected together VSUP_SW1 and VSUP_SW2 connected together All VSS connected together 5. austriamicrosystems strongly recommends to use underfill. www.austriamicrosystems.com Revision 1v13 12 - 157 AS3658 Data Sheet Confidential - Electrical Characteristics 6 Electrical Characteristics Table 4. Electrical Characteristics Symbol Parameter Condition Min High Voltage VCHARGER, VGATE, DCDC_CURR1,DCDC_CURR2, DCDC_CURR3 0.0 Battery, Supply Voltage For pins V_BAT, VSUPPLY1-6 (always connect all VSUPPLY1-6 pins together), VSUP_SW1-2, VBAT_SW1-2, VRF1_IN, VRF2_IN, VCP_IN, AVDD, ALVDD 3.0 Voltage on Pin V2_5 Internally generated 2.4 Typ Max Units 15.0 V VBAT, VSUPPLY, VCURR_GPIO V2_5 VCP_OUT Output Voltage charge pump Voltage generated by charge pump Ambient Temperature ILOWPOWER Low power mode current consumption -40 Current consumption in low power 1 mode with step down charger on 2 With step down charger off IPOWEROFF 5.5 Power Off mode current consumption Current consumption in power off 3 mode V 2.5 2.6 V 5.2 5.6 V 25 85 ºC am lc s on A te G nt st il TAMB 4.9 3.6 lv VHV al id Operating Conditions 7 mA 280 µA 10 µA Te ch ni ca 1. With register bit low_power_on = 1, only Rf1=3.3V,Vout2=1.2V, Battery 3.6V,Vcharger=6.0V, no additional external loads 2. With register bit low_power_on = 0, All regulators switched off, no additional external loads 3. After setting register bit xon_enable=1 and power_off=1; only V2_5 is active in Power Off mode 4. During startup from the AC/DC adapter, the battery voltage can be below 3.0V www.austriamicrosystems.com Revision 1v13 13 - 157 AS3658 Data Sheet Confidential - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s 7 Typical Operating Characteristics Te ch ni ca am lc s on A te G nt st il lv al id see individual block description www.austriamicrosystems.com Revision 1v13 14 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 8 Detailed Description-Power Management Functions 8.1 Step Up DC/DC Converters Figure 3. DC/DC step-up Converter 1 " am lc s on A te G nt st il #$ lv "," al id The power management function consist of the DCDC Step up converters, Current Sink, GPIOs, general purpose 10 bit ADC, backup battery charger, main battery charger and power path management (consisting of the battery switch, external step down/linear charger, USB charger and battery charge controller), step down dc/dc converters, low dropout regulators (LDOs) and 5V charge pump. %& ''(%& !)( ! )( + !)( " ! !" +,! * Te ch ni ca , www.austriamicrosystems.com Revision 1v13 15 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 4. DC/DC step-up Converter 2 / () *%+ #/# %$%% %$$%/+ ##/$ %$ %$ ##$ ##% %$%%%&# am lc s on A te G nt st il &# , $ al id ##% #&- lv ). . 4 % %% #&' !%&" #&'% "%& &0'/ 1 22!3 ! 005/677 Table 5. DC/DC Converter parameters Parameter ca Symbol Quiescent Current VFB1 Feedback voltage for external resistor divider: Typ Max 140 1.20 Feedback voltage for current sink regulation 1.25 1.30 0.5 Unit Note µA Pulse skipping mode V for constant voltage control V DCDC_CURR1, DCDC_CURR2 or DCDC_CURR3 Additional tuning current at DCDC_FB 0 31 µA adjustable by software in 1µA steps Accuracy of feedback current -5 5 % @ full scale mV E.g.: 0.65A for 0.15Ω sense resistor 1 Ω ON-resistance of external switching transistor 50 mA at 15V output voltage MHz internal CLK frequency/2 Programmable: 0.8 to 1.15 MHz ch VFB2 ni IVDD Min IDCDC_FB Te Vrsense_max Current limit voltage at Rsense RSW switch resistance Iload Load current fIN Switching frequency www.austriamicrosystems.com 100 0 fclk_int/ 2 Revision 1v13 16 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 5. DC/DC Converter parameters Parameter Cout Output capacitor L Min Typ Max Unit Note 2.2 µF ceramic, ±20% Inductor 10 µH Use inductors with small Cparasitic (<100pF) to get high efficiency tMIN_ON Minimum on time 130 ns MDC Maximum duty cycle 91 % al id Symbol lv The DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage dependent on the maximum VDS voltage of the external transistor, and maximum load current selectable by the external shunt resistor. For Example: 5V,500mA @ 1.1Mhz 40V,20mA @ 550kHz am lc s on A te G nt st il 25V,50mA @ 1.1MHz A constant switching frequency results in a low noise on supply and output voltage. 8.1.1 Feedback selection For step up DCDC 1, the feedback is always DCDC_FB1. For step up DCDC 2 following feedback selections are possible: Stpup2_fb selects the type of feedback for the DCDC_step_up2 converter: DCDC_CURR1, DCDC_CURR2, DCDC_CURR3 or DCDC_FB2 feedback (see Figure 5) Setting stpup2_fb to 00b enables the feedback on DCDC_FB2, stpup2_fb to 01b enables feedback at pin DCDC_CURR1, setting step_up_fb to 10b enables feedback at pin DCDC_CURR2 and setting step_up_fb to 11b enables feedback at pin DCDC_CURR3. The Step-up converter is regulated such that the required current at the feedback path can be supported. Always choose the path with the higher voltage drop as feedback to guarantee adequate supply for the other, unregulated path. Te ch ni ca To protect the DCDC output voltage against overvoltage, if a LED string is broken, set stpup2_prot=1. In this mode the output voltage will be limited by limiting the DCDC_FB voltage to 1.25V (select the external resistor network to adjust this limitation voltage). www.austriamicrosystems.com Revision 1v13 17 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 5. DC/DC step up 2 converter with regulation of LED string on pin DCDC_CURR1,2 or 3 !## 3 12 8 #9) : 7+ !7+) )0+07 ! ! )00 (50 &' am lc s on A te G nt st il 0+)"0 7)/ 77(:) 0+0"7 ,"8 %() 7) lv " ) )08)* " )> "> #)$% 0+0 al id +))) 7)/50 '! 4! $ ()*+), -./) (00( ! ! )( )08-(+ )08- !+)" )(/ &456 6+5( 8)),-(")) ; <<==&> !## 3 <<& 0(.)*+), 8 <<&( )E)),! Te ch ni ca ,,+?@DD www.austriamicrosystems.com Revision 1v13 18 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 6. DC/DC step up 1 converter with regulated output voltage of 5V. Feedback is at pin DCDC_FB1 %() ",+, # "0, #906 !' 4% 5! ",+, #!'# 1 #). ( )20 10 1#!+ ,+"0#"', 10"8 1#!+0 "0,#+, #1 +,,- ' && ' && ' & #'/ #$ ' am lc s on A te G nt st il 23, !" lv % 7 ' 7 #* ' % #( (# al id +0 "0 "0 #( (# 10"8!3, 02 Voltage Feedback: (see Figure 6) For Step UP DCDC 1 voltage feedback is always selected on pin DCDC_FB1. For Step-up UP DCDC 2 set step2_fb to 00 to enable voltage feedback at pin DCDC_FB2. Bit stepX_res (X = 1 or 2) should be set to 1 in voltage feedback mode using two resistors. ca The output voltage is regulated to a constant value, given by: ni Vstepup _ out = R1 + R2 1.25 + I I DCDC _ FB • R1 R2 ch If R2 is not used, the output voltage is: Vstepup _ out = 1.25 + I I DCDC _ FB • R1 Vstepup_out: Step up regulator output voltage Te R1 Feedback resistor R1 R2 Feedback resistor R2 IVturning: Tuning current on DCDC_FB pin: stpupX_v (0µA to 15µA (1µA steps)) (X= 1 or 2) www.austriamicrosystems.com Revision 1v13 19 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Example: Table 6. Step Up Output Voltage (Voltage mode or protection voltage) Vstepup_out Vstepup_out µA R1=1M Ω,R2 not used R1=500k Ω,R2=64k Ω 0 - 11 1 - 11.5 2 - 12 3 - 12.5 4 - 13 5 6.25 13.5 6 7.25 7 8.25 10 11 12 13 14 15 lv 9.25 14 14.5 15 am lc s on A te G nt st il 8 9 al id Ivtuning 10.25 15.5 11.25 16 12.25 16.5 13.25 17 14.25 17.5 15.25 18 16.25 18.5 Te ch ni ca Note: The voltage on pin DCDC_CURR1, DCDC_CURR2 and DCDC_CURR3 must never exceed 15V www.austriamicrosystems.com Revision 1v13 20 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 7. DC/DC step up converter 1 with regulated output voltage (15V), and switch off function of output voltage, to reduce shutdown current $''/ .-.! 2.!928 % '6( 7 .-.!%!3 3!- .- 2! %. 32 : $3!-2 2.!-.!3 + # # !#0 $''/ $ -../ "## 0& % !" # $ &% am lc s on A te G nt st il 45. !*1) *42 32 '()* al id (9 %9 !))! !, # lv !))!' -2 2 2 32 : 5. $ $ 2 4 As the output voltage is always on, an additional output transistor can be added to reduce shutdown current through R1, R2 and the connected output circuit. Note: A similar circuit can be used for step up converter 2. 8.1.2 StepUp1 Load Detection and Overcurrent Protection Circuit This circuit protects the DCDC step up1 converter during short circuit and startup, by regulation of the output current. An additional feature is the detection of a minimum output load of the Step-up converter. It is also possible to use this circuit without the DCDC step up converter, by using the sense resistor only: ca Detection circuit: If the voltage on Rsense exceeds VDETECT for more than 1msecond, or the DCDC Step up converter is not in Pulseskip for more than 1 millisecond, the stepup1_det bit will be set. ni Overcurrent protection: If the Overcurrent voltage VOVCURRENT has been exceeded by more than 5 msec the Bit stpup1_oc will be set and can only reset, by switching off and on the Protection circuit by writing Stpup1_shortprot 0 – 1. If stepup1_oc is set the load will be disconnected, if Stpup1_oc_timeout=1 Table 7. StepUp1 protection/detection circuit parameters Parameter Min Typ Max Unit Note VDETECT Detection Threshold 2 12.5 25 mV For Rsense=0.150Ω => 83mA typ. VOVCURRENT Overcurrent Threshold rising 150 180 215 mV For Rsense=0.150Ω => 1.2A typ. VOVhysteresis Overcurrent Hysteresis 50 mV tOV_timeout Overcurrent timeout 5 ms Interrupt and/or external PMOS switching off after timeout fclk_int = 2.2MHz tdetect Detection denounce time 1 ms fclk_int = 2.2MHz Te ch Symbol www.austriamicrosystems.com Revision 1v13 21 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 8. StepUp 1 Load Detection and Overcurrent Protection Application Circuit /.0 %$%&)) #$30 .+$ %$0 #$30 .+$ am lc s on A te G nt st il %$ &-%)%.% /.0 al id $(%%1.2+ lv ,"+ *+ Te ch ni ca !""#$%&'$(( !"# ) www.austriamicrosystems.com Revision 1v13 22 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 8.1.3 Step Up DCDC Converter Registers Table 8. Step Up DC/DC Bit definitions Step Up DC/DC control Addr: 30 This register controls the different modes of the step up DCDC converter Bit Name Default Access Description 5 stpup1_on ROM R/W On/Off control of the step up dc/dc converter1 6 stpup2_on ROM R/W On/Off control of the step up dc/dc converter2 al id Bit Table 9. Step Up DC/DC Bit definitions Step Up DC/DC control Addr: 32 Bit Name Default lv Bit This register controls the different modes of the step up DCDC converter Access Description am lc s on A te G nt st il Invert input clock of step up2 converter 0 stpup2_clkinv 00h R/W 0 Use positive edge of internal clk 1 Use negative edge of internal clk 1 stpup1_freq 00h R/W Defines the clock frequency of the step up1 dc/dc converter; 0fclk_int/2 (0.8 to 1.15 MHz) 1fclk_int/4 (0.4 to 0.575 MHz) 2 - 00h n/a Always set to 0 Gain selection for DCDC step_up1: 3 stpup1_res stpup2_fb_auto 00h R/W ni stpup2_freq ch 5 Te 6 7 - stpup2_res www.austriamicrosystems.com 00h 00h Select 0 if DCDC is used with current feedback (DCDC_CURR1,DCDC_CURR2,DCDC_CURR3) or if DCDC_FB is used with current feedback only (Only R1,C1 connected; (see Figure 6)) 1 Select 1 if DCDC_FB1 or DCDC_FB2 is used with external resistor divider (2 resistors) 0 step_up_fb select the feedback of the DCDC converter 1 The feedback is automatically chosen within the current sinks DCDC_CURR1,DCDC_ CURR2 and DCDC_CURR3 (never DCDC_FB). Only those are used for this selection, which are enabled and connected to the step up converter (currX_ctrl must be 10) RW ca 4 00h 0 Defines the clock frequency of the step up2 dc/dc converter R/W 0 fclk_int/2 (0.8 to 1.15 MHz) 1 fclk_int/4 (0.4 to 0.575 MHz) n/a Always set to 0 Gain selection for DCDC step_up2: 00h R/W 0 Select 0 if DCDC is used with current feedback (DCDC_CURR1,DCDC_CURR2,DCDC_CURR3) or if DCDC_FB is used with current feedback only (Only R1,C1 connected; (see Figure 6)) 1 Select 1 if DCDC_FB1 or DCDC_FB2 is used with external resistor divider (2 resistors) Revision 1v13 23 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 10. Step Up DC/DC Bit definitions Step Up1 DC/DC control Addr: 33 Bit This register controls the different modes of the step up1 DCDC converter Bit Name Default Access Description 4:0 stpup1_v 00h R/W 00000 0 µA 00001 1 µA ..... 11111 31 µA al id Defines the tuning current at DCDC_fb1 pin; stpup1_clkinv 00h R/W 0 Use positive edge of internal clk 1 Use negative edge of internal clk am lc s on A te G nt st il 5 lv Invert input clock of step up1 converter; Enables Protection and Detection circuit for DCDC step up1 6 stpup1_shortprot 00h RW 0 No protection and load detection 1 Short protection and load detection enabled Controls GPIO1 switch off, after overcurrent timeout (5ms) for DCDC step up1 7 stpup1_oc_timeout 00h RW 0 disabled 1 enabled Table 11. Step Up DC/DC Bit definitions Step Up2 DC/DC control Addr: 34 Bit Bit Name This register controls the different modes of the step up2 DCDC converter Default Access Description Defines the tuning current at DCDC_fb2 pin; stpup2_v 00h R/W ch stpup2_fb Te 6:5 www.austriamicrosystems.com 0 µA 00001 1 µA ..... 11111 ni ca 4:0 00000 31 µA Controls the feedback source 00h 00 DCDC_FB enabled (external resistor divider) 01 DCDC_CURR1 feedback enabled (feedback through white LEDs) 10 DCDC_CURR2 feedback enabled (feedback through white LEDs) 11 DCDC_CURR3 feedback enabled (feedback through white LEDs) R/W Revision 1v13 24 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 11. Step Up DC/DC Bit definitions Step Up2 DC/DC control Addr: 34 7 stpup2_prot Default Access 00h RW Description DCDC converter 2 overvoltage protection to prevent damage of external NFET, if DCDC_CURR1 or DCDC_CURR2 or DCDC_CURR3 feedback selected, and no LED string connected: al id Bit Name 0 Overvoltage protection disabled 1 Switch off DCDC step up 2 if the voltage on DCDC_FB2 exceeds 1.25V lv Bit This register controls the different modes of the step up2 DCDC converter Table 12. stpup1_det and stpup1_oc Bit definitions Low voltage status bit definitions Bit This register shows the status of the overcurrent protection of the stepup1dcdc am lc s on A te G nt st il Addr: 53 Bit Name Default Access Description Step up overcurrent status bit 6 stpup1_oc NA R 0 VRsense < VOVCURRENT 1 VRsense > VOVCURRENT for more than 5 msec (latched state) Step up detection status register 7 8.2 stpup1_det NA 0 VRsense < VDETECT for more than 1msecond, and DCDC Step up converter is in Pulseskip for more than 1 millisecond 1 VRsense > VDETECT for more than 1msecond, or the DCDC Step up converter is not in Pulseskip for more than 1 millisecond R Current Sinks ca These are general-purpose current sinks intended to control the backlight(s), buzzer and vibrator. The low voltage current sink has an integrated protection against over voltage and can therefore also drive inductive loads (VPROTECT). DCDC_CURR1 and DCDC_CURR2, DCDC_CURR3 are high voltage (15V) current sinks, e.g. for series of white LEDs ni CURR1_GPIO, CURR2_GPIO, CURR3_GPIO, CURR4_GPIO are four 5V, 38.25mA current sinks, e.g. for buzzer, vibrator, LEDs Te ch CURR1_GPIO, CURR2_GPIO, CURR3_GPIO, CURR4_GPIO can be used as general propose Input/Output (GPIO) functions optional (described in section General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4)). www.austriamicrosystems.com Revision 1v13 25 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 8.2.1 High voltage Current Sinks (DCDC_CURR1, DCDC_CURR2 and DCDC_CURR3) Current sinks DCDC_CURR3, DCDC_CURR1 and DCDC_CURR2 can be controlled individually. The step-up DCDC converter may supply them with voltages up to 15V. If any of these current sinks is used, connected VCURR_GPIO to a supply with at least 3.0V. Table 13. Current Sinks Characteristics Min IDCDC_Curr1,2,3 DCDC_CURR1,2 and DCDC_CURR3 current, 00h-3Fh 0 IDCDC_protect Current sink protection Current Δ absolute Accuracy -5 VDCDC_CURR1, VDCDC_CURR2, VDCDC_CURR3 Voltage compliance 0.45 Typ Max Unit Note 38.25 mA For V(DCDC_CURRx) > 0.45V resolution = 0.15mA µA Protection Current if stpup2_on=1 and dcdc_currx_current=00h +5 % All Current sinks 15 V during normal operation am lc s on A te G nt st il 2 al id Parameter lv Symbol Table 14. DCDC_CURR1 Current sink current bit definition Addr: 39 Bit Bit Name DCDC_CURR1 Value This register controls the current value of the dcdc_curr1 current sink Default Access Description Defines the current into DCDC_CURR1 if enabled by dcdc_curr1_ctrl 7:0 dcdc_curr1_current 00h 00h power down (default state) 01h 0.15mA (LSB) R/W .... FFh 38.25mA Table 15. DCDC_CURR2 Current sink current bit definition Addr: 40 ni dcdc_curr2_current Default Access 00h Description Defines the current into DCDC_CURR2 if enabled by dcdc_curr2_ctrl 00h power down (default state) 01h 0.15mA (LSB) R/W .... FFh 38.25mA Te ch 7:0 Bit Name This register controls the current value of the dcdc_curr2 current sink ca Bit DCDC_CURR2 Value www.austriamicrosystems.com Revision 1v13 26 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 16. DCDC_CURR3 Current sink current bit definition DCDC_CURR3 Value Addr: 45 Bit This register controls the current value of the dcdc_curr3 current sink Bit Name Default Access Description Defines the current into DCDC_CURR3 if enabled by dcdc_curr3_ctrl dcdc_curr3_current 00h power down (default state) 01h 0.15mA (LSB) R/W .... 38.25mA Table 17. Current sink control bit definition Bit CURR control am lc s on A te G nt st il Addr: 58 lv FFh al id 7:0 00h Bit Name This register controls the mode of the DCDC current sinks Default Access Description On/Off control of the pad DCDC_CURR1 1:0 dcdc_curr1_ctrl 00b R/W 00 Current sink is turned off 01 Current sink is active 10 Current sink is active and LED string connected to stpup2. Required for automatic feedback selection 11 Controlled by PWM generator (do not set pwm_div) On/Off control of the pad DCDC_CURR2 3:2 dcdc_curr2_ctrl 00b R/W 00 Current sink is turned off 01 Current sink is active 10 Current sink is active and LED string connected to stpup2. Required for automatic feedback selection 11 Controlled by PWM generator (do not set pwm_div) ca On/Off control of the pad DCDC_CURR3 dcdc_curr3_ctrl 00b R/W Current sink is turned off 01 Current sink is active 10 Current sink is active and LED string connected to stpup2. Required for automatic feedback selection 11 Controlled by PWM generator (do not set pwm_div) Te ch ni 5:4 00 www.austriamicrosystems.com Revision 1v13 27 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 8.2.2 Low voltage Current Sink (CURR1_GPIO1 … CURR4_GPIO4) CURR1_GPIO1 … CURR4_GPIO4 can be controlled individually. Each one can sink up to 38.25mA. The voltage on the current sinks must not exceed the supply VCURR_GPIO (can be connected e.g. to VSUPPLY). The low voltage current sinks and the gpio pins share the same pins (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) for enabling/disabling of the current sinks / gpio functions. Table 18. Current Sinks Characteristics Min ICURR1,2,3,4 CURR1_GPIO1.... CURR4_GPIO4 current, 00h-1Fh Δ VCurr1,2,3,4 Typ Max Unit Note 0 38.25 mA For V(CURRx_GPIOx) > 0.2V resolution = 0.15mA, each current sink absolute Accuracy -5 +5 % All Current sinks Voltage compliance 0.2 V(VCU RR) V during normal operation Bit am lc s on A te G nt st il Table 19. CURR1 Current sink current Bit definition Addr: 41 al id Parameter lv Symbol Bit Name CURR1 control This register controls the mode of the curr1 current sinks Default Access Description Defines the current into CURR1_GPIO1 if GPIO1_Mode = 011b and output enabled (e.g. GPIO1=1) 7:0 curr1_current (00)h R/W 00h power down (default state) 01h 0.15mA (LSB) .... FFh 38.25mA Table 20. CURR2 Current sink current Bit definition Addr: 42 Bit Name This register controls the mode of the curr2 current sinks Default Access ca Bit CURR2 control curr2_current (00)h Defines the current into CURR2_GPIO2 if GPIO2_Mode = 011b and output enabled (e.g. GPIO2=1) R/W 00h power down (default state) 01h 0.15mA (LSB) .... FFh 38.25mA Te ch ni 7:0 Description www.austriamicrosystems.com Revision 1v13 28 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 21. CURR3 Current sink current Bit definition CURR3 control Addr: 43 Bit This register controls the mode of the curr3 current sinks Bit Name Default Access Description Defines the current into CURR3_GPIO3 if GPIO3_Mode = 011b and output enabled (e.g. GPIO3=1) curr3_current (00)h R/W 00h power down (default state) 01h 0.15mA (LSB) .... 38.25mA Table 22. CURR4 Current sink current Bit definition CURR4 control Addr: 44 lv FFh al id 7:0 am lc s on A te G nt st il This register controls the mode of the curr4 current sinks Bit Bit Name Default Access Description Defines the current into CURR4_GPIO3 if GPIO4_Mode = 011b and output enabled (e.g. GPIO4=1) 7:0 curr4_current (00)h R/W 00h power down (default state) 01h 0.15mA (LSB) .... 38.25mA Te ch ni ca FFh www.austriamicrosystems.com Revision 1v13 29 - 157 AS3658 Data Sheet Confidential 8.3 - Detailed Description-Power Management Functions General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) Figure 9. CURR1_GPIO1 … CURR4_GPIO4 block diagram 1 ) " ! 01$2 ) '( /6 , '" -, '"- ., '". /, '"/ " #$ - - . . / / !% ! $& ! ! '#$ '' '" ca ! 03% &%% &)) 4 5) .& am lc s on A te G nt st il ! '( ! '! ) **+ lv # al id !# $ !# !# Te ch ni The device contains 4 high current GPIO pins, which share the same pins as the low voltage current sinks and are capable of sinking 100mA from VCURR_GPIO voltage. Each of the pins can be configured as open drain NMOS or push-pull output with VCURR_GPIO high levels, as high impedance output or as digital input. When configured as output the output source can be a register bit, or the PWM generator, furthermore the output signal can be inverted. Integrated active clamp circuits can be enabled for the open drain NMOS output mode by setting GPIOxPulls=11b, thus allowing to use the high current GPIO pins for driving inductive loads. A pull-up resistor to VCURR_GPIO can be enabled for the open drain NMOS output mode by setting GPIOxPulls=10b. When configured as digital input the logic level (GPIOxInvert=’0’) or the inverted logic level (GPIOxInvert=’1’) of the pin is reflected by bit GPIOxBit in the GPIO Bit register. www.austriamicrosystems.com Revision 1v13 30 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Moreover, a special function can be selected for each digital input pin and a pull-up resistor to VCURR_GPIO or a pulldown resistor can be enabled. Table 23. High Current GPIO Pin Characteristics (VCURR1_GPIO1 … VCURR4_GPIO4) VVSUPPLY=3.0 to 5.5V; Tamb= –20 to +70°C; unless otherwise specified VOLH Low level output voltage switch mode VOL Typ Max Unit Note VCURR_GPIO+ 0.3 V Pin VCURR_GPIO is used as supply for the GPIO pins –0.3 +0.35 V IOL=+100mA; digital output (GPIOxMode=100b and currX_current=3Fh) Low level output voltage –0.3 +0.4 V IOL=+1mA; digital output (GPIOxMode=000b ... 010b) VOH High level output voltage 0.8·VCURR_G VCURR_GPIO V IOH=–1mA; digital push-pull output VIL Low level input voltage –0.3 0.4 V digital input VIH High level input voltage 1.3 VCURR_GPIO V digital input ILEAKAGE Leakage current 10 µA high impedance Rpull-up Pull-up resistance 78 kΩ GPIOxMode=x0b; GPIOxPulls=10b; VCURR_GPIO=3.6V Rpull-down Pull-down resistance 161 kΩ digital input; GPIOxPulls=01b; VCURR_GPIO=3.6V PIO. al id VGPIOMAX Maximum voltage on CURR1...4_GPIO 1…4 pins Min lv Parameter am lc s on A te G nt st il Symbol Table 24. CURR1_GPIO1 Bit definition Addr: 18 Bit Name This register controls the mode of the CURR1_GPIO1 Pin Default Access GPIO1Mode Te ch 2…0 ni ca Bit GPIO1 www.austriamicrosystems.com ROM R/W Description 000b digital open drain NMOS output (only NMOS enabled) 001b digital push-pull output (NMOS & PMOS enabled, no PWM out possible) 010b digital input (NMOS & PMOS disabled, digital input logic enabled) 011b digital open drain current sink operation Current defined by curr1_current 100b digital open drain switch operation On resistance defined by curr1_current high impedance (or SD1 in DCDC step 101b down external controller mode to = 1100b)).NMOS & PMOS disabled, 111b (sd1_1A_mode digital input logic disabled) Revision 1v13 31 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 24. CURR1_GPIO1 Bit definition GPIO1 Addr: 18 GPIO1IOSF 5 ROM GPIO1Invert 7…6 Description 00b input / output signal is written to or set by GPIO1Bit in the GPIO Bit register 01b PWM (O) / WDOG (I) if used for PWM, pwm_h_time and pwm_l_time define the high and low time of this output and only allowed for GPIO1Mode=011b,100b 10b Protection of DCDC stepUp1 GPIO 1 (O) 11b Battery charging EOC indication output GPIO 1 (O) If EOC=1 then GPIO1=1. DCDC_CURR3 is used as output, if CURR_GPIO1 is used for external DCDC controller 0 normal polarity of input / output signal R/W am lc s on A te G nt st il 4…3 Default Access al id Bit Name lv Bit This register controls the mode of the CURR1_GPIO1 Pin ROM GPIO1Pulls ROM R/W R/W 1 inverted polarity of input / output signal (not possible for PWM out) 00b no pull-up or pull-down resistor is enabled in all modes 01b pull-down resistor is enabled in digital input mode (clamp disabled) 10b pull-up resistor is enabled for GPIO1Mode=000b,010b,011b,100b (clamp disabled) 11b enable active clamp circuit for GPIO1Mode=000b,010b,011b,100b (pull-up/down disabled) Table 25. CURR2_GPIO2 Bit definition Addr: 19 Bit Name This register controls the mode of the CURR1_GPIO2 Pin Default Access GPIO2Mode ROM R/W Description 000b digital open drain NMOS output 001b digital push-pull output (no PWM out possible) 010b digital input 011b digital open drain current sink operation Current defined by curr2_current 100b digital open drain switch operation On resistance defined by curr2_current 101b to 111b high impedance Te ch 2…0 ni ca Bit GPIO2 www.austriamicrosystems.com Revision 1v13 32 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 25. CURR2_GPIO2 Bit definition GPIO2 Addr: 19 Bit This register controls the mode of the CURR1_GPIO2 Pin Bit Name Default Access Description is written to or set by GPIO2Bit in 00b input / output signal the GPIO Bit register GPIO2Invert 7…6 ROM R/W R/W 10b Battery charging active indication output GPIO2 (O) If Battery charging = 1 then GPIO2=1 11b NA 0 normal polarity of input / output signal 1 inverted polarity of input / output signal (not possible for PWM out) 00b no pull-up or pull-down resistor is enabled in all modes 01b pull-down resistor is enabled in digital input mode (clamp disabled) am lc s on A te G nt st il 5 ROM al id GPIO2IOSF PWM (O) / WDOG (I) if used for PWM, pwm_h_time and pwm_l_time define the high and low time of this output and only allowed for GPIO2Mode=011b,100b lv 4…3 01b GPIO2Pulls ROM R/W pull-up resistor is enabled for 10b GPIO2Mode=000b,010b,011b,100b (clamp disabled) 11b enable active clamp circuit for GPIO2Mode=000b,010b,011b,100b (pull-up/down disabled) Table 26. CURR3_GPIO3 Bit definition Addr: 20 Bit Name This register controls the mode of the CURR3_GPIO3 Pin Default Access ca Bit GPIO3 GPIO3Mode ROM R/W Te ch ni 2…0 4…3 GPIO3IOSF www.austriamicrosystems.com ROM R/W Description 000b digital open drain NMOS output 001b digital push-pull output (no PWM out possible) 010b digital input 011b digital open drain current sink operation Current defined by curr3_current 100b digital open drain switch operation On resistance defined by curr3_current 101b to 111b high impedance 00b input / output signal is written to or set by GPIO3Bit in the GPIO Bit register 01b PWM (O) / WDOG (I) if used for PWM, pwm_h_time and pwm_l_time define the high and low time of this output and only allowed for GPIO2Mode=011b,100b 10b GPIO3 control of regulators if regX_gpio = 1 and regX_on = 1 11b Touchpen ADC wait input Revision 1v13 33 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 26. CURR3_GPIO3 Bit definition GPIO3 Addr: 20 This register controls the mode of the CURR3_GPIO3 Pin 5 GPIO3Invert ROM GPIO3Pulls ROM R/W R/W Description 0 normal polarity of input / output signal 1 inverted polarity of input / output signal (not possible for PWM out) 00b no pull-up or pull-down resistor is enabled in all modes 01b pull-down resistor is enabled in digital input mode (clamp disabled) 10b pull-up resistor is enabled for GPIO3Mode=000b,010b,011b,100b (clamp disabled) 11b enable active clamp circuit for GPIO3Mode=000b,010b,011b,100b (pull-up/down disabled) am lc s on A te G nt st il 7…6 Default Access al id Bit Name lv Bit Table 27. CURR4_GPIO4 Bit definition Addr: 21 Bit Bit Name GPIO4Mode This register controls the mode of the CURR4_GPIO4 Pin Default Access ROM R/W GPIO4IOSF ch 4…3 ni ca 2…0 GPIO4 Te 5 GPIO4Invert www.austriamicrosystems.com ROM ROM R/W R/W Description 000b digital open drain NMOS output 001b digital push-pull output (no PWM out possible) 010b digital input 011b digital open drain current sink operation Current defined by curr4_current 100b digital open drain switch operation On resistance defined by curr4_current 101b to 111b high impedance 00b input / output signal is written to or set by GPIO4Bit in the GPIO Bit register 01b PWM (O) / WDOG (I) if used for PWM, pwm_h_time and pwm_l_time define the high and low time of this output and only allowed for GPIO4Mode=011b,100b 10b GPIO4 control of regulators if regX_gpio = 1 and regX_on = 0 11b Touchpen dedicated interrupt output 0 normal polarity of input / output signal 1 inverted polarity of input / output signal (not possible for PWM out) Revision 1v13 34 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 27. CURR4_GPIO4 Bit definition GPIO4 Addr: 21 7…6 GPIO4Pulls Default Access ROM R/W Description 00b no pull-up or pull-down resistor is enabled in all modes 01b pull-down resistor is enabled in digital input mode (clamp disabled) 10b pull-up resistor is enabled for GPIO4Mode=000b,010b,011b,100b (clamp disabled) 11b enable active clamp circuit for GPIO4Mode=000b,010b,011b,100b (pull-up/down disabled) al id Bit Name lv Bit This register controls the mode of the CURR4_GPIO4 Pin Addr: 55 am lc s on A te G nt st il Table 28. GPIO Signal Bit definition GPIO Signal This register controls the GPIO state / status Bit Name Default Access 0 GPIO1 0 R/W This bit determines the output signal of the GPIO1 pin when selected as output source 1 GPIO2 0 R/W This bit determines the output signal of the GPIO2 pin when selected as output source 2 GPIO3 0 R/W This bit determines the output signal of the GPIO3 pin when selected as output source 3 GPIO4 0 R/W This bit determines the output signal of the GPIO4 pin when selected as output source 4 GPIO1_in NA R This bit reflects the logic level of the GPIO1 pin when configured as digital input pin 5 GPIO2_in NA R This bit reflects the logic level of the GPIO2 pin when configured as digital input pin 6 GPIO3_in NA R This bit reflects the logic level of the GPIO3 pin when configured as digital input pin 7 GPIO4_in R This bit reflects the logic level of the GPIO4 pin when configured as digital input pin ca Bit Te ch ni NA Description www.austriamicrosystems.com Revision 1v13 35 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions The gpio block includes an internal programmable PWM generator (can be connected to any of the GPIO1_CURR1 … GPIO4_CURR4 outputs). Its timing is defined by the following tables: Table 29. PWM Frequency Control High Time Registers PWM Frequency Control High Time Registers Addr: 56 Bit Name Default Access Description al id Bit This register controls the PWM high time This bit defines the high time of the pwm generator in 2/fclk_int units pwm_h_time 00h R/W pwm_div * 2/ fclk_int 1 pwm_div * 4/ fclk_int 2 pwm_div * 6/ fclk_int lv 7:0 0 .... pwm_div * 512/ fclk_int am lc s on A te G nt st il FFh Table 30. PWM Frequency Control Low Time Registers Addr: 57 Bit Bit Name PWM Frequency Control Low Time Registers This register controls the PWM Low time Default Access Description This bit defines the high time of the pwm generator in 2/fclk_int units 7:0 pwm_l_time 00h R/W 0 pwm_div * 2/ fclk_int 1 pwm_div * 4/ fclk_int 2 pwm_div * 6/ fclk_int .... FFh pwm_div * 512/ fclk_int Table 31. PWM Divider Registers bits Bit Name ni Bit pwm_div ch 7:6 CURR control This register controls the PWM divider ca Addr: 58 Default Access 00h Description This bit defines the divider ratio of the prescaler for the PWM generator R/W 00 Divide by 1 01 Divide by 2 10 Divide by 4 11 Divide by 16 Te All Step Down DCDC converters and several LDOs can be directly on/off controlled by CURR3_GPIO3 or CURR4_GPIO4. The CURR3_GPIO3 and/or CURR4_GPIO4 pin should be set to digital input mode (GPIO3Mode = 010b, GPIO4Mode = 010b) and the following register should be set accordingly: www.austriamicrosystems.com Revision 1v13 36 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Note: The original digital interface on/off signal is used to switch between CURR3_GPIO3 and CURR4_GPIO4; e.g. if ldo_rf1_gpio is set, ldo_rf1_on is (re-)used to selected either CURR3_GPIO3 (ldo_rf1_on=1) or CURR4_GPIO4 (ldo_rf1_on=0) as input. Table 32. Regulator GPIO Control Registers Reg GPIO Ctrl Addr: 31 Bit Name Default Access Description ldo_rf1 on/off control 0 ldo_rf1_gpio 0 R/W 1 Controlled by software (ldo_rf1_on) Controlled by CURR3_GPIO3, if ldo_rf1_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if ldo_rf1_on=0 and GPIO4IOSF=10b lv 0 al id Bit This register enables/disables GPIO control of the regulators am lc s on A te G nt st il ldo_rf2 on/off control 1 ldo_rf2_gpio 0 0 Controlled by software (ldo_rf2_on) 1 Controlled by CURR3_GPIO3, if ldo_rf2_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if ldo_rf2_on=0 and GPIO4IOSF=10b R/W ldo_dig1 on/off control 2 ldo_dig1_gpio 0 0 Controlled by software (ldo_dig1_on) 1 Controlled by CURR3_GPIO3, if ldo_dig1_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if ldo_dig1_on=0 and GPIO4IOSF=10b; do not set ldo_dig1_gpio if DCDC SD1 is in external controller mode (sd1_1A_mode = 1100b) R/W ldo_dig2 on/off control ldo_dig2_gpio 0 ni sd1_gpio 0 Te 5 sd2_gpio www.austriamicrosystems.com 1 Controlled by CURR3_GPIO3, if ldo_dig2_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if ldo_dig2_on=0 and GPIO4IOSF=10b do not set ldo_dig2_gpio if DCDC SD1 is in external controller mode (sd1_1A_mode = 1100b) sd1 on/off control 0 Controlled by software (sd1_on) 1 Controlled by CURR3_GPIO3, if sd1_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if sd1_on=0 and GPIO4IOSF=10b R/W ch 4 Controlled by software (ldo_dig2_on) R/W ca 3 0 sd2 on/off control (or sd2 on/off control in 1A mode) 0 0 Controlled by software (sd2_on) 1 Controlled by CURR3_GPIO3, if sd2_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if sd2_on=0 and GPIO4IOSF=10b R/W Revision 1v13 37 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 32. Regulator GPIO Control Registers Reg GPIO Ctrl Addr: 31 Bit This register enables/disables GPIO control of the regulators Bit Name Default Access Description Sd3 on/off control sd3_gpio 0 0 Controlled by software (sd3_on) 1 Controlled by CURR3_GPIO3, if sd3_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if sd3_on=0 and GPIO4IOSF=10b R/W ldo_dig3 on/off control 8.4 0 Controlled by software (ldo_dig3_on) 1 Controlled by CURR3_GPIO3, if ldo_dig3_on=1 and GPIO3IOSF=10b Controlled by CURR4_GPIO4, if ldo_dig3_on=0 and GPIO4IOSF=10b R/W lv ldo_dig3_gpio 0 am lc s on A te G nt st il 7 al id 6 Backup Battery Charger The backup battery charger operates as a programmable voltage limited current source with a selectable output resistor. It is enabled by setting BBCMode in the Backup Battery Charger register to a value other than ‘00’b and offers the following features: Backup battery presence detection Selectable output resistor (RBBCOUT) to reduce the current at higher voltages Programmable charge current IBBC programmable maximum charging voltage VBBC Reverse current protection turns off backup battery charger automatically if VSUPPLY<VVBACK; as soon as VSUPPLY exceeds VVBACK charging is started again automatically Charging is stopped automatically as soon as the backup battery is fully charged; if the voltage on pin VBACK drops charging is started again automatically Te ch ni ca In case the main supply voltage VSUPPLY is larger than VVBACK charging of the backup battery is possible in state “Off” as well; the device will check VVBACK every minute to determine if charging is required. www.austriamicrosystems.com Revision 1v13 38 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 10. Backup Battery Charger Block Diagram Voltage limited Current source VBACK Rb al id VSUPPLY lv Digital Control Table 33. Backup Battery Charger Characteristics symbol Parameter Min Typ Max VSUPPLY Supply voltage range VBBC Maximum charging voltage 2.4 2.5 2.6 2.9 3.0 3.1 IBBC Charge current -30% VDELTA Delta voltage for resistive mode 160 5.5 3.3 5.5 Note BBCVolt=’0’ am lc s on A te G nt st il 3.0 Unit BBCCur +30% 220 300 V BBCVolt=’1’ BBCVolt=’0’ V BBCVolt=’1’ A Value is set by BBCCur in the Backup Battery Charger register mV BBCResOff=’0’ 20 IVSUPPLY 30 Supply current 0.5 BBCResOff=’0’ BBCResOff=’1’ µA BBCPwrSave=’1’; backup battery full. Table 34. Backup Battery Charger Register Addr: 38 ni BBCMode ch 1:0 Bit Name Te 2 4:3 This register controls the Backup battery charger mode Default Access ca Bit Backup Battery Charger BBCResOff 00b 0 Description 00b Backup battery charger is disabled 01b Backup battery charger is enabled in states “Power Off mode”, “standby mode” and “Active mode”. (32kHz OSC has to be enabled in that mode rtcmode=01b or 10b) 1Xb Backup battery charger is enabled in state “Active mode” and “standby mode”. (32kHz OSC has to be enabled in that mode rtcmode=01b or 10b) 0 Enable output resistor 1 Bypass output resistor R/W R/W This value determines the charge current IBBC. BBCCur www.austriamicrosystems.com 00b R/W 00b IBBC=50µA 10b IBBC=200µA 01b IBBC=100µA 11b IBBC=400µA Revision 1v13 39 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 34. Backup Battery Charger Register Backup Battery Charger Addr: 38 Bit This register controls the Backup battery charger mode Bit Name Default Access Description This value determines the maximum charging voltage VBBC. BBCPwrSave 7 1 R/W R/W 0 VBBC=2.5V 1 VBBC=3.0V 0 Normal operation of the backup battery charger 1 The backup battery charger checks if it is actually charging the battery (bit BUChAct=’1’) and it is disabled if it is not. Every 10s (every 64s in state “Off”) the voltage of the backup battery is checked again to determine if charging is required. This practically reduces the current consumption to 0 if the backup battery is full. am lc s on A te G nt st il 6 0 al id BBCVolt lv 5 - reserved - Figure 11. Backup Battery Charger Characteristics IBACK 400µA Rb=0N ca 200µA Rb=0FF 100µA VBACK ni 50µA Vback_lim Te ch Vback_lim-VDelta www.austriamicrosystems.com Revision 1v13 40 - 157 AS3658 Data Sheet Confidential 8.5 - Detailed Description-Power Management Functions Smooth switchover Power Management Overview Figure 12. Power Source Management Architecture & !"#" $%& !( am lc s on A te G nt st il " !" !"#" !"#" al id lv A !" '( !# The power source management architecture handles the smooth transitions between the two chargers (USB Charger on VBUS, DCDC Step Down charger or Linear Charger on VCHARGER) and the battery. It takes care about the system power supply VSUPPLY and its power requirements. There are following operating conditions possible ca 1. No Charger connected The internal switch SINT and the (optional) external switch MBATSW are closed and VSUPPLY is directly supplied by VBAT. Because of the very low impedance of the switches the energy losses are minimized. 2. The active charger can deliver more current than the system requires The system is directly supplied by the charger and the remaining energy can be used to charge the battery (CC/CV charger). In case of deeply discharged batteries, the system is always immediately started and the internal current source between VSUPPLY and VBAT delivers the trickle current to the battery. 3. The current limited (e.g. for USB with 500mA) charger cannot deliver the current, the system requires In this case, the ideal diode starts conducting and delivers the remaining current to the system The transitions between the different power states are done autonomously by the AS3658 allowing an uninterrupted operation of the system. Te ch ni The blocks are described in more detail in the following sections. www.austriamicrosystems.com Revision 1v13 41 - 157 AS3658 Data Sheet Confidential 8.6 - Detailed Description-Power Management Functions Battery switch SINT (Vsupply, Battery) Figure 13. Battery Switch Diagram # $%&' # ""&#="&#$/#=""?#&:") ="<&:<$!###="<&:< $%#####;,"$! ####### #####################@#############&:")#$,! ############################ ##############!"#&! #########################################&:")# $&% ((() ",#9$:!#) !##$#. $% ! #)&#$//#0!%#!$"# ;5 *(+ ;#!%#&$ "<="> ,-.--, # $%#$ ' ("! #!#)' $% .6778 .)$// 012.314.3.3 .5 am lc s on A te G nt st il /0 / lv " al id ' ' ' /0 /0 '1. ' + 8" , - + !"#!#" # $% $!&"!"!"#! ' ("! #!#)'#*$% %&<="<&:<" ,<,$" ""?#:") The internal Battery switch enables normal operation of the System during trickle charging of a deeply discharged battery. The Switch provides the following functions: Trickle charging, if VBAT is smaller than ResVolt. The current is defined in TrickleCurrent[1:0] PMOS is switched on if VBAT is greater then ResVolt. Constant current charging, if the external charger is in linear operation, or the USB charger is used. the current is defined by constant_current[2:0]. Current limitation during tricklecharge, to avoid inrush current: Itrickle_Ilimit Current limitation during Constant current charging to avoid inrush current: ICC_Ilimit ca Undervoltage protection of Vsupply during trickle charge or constant current charge with linear charger. The charging current is regulated down, if Vsupply drops below Vsupply_min ch ni Ideal diode operation in Isolate Battery mode and disable charging mode, during charger is unplugged. This operation is for the internal battery switch only. External battery switch is open in that mode. Regulation will start, if the VSUPPLY voltage drops by more then VDiode below the VBAT voltage. After three milliseconds debounce time, if no charger is recognized, the internal and external battery switch (if enabled) is closed to have a low Ω ic connection between VBAT and VSUPPLY. Table 35. Battery switch parameters Parameter Min VSupply Input voltage 3.0 Itrickle_limit Trickle current limit ICC_limit Constant current current limit Te Symbol www.austriamicrosystems.com Typ Max Unit Note 5.5 V PIN VSUP_SW1,VSUP_SW2 400 800 mA mA Revision 1v13 Current Limit in constant current mode (Linear charger mode or USB charger only) Note: applies only for the battery switch alone 42 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 35. Battery switch parameters Min VDiode Ideal Diode start voltage Vsupply_min Vsupply level for charging current regulation (reduction), to avoid voltage drop on vsupply Typ 50 Unit Note mV 3.9 3.6 -6% 3% 4.2 V Trickle current (or constant current in linear mode) will be regulated down, if vsupply drops below this level Ω VSUP_SW=3.6V 4.5 SINT P-Switch ON resistance RSW Max al id Parameter 0.10 Table 36. USB-Charger Bit definitions USB Charger Control Bit 5 This register controls the mode of the USB charger, and the charger state machine am lc s on A te G nt st il Addr: 10 Bit Name dis_batsw_tmp_prot 7 lv Symbol ext_batsw_en Default Access ROM ROM Description 0 Over temperature protection of battery switch enabled. (If battery switch is in current source mode, charging is stopped if chip temperature exceeds 110º) 1 Over temperature protection of battery switch disabled 0 External battery switch disabled (Pin BAT_SW = max(VSUPPLY,VBAT)) 1 External battery switch enabled (Pin BAT_SW=0V, if status bits batsw_on=1 and batsw_mode=1. These bits are controlled by the charger state machine) R/W R/W Table 37. Battery switch status Bit definitions Addr: 100 Bit Name batsw_mode ni 2 batsw_on Default Access NA NA Description 0 Trickle charging (or constant current charging in linear mode), if batsw_on=1. External PMOS switch disabled 1 Switch on Battery switch, if batsw_on=1. External PMOS switch enabled 0 Battery switch off 1 Battery switch on (Mode defined by batsw_mode) R R Te ch 3 These bits show the status of the battery switch ca Bit Charger status_usb www.austriamicrosystems.com Revision 1v13 43 - 157 AS3658 Data Sheet Confidential 8.7 - Detailed Description-Power Management Functions External Step Down/Linear Charger The inductive dcdc step down charger (or the external linear charger) converts the input voltage from VCHARGER to VSUPPLY. The system (DCDC converters, LDOs…) are connected directly to VSUPPLY; the ideal diode and the internal battery switch SINT (together with the external battery switch MBATSW) connect VSUPPLY to VBAT to allow charging of the battery. ', / !'0, # ,. $ / !'0, $ & , am lc s on A te G nt st il / !'2#, '# $ . ,, ! $ ' -0 lv al id Figure 14. Step Down Charger Application Diagram with optional reverse polarity and short protection #,,1 ' /,# ( ! '' ( )*+ * * , !!$ "# ", $" /$" !'0, $ & $"# $", % $ '& % % !%# -. !% # ! % !( (& ca !%, -. Te ch ni If the input voltage can be up to 50V additional three transistors and a simple voltage regulator with a zener diode are required. These circuit ‘isolates’ the AS3658 from the high input voltage and keep the pins VCHARGER, VOFF_B and VGATE within its operating limits (<15V). The actual circuit is shown in the following figure: www.austriamicrosystems.com Revision 1v13 44 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions am lc s on A te G nt st il lv al id Figure 15. Charger Block Diagram for voltages >15V (Protection up to 50V; minimum Vcharger voltage 8V) Te ch ni ca Instead of using an inductive DCDC step down charger, the AS3658 supports external linear charging mode with an PMOS transistor. The operating mode is selected by connecting the pin VOFF_B to GND (for 5.5V limited chargers, the USB charger can be used alternatively): www.austriamicrosystems.com Revision 1v13 45 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 16. External Linear Charger Application Diagram (VOFF_B connected to GND) 9 !2<, 23 - ! # ,8 ,, ! $ & - !!$ am lc s on A te G nt st il "# ", 456 5 5 A al id $ lv 9 $ $" 9$" !2<, $ & $"# $", % $ 2& % % !%# 78 !% # ! % !-& !%, 78 Table 38. Charger External Components Component Value MCHARGER, MBATSW, MREVPOL P-channel MOSFET Si1403, FDC642P or FDC5614P similar MCHRGPU P-channel MOSFET BSS84 or FDG312P or similar RCHRGPU1 Pull-up resistor1 2kΩ ± 5% Pull-up resistor2 ni RCHRGPU2 ca Symbol Note 100Ω ± 5% for MCHRGPU =BSS84 50Ω ± 5% for MCHRGPU=FDG312P 10µH 5V or 6V Vcharger input 22µH 12V Vcharger input Inductor for charging DCHARGER Diode MBRS130 or PMEG2010 DCHRGPROT Zener Diode 5.6V Zener Diode RCHSHUNT Current sense resistor charger 70mΩ ± 5%, 125mW e.g. Vishay Dale WSL0805 series RSENSE Current sense resistor 50mΩ ± 1%, 125mW for IVBAT,DC<1.5A e.g. Vishay Dale WSL0805 series RFILTER1,2 Filter resistor 4.7kΩ ± 1% CFILTER Filter capacitor 1µF ± 20%, X5R or X7R dielectric Can be omitted if fuel gauge and charger functionality is not used CCHARGER Bypass capacitor on charger pin 1µF ± 20%, X5R or X7R dielectric + 22µF ± 20%, Tantal dielectric Te ch LCHARGER www.austriamicrosystems.com Revision 1v13 46 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 38. Charger External Components Symbol Component Value Note Minimum total capacitance parallel to Vsupply 22µF± 20%, X5R or X7R dielectric 10 µH inductor CVSUPPLY 47µF± 20%, X5R or X7R dielectric 22 µH inductor al id Figure 17. Step down charger Efficiency (Measured) VSupply=4.4V Step down charger 100 lv 90 70 Vcharger=5V, f=550kHz 60 Vcharger=6V, f=550kHz am lc s on A te G nt st il Efficiency (%) 80 Vcharger=12V, f=550kHz 50 Vcharger=5V, f=275kHz 40 Vcharger=6V, f=275kHz 30 Vcharger=12V, f=275kHz 20 10 0 0,0000 0,2000 0,4000 0,6000 0,8000 1,0000 1,2000 Output current (A) 8.7.1 External Step Down/Linear Charger Characteristics The battery charge controller controls the external Step Down/ Linear charger. During Trickle charge of the deeply discharged battery the step down/Linear converter regulates the Vsupply to Vchlimit. ca In step down charger mode, If the VBAT voltage exceeds ResVoltRise, the internal battery switch is switched on, the Vsupply voltage drops down to VBAT immediately, and the step down converter operates as controlled current source to Vsupply. The battery current is regulated to the value defined in ConstantCurrent register. ni In linear charger mode, the Vsupply is still regulated to Vchlimit, if the VBAT voltage exceeds ResVoltRise. The current is regulated by the battery switch to the value defined in the constant current register. ch In EOC operation (see Battery Charge Controller on page 51), the operation of the charger depends on the bit isolate_battery: If isolate_battery = 1 and EOC the output is regulated to Vchlimit. If isolate_battery = 0 and EOC the output is not allowed to drop below VEOC (3.6V). Te Table 39. Step down Charger parameters Symbol Parameter Min Typ Max Unit Note Vrsense_max Current limit voltage at Rsense 70 100 130 mV e.g.: 1.4A for 0.07O sense resistor typ. Cout_10 Output capacitor with 10µH inductor 20 60 µF X7R ceramic www.austriamicrosystems.com Revision 1v13 47 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 39. Step down Charger parameters Parameter Min Cout_22 Output capacitor with 22µH inductor Cout_Linear Output capacitor in linear mode L Inductor Itrickle_limit Trickle current limit Typ Max Unit Note 40 60 µF X7R ceramic 20 60 µF X7R ceramic 10/22 µH (see Table 38) 400 mA al id Symbol Table 40. Step down Charger Bit definitions Step Down charger control Addr: 37 Bit Name 0 sdc_frequ 0 R/W 1 sdc_pon 1 R/W 2 8.8 Default Access Description 0 fclk_int/4 (use as default, if Vcharger>6V) am lc s on A te G nt st il Bit lv These bits configures the step down charger sdc_pass_mode 0 R/W 1 fclk_int/8 (use as default, if Vcharger<6V) 0 Disable 100% PMOS on mode for step down charger 1 Enable 100% PMOS on mode to reduce voltage drop in low dropout regulation 0 Normal mode of step down charger mode 1 step down charger in pass through mode. Use this mode with max. 5.5V charger only. Vsupply=Vcharger in that mode, if no_charging=1. USB Charger Figure 18. USB Charger Block Diagram #$%"4"4 #$%"/ "3 0 "3 ca " . ch ni 4151" 5(15# 1# Te ,($ 3 %# www.austriamicrosystems.com # #$%# &'()*(+ ,-. &-,)'-+ / 0112$ %0 " " ! " 21 ! Revision 1v13 48 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions The AS3658 serves an integrated USB charger for Li+ batteries. The USB Charger is a current and voltage limited charger, which can be used to charge Li+ batteries directly from the USB supply. The VBAT voltage limit is set by the register ChVoltEOC (3.9V – 4.25V in 50mV steps; identical for USB charger and step down charger) and the current limit is set by the register usb_current (94mA to 881mA). The Vsupply voltage limit is set to Vchlimit during trickle and constant current charging. al id For USB charging, it is recommended to start with a current limit of 94mA and after negotiates via the USB bus (this has to be done by e.g. the uProcessor directly) a different current setting can be set to speed up charging (e.g. 470mA). If Bit usb_chgEn=1 in the Boot ROM is set, VSUPPLY can start up with USB supply allowing startup from the USB supply. lv If ChEn=1 and chdet=1 (external charger enabled and connected) the usb_charger will be deactivated automatically. (The Battery charger overrides the USB charger). It's not possible to use the internal and the external charger in parallel. am lc s on A te G nt st il End of charge of the USB charger is reached, if the current through the battery falls below the value set in the Tricklecurrent [1:0] register. Table 41. USB-Charger Bit definitions USB Charger control Addr: 10 Bit This register controls the mode of the USB charger, and the charger state machine Bit Name Default Access Description Sets the USB input current limit. usb_Current ROM R/W Te ch ni ca 3:0 4 usb_chgEn www.austriamicrosystems.com (0000)b 94mA (USB low current) (0001)b 141mA (0010)b 189mA (0011)b 237mA (0100)b 285mA (0101)b 332mA (0110)b 380mA (0111)b 428mA (1000)b 470mA (USB high current) (1001)b 517mA (1010)b 598mA (1011)b 668mA (1100)b 759mA (1101)b 881mA (1110)b 881mA (do not use) (1111)b 881mA (do not use) ON/OFF control of USB charger ROM R/W 0 USB charger disabled. 1 USB charger enabled. Revision 1v13 49 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 41. USB-Charger Bit definitions USB Charger control Addr: 10 5 Default Access dis_batsw_tmp_prot no_charging 7 0 Overtemperature protection of battery switch enabled. (If battery switch is in current source mode, charging is stopped if chip temperature exceeds 110ºC) 1 Overtemperature protection of battery switch disabled 0 Normal battery charger operation (usb charger and/or step down charger) 1 USB and Step down charger is supplying VSUPPLY, but battery switch is open. USB charger or external charger regulate to Vchlimit R/W ROM R/W am lc s on A te G nt st il 6 ROM Description al id Bit Name lv Bit This register controls the mode of the USB charger, and the charger state machine ext_batsw_en ROM 0 External battery switch disabled (Pin BAT_SW= VSUPPLY,VBAT) 1 External battery switch enabled (Pin BAT_SW=0V, if status bits batsw_on=1 and batsw_mode=1. These bits are controlled by the charger state machine) R/W Table 42. Charger status Bit definitions Addr:100 Charger status_usb These bits show the status of the USB charger Bit Bit Name Default Access Description 0 USB_ChDet NA R set to 1 if charger is detected 1 USB_Chact NA R Set to 1 if charger is active 4 Ch_overvoltage NA R Set to 1 if overvoltage on pin VCHARGER is applied Charger Detection: ca The Charger will be detected by comparison of the V_USB voltage with the Vsupply voltage. If V_USB is 50mV higher than VSupply voltage or V_USB > 4.3V or the USB_ChDet is set to 1. Table 43. USB Charger Characteristics,VUSB=4.3…5.5V; Tamb=–20…+85°C; unless otherwise specified. Parameter Min Typ Min Unit Note USBcurrent for 500mA selection 440 470 500 mA Resistor on pin RBias to ground of 220kΩ 84 95 104 mA Resistor on pin RBias to ground of 220kΩ ni Symbol ch Iusbcurrent500mA USBcurrent for 100mA selection Te Iusbcurrent100A www.austriamicrosystems.com Revision 1v13 50 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 44. USB-Charger additional trimming USB Current control Addr:130 Bit This register adds or subtracts current limit Bit Name Default Access Description 00h R/W 101 usbcurrent-3.8% 110 usbcurrent-2.5% 111 usbcurrent-1.2% 000 usbcurrent+0% 001 usbcurrent+1.2% 010 usbcurrent+2.5% 011 8.9 lv usb_add_trim_current usbcurrent-5.1% am lc s on A te G nt st il 2:0 100 al id Increase or decrease The USB current limit for additional in system trimming: usbcurrent+3.8% Battery Charge Controller The AS3658 device serves as a standalone battery charge controller supporting rechargeable lithium ion (Li+) and nickel metal hybrid (NiMH) batteries. Requiring only a few external components, a full-featured battery charger with a high degree of flexibility can easily be realized. The main features of the controller are: Charge adapter detection Charging of deeply discharged batteries Low current (trickle) charging Real constant current charging by regulation of the battery current instead of the charge current 2 different top-off charging modes: Pulse charging and constant voltage charging Fuel gauge enables highly accurate remaining capacity estimation of the battery Overvoltage protection for charge adapter input and main battery Battery presence indication Operation without battery Reverse polarity and short protection ca Charging timout timer Battery NTC supervision ni 8.9.1 Charge Controller Operating Modes and Building Blocks Linear Step down Charger detection ch The charging circuit automatically detects, if a step down charger or a linear charger is connected externally, by measuring the voltage on the pin VOFF_B. If this pin is tied to GND, the circuit detects a linear charger. Otherwise the step down charger is detected Te Charge adapter detection The charge controller uses an integrated detection circuit to determine if an external charge adapter has been applied to the VCHARGER or V_USB pin. If the adapter voltage exceeds the supply voltage at pin V_SUPPLY5 by VCHDET the ChDet or USB_CHDet bit in the Charger Status register will be set. The detection circuit will reset the charge controller (ChDet or USB_CHDet is cleared) as soon as the voltage at the VCHARGER or USB_CHDet pin drops to only VCHMIN www.austriamicrosystems.com Revision 1v13 51 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions above the battery voltage. In case the AS3658 device is reset the charge controller will also be reset, even if a charge adapter is applied to the VCHARGER or V_USB pin. Charging deeply discharged batteries al id To be able to charge even completely discharged batteries the AS3658 device contains an internal voltage regulator that uses the voltage of the external charge adapter at pin VCHARGER or V_USB to generate a bootstrap voltage V2_5V to supply the internal circuitry necessary for charging. As soon as the battery voltage exceeds 2.5V, the bootstrap regulator is disabled and the battery voltage will be used to generate the internal supply voltage to supply the charger circuitry. Low current (trickle) charging am lc s on A te G nt st il lv Trickle charge mode is started when an external charge adapter has been detected and ChEn or usb_chgEn is set, and the battery voltage at pin V_BAT is below the ResVoltRise threshold VRESRISE. The Battery switch is open in that case (batsw_on=1 batsw_mode=0). Bits ChAct and/or USBChAct and Trickle will be set in the Charger Status registers. In this mode the charge current into the battery will be limited to TrickleCurrent (set in the Charger Current register) by the battery switch to prevent undue stress on either the battery or any of the charger components in case of deeply discharged batteries. if Vsupply drops below Vsupply_min threshold the trickle current is regulated down, to keep the Vsupply voltage up, even with an current limited charger (e.g.:USB charger). Once VRESRISE has been exceeded, the battery switch will be closed and the charge controller will proceed to constant current charge mode. The Vsupply voltage of the step down charger will be set to Vcurr_preset to prevent undervoltage on vsupply during the transition between Trickle and constant current charging. Constant current charging Constant current charging is initiated by setting bit ChEn and/or USBChEn in the Charger Control register, and resetting the No_charging bit. Note that ChEn and/or USBChEn should be set by default to enable operation of the device without a battery connected to the system. The ChAct and/or USBChAct bit is set when the charger has started, and the charge current into the battery will be limited to ConstantCurrent (set in the Charger Current register) by the battery charge controller. When the battery approaches full charge, its instantaneous voltage will exceed the charge termination threshold VCHOFF. VCHOFF depends on the ChVoltEOC.The top-off charge mode will be started (bit CVM will be set). Constant voltage charging Constant voltage charge mode is initiated and the CVM bit will be set when the VCHOFF threshold has been exceeded for the first time and bit Pulse is not set. In the following the charge controller will act to regulate the battery voltage to a value set by ChVoltEOC in the Charger Config register. ni ca The charge current is monitored during constant voltage charging. It will be decreasing from its initial value during constant current charging and eventually drop below the value set by TrickleCurrent in the Charger Current register. If the measured charge current is less than or equal to TrickleCurrent and the battery voltage is larger than VCHRES, the charging cycle is terminated and EOC is set. Then the charge controller starts the EOC operation. EOC operation ch There are two possibilities: Te 1. If isolate_bat=1 the battery switch will be switch off and the battery charger regulates to its highest voltage Vchlimit.. The advantage of this mode is a longer lifetime of the Li+ battery, because there is no discharging after the EOC condition. If autoresume=1 and the battery voltage drops below VCHRES the battery charger continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with constant voltage. 2. If isolate_bat=0 the battery switch remains closed for step down charger or will be closed for linear and usb charger, and the power to the system is supplied by the battery. The battery charger and the USB charger regulates to VEOC, in case the battery is removed. If autoresume=1 and the battery voltage drops below VCHRES the battery charger continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with battery charging. www.austriamicrosystems.com Revision 1v13 52 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Battery Detection and Restart of Charging: al id In EOC state, If the battery voltage drops below VCHRES and the bit AutoResume is set, the battery detection is started. The battery switch will be switched into current source mode and VSUPPLY will be regulated to Vchlimit (all charger). The AS3658 measured the battery current with the fuel gauge in this mode. If there is no current, the AS3658 is kept in this state and the bit NoBat is set. Otherwise the bit NoBat is cleared and the charger and the AS3658 continues in battery charging mode. In addition, if the ntc_on<1:0>=01b (NTC temperature supervision is active) the NoBat bit is cleared and charging is restarted, if a NTC resistor with normal or high temperature is detected. Overvoltage protection for external linear charger: lv During charging with the external linear charger the battery charge controller constantly monitors the voltage of the charge adapter at pin VCHARGER. In case the charge adapter voltage exceeds VVCHIN,MAX rise for longer than 3mesec and bit ChOVDetEn in the Charger Control register is set to 1, charging is disabled immediately. If the voltage on the pin VCHARGER drops below VVCHIN,MAX fall, the charger is re-enabled. Figure 19. Typical charging cycle (step down charger) VCHARGER = 6V am lc s on A te G nt st il VSUPPLY = 4.4V (isolate_bat=1) VSUPPLY = 4.2V (isolate_bat=0) VBAT = 4.2V VSUPPLY = 4.4V VBAT = 2V VBAT = Vres_rise (e.g: 3.4V) IBAT = ConstantCurrent (e.g 700mA) Constantvoltage IBAT = 0mA IBAT = TrickleCurrent (e.g 200mA) EOC CH_DET = 0 ca CH_DET = 1 I2C Write NO_CHARGING = 0 Te ch ni NO_CHARGING = 1 www.austriamicrosystems.com Revision 1v13 53 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 20. Typical charging cycle (External linear charger or USB charger) VCHARGER = 6V VSUPPLY = 4.4V...5.0V (isolate_bat=1) VSUPPLY = 4.4V..5.0V VSUPPLY = 4.2V (isolate_bat=0) al id VBAT = 4.2V IBAT = ConstantCurrent (e.g 700mA) lv VBAT = Vres_rise (e.g: 3.4V) VBAT = 2V am lc s on A te G nt st il Constantvoltage IBAT = TrickleCurrent (e.g 200mA) IBAT = 0mA EOC CH_DET = 1 CH_DET = 0 I2C Write NO_CHARGING = 1 NO_CHARGING = 0 Table 45. Charger Characteristics VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified Parameter Min Typ Min Unit Note Vchlimit Voltage limit of charger (if not in current limitation mode) -3% ch_volt age 3% V Max. Vsupply voltage 15.0 V For input voltage higher than 15V see above protection circuit; for chargers with input voltages down to 4.5V see: ‘Application Note for DC/DC Step down Charger for Chargers Supplying 4.5V to 5.5V’ ca Symbol VCHDET Charge adapter detection threshold ch VCHMIN ni VCHARGER VCHARGER operating range Charge adapter detection hold voltage Te VCHMIN_hold Vchin,max rise Vchin,max fall Charger adapter overvoltage threshold rising Charger adapter overvoltage threshold falling www.austriamicrosystems.com 5.0 50 75 105 mV 0 20 35 mV Hysteresis is > 40mV; for USB and step down charger -5 -20 -40 mV Vchdet falling threshold, if VSUPPLY>4.35V for V_USB and VCHARGER, and for V_USB, if usb_hold_chdet=1. Warning: Backcharging is possible if usb_hold_chdet=1 6.0 6.5 7.0 V ChOVDetEn=’1’ for external linear charger only V ChOVDetEn=’1’ for external linear charger only 6.0 Revision 1v13 54 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 45. Charger Characteristics VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified Symbol Parameter Typ Min Unit ISTARTmax Maximum load current during startup on Vsupply VUVLO Undervoltage lockout threshold –3% 2.7… 3.4 +3% V Value is set by ResVoltRise in the Battery Voltage Monitor register VCHOFF Charge termination threshold –0.06 3.90… 4.25 +0.06 V Li+ battery; value is set by ChVoltEOC in the Charger Config register VCHRES Charger resume voltage V Value is set by ChVoltResume in the Charger Config register. Do not set VCHRES higher than VCHOFF! Vcurr_preset Charger constant current pre-set voltage VEOC Charger EOC voltage mA 3.85… 4.20 al id 5 Note lv Min VRESRI SE V 3.60 V am lc s on A te G nt st il + 100mV If isolate_bat=0; to prevent a system reset if the battery is removed in EOC operation Table 46. Charger status Bit definitions Addr:99 Charger status These bits show the status of the charger Bit Name Default Access Description 0 ChDet NA R Bit is set when external charge adapter has been detected on pin VCHARGER 1 ChAct NA R Bit is set when step down charger is operating (independent of Reg. bit no_charging) 2 Resume NA R Bit is set when battery voltage has dropped below resume level 3 Trickle NA R Bit is set when charger is in trickle charge mode 4 CVM NA R Bit is set when charger is in top-off charge mode (constant voltage mode) 5 EOC R Bit is set when charging has been terminated. Bit is cleared automatically when ChEn is cleared, no_charging is set or charging is resumed. NA R Bit is set when battery detection circuit indicates that no battery is connected to the system. Detection is started after EOC and if bit autoresume=1 only. Bit is cleared automatically when a battery is connected, when DisBDet is set and/or when ChEn is cleared. NA R Bit is set, if Linear charger is detected, and chDet=1. This state is latched on the rising edge of chDet. Detected if VOFF_B is connected to ground ni NoBat ch 6 ca Bit ChLinear Te 7 NA www.austriamicrosystems.com Revision 1v13 55 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 47. Charger control Bit definitions Charger Control1 Addr:11 0 Default Access ChEn Ch_pwroff_en ROM 0 Disable step down charger (Independent of bit no_charging) 1 Enable step down charger (default) (Independent of bit no_charging) 0 Startup of AS3658 if charger is connected in power_off mode 1 Don't exit power off mode, if charger is already connected before entering power off mode; no autonomous charging upon static charger detect. Startup with rising edge of VCHARGER or V_USB, RTC wakeup and XON pin only 0 Overvoltage detection with linear external charger enabled 1 Overvoltage detection with linear external charger enabled. Battery charging disabled, if voltage exceeded 0 Charging does not restart automatically in EOC when bit Resume is set. 1 Charging will restart automatically in EOC when bit Resume is set 0 Normal charge_detect operation 1 Charger detect of USB charger will not be reset, if VUSB=VBAT. (Allow Battery charging, with V_USB<4.4V down to 3.3V); for this case, software should detect the removal of the charger 0 Read: no timeout reached Write: reset charger timeout counter 1 tCHARGING,MAX timeout reached and charging stopped R/W R/W am lc s on A te G nt st il 1 ROM Description al id Bit Name lv Bit These bits controls the charger 2 CHOVDetEn 3 AutoResume 4 usb_hold_chdet charging_tmax ROM ROM ROM ca 5 ROM Ch_det_500ms ROM R/W R/W R/W R/W Controls the charge detect debounce timer on pin VCHARGER, if external charger is connected. (If the charger is removed the debounce time is always 3msec) 0 VCHARGER debounce timer is 3msec 1 VCHARGER debounce timer is 500msec Te ch ni 6 R/W www.austriamicrosystems.com Revision 1v13 56 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 48. Battery, supply voltage Bit definitions Battery voltage monitor Addr:12 Bit These bits controls the battery/Supply voltage monitor (Reset levels) Bit Name Default Access Description ROM (101b) R/W 001b VRESRISE=2.8V 010b VRESRISE=2.9V 011b VRESRISE=3.0V 100b VRESRISE=3.1V 101b VRESRISE=3.2V lv ResVoltRise VRESRISE=2.7V am lc s on A te G nt st il 2:0 000b al id This value determines the reset level VRESRISE for rising VBAT. It is recommended to set this value at least 200mV higher than VRESFALL. 110b VRESRISE=3.3V 111b VRESRISE=3.4V This value determines the reset level VRESFALL for falling VVBAT. It is recommended to set this value at least 200mV lower than VRESRISE. ResVoltFall SupResEn ni 6 FastResEn ROM (0b) ROM R/W VRESFALL=2.7V 001b VRESFALL=2.8V 010b VRESFALL=2.9V 011b VRESFALL=3.0V 100b VRESFALL=3.1V 101b VRESFALL=3.2V 110b VRESFALL=3.3V 111b VRESFALL=3.4V 0 A reset is generated if Vsupply falls below 2.7V. (If VVBAT falls below VRESFALL only an interrupt is generated (if enabled) and the Processor can shut down the system) R/W R/W 1 A reset is generated if Vsupply falls below VRESFALL 0 Vresetfall debounce time = 3msec 1 Vresetfall debounce time = 4µsec Te ch 7 ROM (011b) ca 5:3 000b www.austriamicrosystems.com Revision 1v13 57 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 49. Charger Config Register Charger Config Addr:13 Bit These bits configure the charger Bit Name Default Access Description ROM 001b 3.95V 010b 4.00V 011b 4.05V 100b 4.10V 101b 4.15V 110b 4.20V 111b 4.25V lv ChVoltEOC 3.90V am lc s on A te G nt st il 2:0 000b al id Sets the end-of-charge voltage level VCHOFF. Regulate down battery charging current on that level of Vsupply during trickle charging and/or linear charging, to prevent voltage drop on vsupply: 4:3 Vsupply_min ROM 00b 3.90V 01b 3.60V 10b 4.20V 11b 4.50V Sets the resume voltage level VCHRES ChVoltResume 3.85V 001b 3.90V 010b 3.95V 011b 4.00V 100b 4.05V 101b 4.10V 110b 4.15V 111b 4.20V ni 8.9.2 Fuel Gauge ROM ca 7:5 000b The fuel gauge circuit enables remaining capacity estimation of the battery by tracking the net current flow into and out of the battery using a voltage-to-frequency converter. ch Voltage-to-Frequency Converter Te The voltage-to-frequency (VFC) converter constantly monitors the voltage drop across an external current sense resistor Rsense connected in series between the negative battery terminal and ground. The use of an additional external RC lowpass filter is highly recommended. Using two 4.7kΩ resistors (Rfilt1,2) and a 1µF ceramic capacitor (Cfilt), the filter cut-off is approximately 16.9 Hz. This filter will capture the effect of most spikes, and will thus allow the current accumulators to accurately reflect the total charge that has gone into or out of the battery. www.austriamicrosystems.com Revision 1v13 58 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions The key building block of the VFC is an integrator. It will integrate the voltage VSNS across input pins ISENSP and ISENSN. If VSNS is positive (battery is charged), the output voltage of the integrator increases; a negative input voltage (battery is discharged) will cause the integrator output voltage to decrease. Table 50. Fuel Gauge parameters Typ Max Unit Note fCLK Internal reference clock fclk_int/ 2 MHz internal CLK frequency/2 Programmable: 0.8 to 1.15 MHz fVFC Sample frequency fCLK/59 Hz VISENSP VISENSN Input voltage -0.1 ZISENSP ZISENSN Input impedance 4.67 AVFC Discharge and Charge gain 91.0 Hz / V FRVFC Fundamental rate 3.05 µVh VOFF Uncompensated offset voltage -500 VOFF,COMP Compensated offset voltage -50 0.1 V MΩ fCLK = 1.1MHz am lc s on A te G nt st il Min al id Parameter lv Symbol 500 µV ±10 50 Charge Current Accumulator The output signals of the charge count dividers are used as inputs for the charge current accumulator that is realized as a 15-bit up-down counter with separate inputs for incrementing and decrementing the counter. An additional sign bit indicates the polarity of the counter value that is maintained in two’s complement format. The current accumulator is updated at a rate equivalent to one count per 3.05µVh, which is equivalent to one count per 61.03µAh when using a 50mΩ current sense resistor. It will roll over beyond (7FFF)h when incremented and (0000)h when decremented, and the value given by the counter will be ambiguous in that case. It is the responsibility of the host to read the counter before rollover occurs. ca The content of the charge current accumulator will be transferred into the DeltaCharge register when the UpdReq bit in the FuelGauge register has been set. The update of the register has to be synchronized to the sample clock fVFC and can take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the UpdReq bit is cleared automatically and the charge current accumulator together with the sign bit will be reset. Elapsed Time Counter ni The sample clock fVFC of the fuel gauge circuit is fed to a 14-bit clock count divider. Its output signal is used as a clocking signal for the 16-bit elapsed time counter, resulting in an equivalent rate of 1.1379 counts per second (4096.60 counts = 1 hour). The elapsed time counter will rollover beyond (FFFF)h, and the value given by the counter will be ambiguous in that case. It is the responsibility of the host to read the counter before rollover occurs. Te ch The content of the elapsed time counter will be transferred into the ElapsedTime register when the UpdReq bit in the FuelGauge register has been set. The update of the register has to be synchronized to the sample clock fVFC and can take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the UpdReq bit is cleared automatically and the elapsed time counter will be reset. Offset Calibration Mode Although the VFC compensates for the offset of the integrator the fuel gauge features an additional offset calibration mode to enhance the measurement accuracy even further. By setting the CalReq bit in the FuelGauge register the integrator is reset and the offset calibration mode is activated. The charge count dividers are bypassed during offset calibration to allow a faster calibration procedure with adequate resolution. The offset is accumulated during 16 clocks of the elapsed time counter, the resulting offset calibration value FGOffCal has a resolution of 3.05µV and is www.austriamicrosystems.com Revision 1v13 59 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions transferred to the DeltaCharge register. The CalReq bit is cleared automatically after the calibration has completed successfully and FGOffCal has been written to the register. al id Please note that offset calibration is not possible while the charger is active. If the CalReq bit is set while the charger is active the calibration will start automatically after the charger has been disabled by clearing the ChEn bit or if the external charge adapter has been removed. If during an offset calibration procedure the charger is enabled the offset calibration mode is terminated, the CalReq bit is cleared, the current value of the elapsed time counter is transferred to the ElapsedTime register and the DeltaCharge register is loaded with (FFFF)h. Calculation of Battery Status The host system can calculate all the parameters necessary for estimating the remaining battery capacity by evaluating ElapsedTime, DeltaCharge and FGOffCal. Calculating Elapsed Time am lc s on A te G nt st il Δt = ElapsedTime x 3600 / 4096.60 [s] lv The host system can evaluate the change in time Δt by setting the UpdReq bit in the FuelGauge register and reading ElapsedTime after UpdReq has been automatically cleared. The change in time in seconds is given by: (EQ 1) Note that the absolute accuracy of Δt is directly related to the absolute accuracy of the internal reference oscillator. To cancel the error associated with the accuracy of the oscillator, a correction factor CV can be introduced. CV can be evaluated by comparing the change in time calculated by (1) with some reference value ΔtREF obtained from a RTC or measured during system calibration. CV is given by: CV = ΔtREF / Δt (EQ 2) By multiplying Δt and CV the correct value for the change in time can be calculated: ΔtCORR = CV x Δt [s] (EQ 3) Calculating Average Current The host system can calculate the average current during the last time period by setting the UpdReq bit in the FuelGauge register and reading DeltaCharge and ElapsedTime after UpdReq has been automatically cleared. Together with FGOffCal determined during offset calibration mode the average current is given by: IAVG = DeltaCharge / (Δt x AVFC x Rsense) – FGOffCal x 3.05µV / Rsense [A] (EQ 4) ca Δt is the change in time in seconds calculated by (1), AVFC is the gain of the VFC in Hz/V, Rsense is the value of the sense resistor in Ω and FGOffCal is the offset calibration value. As DeltaCharge and Δt both are proportional to the oscillator frequency, no correction factor needs to be introduced in the formula. Calculating Accumulated Current ni Accumulated current is used to calculate the absolute remaining capacity of the battery. It is given by: IACC = IAVG x ΔtCORR [A] (EQ 5) ch Calculating the Remaining Capacity Remaining capacity is the entire goal of fuel gauging. It is given by: (EQ 6) Revision 1v13 60 - 157 Te RC = RC + IACC [As] www.austriamicrosystems.com AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Calculating the Time to Empty The time to empty is calculated from the average current IAVG given by (4). The longer the time period for which IAVG is calculated, the more accurate the value for IAVG and therefore the estimated time to empty will be. It is given by: TTE = RC / IAVG [s] (EQ 7) Fuel Gauge Addr:15 These bits configures the fuel gauge Bit Name 0 FGEn UpdReq ROM ROM R/W R/W Description 0 Disable Fuel Gauge 1 Enable Fuel Gauge This bit controls the update of the DeltaCharge and ElapsedTime registers. When set, the bit is cleared automatically after the registers have been updated successfully. Bit should not be set to “0” by the host am lc s on A te G nt st il 1 Default Access lv Bit al id Table 51. Fuel Gauge Bit definitions 0 Update of registers complete 1 Request update of registers This bit controls the offset calibration. When set, the bit is cleared automatically after the calibration has completed successfully. 2 CalReq ROM R/W 0 Calibration complete OR terminate offset calibration 1 Request offset calibration Sets the mode for offset calibration 4:3 CalMod ROM R/W 00 Connect inputs to ground internally 01 Use ISENSP and ISENSN (do not use) 10 do not use 11 do not use Table 52. Delta Charger MSB bit definitions ca DeltaChargeMSB Addr:101 Default Access Description DeltaChargeMSB (00)h R The register is maintained in two’s complement format with a resolution of 3.05µVh and a full-scale value of ±99.98mVh. When using a 50mΩ current sense resistor this is equivalent to a resolution of 61.03µAh and a fullscale value of 1.999Ah. Sign is set for negative values. Register will be updated after setting bit UpdReq to “1”. sign 0 R Sign bit of the delta charge register ch 6:0 Bit Name ni Bit These bits represent the MSB value of the fuel gauge Delta charge register Te 7 www.austriamicrosystems.com Revision 1v13 61 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 53. DeltaChargerLSB bit definitions DeltaChargeLSB Addr:102 Bit Name 7:0 DeltaChargeLSB Default Access Description R The register is maintained in two’s complement format with a resolution of 3.05µVh and a full-scale value of ±99.98mVh. When using a 50mΩ current sense resistor this is equivalent to a resolution of 61.03µAh and a fullscale value of 1.999Ah. Sign is set for negative values. Register will be updated after setting bit UpdReq to “1”. (00)h al id Bit These bits represent the LSB value of the fuel gauge Delta charge register ElapsedTimeMSB Addr:103 lv Table 54. ElapsedTimeMSB bit definitions These bits represent the MSB value of the fuel gauge Elapsed Time register Bit Name Default Access Description 6:0 ElapsedTimeMSB (00)h R The elapsed time count is stored in the register with a resolution of 0.8788s and a full-scale value of 15.997 hours. Register will be updated after setting bit UpdReq to “1”. 7 sign 0 R Sign bit of the elapsed time register am lc s on A te G nt st il Bit Table 55. ElapsedTimeLSB bit definitions ElapsedTimeLSB Addr:104 These bits represent the LSB value of the fuel gauge Elapsed Time register Bit Bit Name 7:0 ElapsedTimeLSB Default Access (00)h R Description The elapsed time count is stored in the register with a resolution of 0.8788s and a full-scale value of 15.997 hours. Register will be updated after setting bit UpdReq to “1”. 8.9.3 Charger Operation ca The charger controls the battery current through the internal transistor between VSUP_SW1,2 and VBAT_SW1,2, the step down charger and the battery switch between VSUPPLY and VBAT. Charge Current Regulator ni The regulator is programmed by setting TrickleCurrent and ConstantCurrent in the ChargerCurrent register and yields a resolution of 0.625mV or 12.5mA when using a sense resistor of 50mΩ. Table 56. Charge Current Regulator parameters Parameter ch Symbol tMEAS Measurement period Typ Max Unit 68.65 ms 0.625 mV Note fclk_int = 2.2MHz Te IMEAS,LSB Min www.austriamicrosystems.com Revision 1v13 62 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 57. Charger Current Bit definitions Charger current Addr:16 Bit These bits define the battery charging current and voltage Bit Name Default Access Description -1 TrickleCurrent ROM R/W 1.25mV x Rsense 01b 2.50mV x Rsense 10b 5.00mV x Rsense 11b 10.0mV x Rsense -1 -1 -1 lv 1:0 -1 00b al id Sets the trickle current. Default is (01)b = 2.5mV x Rsense . Sets the charging current in constant current mode -1 from (0mV…35mV) x Rsense in steps of 5mV x am lc s on A te G nt st il -1 Rsense . 4:2 ConstantCurrent ROM R/W -1 000 0mV x Rsense 001 5mV x Rsense -1 .... 111 35mV x Rsense -1 Charger voltage after EOC and isolate_battery=1 7:5 ROM ca 8.10 ch_voltage R/W 000b 4.3V 001b 4.4V 010b 4.5V 011b 4.6V 100b 4.7V 101b 4.8V 110b 4.9V 111b 5.0V Charger supervision functions ch ni The charger supervision functions allow charging without processor control by continuously checking the NTC temperature resistor within the battery pack using ADC_IN1 pin. The charging cycle is automatically paused, if the NTC indicates a temperature range out of 0º to 45º (or 0º to 50º). If the temperature gets into this range again the charging cycle is resumed. In addition there is a charge timer that stops charging after a defined time, as additional security feature. Te The timer will be reset at charger insertion (charger detect) or at EOC state. The timer is counting during active charging only (Trickle charging, Constant current charging, Constant voltage charging). In case the battery voltage does not reach EOC voltage within tCHARGINGMAX after charging has been started, charging_tmax interrupt will be generated and charging will be stopped. Charging can be started again by writing charging_tmax=0 in the charger_control1 register. www.austriamicrosystems.com Revision 1v13 63 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 21. Charger Supervision functions – internal circuit !"# $ % ) *+# ( &' al id - "# )+# %$ ( %, 4 5 67+ . am lc s on A te G nt st il )% ,%+# lv %, .. " $ 12 * %, ,+3 %, + " " %, /0 $ % + " %, ,+3 $ , * %, , 8 %, Table 58. NTC Chargersupervision Characteristics, VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified. Symbol Parameter Min Typ Max Unit Note Sample time for NTC measurement high or low temperature 33 ms Alternating measurement of the NTC sensor for high temperature and low temperature with two different currents Vcomp Comparator threshold for high and low temperature measurement 1.8 V On pin ADC_IN1, if ntc_on<1:0>=1 µA ntc_type=0, ntc_high_temp=0, @ 1.8V threshold ca tsample -7% High temperature IHightemp50deg_1 current for 50 deg limit, 0k 10k NTC -7% ch ni High temperature IHightemp45deg_1 current for 45 deg limit, 0k 10k NTC Te High temperature IHightemp0deg_10k current for 0 deg limit, 10k NTC High temperature IHightemp45deg_1 current for 45 deg limit, 00k 100k NTC Low temperature ILowtemp50deg_10 current for 50 deg limit, 0k 100k NTC www.austriamicrosystems.com 388 +7% 4.64 457 kΩ +7% µA 3.94 kΩ 60.5 µA 29.7 kΩ 39.2 µA 4.59 kΩ 46.8 µA 38.5 kΩ Revision 1v13 ntc_type=0, ntc_high_temp=1, @ 1.8V threshold ntc_type=0 @ 1.8V threshold ntc_type=1, ntc_high_temp=0, @ 1.8V threshold ntc_type=1, ntc_high_temp=1, @ 1.8V threshold 64 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 58. NTC Chargersupervision Characteristics, VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified. Parameter Min Typ Low temperature ILowtemp0deg_100 current for 0 deg limit, k 100k NTC Hystereses NTC Current hystereses IHightempADC_10k Current for ADC measurement High temp range, 10k NTC IHightempADC_100 Current for ADC measurement High temp range, 100k NTC ILowtempADC_10k ILowtempADC_100 k Unit Note 6.32 µA 284 kΩ ntc_type=1 @ 1.8V threshold ±4% (approx. 1º .), ntc_hyst=0 ±8% (approx. 2º.), ntc_hyst=1 ntc_on<1:0>=2, ntc_type=0, ntc_high_temp=0 23.6 µA ntc_on<1:0>=2, ntc_type=1, ntc_high_temp=0 Current for ADC measurement Low temp range, 10k NTC 36 µA ntc_on<1:0>=3, ntc_type=0, ntc_high_temp=0 Current for ADC measurement Low temp range, 100k NTC 3.7 234 +7% lv µA -7% am lc s on A te G nt st il k Max al id Symbol µA ntc_on<1:0>=3, ntc_type=1, ntc_high_temp=0 Table 59. Charger supervision bit definitions Addr:14 Bit Bit Name Charger supervision These bits define charging timer and battery temp. supervision settings Default Access Description ca Charging timeout timer ch_timeout ROM R/W Te ch ni 3:0 4 auto_shutdown www.austriamicrosystems.com ROM 0000b Charging timeout disabled 0001b 1 hour 0010b 1.5 hour 0011b 2 hour 0100b 2.5 hour 0101b 3 hour 0110b 3.5 hour 0111b 4 hour 1000b 4.5 hour 1001b 5 hour 1010b 5.5 hour 1011b 6 hour 1100b 6.5 hour 1101b 7 hour 1110b 7.5 hour 1111b 8 hour 0 Revision 1v13 (see Reset generator and XON-Key on page 118) 65 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 59. Charger supervision bit definitions Charger supervision Addr:14 Bit These bits define charging timer and battery temp. supervision settings Bit Name Default Access Description 5 ntc_high_temp ROM R/W 0 45 º maximum temp 1 50º maximum temp Low temp is always 0º al id Selects the high temp level: Selects the NTC temperature hysteresis ntc_hyst ROM R/W 0 2º hysteresis 1 1º hysteresis lv 6 Select the NTC resistor type ntc_type ROM R/W 0 1 Table 60. FuelGauge Addr:15 Bit Bit Name ntc_on 100kΩ NTC resistor FuelGauge This bit controls first startup out of power on reset Default Access ROM R/W Description 00 Disable NTC supervision 01 Enable NTC supervision 10 Enable NTC for ADC measurement high temp 11 Enable NTC for ADC measurement low temp Te ch ni ca 7:6 10kΩ NTC resistor am lc s on A te G nt st il 7 www.austriamicrosystems.com Revision 1v13 66 - 157 AS3658 Data Sheet Confidential 8.11 - Detailed Description-Power Management Functions Step Down DC/DC Converters 8.11.1 Step Down DC/DC Converters Operating Modes The step down dcdc converters have four operating modes to deliver different output currents for the applications. The operating mode is selected by setting the register sdx_1A_mode (the default is set by the Boot ROM). 77B ! ! ""# !" # lv al id Figure 22. DC/DC step-down SD1, SD2, SD3 Normal Operating Mode; sdx_1A_mode = 0000b ! " " am lc s on A te G nt st il " " " !" ""# " ! ! " # ! ""# # Figure 23. DC/DC step-down SD1, SD2, SD3 1A Operating Mode; sdx_1A_mode = 1010b ! ca Te ch ni " ! ""# # !" ! " " " " " !" $# " # # ! www.austriamicrosystems.com ! Revision 1v13 67 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions If one of the DCDC step down converters is not used for an application, connect it as follows: Figure 24. DC/DC step-down SD3 (as example) not used ! al id lv Figure 25. DC/DC step-down SD1, SD2, SD3 External Controller Operating Mode; sdx_1A_mode = 1100b am lc s on A te G nt st il 12 3 ./ 45 .6 7 34627 34 146 2 48 %3 -' . / 0'- '' ( )*+ * $%, ' 5 5 6 &*) ( )* !# )* , (( '- 34 & ni ca ch # !"# $%& # # # # !"# $%& # # # # Te Note: VCURR_GPIO has to be connected to VSUPPLY if the external controler mode is used. www.austriamicrosystems.com Revision 1v13 68 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 26. DC/DC step-down SD1, SD2, SD3 External Controller Operating Mode and SD2 in 1A mode; sd1_1A_mode = 1101b - . / 0 ! "%, & !# , - !"# !%& & am lc s on A te G nt st il lv al id 12 3 ./ 45 .6 7 34627 34 146 2 48 %3 !"# %& # # # # # # Te ch ni ca Note: The LDO VDIG2 and the Low voltage current source / GPIO pin CURR1_GPIO1 cannot be used in the ‘External Controller’ operating mode configuration. VCURR_GPIO has to be connected to VSUPPLY if the external controler mode is used. www.austriamicrosystems.com Revision 1v13 69 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 8.11.2 Step Down DC/DC Converter Characteristics Figure 27. Step Down DC/DC Converter Block diagram - ' ( $ $ %& ! "#! "! $ -015657 am lc s on A te G nt st il ! ' ' lv al id ) (./ ()1 " 0 % 4$ *+,- 23 % Functional Description ni ca The step-down converter is a high efficiency fixed frequency current mode regulator. By using low resistance internal PMOS and NMOS switches efficiency up to 95% can be achieved. The fast switching frequency allows using small inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load and line regulation over the whole output voltage range, up to an output current of 500mA, with an output capacitor of only 10µF. The implemented current limitation protects the DCDC and the coil during overload condition. ch To allow optimized performance in different applications, there are bit settings possible, to get the best compromise between high efficiency and low input, output ripple: Low ripple, low noise operation: Te Bit settings: sdX_dis_curmin=1 In this mode there is no minimum coil current necessary before switching off the PMOS. As result, the ON time of the PMOS will be reduced down to tmin_on at no or light load conditions, even if the coil current is very small or the coil current is inverted. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low input to output voltage differences. Because of the inverted coil current in that case the regulator will not operate in pulse skip mode. www.austriamicrosystems.com Revision 1v13 70 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 28. sdX_dis_curmin=1 operation am lc s on A te G nt st il lv al id 1: LX voltage, 2:coil current (1mV=1mA) 3: Vout High efficiency operation (default setting): Bit settings: sdX_dis_curmin=0 In this mode there is a minimum coil current necessary before switching off the PMOS. As result there are less pulses at low output load necessary, and therefore the efficiency at low output load is increased. This results in higher ripple, and noisy pulse skip operation up to a higher output current. Figure 29. sdX_dis_curmin=0 operation Te ch ni ca 1: LX voltage, 2:coil current (1mV=1mA) 3: Vout It’s also possible to switch between these two modes during operation: For Example: sdX_dis_curmin=0: System is in idle state. No audio, RF signal. Decreased supply current preferred. Increased ripple doesn’t affect system performance. sdX_dis_curmin=1: System is operating. Audio signal on and/or RF signal used. Decreased ripple and noise preferred. Increased power supply current can be tolerated. www.austriamicrosystems.com Revision 1v13 71 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions 100% PMOS ON mode for low dropout regulation: For low input to output voltage difference the sdX_dis_pon bit can be set, to allow 100% duty cycle of the PMOS transistor. Low power mode: The sdX_lpo mode bit can be set all the time. This mode allows internal power down, of not used blocks during pulseskip mode, which results in a better efficiency at light output loads. Inductor setting: The step down regulator is optimized for 2.2µH at 2.2MHz and 4.7µH at 1.1MHz Symbol VOUT Min Typ Max Unit PIN VSUPPLY_1,VSUPPLY_2, VSUPPLY_3 Input voltage 3.0 5.5 V Regulated output voltage 0.6 3.3 V -50 +50 mV output voltage <2.0V -100 +100 mV output voltage >2.0V Output voltage tolerance ILIMIT Current limit 800 mA am lc s on A te G nt st il VOUT_tol RPSW RNSW Iload P-Switch ON resistance 0.5 Ω V_SUPPLYx=3.0V N-Switch ON resistance 0.5 Ω V_SUPPLYx=3.0V 500 mA Load current fSW Switching frequency ηeff Efficiency 0 2.2 MHz sdX_frequ=0, fclk_int =2.2MHz 1.1 MHz sdX_frequ=1, fclk_int =2.2MHz 90 % Iout=100mA, Vout=2.3V, Vsup.=3V 250 IVDD Note lv VIN Parameter al id Table 61. Step Down DC/DC Converter parameters Current consumption Operating current without load µA 100 Low power mode current 0.1 Shutdown current Minimum on time 80 ns tMIN_OFF Minimum off time 40 ns 10 µF Ceramic X5R or X7R 2.2 µF Ceramic X5R or X7R 4.7 µF Ceramic X5R or X7R; CVSUPPLY1 in external controller mode or 1A operating mode ca tMIN_ON External Components Output capacitor ni CVSD1-3, CVSD1A Input capacitor ch CVSUPPLY1-3 2.2 Inductor Te LSD1-SD3 8.0 www.austriamicrosystems.com 4.7 2.2 Revision 1v13 sdX_frequ=0, ± 10% tolerance µH sdX_frequ=1, ± 10% tolerance SD1 external controller mode; use sd1_freq=1 (1.1Mhz) 72 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 62. Step Down DC/DC Bit definitions Step Down Control1 Addr:35 These bits configures the step down converters Bit Bit Name Default Access Description 0 sd1_psw_on 0 R/W 1 - 0 n/a 2 - 0 n/a 3 sd1_nsw_on 0 R/W Only if sd1_on = 0, switch on NSW (0.5Ω NMOS) 4 sd2_psw_on 0 R/W Only if sd2_on = 0, switch on PSW (0.5Ω PMOS) 5 - 0 n/a 6 - 0 n/a 7 sd2_nsw_on 0 R/W lv al id Only if sd1_on = 0, switch on PSW (0.5Ω PMOS) Only if sd2_on = 0, switch on NSW (0.5Ω NMOS) Addr:36 am lc s on A te G nt st il Table 63. Step Down DC/DC Bit definitions Step Down Control2 These bits configures the step down converters Bit Bit Name Default Access 0 sd3_psw_on 0 R/W 1 - 0 n/a 2 - 0 n/a 3 sd3_nsw_on 0 R/W Description Only if sd3_on = 0, switch on PSW (0.5Ω PMOS) Only if sd3_on = 0, switch on NSW (0.5Ω NMOS) Step down low power mode: 4 sdX_lpo 0 R/W 0 Increased current consumption in pulseskip mode 1 Decreased current consumption in pulseskip mode Step down pon feature control sd1_dis_pon 0 R/W sd2_dis_pon 0 Te 7 sd3_dis_pon www.austriamicrosystems.com 0 PON feature enabled: 100% duty cycle (pmos always on) if output voltage drops more than 4%. Increased output ripple in that operation. 1 PON feature disabled: Maximum dutycycle=1(tmin_off*fsw) Step down pon feature control R/W ch 6 ni ca 5 0 PON feature enabled: 100% duty cycle (pmos always on) if output voltage drops more than 4%. Increased output ripple in that operation. 1 PON feature disabled: Maximum dutycycle=1(tmin_off*fsw) Step down pon feature control 0 R/W 0 PON feature enabled: 100% duty cycle (pmos always on) if output voltage drops more than 4%. Increased output ripple in that operation. 1 PON feature disabled: Maximum dutycycle=1(tmin_off*fsw) Revision 1v13 73 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 64. Step Down DC/DC Bit definitions Step Down charger control Addr:37 These bits configures the step down converters Bit Bit Name 3 - Default Access 0 Description n/a sd1_dis_curmin 0 0 curmin feature enabled: Inductor current regulated to min 170mA. Higher efficiency in low dropout and low output current operation. Higher output ripple and noise. 1 curmin feature disabled: Decreased efficiency in low dropout mode and at low output current. Small output ripple and noise. R/W lv 4 al id Step down curmin feature control Step down curmin feature control curmin feature enabled: Inductor current regulated to min 170mA. Higher efficiency in low dropout and low output current operation. Higher output ripple and noise. 1 curmin feature disabled: Decreased efficiency in low dropout mode and at low output current. Small output ripple and noise. am lc s on A te G nt st il 5 0 sd2_dis_curmin 0 R/W Step down curmin feature control 6 sd3_dis_curmin 0 0 curmin feature enabled: Inductor current regulated to min 170mA. Higher efficiency in low dropout and low output current operation. Higher output ripple and noise. 1 curmin feature disabled: Decreased efficiency in low dropout mode and at low output current. Small output ripple and noise. R/W Table 65. Step Down DC/DC Reg Power1 ctrl Bit definitions Addr:23 Bit Name These bits control the on/off function of the step down regulator Default Access ca Bit Reg Power1 Ctrl sd1_on ROM R/W ch ni 4 sd2_on Te 5 www.austriamicrosystems.com ROM R/W Description Switch on/off the step down1 dc/dc converter; it is possible to on/off control DCDC SD1 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) 0 Step Down DC/DC 1 off 1 Step Down DC/DC 1 on Switch on/off the step down2 dc/dc converter; it is possible to on/off control DCDC SD2 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) 0 Step Down DC/DC 2 off 1 Step Down DC/DC 2 on Revision 1v13 74 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 65. Step Down DC/DC Reg Power1 ctrl Bit definitions Reg Power1 Ctrl Addr:23 Bit Name 6 sd3_on Default Access ROM R/W Description Switch on/off the step down3 dc/dc converter; it is possible to on/off control DCDC SD3 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) al id Bit These bits control the on/off function of the step down regulator 0 Step Down DC/DC 3 off 1 Step Down DC/DC 3 on Step Down Voltage1 Addr:00 These bits control the step down regulator voltage, frequency, clk phase Bit Name 5:0 Default Access Description am lc s on A te G nt st il Bit lv Table 66. Step Down Voltage1 Bit definitions step_down1_v ROM R/W Control the voltage selection for the step down1 DC/DC converter 000000 0.6 V … (LSB=50mV) 111000 – 11111 3.4 V Select the step down1 frequency 6 sd1_frequ 7 sd1_clkinvert ROM ROM R/W R/W 0 fclk_int 1 fclk_int/2 (0.8MHz to 1.15 MHz) (1.6MHz to 2.3 MHz) Inverts the input clock of the step down1 converter Table 67. Step Down Voltage2 Bit definitions Addr:01 Bit Bit Name ni sd2_frequ ch 6 step_down2_v These bits control the step down regulator voltage, frequency, clk phase Default Access ROM ca 5:0 Step Down Voltage2 sd2_clkinvert ROM Control the voltage selection for the step down2 DC/DC converter 000000 0.6 V … (LSB=50mV) 111000 – 11111 3.4 V Select the step down2 frequency R/W R/W 0 fclk_int 1 fclk_int/2 (0.8MHz to 1.15 MHz) (1.6MHz to 2.3 MHz) Inverts the input clock of the step down1 converter Te 7 ROM R/W Description www.austriamicrosystems.com Revision 1v13 75 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 68. Step Down Voltage3 Bit definitions Step Down Voltage3 Addr:02 Bit Name 5:0 step_down3_v Default Access ROM R/W Description Control the voltage selection for the step down3 DC/DC converter 000000 0.6 V … (LSB=50mV) 111000 – 11111 3.4 V al id Bit These bits control the step down regulator voltage, frequency, clk phase Select the step down3 frequency sd3_frequ 7 sd3_clkinvert ROM ROM R/W R/W 0 fclk_int 1 fclk_int/2 (0.8MHz to 1.15 MHz) (1.6MHz to 2.3 MHz) lv 6 Inverts the input clock of the step down1 converter Addr:17 Bit am lc s on A te G nt st il Table 69. Step down1 high current and DVM definitions Bit Name Charge Pump Control These bits control the step down high current mode and DVM step size Default Access Description Time step of DVM voltage change of step down1 If voltage of step down1 (step_down1_v) is changed during operation, voltage is decreased or increased by 25 mV steps with the following time separation between steps: 3:2 sd1_dvm_time ROM R/W 00 0 µsec, immediate change (no DVM) 01 4 µsec 10 8 µsec 11 16 µsec ni sdx_1A_mode Te ch 7:4 ca Select 1A mode of step down2 (combined operation of SD2 and SD3 with a single coil and up to 1A output current) and/ or controller mode of SD1 www.austriamicrosystems.com ROM R/W 1010 1A mode selected Controlled by SD2 The following pins have to be connected: VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<>PGND3 Stepdown3 is not usable in that mode 1100 External controller mode. LDO DIG1 and current sink / GPIO CURR1_GPIO1 cannot be used. Set ldo_dig1_on=0, GPIO1Mode=111b (tristate), GPIO1Pulls=00b (no pull-up or pull-down) 1101 External controller mode SD1, and 1A mode controlled by SD2 The following pins have to be connected: VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<>PGND3 Stepdown3 is not usable in that mode all other codes (0000...1001,1011,1110...1111) normal mode Revision 1v13 76 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 70. Step Down DC/DC Bit definitions Step Down Control3 Addr:133 Configurate the SD converters to reduce voltage drops on fast transient high current load steps. Double the output capacitor size has to be used! Default Access 0 sd1_uvlimit 0 R/W 1 sd2_uvlimit 0 R/W 2 sd3_uvlimit 0 R/W Description 0 Normal operation 1 Enable SD1 undervoltage limit. 0 Normal operation 1 Enable SD3 undervoltage limit. 0 Normal operation 1 Enable SD3 undervoltage limit. 8.11.3 Typical Performance Characteristics ca am lc s on A te G nt st il Figure 30. DC/DC step-down Efficiency (sdX_dis_curmin=0, sdX_lpo=0) al id Bit Name lv Bit Te ch ni Figure 31. PCB Layout recommendation www.austriamicrosystems.com Revision 1v13 77 - 157 AS3658 Data Sheet Confidential 8.12 - Detailed Description-Power Management Functions Low Dropout Regulators (LDO) The low dropout regulators are linear high performance regulators with programmable output voltage. They are controlled by the following registers: Table 71. LDO_RF1 voltage bit definitions LDO_RF1 voltage Addr:03 Default Access ldo_rf1_v ROM R/W 5 rf1_lcurr_en ROM R/W 6 rf1_swprot_en ROM R/W Control the voltage selection for LDO VRF_1 00000 1.85V … (LSB=50mV) 11111 3.40V 0 current limitation = Ilimit 1 current limitation Ilimit=Ilimit/2 If ‘1’ current limitation is enabled, if RF1-LDO is operating as High side switch am lc s on A te G nt st il 4:0 Description al id Bit Name lv Bit These bits control the LDO_RF1 voltage and mode Table 72. LDO_RF2 voltage bit definitions Addr:04 LDO_RF2 voltage These bits control the LDO_RF2 voltage and mode Bit Bit Name Default Access 4:0 ldo_rf2_v ROM R/W 5 rf2_lcurr_en ROM R/W Description Control the voltage selection for LDO VRF_2 00000 1.85V … (LSB=50mV) 11111 3.40V 0 current limitation = Ilimit 1 current limitation Ilimit=Ilimit/2 Table 73. LDO_RF3 voltage bit definitions Addr:05 Bit Name ldo_rf3_v ni 4:0 rf3_lcurr_en ch 5 These bits control the LDO_RF3voltage and mode Default Access ca Bit LDO_RF3 voltage rf3_hotplug_en R/W ROM R/W ROM R/W Control the voltage selection for LDO VRF_3 00000 1.85V … (LSB=50mV) 11111 3.40V 0 current limitation = Ilimit 1 current limitation Ilimit=Ilimit/2 0 normal mode 1 200mA current limited switch, if bit rf3_sw=1 (rf3_lcurr_en=0) Te 6 ROM Description www.austriamicrosystems.com Revision 1v13 78 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 74. LDO_DIG1 voltage bit definitions LDO_DIG1 voltage Addr:06 These bits control the LDO_DIG1 voltage Bit Name 5:0 ldo_dig1_v Default Access ROM Description Control the voltage selection for LDO DIG_1 (see Table 82) R/W Table 75. LDO_DIG2 voltage bit definitions LDO_DIG2 voltage Addr:07 These bits control the LDO_DIG2 voltage Bit Name 5:0 ldo_dig2_v Default Access ROM Description lv Bit R/W Control the voltage selection for LDO DIG_2(see Table 82) am lc s on A te G nt st il Table 76. LDO_DIG3 voltage bit definitions Addr:08 al id Bit Bit Bit Name 5:0 ldo_dig3_v LDO_DIG3 voltage These bits control the LDO_DIG3 voltage Default Access ROM R/W Description Control the voltage selection for LDO DIG_3(see Table 82) Table 77. LDO_DIG4 voltage bit definitions Addr:09 Bit Bit Name 5:0 ldo_dig4_v LDO_DIG4 voltage These bits control the LDO_DIG4 voltage Default Access ROM R/W Description Control the voltage selection for LDO DIG_4(see Table 82) Table 78. LDOs Reg Power1 ctrl Bit definitions Addr:23 Bit Name ldo_rf1_on ni 0 ldo_rf2_on ch 1 Te 2 3 These bits control the on/off function of the ldo regulator Default Access ca Bit Reg Power1 Ctrl ldo_dig1_on ldo_dig2_on www.austriamicrosystems.com ROM ROM ROM ROM Description R/W Switch on control of RF1 LDO; Important: Set rf1_sw=0 before setting ldo_rf1_on=1; it is possible to on/off control LDO RF_1 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) R/W Switch on control of RF2 LDO; Important: Set rf2_sw=0 before setting ldo_rf2_on=1; it is possible to on/off control LDO RF_2 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) R/W Switch on control of DIG1 LDO; it is possible to on/off control LDO DIG_1 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) R/W Switch on control of DIG2 LDO. do not set if DCDC SD1 is in external controller mode (if sd1_1A_mode = 1100b). it is possible to on/off control LDO DIG_2 by CURR3_GPIO3 or CURR4_GPIO4(see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30) Revision 1v13 79 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 79. LDOs Reg Power2ctrl Bit definitions Reg Power2 Ctrl Addr:30 These bits control the on/off function of the ldo regulator Bit Name Default Access Description 0 ldo_rf3_on ROM R/W Switch on control of RF3 LDO; Important: Set rf3_sw=0 before setting ldo_rf3_on=1 1 ldo_dig3_on ROM R/W Switch on control of DIG3 LDO; it is possible to on/off control LDO DIG_3 by CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on page 30)’ 2 ldo_dig4_on ROM R/W Switch on control of DIG4 LDO 3 rf1_sw ROM R/W If ‘1’ RF1-LDO is operating as High side switch (Ron=1Ω), valid if ldo_rf1_on=0 4 rf2_sw ROM R/W If ‘1’ RF2-LDO is operating as High side switch (Ron=1Ω), valid if ldo_rf2_on=0 7 rf3_sw lv al id Bit If ‘1’ RF3-LDO is operating as High side switch (Ron=1Ω), valid if ldo_rf3_on=0 am lc s on A te G nt st il ROM R/W 8.12.1 RF LDO’s (VRF_1, VRF_2, VRF_3) These LDO’s are designed to supply sensitive analogue circuits like LNA’s, Transceivers, VCO’s and other critical RF components of cellular radios. Another application is the supply of audio devices or as a reference for AD and DA converters. The design is optimized to deliver the best compromise between quiescent current and regulator performance for battery powered devices. Stability is guaranteed with ceramic output capacitors of 1µF ±20% (X5R) or 2.2µF +100/-50% (Z5U) for RF2, RF3 and 2.2µF ±20% (X5R) or 4.7µF +100/-50% (Z5U) for RF1. The low ESR of these caps ensures low output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to operate in linear mode. Power supply rejection is high enough to suppress the PA-ripple on the battery in TDMA systems at the output. The low noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power device enables the device to deliver up to IOUT current even at nearly discharged batteries without any decrease of performance. Te ch ni ca With vrf2_lcurr_en=0 and vrf3_lcurr_en=0 the regulator VRF_2, VRF_3 can deliver up to 250mA With vrf1_lcurr_en=0 the regulator VRF_1 can deliver up to 400mA www.austriamicrosystems.com Revision 1v13 80 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Figure 32. Analog LDO Block diagram & '()) 2 3 4 !"# $ Ω % * )('+ ),-',, lv μ . /.02 00 μ . /. 1)/ % al id am lc s on A te G nt st il Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) Characteristics, Vx_IN=4V; ILOAD=150mA; Tamb=25ºC; CLOAD =2.2µF (Ceramic); unless otherwise specified Symbol Vx_IN IOUT Parameter Min Supply voltage rage Output current RON 1 Unit Power supply rejection ratio IOFF Shut down current Note 3 5.5 V 0 150 0 200 0 250 VRF_2, rf2_lcurr_en=0 VRF_3, rf3_lcurr_en=0 0 400 VRF_1, rf1_lcurr_en=0 VRF_2, rf2_lcurr_en=1 VRF_3, rf3_lcurr_en=1 mA VRF_1, rf1_lcurr_en=1 0.5 Ω VRF_1 1 Ω VRF_2, VRF_3 70 dB 40 f=1kHz f=100kHz nA Supply current 50 µA without load Output noise 50 µVrms 10Hz < f < 100kHz 200 µs VRF_1,2,3 are set to low current during startup time 1.85 2.85 V VRFX_IN>3.0V, VRF_1 @ Iout=300mA, VRF_2 and VRF_3 @ Iout=150mA (X=1,2) 1.85 3.4 V VRFX_IN>3.55V, VRF_1 @ Iout=300mA, VRF_2 and VRF_3@ Iout=150mA (X=1,2) -50 50 mV -1 1 ca 100 ni PSRR IVDD Noise Startup time ch tstart Max On resistance Typ Te Vout Output voltage Vout_tol Output voltage tolerance VLineReg Line regulation www.austriamicrosystems.com -10 10 Revision 1v13 Static mV Transient; Slope: tr=10µs 81 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) Characteristics, Vx_IN=4V; ILOAD=150mA; Tamb=25ºC; CLOAD =2.2µF (Ceramic); unless otherwise specified Symbol Parameter VLoadReg Load regulation ILIMIT_VRF1_HCUR Current limitation 800 mA VRF_1, rf1_lcurr_en=0 ILIMIT_VRF1_LCURR Current limitation 400 mA VRF_1, rf1_lcurr_en=1 and during startup ILIMIT_VRF2,3_L Current limitation VRF_2,3 low current limit 300 mA rf2_lcurr_en=1, rf3_lcurr_en=1 ILIMIT_VRF2,3_H Current limitation VRF_2,3 high current limit 500 mA rf2_lcurr_en=0, rf3_lcurr_en=0 CLOAD_RF1 Load capacitor 2 5 µF ceramic only (VRF_1) Load capacitor 1 5 µF ceramic only (VRF_2,3) for rf1_lcurr_en=1 and rf2_lcurr_en=1 Load capacitor 2 5 µF ceramic only (VRF_2,3) for rf1_lcurr_en=0 and rf2_lcurr_en=0 CLOAD_RF2,3_L CLOAD_RF2,3_H Typ Unit Note 1 10 Transient; Slope: tr=10µs al id -10 Static mV lv -1 Max am lc s on A te G nt st il R Min 1. Guaranteed by design and verified by laboratory evaluation and characterization; not production tested. 8.12.2 Digital LDO’s (VDIG_1, VDIG_2, VDIG_3, VDIG_4) The Digital LDO’s can be used in any medium power system or subsystem where quiescent power consumption of the regulator itself has to be minimized without sacrificing its performance. For its stability a cheap 1µF ceramic capacitor is required. The 5V charge pump will be switched on automatically, if one of the digital LDO’s are switched on. Figure 33. Digital LDO Block diagram μ ca ni ch Table 81. Digital LDO (VDIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC; CLOAD =1µF (Ceramic); unless otherwise specified Parameter Min VDIGX_IN Supply voltage range Te Symbol IOUT RON Output current Max Unit 1 5.5 V 0 200 mA Vout<2.2V; VDIGX_IN>Vout+RON*IOUT 0 100 mA Vout<2.5V; VDIGX_IN>Vout+RON*IOUT 4 Ω Vout<2.2V 1 On resistance www.austriamicrosystems.com Typ Revision 1v13 Note 82 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 81. Digital LDO (VDIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC; CLOAD =1µF (Ceramic); unless otherwise specified Symbol Parameter Min PSRR Power supply rejection ratio 60 IOFF Shut down current 100 nA IVDD Supply current 20 µA tstart Startup time 200 µs 2.20 V Vsupply>3.0V, VCP=5.2V, Iout<200mA 2.5 V Vsupply>3.0V, VCP=5.2V, Iout<100mA 50 mV Vout<1.85V Unit dB 30 0.75 Note f=1kHz f=100kHz al id Output voltage Max without load lv Vout Typ Output voltage tolerance -50 Vout_tol_hv Output voltage tolerance -60 60 mV Vout>1.85V -10 10 mV Static -50 50 -20 20 -50 50 VLineReg am lc s on A te G nt st il Vout_tol_lv Line regulation VLoadReg Load regulation ILIMIT Current limitation 400 Transient; Slope: tr=10µs mV Static Transient; Slope: tr=10µs mA Te ch ni ca 1. Guaranteed by design and verified by laboratory evaluation and characterization; not production tested www.austriamicrosystems.com Revision 1v13 83 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 82. Digital LDO (VDIG_1.4) Programming voltage table Code (b) VOUT(V) Code (d) Code (b) VOUT(V) 0 000000 0.75 22 010110 1.80 1 000001 0.80 23 010111 1.80 2 000010 0.85 24 011000 1.80 3 000011 0.90 25 011001 4 000100 0.95 26 011010 5 000101 1.00 27 011011 6 000110 1.05 28 011100 7 000111 1.10 29 011101 1.80 8 001000 1.15 30 011110 1.80 9 001001 1.20 31 011111 1.80 001010 1.25 32 100000 1.50 (do not use) 001011 1.30 33 100001 1.60 (do not use) 001100 1.35 34 100010 1.70 (do n0t use) 001101 1.40 35 100011 1.80 (do not use) 001110 1.45 36 100100 1.90 001111 1.50 37 100101 2.00 010000 1.55 38 100110 2.10 010001 1.60 39 100111 2.20 010010 1.65 40 101000 2.30 010011 1.70 41 101001 2.40 010100 1.75 42 101010 2.50 010101 1.80 al id Code (d) 1.80 1.80 1.80 am lc s on A te G nt st il lv 1.80 10 11 12 13 14 15 16 17 18 19 20 21 ca Note: Full performance for Vout ≤ 2.20V; max. 100mA output current for Vout ≤ 2.50V; do not use values Vout>2.50V 8.12.3 Low power LDO (V2_5) ch ni The Low power LDO V2_5 is needed to supply the chip core (analog and digital) of the device. It is designed to get the lowest possible power consumption, and still offering reasonable regulation characteristics. The regulator has three supply inputs selecting automatically the higher one. This gives the possibility to supply the chip core either with the battery or with the charger depending on the conditions. Bulk switch comparators are used to avoid any parasitic current flow. To ensure high PSRR and stability, a low-ESR ceramic capacitor of min. 1µF must be connected to the output. Table 83. Low power LDO (V2_5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic); unless otherwise specified Te Symbol Parameter VBAT VCHARGER Supply voltage rage RON On resistance PSRR Power supply rejection ratio www.austriamicrosystems.com Min Typ Max 2.8 5.5 4 15 50 60 Unit V Ω dB 40 Revision 1v13 Note Guaranteed per design f=1kHz f=100kHz 84 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Table 83. Low power LDO (V2_5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic); unless otherwise specified Max Unit Shut down current 100 nA IVDD Supply current 3 µA tstart Startup time 200 µs Vout Output voltage 2.4 2.6 V Vout_tol Output voltage tolerance -50 50 mV VLineReg -10 10 Line regulation VLoadReg Load regulation 8.13 Typ 2.5 -50 50 -10 10 -50 50 Note Guaranteed per design, consider chip internal load for measurements. al id IOFF Min Static mV lv Parameter Transient; Slope: tr=10s Static mV Transient; Slope: tr=10s am lc s on A te G nt st il Symbol 5V Charge Pump Figure 34. 5V Charge Pump Block diagram 5 55 5 ! 5 #$ % " ca The charge pump uses the pad VCP_IN as input, regulates and doubles its voltage with the help of the flying capacitor between CAPP and CAPN to its output VCP_OUT (the output is automatically limited not to exceed VCPOUT). If the bit cp_pulseskip is set, the charge pump operates in pulse skip mode, and only starts cycles if its output voltage is below this level. In this mode the supply current is reduced, but the output ripple is increased. ni The charge pump requires the following external components: Min CFLY External flying capacitor 370 470 850 nF Ceramic X5R or X7R low-ESR capacitor between CAPP and CAPN CSTORE External storage capacitor 1.76 2.2 2.64 µF Ceramic X5R or X7R low-ESR capacitor between VCP_OUT and VSS Dout Schottky Diode for startup between VCP_IN and VCP_OUT 1 A Peak current of schottky Diode Table 84. Charge Pump External Components Parameter Te ch Symbol www.austriamicrosystems.com Typ Min Unit Note Revision 1v13 85 - 157 AS3658 Data Sheet Confidential - Detailed Description-Power Management Functions Make the connections of the external capacitors as short as possible. Table 85. Charge Pump Characteristics Symbol Parameter Min Typ Max Unit 5.5 V Note VCPIN Charge Pump input voltage 3.0 fIN Switching frequency ICPOUT Output Current 0.0 VCPOUT Output Voltage 4.9 VCPSKIP Output Voltage during pulseskip 4.92 V Use with cp_frequ=1 only ICP_noload Supply current without load 2 mA 1.1MHz switching frequency ICP_pulseskip Charge pump supply current without load in pulseskip mode 20 MHz cp_freq=0, fclk_int=2.2MHz 0.55 MHz cp_freq=1, fclk_int=2.2MHz 100 mA VCP_IN = 3.2V, Clock = fclk_int/2; cp_pulseskip=0; fin=1.1MHz 5.6 V lv am lc s on A te G nt st il 5.2 al id 1.1 µA cp_pulseskip=1 and cp_frequ=1 Table 86. CP Power1 ctrl Bit definitions Addr:23 Reg Power1 Ctrl These bits control the on/off function of the ldo regulator Bit Bit Name Default Access Description 7 cp_on ROM R/W Switch on of the charge pump block, charge pump is automatically activated if any of the following blocks are active: VDIG_1, VDIG_2, VDIG_3, VDIG_4 Table 87. Charge Pump Bit definitions Addr:17 Bit Bit Name Charge Pump Control These bits control the Charge Pump Default Access Description ca Switches on the pulseskip mode of the charge pump cp_freq ROM ROM R/W 0 Normal fixed frequency mode 1 Pulse skip, low power mode (Set cp_frequ=1 in this mode) Defines the clock frequency of the step up dc/dc converter R/W 0 fclk_int/2 (0.8 to 1.15 MHz) 1 fclk_int/4 (0.4 to 0.575 MHz) Te ch 1 cp_pulseskip ni 0 www.austriamicrosystems.com Revision 1v13 86 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions 9 Detailed Description- Audio Functions The audio functions consist of all the audio features of AS3658 as shown in the following block diagram: 9.1 am lc s on A te G nt st il lv al id Figure 35. AS3658 Audio Functions Audio Paths Following Audio paths are possible (only one configuration is possible at the same time): ch ni ca Figure 36. AS3658 I2S I/O 1 or I2S I/O2 Playback Te Note: As the touch screen interface is merged with I2S Output 3 and SPDIF Output 4 either the touch screen interface or I2S Output 3 and SPDIF Output 4 can be used at the same time. www.austriamicrosystems.com Revision 1v13 87 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions am lc s on A te G nt st il lv al id Figure 37. AS3658 Line In Recording Figure 38. AS3658 Microphone Recording Te ch ni ca It is also possible to use the Audio ADC and the Audio DAC at the same time. In this case, the sampling frequency of the Audio DAC is either two or four times the sampling rate of the Audio ADC (ADC: max. 16ks / seconds). The equalizer should not be used in this case: www.austriamicrosystems.com Revision 1v13 88 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions am lc s on A te G nt st il lv al id Figure 39. AS3658 Microphone Recording and I2S I/O Playback (either I2S 1 or I2S 2/PCM) Figure 40. AS3658 Recording of the Mixed output signal and parallel playback (either I2S 1 or I2S 2/PCM) Common mode voltage generation of HP_CM, LINE_CM ca 9.2 ni The common mode voltage of the Headphone and Lineout is stored in the C_hpcm and C_linecm capacitor (connected between HP_CM to VSS and LINE_CM to VSS). These capacitor are also responsible for the popless startup, PSRR of the amplifiers and sense path of the GND cancellation circuit. Startup and PSRR is defined by the value of the external capacitors. The RC limits the maximum achievable PSRR: R=6MΩ typ, C=0.1...1µF: ch Table 88. common mode voltage, Audio start-up and PSRR Startup time (typ) µF Te Capacitor value for C_hpcm and C_linecm Maximum achievable PSRR @ 1kHz (typ) @ 100Hz (typ) msec dB dB 0.1 150 76 56 1 1500 90 76 www.austriamicrosystems.com Revision 1v13 89 - 157 AS3658 Data Sheet Confidential 9.3 - Detailed Description- Audio Functions Audio Setup Registers Audio LDO has to be switched on first (aud_ldo_on=1), and enables all other functions. Table 89. AudioSet1 Register Audio Set1 Addr:74 Bit Bit Name 0 lin_on Default Access 0 R/W Description 0 Line input disabled 1 Line input enabled al id These bits control the Audio functions Switch on control of AUDIO DAC dac_on mix_on 0 R/W R/W 0 DAC disabled 1 DAC enabled (Switch on, if I2S signal valid only) 0 Mixer switched off 1 Mixer switched on 0 GND switch off 0V at pin GND_SW 1 GND switch on Vsupply at pin GND_SW am lc s on A te G nt st il 2 0 lv 1 3 gnd_sw_on 0 R/W 4 aud_ldo_on 0 R/W Audio LDO ON control 0 Audio LDO off 1 Audio LDO on 0 Change of LRCLK at falling edge of MCLK 1 Change of LRCLK at rising edge of MCLK 0 MCLK = LRCLK* 128 1 MCLK = LRCLK* 256 0 Equalizer switched off (bypassed) 1 Equalizer switched on MCLK invert selection 5 mclk_invert 0 R/W 6 mclk256 0 R/W 7 equ_on 0 R/W Table 90. AudioSet2Register ca Audio Set2 Addr:75 Bit Name Default Access ch ni Bit These bits control the Audio functions Te 1,0 ibr_dac<1:0> Bias current reduction settings for DAC: 00b R/W 2 dith_on 0 R/W 3 I2S_3_on 0 R/W www.austriamicrosystems.com Description 00 default 01 Don't use 10 Don't use 11 Don't use 1 add dither to the audio stream 0 no dither added 0 Switch off I2S_3 output 1 Switch on I2S_3 output Revision 1v13 90 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 90. AudioSet2Register Audio Set2 Addr:75 These bits control the Audio functions Bit Bit Name Default Access Description Bias current reduction settings for headphone output R/W 6 I2S_select 0 R/W 7 I2S_mclk_en 0 R/W 01 17% 10 34% 11 50% 0 Select I2S_1 input 1 Select I2S_2 input 0 Generation of the master clock by the internal PLL 1 Use Pin MCLK_1, MCLK_2 as masterclock input al id 0 am lc s on A te G nt st il 9.4 ibr_hph<1:0> 0% lv 5,4 00 ADC, DAC and Digital Audio Input 9.4.1 General Digital audio data can be fed into the AS3658 via the I2S interface This input data is used by the 18-bit DAC to generate the analog audio signal. The stage is set to mute by default; If the DAC input is not enabled. 9.4.2 Signal Description The digital audio interface uses the standard I2S format: Left justified MSB first One additional leading bit MCLK has to have a fixed ratio of 128 or 256 to LRCLK. With a LRCLK equal to 16, 32, 44.1 or 48kHz, the MCLK can be generated by the on-chip PLL (do not use the internal PLL if there is jitter on the LRCLK1 or 2). For lower sample rates the bit pll_mode has to be set (for sample rates between 8kHz and 12kHz). ca The high going edge of MCLK has to have timing separation from LRCLK edges. If the clock generation is so that LRCLK edges are at the same time as MCLK high going edges, the MCLK can be inverted to guarantee a proper DAC function. Te ch ni This audio input interfaces uses an I2S synchronizer to be able to handle audio sample length of 24bits or less. www.austriamicrosystems.com Revision 1v13 91 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Figure 41. I2S Control Diagram i2s_s elect mc lk_invert 0 i2s_mc lk_en 1 i2s_master_on i2s_lrck_sclk_out_en SDO1 0 SDI SCLK Equalizer LRCLK MCLK SDO sc lk _invert 1 SDI1 0 i2s _select pll_mode I2S_mclk_en ext_mclk 0 0 PLL 1 rising edge only for PCM com patibility 1 LRCLK1 i2s_s elect LRCLK_out SDO SCLK 14 Bit ADC LRCLK MCLK 0 * 256 * 64 1 mc lk 256 0 MCLK1 *2 1 0 mclk_invert 1 A udio left A udio right A udio lef t A udio right Fadc2 pcm_mode samle_rate 0 0 LRCLK / 2 1 0 LRCLK / 4 0 1 LRCLK lv S ample rate SDI2 sc lk_invert i2s _master_on SCLK2 mono to stereo conversion f or pc m_mode=1 1 i2s_master_on SCLK1 18 Bit DAC al id i2s_s elect i2s_lrck_s clk _out_en LRCLK2 am lc s on A te G nt st il s do3_select i2s _master_on MCLK divider MCLK2 i2s_lrck_sclk_out_en i2s_master_on 0 i2s_mc lk_out_en 1 sdo_on_mclk1_en SDO3 i2s _clk_divider<11:0> SCLK3 mclk_invert 0 1 i2s_3_on LRCLK3 SPDIF SPDIF spdif _ctrl<1:0> Figure 42. I2S Timing Diagram 64 cycles MCLK LRCK Left Channel SDATA 15 16 bit SDATA 17 Right Channel ca SCLK 2 1 0 2 1 15 0 17 2 1 0 2 1 0 ni 18 bit 64 cycles ch Table 91. PLL,MCLK Settings I2S_select mclk_invert Description 0 0 0 I2S_1 selected (PLL used) Internal MCLK synchronized to external LRCLK 0 0 1 I2S_1 selected (PLL used) Internal LRCLK used, synchronized to external SDI 0 1 0 I2S_2 selected (PLL used) Internal MCLK synchronized to external LRCLK 0 1 1 I2S_2 selected (PLL used) Internal LRCLK used, synchronized to external SDI Te I2S_mclk_en www.austriamicrosystems.com Revision 1v13 92 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 91. PLL,MCLK Settings I2S_select mclk_invert Description 1 0 0 I2S_1 selected, external MCLK on MCLK_1 1 0 1 I2S_1 selected, external MCLK on MCLK_1 (inverted) 1 1 0 I2S_2 selected, external MCLK on MCLK_2 1 1 1 I2S_2 selected, external MCLK on MCLK_2 (inverted) al id I2S_mclk_en 9.4.3 Parameter Table 92. Audio DAC/ADC Parameter Parameter Min Programmable gain DAC input -43.43 Programmable gain ADC input -34.5 Typ 1.07 dB 12 dB am lc s on A te G nt st il Gain step size 1.5 DAC THD+Noise at FS -85 DAC SN/R (20Hz-20kHz, -60dBFS) A-weighted Unit lv Analog Performance Max 90 -75 94 DAC Inter channel Mismatch 0.25 ADC SN/R 82 dB dB dB dB dB Table 93. I2S Parameter I2S Inputs and Outputs VI2S=2.9V VIL VIH Min Typ Max SCLKx, LRCLKx, SDIx - - 0.42V SCLKx, LRCLKx, SDIx 1.02V - 3.3V VOL SDOX,SCLK3,LRCLK3,SPDIF,SCLK1,LRCLK1,MCLK1 0V VOH SDOX,SCLK3,LRCLK3,SPDIF,SCLK1,LRCLK1,MCLK1 VI2S Table 94. DAC_L Register Bit Name ni Bit dal_vol Te ch 4:0 DAC_L ca Addr:77 These bits control the Audio DAC volume and functions Default Access 00000b volume settings for left DAC input, adjustable in 32 steps @ 1.5dB R/W 00000 -40.5 dB gain 00001 -39 dB gain ..... 5 - - - 6 dac_mute_off 0 R/W www.austriamicrosystems.com Description 11110 4.5 dB gain 11111 6 dB gain 0 DAC input is set to mute 1 normal operation Revision 1v13 93 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 95. DAC_R Register DAC_R Addr:78 Bit These bits control the Audio DAC volume and functions Bit Name Default Access Description 4:0 dar_vol 00000b R/W 00000 -40.5 dB gain 00001 -39 dB gain ..... 4.5 dB gain 11111 6 dB gain Table 96. ADC_L Register Bit ADC_L am lc s on A te G nt st il Addr:79 lv 11110 al id volume settings for right DAC input, adjustable in 32 steps @ 1.5dB Bit Name These bits control the Audio ADC volume and functions Default Access Description volume settings for left ADC input, adjustable in 32 steps @ 1.5dB 4:0 adl_vol 00000b R/W 00000 -34.5 dB gain 00001 -33 dB gain ..... 5 adc_on 0 R/W 6 adc_mute_off 0 R/W 11110 10.5 dB gain 11111 12 dB gain 0 ADC disabled 1 ADC enabled 0 ADC input is set to mute 1 normal operation ca Divider selection for ADC clock ad_fs2 0 ADC sample clock is I2S LRCLK / 2; every ADC sample is sent twice to the I2S output (upsampling by 2) 1 ADC sample clock is I2S LRCLK / 4; every ADC sample is sent four times to the I2S output (upsampling by 4) R/W Te ch ni 7 0 www.austriamicrosystems.com Revision 1v13 94 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 97. ADC_R Register ADC_R Addr:80 Bit These bits control the Audio ADC volume and functions Bit Name Default Access Description 4:0 adr_vol 00000b R/W 00000 -34.5 dB gain 00001 -33 dB gain ..... 7:6 9.5 0b 10.5 dB gain 11111 12 dB gain 0 normal mode 1 use ADC output as DAC input (for testing purposes, equalizer is bypassed) R/W lv adc2dac 11110 am lc s on A te G nt st il 5 al id volume settings for right ADC input, adjustable in 32 steps @ 1.5dB adcmux 00b R/W 00 Microphone 01 Line In 10 reserved –do not use 11 Audio Sum (Output of Mixer) I2S master mode and PCM Mode The digital audio interface can also operate in master mode by using I2S1 interface. The pin MCLK2 is used as clock input in that case. Any input clock between sampling rate and 24MHz may be used as input clock. In Master Mode operation SCLK1 as output has 32 clock cycles for each sample word. SCLK = [MCLK / 4] = [LRCLK * 256 / 4] = LRCK * 64 Sample Rates (EQ 8) ca In Master Mode the i2smaster control allows programming various sample rates. The master clock is generated from the MCLK2 input. Sampling frequencies from 8kHz to 48kHz can be selected. For certain division ratios between master clock and sample ratio a certain deviation is system inherent. ni LRCLK = f MCLK 2 * 1 1 * 2 RD + 2 Table 98. PLL,i2s_clk_divider settings Actual sample rate Error kHz % 126 48,00 0,00 137,32 137 44,20 0,23 12288 190,00 190 32,00 0,00 29,400 12288 206,98 207 29,40 -0,01 24,000 12288 254,00 254 24,00 0,00 22,050 12288 276,64 277 22,02 -0,13 12,000 12288 510,00 510 12,00 0,00 MCLK2 input kHz kHz 48,000 12288 126,00 44,100 12288 32,000 Te ch Sample rate www.austriamicrosystems.com Divider i2s_clk_divider <10:0> Revision 1v13 95 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 98. PLL,i2s_clk_divider settings Error kHz % 555 11,03 0,05 766,00 766 8,00 0,00 12000 123,00 123 48,00 0,00 44,100 12000 134,05 134 44,12 32,000 12000 185,50 186 31,91 29,400 12000 202,08 202 29,41 24,000 12000 248,00 248 24,00 22,050 12000 270,11 270 22,06 0,04 12,000 12000 498,00 498 12,00 0,00 kHz kHz 11,025 12288 555,28 8,000 12288 48,000 8,000 0,04 -0,27 0,04 0,00 am lc s on A te G nt st il 11,025 i2s_clk_divider <10:0> Divider lv MCLK2 input al id Actual sample rate Sample rate 12000 542,22 542 11,03 0,04 12000 748,00 748 8,00 0,00 Table 99. i2s master control1 Register I2s master control1 Addr:131 This register controls the external clock divider for i2s master mode Bit Bit Name Default Access 7:0 i2s_clk_divider<7:0> 00h R/W Description Bit 7:0 of divider for MCLK2 input pin Table 100. i2s master control2 Register I2s master control2 Addr:132 This register controls the external clock divider and modes for i2s master mode Bit Name 2:0 i2s_clk_divider<10:8> 000b R/W 3 i2s_master_on 0b R/W ni i2s_lrclk_sclk_out_en ch 4 i2s_mclk_out_en Te 5 6 sdo_on_ mclk1 www.austriamicrosystems.com Description Default Access ca Bit 0b 0b 0b Bit 10:8 of divider for MCLK2 input pin 0 i2s master mode disabled 1 i2s master mode enabled 0 LRCLK1 and SCLK1 are used as input (slave mode) 1 LRCLK1 and SCLK1 are used as output (master mode). Clock input for PLL is MCLK2 0 MCLK1 used as input (slave mode) 1 MCLK1 used as output for master clock of an external I2S. Clock input for PLL is MCLK2 (MCLK1=256*LRCLK, if bit mclk256=1; MCLK=128*LRCLK, if bit mclk256=0) 0 Normal operation of MCLK1 (input or output according to bit is2_mclk_out_en bit) 1 MCLK1 used as SDO output (e.g. for audio ADC). May be used as data output (SDO) for I2S_2 port R/W R/W R/W Revision 1v13 96 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 100. i2s master control2 Register I2s master control2 Addr:132 Bit Name pcm_mode 0b R/W 0 Normal I2S mode 1 PCM mode selected. The following additional settings are necessary to enable PCM mono mode: sclk_invert=1 i2s_mclk_en=0 and mclk_invert=1 (internal PLL used for generation of internal LRCLK) lv 7 Description Default Access al id Bit This register controls the external clock divider and modes for i2s master mode 9.5.1 PCM mode settings am lc s on A te G nt st il Compatible with BlueCore3-ROM: Figure 43. Short Frame Sync (shown with 16-bit Sample) In short Frame Sync the falling edge of PCM_SYNC indicate the start of the PCM word. PCM_Sync is always one clock cycle long. LRCLK PCM_SYNC SCLK PCM_CLK SDI PCM_OUT SDO 1 PCM_IN Undefined 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 10 11 12 13 12 13 14 15 14 15 16 16 Undefined The following setup on PCM-Master side is needed: AS3658 is slave only ca PCM_SYNC is in short frame mode PCM_SYNC rate is 8ksamples/s PCM_CLK= 512kHz only (64 x PCM_SYNC) ni 16 Bit Linear coding of PCM_OUT and PCM_IN (MSB first, LSB last) ch Mono (single channel) operation only. Only the right channel of the AS3658 is used. The left channel is same as right channel (in the input direction of AS3658) and has to be ignored by PCM master (in output direction of AS3658) Note: Internally the right channel is copied to the right and left channel. The following setup of AS3658 is needed: Te Sclk_invert=1 i2s_mclk_en=0 and mclk_invert=1 (internal PLL used for generation of internal LRCLK) pcm_mode=1 and ad_fs2=0 (Necessary to allow unsymmetrical LRCLK and sample rate of 8kHz of ADC) www.austriamicrosystems.com Revision 1v13 97 - 157 AS3658 Data Sheet Confidential 9.6 - Detailed Description- Audio Functions Line Input 9.6.1 General AS3658 includes one stereo single ended inputs. & ' ( " "$%" & ' ( " $%" lv al id Figure 44. LineIn Block Diagram am lc s on A te G nt st il !" # Table 101. Line Inputs Parameter Parameter Analog Performance Min Rin Typ Max 50 Unit kΩ Table 102. LINE_IN_R Register Addr:85 Bit Bit Name LINE_IN_R These bits control the LINE_IN volume and functions Default Access Description volume settings for right line input, adjustable in 32 steps @ 1.5dB; gain from line input pin (LIN1R) to mixer input 4:0 lir_vol 00000b R/W 00000 -34.5 dB gain 00001 -33 dB gain 5 mute_off_inr 0 - 11110 10.5 dB gain 11111 12 dB gain Control of MUTE switch R/W 0 right line input is set to mute 1 normal operation - do not change Te ch 7:6 ni ca ..... www.austriamicrosystems.com Revision 1v13 98 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 103. LINE_IN_L Register Addr:86 LINE_IN_L These bits control the LINE_IN volume and functions Bit Bit Name Default Access Description 4:0 lil_vol 00000 R/W 00000 -34.5 dB gain 00001 -33 dB gain ..... 10.5 dB gain 11111 12 dB gain lv 11110 al id volume settings for right line input, adjustable in 32 steps @ 1.5dB; gain from line input pin (LIN1L) to mixer input Control of MUTE switch mute_off_inl 0 R/W 0 left line input is set to mute am lc s on A te G nt st il 5 1 7:6 9.7 00 normal operation n/a do not change Five Band Equalizer The 5 Band equalizer is build of one low pass, one high pass and 3 band pass filter, and is optimized for 44.1kHz sample frequency: Low pass filter: 200Hz ( when programming negaitve gain values, this filter changes to a HP filter) Band pass filter1: 340Hz / Q=1.0 (when programming negative gain values, this filter changes to a notch filter) Band pass filter2: 1100Hz / Q=0.7 (when programming negative gain values, this filter changes to a notch filter) Band pass filter3: 3375Hz / Q=1.0 (when programming negative gain values, this filter changes to a notch filter) High pass filter: 5940Hz (when pragramming negative gain values, this filter changes to a LP filter) The Q factors and the cut off frequency of the High and low pass filter are measured at 50% gain and are valid for +6dB amplification of each band. ca The attenuation or amplification of each band can be dynamically adjusted by the serial interface. Additional a pre-gain stage can adjust the input level. This gain stage is after the 16 to 24 bit extension and therefore additional gain, which is compensated with the equalizer filter itself (eq_lp_gain, eq_band1,2,3_gain, eq_hp_gain) will not cause clipping: Figure 45. Equalizer Block Diagram Te ch ni ! www.austriamicrosystems.com Revision 1v13 99 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions am lc s on A te G nt st il lv al id Figure 46. EQ Filter frequency response sum curve Te ch ni ca Figure 47. EQ Filter frequency response +12dB/+6dB/+3dB www.austriamicrosystems.com Revision 1v13 100 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions am lc s on A te G nt st il lv al id Figure 48. EQ Filter frequency response -3dB Each band has a range from -12 to +12 dB with each increment equal to ±3dB. For sample frequencies of the I2S stream different from 44.1kHz, the filter frequencies are shifted (ratiometric). Table 104. EQ_LP Register EQ_LP ca Addr: 90 Bit Name Default Access ch eq_lp_gain Te 3:0 www.austriamicrosystems.com 0000b Description EQ_LP filter gain (-12dB... +12dB) ni Bit These bits control the gain of the low pass filter in dB R/W 0h 0dB 1h 3dB 2h 6dB 3h 9dB 4h 12dB bh -3dB ch -6dB dh -9dB eh -12dB Revision 1v13 101 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 105. EQ_Band1 Register EQ_Band1 Addr: 91 Bit Bit Name These bits control the gain of the Band pass filter1 in dB Default Access Description 0000b R/W 1h 3dB 2h 6dB 3h 9dB 4h 12dB bh -3dB ch -6dB dh -9dB lv eq_band1_gain 0dB am lc s on A te G nt st il 3:0 0h al id EQ_Band1 filter gain (-12dB... +12dB) eh -12dB Table 106. EQ_Band2 Register EQ_Band2 Addr: 92 Bit Bit Name These bits control the gain of the Band pass filter2 in dB Default Access Description EQ_Band2 filter gain (-12dB... +12dB) eq_band2_gain 0000b R/W 0dB 1h 3dB 2h 6dB 3h 9dB 4h 12dB bh -3dB ch -6dB dh -9dB eh -12dB Te ch ni ca 3:0 0h www.austriamicrosystems.com Revision 1v13 102 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 107. EQ_Band3 Register EQ_Band3 Addr:93 Bit Bit Name These bits control the gain of the Band pass filter3 in dB Default Access Description 0000b R/W 1h 3dB 2h 6dB 3h 9dB 4h 12dB bh -3dB ch -6dB dh -9dB lv eq_band3_gain 0dB am lc s on A te G nt st il 3:0 0h al id EQ_Band3 filter gain (-12dB... +12dB) eh -12dB Table 108. EQ_HP Register EQ_HP Addr:94 Bit Bit Name These bits control the gain of the High pass filter in dB Default Access Description EQ_HP filter gain (-12dB... +12dB) eq_hp_gain 0000b R/W 0dB 1h 3dB 2h 6dB 3h 9dB 4h 12dB bh -3dB ch -6dB dh -9dB eh -12dB Te ch ni ca 3:0 0h www.austriamicrosystems.com Revision 1v13 103 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 109. EQ_preamp Register EQ_preamp Addr:95 Bit Bit Name These bits control the preamplifier of the EQ in dB Default Access Description 00000b R/W 01h -1.5dB 02h -3.0dB 03h -4.5dB 04h -6.0dB 05h -7.5dB 06h -9.0dB 07h -10.5dB lv eq_pre_gain 0dB am lc s on A te G nt st il 4:0 0h al id EQ_vol gain (-12dB ... +12dB with 1.5dB steps) -12dB 09h 1.5dB bh 3.0dB ch 6.0dB dh 7.5dB eh 9.0dB fh 10.5dB 10h 12dB Te ch ni ca 08h www.austriamicrosystems.com Revision 1v13 104 - 157 AS3658 Data Sheet Confidential 9.8 - Detailed Description- Audio Functions Microphone Input General The audio front-end offers one microphone inputs and a low noise microphone voltage supply (microphone bias), voice activation, microphone connect detection and push button remote control. 31 !.. ) al id Figure 49. Microphone Input Block diagram and External Circuit )*+, % &'() /0 11 " ! "-!.. lv * 17 /0 12/ am lc s on A te G nt st il /03 11 / /0& /0& && / /03 "#!$# /0 &&1/ !# /04 11 / "!$# 6 "# . /05 &&1/ Gain Stage & Limiter The integrated pre-amplifier allows 3 preset gain settings. There is also a limiter which attenuates high input signals from e.g. electret microphones signal to 1Vp. The AGC has 15 steps with a dynamic range of about 29dB. The AGC is ON by default but can be disabled by a microphone register bit. Apart from the microphone pre-amplifier the microphone input signal can further be amplified with 32 @1.5dB programmable logarithmic gain steps and MUTE. All gains and MUTE are independently programmable. The gain can be set from –40.5dB to +6dB. ca The stage is set to mute by default. If the microphone input is not enabled, the volume settings are set to their default values. Changing the volume and mute control can only be done after enabling the input. Supply & Detection ch ni The microphone input generates a supply voltage of 1.5V above AGND. The supply is designed for ≤ 2mA and has a 10mA current limit. In OFF mode the MICS terminal is pulled to AVDD with 30kΩ. A current of typically 50µA generates an interrupt to inform the CPU, that a circuit is connected. When using the MICS terminal as ADC-10 input to monitor external voltage the 30kΩ pull-up can be disabled. Remote Control Te Fast changes of the supply current of typically 500µA are detected as a remote button press, and an interrupt is generated. Voice Activation Further a built-in voice activation comparator can actuate an interrupt if microphone input voltage of about 5mVRMS is detected. www.austriamicrosystems.com Revision 1v13 105 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Microphone Input Parameter Table 110. Microphone Inputs Parameter, TA= 25oC unless otherwise mentioned Min VMICIN0 VMICIN1 Input Signal Level VMICIN2 Typ Max Unit Note 40 mVPEAK AMICPRE = 28dB; AMIC = 0dB 20 mVPEAK AMICPRE = 34dB; AMIC = 0dB 10 mVPEAK AMICPRE = 40dB; AMIC = 0dB MICP, MICN to AGND RMICIN Input Impedance 15 kΩ MICIN Input Impedance Tolerance ±15 % CMICIN Input Capacitance 5 pF AMICPRE Microphone Preamplifier Gain 28 dB 34 Programmable Gain AMIC -40.5 +6 dB 1.5 dB Gain Step Precision ±0.25 dB VMICLIMIT Limiter Activation Level 1 VPEAK AMICLIMIT Limiter Gain Overdrive 15*2 dB tATTACK Limiter Attack Time 50 µs/6dB tDECAY Limiter Decay Time 120 ms/6dB AMICMUTE Mute Attenuation 100 dB VMICSUP Microphone Supply Voltage 2.9 V IMICMAX Max. Microphone Supply Current 10 mA VNOISE Microphone Supply Voltage Noise 5 µV IMICDET Microphone Detection Current 50 µA Max. Remote Detection Current 500 µA discrete logarithmic gain steps microphones nominally need a bias current of 0.5mA-1mA Te ch ni ca Gain Steps IREMDET Preamplifier has 3 selectable (fixed) gain settings am lc s on A te G nt st il 40 al id Parameter lv Symbol www.austriamicrosystems.com Revision 1v13 106 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Register Description Table 111. MIC_R Register MIC_R Addr:87 Bit Name Default Access Description al id Bit Right Microphone Input Register Configures the gain from microphone amplifier output volume settings for right microphone input, adjustable in 32 steps @ 1.5dB; gain from microphone amplifier 4:0 mr_vol 00000b R/W 00000 -40.5 dB gain 00001 -39 dB gain lv ..... 11110 4.5 dB gain 11111 6 dB gain am lc s on A te G nt st il Sets the gain of the microphone preamplifier 6:5 pre_gain 7 mic_agc_off 00 0 R/W R/W 00 gain set to 28 dB 01 gain set to 34 dB 10 gain set to 40 dB 11 reserved, do not use Control of limiter AGC (automatic gain control). Limits high dynamic range of electret/MEMS microphone (e.g. user shouts or blows into microphone) 0 automatic gain control enabled 1 automatic gain control disabled Table 112. MIC_L Register MIC_L Addr:88 Default ni ml_vol 00000 Access Te 5 rdet_off Description volume settings for left microphone input, adjustable in 32 steps @ 1.5dB; gain from microphone amplifier R/W 00000 -40.5 dB gain 00001 -39 dB gain ..... ch 4:0 Bit Name ca Bit Left Microphone Input Register Configures the gain from microphone amplifier output 0 R/W 11110 4.5 dB gain 11111 6 dB gain Disables the microphone detect function (30kΩ pull-up from MICS to VDAC) to use the terminal as ADC-10 input 0 microphone detection enabled 1 microphone detection disabled Control of MUTE 6 mute_off www.austriamicrosystems.com 0 R/W 0 microphone input set to mute 1 gain set to 34 dB Revision 1v13 107 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 112. MIC_L Register MIC_L Addr:88 Left Microphone Input Register Configures the gain from microphone amplifier output Bit Name Default Access 7 msup_off 0 R/W 9.9 Description 0 microphone supply on if mic_on=1 1 microphone supply off al id Bit Audio Output Mixer 9.9.1 General lv The mixer stage sums up the audio signals of the following stages Microphone Input Line Input am lc s on A te G nt st il Digital Audio Input (DAC) The mixing ratios have to be with the volume registers of the corresponding input stages. Please be sure that the input signals of the mixer stage are not higher than 1Vp. If summing up several signals, each individual signal has of course to be accordingly lower. This shall insure that the output signal is also not higher than 1Vp to get a proper signal for the output amplifier. This stage features an automatic gain control (AGC), which automatically avoids clipping. 9.9.2 Register Description Table 113. AudioSet_3 Register Audio_set3 register Addr:76 Bit Bit Name Configures the mixer inputs and AGC Default Access Description Preset of PLL bias for the following sampling frequencies pll_mode 0 ca 0 hp_pulld_en 0 ch Te 2 3 voxm_on mic_on www.austriamicrosystems.com 0 16-48kS 1 8-12kS Controls the pulldown of the HP1 if HP2is enabled and HP2, if HP1 is enabled R/W ni 1 R/W 0 Pulldown disabled if hp_on=1 1 Pulldown of the not used HP1/2 output enabled, if hp_on=1 Switches on the voice recognition 0 R/W 0 OFF 1 ON Switches on the microphone amplifier 0 R/W 0 OFF 1 ON Revision 1v13 108 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 113. AudioSet_3 Register Audio_set3 register Addr:76 Bit Bit Name Configures the mixer inputs and AGC Default Access Description Switches the signal limiter OFF agc_off 0 R/W 0 automatic gain control for summing stage enabled 1 automatic gain control for summing stage disabled al id 4 Input from DAC to R and L dacmix_off 0 R/W 0 1 ON lv 5 OFF Input from microphone to R and L micmix_off 0 R/W 0 ON am lc s on A te G nt st il 6 1 OFF Input from line input to R and L 7 9.10 linmix_off 0 R/W 0 ON 1 OFF Line Output 9.10.1 General The line output is designed to provide the audio signal on 600 Ω min. This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain can be set from –40.5dB to +6dB. 9.10.2 No-Pop Function To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output stage is disabled. Also the volume settings are set to their default values, and can’t be changed, as long the output stage is not enabled. ni ca LINE_CM pin, which needs a 0.1µF... 1µF capacitor outside gets charged on power-up with 1µA to ALVDD/2. After start-up the DC level of the following pins are the same: LOUT_L=LOUT_R=LINE_CM= ALVDD/2. The Start-up time before releasing mute is about 150ms with 0.1µF. To avoid pop-noise 150ms discharging time of LINE_CM after a shutdown, have to be waited before starting up again. 9.10.3 Ground Noise Cancellation ch The purpose of the ground cancellation circuit is to compensate noise (ground noise) between different grounds (e.g. the ground where the AS3658 is soldered versus e.g. the ground of a car amplifier (see Figure 50)). This noise between these different grounds can be caused e.g. by a high current devices like a motor-fan. The ground cancellation circuit can be used for line and headphone amplifiers. Te The circuit works as follows: The ground noise gets added inside the AS3658 to the audio signal (input LINE_CM for the Line Out amplifier or HP_CM for headphone amplifier) in a way that it cancels inside the car amplifier. The sense point is connected with RGND_SEP (20Ω) to the battery ground. www.austriamicrosystems.com Revision 1v13 109 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions The ground cancellation can be disabled by shorting the 20Ω resistor setting bit gnd_sw to ‘1’. This bit should be set if e.g. a headphone instead of the car amplifier is connected to the output jack. Note: A similar cicuit can be used for the headphone amplifier. Figure 50. Ground Noise Cancellation Application Schematic &/00 3&! 1 al id & & '#', ( %/4 *+,- %/4( % lv %/4( %/4 *+,- ( %/4 6785 %/4 6785 " ## !$ am lc s on A te G nt st il ).( & ' 4 ).( ''+- % &/00 & ' (2 ")(: ") ") *+,- & 1 ")(.0 -)97' ! ")(.0 '+5 9.10.4 Power Save Options To save power, a reduction of the bias current can be selected. Table 114. Line Power-Save Options IDD_LINE (typ.) 0 2.2mA 1 1.5mA ca 9.10.5 Parameter IBR_LINE Table 115. Line out Block Characteristics Min ni Parameter Typ Max Unit Analog Performance ch R_Load at LOUT_L and LOUT_R single ended Ω 600 ±0.5 dB SINAD no load, LineIn-> Line out, A-weighted -97 dB THD @ 1kHz, no load -88 dB THD @ 1kHz, 600Ω -80 dB 90 dB Te Gain Step Precision (RLmin-max,20Hz-20kHz) PSRR (200Hz-20kHz) 60 IOUT_powerdown -20 Tpower_up (C_LINECM=100nF) www.austriamicrosystems.com Revision 1v13 20 150 µA ms 110 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Table 115. Line out Block Characteristics Parameter Min Typ 100Hz 50 1kHz 50 10kHz 40 GND cancellation GND - AUDIO_GND to LOUT_R, LOUT_L no load Max dB al id 9.10.6 Register Description Unit To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. All other Line/headphone driver settings are controlled by the following two registers. Table 116. LINE_OUT_R Register LINE_OUT_R Addr:83 lv Right Line Register am lc s on A te G nt st il These bits control the Line in volume and mode Bit Bit Name Default Access Description volume settings for right Line output, adjustable in 32 steps @ 1.5dB 4:0 liner_vol 00000b R/W 00000 -40.5 dB gain 00001 -39 dB gain ...... 5 dac2line_on 0 11110 4.5 dB gain 11111 6 dB gain 0 Line_out amplifier input connected to mixer output 1 Line_out amplifier input connected to Audio DAC output gain stage (Mixer is bypassed in this mode) R/W Bias current reduction settings for line output: ibr_line<1:0> 00b R/W 0% 01 17% 10 34% 11 50% Te ch ni ca 7:6 00 www.austriamicrosystems.com Revision 1v13 111 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Left Line Register Table 117. LINE_OUT_L Register LINE_OUT_L Addr:84 Bit These bits control the Line in volume and mode Bit Name Default Access Description 4:0 liner_vol 00000b R/W 00000 -40.5 dB gain 00001 -39 dB gain ...... 6 line_on 7 9.11 11111 6 dB gain 0 lv - 4.5 dB gain reserved am lc s on A te G nt st il 5 11110 al id volume settings for left Line output, adjustable in 32 steps @ 1.5dB line_mute 0 0 R/W R/W 0 Line stage not powered 1 power up Line stage 0 normal operation 1 Line output set to mute (mute is on during power-up) Headphone Output The headphone output is designed to provide the audio signal with 2x40mW @ 16Ω or 2x20mW @32Ω, which are typical values for headphones. This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain can be set from –40.5dB to +6dB. 9.11.1 Phantom Ground HP_CM_PWR pin is the buffered HP_CM output. It can be used to drive the common mode level with a load of 2kΩ. The phantom ground can be switched off to save power if not needed. 9.11.2 No-Pop Function ca To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output stage is disabled. Also the volume settings are set to their default values, and can’t be changed, as long the output stage is not enabled. ch ni HP_CM pin, which needs a 100nF to 1µF capacitor outside, gets charged on power-up with 1µA to AVDD/2. After startup the DC level of the following pins are the same: HPR=HPL=HP_CM=HP_CM_PWR=AVDD/2. The Start-up time before releasing mute is about 150ms. To avoid pop-noise 150ms discharging time of HP_CM after a shutdown, have to be waited before starting up again. 9.11.3 Over-current Protection Te This output stage has an over-current protection, which disables the output for 256ms or 512ms. This value can be set in the headphone registers. The over-current protection limit of HPR and HPL pin is about 260mA while HP_CM_PWR pin has a 370mA limit. www.austriamicrosystems.com Revision 1v13 112 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions 9.11.4 Power Save Options To save power, especially when driving 32 Ω loads, a reduction of the bias current can be selected. Bias current reduction settings for headphone output: 00: 0% 01: 17% 11: 50% 9.11.5 Parameters Table 118. Power Amplifier Parameter Min R_Load at AOUTR and AOUTL single ended 16 Analog Performance Max Unit Ω 1.13 am lc s on A te G nt st il Vout Typ lv Parameter al id 10: 34% Vp Gain Step Precision (RLmin-max,20Hz-20kHz) ±0.5 dB SINAD no load, LineIn-> HPH, A-weighted -97 dB THD @ 1kHz, no load -88 dB THD @ 1kHz, 32Ω, 10mW -80 dB THD @ 1kHz, 32Ω, 20mW -74 -66 dB THD @ 1kHz, 16Ω, 40mW -68 -60 dB Channel Separation (32Ω, dc-coupled) 60 dB 90 dB Shorted Protection Level 260 mA Shorted Protection Level of common mode buffer 370 mA PSRR (200Hz-20kHz) 60 IOUT_powerdown -20 Tpower_up (HP_CM=0.1µF) ca GND cancellation GND - AUDIO_GND to HP_R, HP_L no load 20 150 100Hz 50 1kHz 50 10kHz 40 µA ms dB 9.11.6 Register Description Te ch ni To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. Changing the bias current or the output driver strength is done via AudioSet2 register. All other headphone driver settings are controlled by the following two registers. www.austriamicrosystems.com Revision 1v13 113 - 157 AS3658 Data Sheet Confidential - Detailed Description- Audio Functions Right Headphone Register Table 119. HPH_OUT_R Register Addr:81 Bit Bit Name HPH_OUT_R These bits control the Right headphone ouput volume and mode Default Access Description 4:0 hpr_vol 00000b 00000 -40.5 dB gain 00001 -39 dB gain ...... 4.5 dB gain lv 11110 al id volume settings for right headphone output, adjustable in 32 steps @ 1.5dB 11111 6 dB gain am lc s on A te G nt st il headphone phantom ground disable 5 hpcm_off 0 1 normal operation disable common mode buffer headphone over current time out: speaker over current time out: 7:6 hp_ovc_to 00h 00 256 ms 01 128 ms 10 512 ms 11 0 ms Left Headphone Register Table 120. HPH_OUT_L Register Addr:82 Bit Name These bits control the Left headphone ouput volume and mode Default Access hpl_vol 00000b ch ni 4:0 0 R/W 6 hp_on 0 R/W 7 hp_mute 0 R/W www.austriamicrosystems.com 00000 -40.5 dB gain 00001 -39 dB gain ...... hp_mux Te 5 Description volume settings for left headphone output, adjustable in 32 steps @ 1.5dB ca Bit HPH_OUT_L 11110 4.5 dB gain 11111 6 dB gain 0 use HPL1, HPR1 as headphone output 1 use HPL2, HPR2 as headphone output 0 headphone stage not powered 1 power up headphone stage 0 normal operation 1 headphone output set to mute (mute is on during power-up) Revision 1v13 114 - 157 AS3658 Data Sheet Confidential 9.12 - Detailed Description- Audio Functions SPDIF output Enables and controls the SPDIF output pin. SPDIF functionality is enabled, if internal masterclock is used (internal PLL), or the external masterclock = 256* LRCLK. (No SPDIF function if external masterclock= 128 *LRCLK) Table 121. SPDIF Register SPDIF Addr:89 Bit Name Default Access Description al id Bit These bits control the SPDIF output ISPDIF output ON/OFF control and sample rate status bits spdif_cntr 00b R/W 00 SPDIF output OFF 01 SPDIF output ON 10 reserved (do not use) 11 lv 1:0 reserved (do not use) am lc s on A te G nt st il SPDIF sample status bit 2 spdif_invalid 0 R/W 0 1 sample valid sample invalid SPDIF master clock control bit 3 spdif_mclk_inv 0 R/W 0 1 master clock master clock inverted SPDIF copy control bit 4 spdif_copy_ok 0 R/W 0 1 copy not permitted copy permitted Select source of SDO3 output 5 sdo3_select 0 R/W 0 1 Select adc_output Select Equalizer output Invert serial data clock of I2S1 and I2S2 sclk_invert 0 ca 6 audio_off 0 0 1 Normal mode Invert SCLK1 or SCLK2 input switch off audio functionality for low power touchpannel detection R/W 0 Normal mode 1 audio bias switched off to reduce power Te ch ni 7 R/W www.austriamicrosystems.com Revision 1v13 115 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10 Detailed Description - System Functions The system functions consist of the I2C interface, the reset controller, the interrupt controller, startup sequences and programming, the watchdog, internal references, the ON-key detect and the real time clock module. 2 I C Serial Interface Table 122. I2C SDA,SCL Characteristics Parameter Min VIL SCL,SDA Low Level input voltage VIH SCL,SDA High Level input voltage Typ Max Unit -0.3 0.4 V 1.3 VSUPP LY V Note lv Symbol al id 10.1 10.1.1 Feature List am lc s on A te G nt st il Fast-mode capability (max. SCL-frequency is 400 kHzkHz) 7+1-bit addressing mode 60h x 8-bit data registers (word address 0x00 - 0x60) Write formats: Single-Byte-Write, Page-Write Read formats: Current-Address-Read, Random-Read, Sequential-Read SDA input delay and SCL spike filtering by integrated RC-components 10.1.2 Transfer Formats 2 Figure 51. I C Byte-Write S DW A WA A reg_data A P START condition after STOP repeated START device address for write device address for read word address acknowledge no acknowledge stop condition slave as receiver slave as transmitter increment word address internally ca write register, WA++ S Sr DW DR WA A N P white field grey field WA++ ni AS3658 device address write (DW):80h = 10000000b AS3658 device address read (DR): 81h = 10000001b 2 ch Figure 52. I C Page-Write: DW A WA Te S A reg_data 1 A reg_data 2 write register WA++ A write register WA++ … reg_data n A P write register WA++ Byte-Write and Page-Write are used to write data to the slave. www.austriamicrosystems.com Revision 1v13 116 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be send to the slave. The word address is incriminated internally, in order to write subsequent data bytes on subsequent address locations. For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by st al id the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1 register byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can be read from the slave. The word address is incriminated internally. The diagrams below show various read formats available: 2 DW A WA A Sr DR data A N P am lc s on A te G nt st il S lv Figure 53. I C Random-Read: read register WA++ WA++ Random-Read and Sequential-Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master. The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address. st In order to change the data direction a repeated START condition is issued on the 1 SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus. 2 Figure 54. I C Sequential-Read: DW A WA A Sr DR ni ca S A data 1 A data 2 … A data n WA++ ch read register WA++ N P Te Sequential-Read is the extended form of Random-Read, as more than one register-data bytes are transferred subsequently. In difference to the Random-Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a notacknowledge following the last data byte and generate the STOP condition subsequently. www.austriamicrosystems.com Revision 1v13 117 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 2 Figure 55. I C Current-Address-Read: S DR A A data 1 data 2 … read register WA++ data n N P WA++ read register WA++ al id read register WA++ A To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read st Reset generator and XON-Key am lc s on A te G nt st il 10.2 lv address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the 1 register byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a notacknowledge following the last data byte and a subsequent STOP condition. XRESET is a low active bi-directional pin. An external pull-up to the periphery supply has to be added. During each reset cycle the following states are controlled by the AS3658: Pin XRESET is forced to GND Programmable Power-off function Programmable Power-on sequence and regulator voltages Programmable reset timer All registers are set to their default values after power-on, except the reset control- and status-registers. Note: Programming is controlled by the internal Mask-PROM and the external resistor RPROGRAM Table 123. XRESET,XON Characteristics Min VXRESET_IL XRESET Low Level input voltage VXRESET_IH Max Unit -0.3 0.4 V XRESET High Level input voltage 1.3 VSUPP LY V VXON_IL XON Low Level input voltage -0.3 0.3*V2 _5 VXON_IH XON High Level input 0.7*V2 _5 V2_5 IXON_PUP Typ ca Parameter ni Symbol XON Pull up current 12 Note µA ch 10.2.1 Reset Conditions Reset can be activated from 7 different sources: Power on (battery or charger insertion) Te Low Battery Software forced reset Power off mode External triggered through the pin RESET Overtemperature Watchdog www.austriamicrosystems.com Revision 1v13 118 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Voltage detection: There are two types of voltage dependent resets: VPOR and VXRESET. VPOR monitors the voltage on V2_5 and VXRESET monitors the voltage on VSUPPLY. The linear regulator for V2_5 is always on and uses the voltage VCHARGER, VBAT or V_USB as its source. The pin RESET is only released if V2_5 is above VPOR and VSUPPLY is above VXRESETRISE. Table 124. Reset Levels Parameter Min Typ Max Unit Note VPOR Overall power on reset 1.5 2.0 2.3 V Monitor voltage on V2_5; power on reset for all internal functions VXRESETRISE Reset level for Vsupply rising ResVol trise V Monitor voltage on Vsupply; rising level 2.7 V Monitor voltage on VSupply; falling level ResVol tfall V if SupResEn=1 only VRESETMASK lv am lc s on A te G nt st il VXRESETFALLING Reset level for Vsupply falling al id Symbol Mask time for VXRESETFALLING 2.0 2.5 3.0 ms Duration for VBAT<VXRESETFALLING until a reset cycle is started 1 1. VRESET signal is debounced with the specified mask time for rising- and falling slope of VBAT. VRESETFALLING is only accepted if the reset condition is longer than VRESETMASK. This guard time is used to avoid a complete reset of the system in case of short drops of VBAT. Power off: To put the chip into ultra low power mode, write ‘1’ into xon_enable and ‘1’ into power_off. The chip stays in power off mode until the external pin XON is pulled low, the charger is inserted or the level VPOR is touched to start a complete reset cycle. The bit power_off is automatically cleared by this reset cycle. During power_off state all circuits are shut-off except the Low Power LDO (V2_5). Thus the current consumption of AS3658 is reduced to less than 15 µA. The digital part is supplied by V2_5, all other circuits are turned off in this mode, including references and oscillator. Except the reset control registers all other registers are set to their default value after power-on. Software forced reset ca Writing ‘1’ into the register bit force_reset immediately starts a reset cycle. The bit force_reset is automatically cleared by this reset. External triggered reset: ni If the pin XRESET is pulled from high to low by an external source (e.g. microprocessor or button) a reset cycle is started as well. Overtemperature reset: ch The reset cycle can be started by overtemperature conditions. (see Protection Functions on page 134) Watchdog reset: Te If the watchdog is armed (register bit wtdg_on = 1 and wtdg_res_on = 1) and the timer expires it causes a reset. (see Watchdog on page 135). www.austriamicrosystems.com Revision 1v13 119 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10.2.2 Reset Control Bits Table 125. Reset Timer Register Reset Timer Addr:22 Bit Name Default Access Description Set RESTIME ROM R/W RESTIME=10ms 001 RESTIME=20ms 010 RESTIME=35ms 011 RESTIME=50ms 100 RESTIME=65ms 101 RESTIME=80ms 110 RESTIME=95ms 111 RESTIME=110ms lv res_timer 000 am lc s on A te G nt st il 2:0 al id Bit These bits control the reset timer and XON enable register This flag enables the XON pad and sets the power on state of the ASIC 3 xon_enable ROM R/W 0 XON pad disabled. Startup of chip; if VBAT>VRESETRISING 1 XON pad enabled. Startup of chip; if VBAT>VRESETRISING and XON=0 Table 126. Reset Control Register Reset Control Addr:105 Bit Bit Name Default Access Description 0 force_reset 0b R/W Setting to ‘1’ starts a complete reset cycle 1 power_off 0b R/W Setting to ‘1’ starts a reset cycle, but waits after the Reg_off state for a falling edge on the pin XON or until the charger is detected 2 ca These bits control the power off mode and reset timer xon_input R/W Read:This flag represents the state of the XON pad directly Write: Setting to '1' resets the 5 sec. Onkey reset timer Te ch ni NA www.austriamicrosystems.com Revision 1v13 120 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 126. Reset Control Register Reset Control Addr:105 Bit Bit Name These bits control the power off mode and reset timer Default Access Description Flags to indicate to the software the reason for the last reset NA R VRESETFALLING was reached (battery voltage drop below 2.75V) 0010 software forced by force_reset 0011 software forced by power_off and XON was pulled low al id 0001 lv reset_reason VPOR has been reached (battery or charger insertion from scratch) 0100 software forced by power_off and charger was detected am lc s on A te G nt st il 6:3 0000 7 Onkey_reset_5s 1 R/W 0101 external triggered through the pin RESET 0110 reset caused by overtemperature T140 0111 reset caused by watchdog 1000 reset caused by 5 seconds on press 1001 reset caused by rtc_alarm register 1010 reset caused by rtc repeated wakeup 1011 reset caused by interrupt in standby mode 1100 reset caused by XON pulled low in standby mode 0 Reset after 5 seconds ON pressed disabled 1 Reset after 5 seconds ON pressed enabled Table 127. Internal references Bit definitions Internal references Bit definitions Bit Name ni Bit standby_mode_on Default 0 Access Description W Setting to ‘1’ sets the AS3658 into standby mode. All regulators defined in reg.17h “Reg Power1Ctrl” and reg.1Eh “Reg Power2 Ctrl are disabled except those regulators enabled by reg.81h “Reg standby mode”. XRESET will be pulled to low. A normal startup of all regulators will be done with any interrupt (has to be enabled before entering standby mode). During this startup, regulators defined by Reg standby mode register are continuously on. Te ch 4 These bits control the internal reference mode and internal clk frequency ca Addr:59 5 Clk_div2 www.austriamicrosystems.com Divide internal clock oscillator by 2 to reduce quiescent current for low power operation 0 0 Normal mode 1 Internal clock frequency divided by two. All timings are increased by two. Switching frequency of all DCDC converters are divided by two. Reduced transient performance of DCDC converters. R/W Revision 1v13 121 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 127. Internal references Bit definitions Internal references Bit definitions Addr:59 Default Reg_low_bias_mode 0 Access R/W Description 0 Normal mode 1 The quiescent current of the following regulators is divided by approx. two: SD1, SD2, SD3, RF1, RF2, RF3. The current capability and performance is also reduce in that mode. (E.g. Use this bit only to reduce quiescent current, if system and processor is in a low power mode) al id 6 Bit Name Table 128. Reg standby mode Bit definitions Reg standby mode These bits control the on/off function of the regulators during standby mode am lc s on A te G nt st il Addr:129 lv Bit These bits control the internal reference mode and internal clk frequency Bit Name Default Access 0 ldo_rf1_stby_on 0 R/W 1 ldo_rf2_stby_on 0 R/W 2 ldo_dig1_stby_on 0 R/W 3 ldo_dig2_stby_on 0 R/W 4 sd1_stby_on 0 R/W 5 sd2_stby_on 0 R/W 6 sd3_stby_on 0 R/W 7 cp_stby_on 0 R/W Description 0 RF1 LDO is disabled in standby mode 1 RF1 LDO is enabled in standby mode 0 RF2 LDO is disabled in standby mode 1 RF2 LDO is enabled in standby mode 0 DIG1 LDO is disabled in standby mode 1 DIG1 LDO is enabled in standby mode 0 DIG2 LDO is disabled in standby mode 1 DIG2 LDO is enabled in standby mode 0 Step down 1 is disabled in standby mode 1 Step down 1 is enabled in standby mode 0 Step down 2 is disabled in standby mode 1 Step down 2 is enabled in standby mode 0 Step down 3 is disabled in standby mode 1 Step down 3 is enabled in standby mode 0 Charge pump is disabled in standby mode 1 Charge pump is enabled in standby mode Te ch ni ca Bit www.austriamicrosystems.com Revision 1v13 122 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 129. Charger supervision Fuel Gauge Addr:14 Bit Bit Name This bit controls first startup out of power on reset Default Access Description Switch on Power off mode at first startup(e.g. First battery insertion or first charger insertion) Table 130. Fuel Gauge Fuel Gauge Addr:15 Bit 1 R/W al id Boot ROM Startup of all regulators only if onkey is pressed or rtc alarm (no startup on battery insertion; no startup if charger detected, if no_charging=0). xon_enable has to be set in bootrom. If a charger is detected and the bit no_charging=0 (defined by BootROM) and ch_pwroff_en=0 the AS3658 will start charging without regulators startup (fully autonomous charging). If the bit no_charging=1 and a charger is detected, the regulators are started and the charging can be enabled with software control. lv auto_shutdown Startup of all regulators if battery is inserted, charger insertion, onkey pressed or rtc alarm. am lc s on A te G nt st il 4 0 Bit Name This bit controls first startup out of power on reset Default Access Description Switch on Power off mode if low Vsupply is detected during active or standby mode (Pin XON= high and bit xon_enable=0) 5 power_off_at_v_suplow R/W 0 If low battery is detected, continuously monitor battery voltage and startup if battery voltage is above ResVoltrise 1 If low battery is detected, enter power off mode ca 10.2.3 Reset Cycle Boot ROM ni During a reset cycle the pin XRESET is forced to low for at least RESTIME and all registers are set to their default values (except the registers marked green in theTable 186 on page 148). During the reset time a normal startup happens (see Startup on page 129), the reset is active until the reset timer (set by register bits res_timer<2:0>) expires. Then the voltage on the pin XRESET is pulled high by the external resistor and the whole system is leaving the reset state. ch 10.2.4 Reset Control: res_con Te Reset is internally generated from a power supply supervisor and provided to internal logic as well as externally through the open-drain pad XRESET. At this point, it could be also forced externally from an external power supply supervisor. Additionally Reset can be forced by software. www.austriamicrosystems.com Revision 1v13 123 - 157 AS3658 Data Sheet Confidential 10.3 - Detailed Description - System Functions Interrupt Controller al id The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the Interrupt 1…3 register is set by pulling low pin XINT. All the interrupt sources can be enabled in the Interrupt Mask 1…3 register. The Interrupt 1…3 registers are cleared automatically after the host controller has read them. To prevent the AS3658 device from losing an interrupt event, the register that is read is captured before it is transmitted to the host controller via the serial interface. As soon as the transmission of the captured value is complete a logical AND operation with the bit wise inverted captured value is applied to the register to clear all interrupt bits that have already been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the clearing process has completed will yield a value of ‘0’. Note that an interrupt that has been present at the previous read access will be cleared as well in case it occurs again before the clearing process has completed. am lc s on A te G nt st il lv During a read access to one of the interrupt registers the XINT pin will be released. As soon as the transferred bits of the interrupt register have been cleared the XINT pin will be pulled low in case a new interrupt has occurred in the meantime. By doing so the interrupt controller will work correctly with host controllers that are edge- and level-sensitive on their interrupt request input. Multiple byte read access is recommended to avoid reading the Interrupt 1 register over and over again in response to a new interrupt that has occurred in the same register (and thus pulling low pin XINT) before the Interrupt 2,3 register has been read. Table 131. Interrupt Status 1 Register Interrupt Status1 Addr:50 These bits show the status of the interrupts register is reset at power-on-reset and after each read access Bit Name Default Access Description 0 chstate_i NA R Bit is set when the following status bits are set or reset: Trickle, CVM, NoBat 1 cheoc_i NA R Bit is set when the EOC status bits are set or reset: 2 charging_tmax_i NA R Bit is set when charge timeout ( tricke, CV, CC) has been expired 3 usb_chdet_i NA R Bit is set when the USB_ChDet Bit is set or reset. 4 chdet_i NA R Bit is set when the ChDet Bit is set or reset. 5 Onkey_i NA R Bit is set when status XON bit is set or reset. 6 ovtmp_i NA R Bit is set when the lower temperature threshold Temp110 of the temperature sensor is exceeded for longer than tRESMASK. R Bit is set when the main supply voltage VSUPPLY has dropped below VRESFALL for longer than tRESMASK. ca Bit 7 Lowsup NA ni Table 132. Interrupt Status 2 Register ch Addr:51 Interrupt Status2 These bits show the status of the interrupts register is reset at power-on-reset and after each read access Bit Name Default Access Description 0 sd1_lv_i NA R Bit is set when voltage of step down1 drops below low voltage threshold (1msec debounce timer) 1 sd2_lv_i NA R Bit is set when voltage of step down2 drops below low voltage threshold (1msec debounce timer) 2 sd3_lv_i NA R Bit is set when voltage of step down3 drops below low voltage threshold (1msec debounce timer) Te Bit www.austriamicrosystems.com Revision 1v13 124 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 132. Interrupt Status 2 Register Interrupt Status2 Addr:51 These bits show the status of the interrupts register is reset at power-on-reset and after each read access Bit Name Default Access Description 3 dig1_lv_i NA R Bit is set when voltage of LdoDig1 drops below low voltage threshold (1msec debounce timer) 4 dig2_lv_i NA R Bit is set when voltage of LdoDig2 drops below low voltage threshold (1msec debounce timer) 5 hphcurr_i NA R Bit is set when output stage of headphone amplifier exceeds overcurrent limit. 6 bat_temp_i NA R Bit is set when bit bat_hightemp or bat_lowtemp is set or reset 7 stpup1_i NA R Bit is set when stpup1_oc or stpup1_det is set. am lc s on A te G nt st il lv al id Bit Table 133. Interrupt Status 3 Register Interrupt Status3 Addr:52 These bits show the status of the interrupts register is reset at power-on-reset and after each read access Bit Name Default Access Description 0 dig3_lv_i NA R Bit is set when voltage of LdoDig3 drops below low voltage threshold (1msec debounce timer) 1 dig4_lv_i NA R Bit is set when voltage of LdoDig4 drops below low voltage threshold (1msec debounce timer) 2 rtc_alarm_i NA R Bit is set by the RTC, if alarm registers=rtc registers 3 rtc_rep_i NA R Bit is set by the RTC every second (Bit irq_min=0) or minute (Bit irq_min=1) 4 mic_con_i NA R Bit is set if a microphone is detected on MIC input 5 mic_rem_i NA R Bit is set, if the microphone supply is increased (remote key press detected) -> measure MICS supply current 6 voxm_i NA R Bit is set, if voice is detected on MIC input tpen_i NA R Bit is set, if the touchpen pendown is detected ni 7 ca Bit ch Table 134. Interrupt mask 1 Register Interrupt Mask1 Addr:47 Bit Name Default Access 0 chstate_int_mask 1b R/W 1 cheoc_int_mask 1b R/W Te Bit These bits mask the interrupt www.austriamicrosystems.com Description 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled Revision 1v13 125 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 134. Interrupt mask 1 Register Interrupt Mask1 Addr:47 These bits mask the interrupt Access 2 charging_tmax_int_mask 1b R/W 3 usb_chdet_int_mask 1b R/W 4 chdet_int_mask 1b R/W 5 onkey_int_mask 1b R/W 6 ovtmp_int_mask 1b R/W 7 LowSup_int_mask 1b R/W Description 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled al id Default lv Bit Name am lc s on A te G nt st il Bit 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled Table 135. Interrupt mask 2 Register Interrupt Mask2 Addr:48 Bit Bit Name Default Access 0 sd1_lv_int_mask 1b R/W 1 sd2_lv_int_mask 1b R/W 2 sd3_lv_int_mask 1b R/W 3 dig1_lv_int_mask 1b 4 ca R/W dig2_lv_int_mask 1b R/W 5 ni These bits mask the interrupt 1b R/W bat_temp_int_mask 1b R/W stpup1_int_mask 1b R/W ch hphcurr_int_mask Te 6 7 www.austriamicrosystems.com Description 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled Revision 1v13 126 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 136. Interrupt mask 3 Register Interrupt Mask3 Addr:49 These bits mask the interrupt Access 0 dig3_lv_int_m 1b R/W 1 dig4_lv_int_m 1b R/W 2 rtc_alarm_int_m 1b R/W 3 rtc_rep_int_m 1b R/W 4 mic_con_int_m 1b R/W 5 mic_rem_int_m 1b R/W 6 voxm_intm 1b R/W 7 tpen_i_m 1b R/W Description 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled al id Default lv Bit Name am lc s on A te G nt st il Bit 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled 0 Interrupt is enabled 1 Interrupt is disabled Table 137. Low voltage status1 Register1 Low voltage status1 Addr:53 These bits show the low voltage status of the step down and digital regulators Bit Name Default Access Description 0 sd1_lv NA R Step down1 low voltage status bit (-10% voltage drop) 1 sd2_lv NA R Step down2 low voltage status bit (-10% voltage drop) ca Bit 2 3 NA R Step down3 low voltage status bit (-10% voltage drop) dig1_lv NA R Ldo Dig1 low voltage status bit (-50mV voltage drop) dig2_lv NA R Ldo Dig2 low voltage status bit (-50mV voltage drop) - - - - 6 ni 4 sd3_lv stpup1_oc NA R Bit is set by analog part, if overcurrent of DCDC StepUp1 occurs for more than 5msec (latched state) 7 stpup1_det NA R Current Detection signal of step up 1 ch 5 Te Table 138. Low voltage status2 Register1 Low voltage status2 Addr:54 These bits show the low voltage status of the step down and digital regulators Bit Bit Name Default Access Description 0 dig3_lv 0b R Ldo Dig3 low voltage status bit (-50mV voltage drop) 1 dig4_lv 0b R Ldo Dig4 low voltage status bit (-50mV voltage drop) www.austriamicrosystems.com Revision 1v13 127 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 138. Low voltage status2 Register1 Low voltage status2 Addr:54 These bits show the low voltage status of the step down and digital regulators Bit Name Default Access Description 2 dcdc_curr1_lv 0b R Indicates low voltage on dcdc_curr1 3 dcdc_curr2_lv 0b R Indicates low voltage on dcdc_curr2 4 dcdc_curr3_lv 0b R Indicates low voltage on dcdc_curr3 5 bat_lowtemp 0b R Indicates NTC temperature of battery below 0º 6 bat_hightemp 0b R Indicates NTC temperature of batter above 45º (50º) Te ch ni ca am lc s on A te G nt st il lv al id Bit www.austriamicrosystems.com Revision 1v13 128 - 157 AS3658 Data Sheet Confidential 10.4 - Detailed Description - System Functions Startup Figure 56. Startup flow chart Power on reset xon_enable=0 batsw_on=0 batsw_mode=0 Reset registers except xon_enable YES NO al id xon_enable=1 and (chdet=0 or USBChdet=0) XON pin pulled to GND NO YES NO V BAT>V ResVolt? Switch on Battery switch NO NO YES batsw_on=1 batsw_mode=1 ChEn=1 am lc s on A te G nt st il Charger detected ? lv YES NO USB Sup. detected and ChDet=0? YES YES USB_ChEn=1 V SUPPLY>VResVolt? YES Startup Device Active state batsw_mode trickle Switch on Switch off batsw_on 0 1 1 1 X 0 batsw_on=0 batsw_mode=0 YES power_off=1 YES NO batsw_on=0 batsw_mode=0 ca NO V SUPPLY<VResVolt? YES ni NO ch force_reset=1 10.4.1 Normal Startup Te During a normal reset cycle (e.g. after the battery or a charger is inserted; (see Reset generator and XON-Key on page 118)), after V2_5 is above VPOR and Vsupply is above VRESETRISE a normal startup happens: The external capacitor on CREF is charged to 1.8V The 3bit A/D conversion is performed to measure the external resistor value RPROGRAM Startup State machine reads out the internal Boot-ROM (address defined by boot_ctrl), Start sequence of StepDown Converter and LDO’s controlled by the Boot-ROM Reset-Timer is set by the Boot-ROM The reset is released when the Reset Timer expires (external pin XRESET) www.austriamicrosystems.com Revision 1v13 129 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10.4.2 Startup from Charger If the voltage on pin VCHARGER is within VSTARTCHARGER, the AS3658 is started (even with VBAT = 0V). This allows the battery to be charged (even from deeply discharged batteries) and finally a normal startup to happen. Table 139. Charger Startup Conditions Parameter Min Typ Max unit Note VSTARTCHARGER Voltage on VCHARGER for system to start 4.0 5.0 15 V on Pin VCHARGER al id Symbol 10.4.3 Programmable Startup Sequences—Boot ROM lv The startup- and reset sequences of the device are highly configurable. The configuration of these sequences is defined by the ratio of the internal trimmed bias resistors and RPROGRAM. At the beginning of each reset cycle a 3 bit AD-conversion is performed. The result of this conversion is used to select 1 of 8 possible address-ranges of an internal mask-programmable ROM. The information that is stored in this ROM defines the following parameters: Voltage levels for all regulators and step down dcdc converters am lc s on A te G nt st il power-on sequence of RF_1, RF_2, DIG_1, DIG_2, SD1, SD2 and SD3 duration of the reset cycle several other configuration bits (e.g. charger) The following values of RPROGRAM are used to select the 8 possible address ranges (8 different startup voltage / sequences settings can be used): 000: open 001: 320kΩ 010: 160kΩ 011: 80kΩ 100: 40kΩ 101: 20kΩ 110: 10kΩ 111: 0Ω Table 140. Boot ROM Bits definitions Boot_status These bits show the boot status Bit Bit Name Default Access Description 2:0 rom_adr NA R Boot-ROM address 3 ni ca Addr:107 1 R If ‘1’ Boot-ROM address is valid rom_valid Te ch Note: For detailed startup sequences see austriamicrosystems AG document AS3658_BootROM_*. www.austriamicrosystems.com Revision 1v13 130 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10.4.4 Additional Startup Settings Table 141. Boot ROM Bits definitions LDO_RF2_Voltage Addr:4 double_reset 7 slow_startup 6 Default ROM Access R/W ROM Description 0 Normal reset pulse 1 Apply double reset pulse after the normal rest pulse that is define by res_timer. (pulse on XRESET with 2msec high time and 2msec low time 0 Normal startup of LDOs defined in boot rom with a separation of 1 milliseconds 1 Startup of all LDOs defined by boot rom with a time separation of 4 milliseconds R/W al id Bit Name am lc s on A te G nt st il 10.4.5 Programmable Startup Sequences with fuse registers—Boot OTP lv Bit These bits defines the startup sequence Its possible to program some startup registers, by using the fuse block: Table 142. ROMF Bit definitions FUSE4 Addr:196 These bits control the startup and are set by factory test Bit Bit Name Default Access 7 romf_en 0 R Description 0 Fusible startup rom disabled 1 Feasible startup of rom enabled (UniqueID0.UniqueID10) used for startup Table 143. ROMF Bit definitions addrf0 Addr:197 Bit Bit Name These bits control the startup and are set by factory test Default Access Description ca Each bit represents a register address of the bootrom table (0....31) addrf<7:0> 0 R ni 7:0 0 Use data of ROM table during startup for the according address (0....31) 1 Use data of fuse register during startup for the according address, starting with data of register romf0 (up to register romf6 max.) ch Table 144. ROMF Bit definitions addrf0 Addr:198 Te Bit 7:0 Bit Name These bits control the startup and are set by factory test Default Access Description Each bit represents a register address of the bootrom table (0....31) addrf<15:8> www.austriamicrosystems.com 0 R 0 Use data of ROM table during startup for the according address (0....31) 1 Use data of fuse register during startup for the according address, starting with data of register romf0 (up to register romf6 max.) Revision 1v13 131 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 145. ROMF Bit definitions addrf2 Addr:199 Bit Bit Name These bits control the startup and are set by factory test Default Access Description Each bit represents a register address of the bootrom table (0....31) 0 R 0 Use data of ROM table during startup for the according address (0....31) 1 Use data of fuse register during startup for the according address, starting with data of register romf0 (up to register romf6 max.) al id addrf<23:16> Table 146. ROMF Bit definitions addrf3 Addr:200 lv 7:0 am lc s on A te G nt st il These bits control the startup and are set by factory test Bit Bit Name Default Access Description Each bit represents a register address of the bootrom table (0....31) 7:0 addrf<31:24> 0 R 0 Use data of ROM table during startup for the according address (0....31) 1 Use data of fuse register during startup for the according address, starting with data of register romf0 (up to register romf6 max.) Table 147. ROMF Bit definitions romf0 Addr:201 These bits control the startup and are set by factory test Bit Bit Name Default Access Description 7:0 romf0 00h R Data for startup register (used for the first “1” in the addrf<31:0> register ca Table 148. ROMF Bit definitions Addr:202 7:0 Bit Name ni Bit romf1 romf1 These bits control the startup and are set by factory test Default Access Description 00h R Data for startup register (used for the second “1” in the addrf<31:0> register ch Table 149. ROMF Bit definitions romf2 Te Addr:203 These bits control the startup and are set by factory test Bit Bit Name Default Access Description 7:0 romf2 00h R Data for startup register (used for the third “1” in the addrf<31:0> register www.austriamicrosystems.com Revision 1v13 132 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 150. ROMF Bit definitions romf3 Addr:204 These bits control the startup and are set by factory test Bit Name Default Access Description 7:0 romf3 00h R Data for startup register (used for the fourth “1” in the addrf<31:0> register Table 151. ROMF Bit definitions romf4 Addr:205 al id Bit These bits control the startup and are set by factory test Bit Name Default Access Description 7:0 romf4 00h R Data for startup register (used for the fifth “1” in the addrf<31:0> register lv Bit am lc s on A te G nt st il Table 152. ROMF Bit definitions romf5 Addr:206 These bits control the startup and are set by factory test Bit Bit Name Default Access Description 7:0 romf5 00h R Data for startup register (used for the sixth “1” in the addrf<31:0> register Table 153. ROMF Bit definitions romf6 Addr:207 Bit Bit Name romf6 Default 00h Access Description R Data for startup register (used for the seventh “1” in the addrf<31:0> register Te ch ni ca 7:0 These bits control the startup and are set by factory test www.austriamicrosystems.com Revision 1v13 133 - 157 AS3658 Data Sheet Confidential 10.5 - Detailed Description - System Functions Protection Functions All LDO’s, the DCDC step ups and DCDC step downs have an integrated overcurrent protection. An overtemperature protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on (enabled by default; it is not recommended to disable the overtemperture protection). The chip has two signals for the serial interface: ov_temp_110 and ov_temp_140. The flag ov_temp_110 is automatically reset if the overtemperature condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140. al id If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The flag ov_temp_140 is not affected by this reset cycle allowing the software to detect the reason for this unexpected shutdown. Table 154. Overtemperature Detection Min Typ Max Unit T110 ov_temp_110 rising threshold 95 110 125 ºC T140 ov_temp_140 rising threshold 125 140 155 ºC Thyst ov_temp_110 and ov_temp_140 hysteresis Note lv Parameter am lc s on A te G nt st il Symbol 5 ºC Table 155. Overtermperature detection Bit definition Overtemperature Control Addr:106 These bits control the startup and are set by factory test Bit Bit Name Default Access Description 0 temp_pmc_on 1 R/W Switch on / off of temperature supervision; default: on – all other bits are only valid if set to ‘1’ Leave at 1, do not disable 1 ov_temp_110 NA R Flag that the overtemperature threshold 1 (T110) has been reached R Flag that the overtemperature threshold 2 (T140) has been reached – this flag is not reset by a overtemperature caused reset and has to be reset by rst_ov_temp_140 W If the overtemperature threshold 2 has been reached, the flag ov_temp_140 is set and a reset cycle is started. ov_temp_140 should be reset by writing 1 and afterward 0 to rst_ov_temp_140 2 ov_temp_140 rst_ov_temp_140 0 ca 3 NA 10.5.1 Temperature Supervision ch ni A temperature sensor is implemented to provide over-temperature protection of the chip. It generates two flags linked to the two temperature thresholds (110 degrees, 140 degrees). Both thresholds have an hysteresis to prevent oscillation effects. First threshold (110 degrees) sets the flag ov_temp_110, signalling the serial interface part and software the 110 degrees overtemperature condition. If enabled (ovtmp_int_mask=0), an interrupt can be send (interrupt ‘ovtmp’). Thus software can react and can shutdown power consuming functions to decrease temperature. Te The second threshold (140 degrees) initiates a reset cycle and sets ov_temp_140: this sets all regulators into powerdown mode and stops charging, and performs the reset cycle of the AS3658. rst_ov_temp_140 flag In case of overtemperature and an activated reset (temp_pmc_on=1), the system loses any information about the error which activated the reset state. Therefore, a flag is implemented, which indicates that the reset was caused by overtemperature activation (ov_temp_140 is set). This flag is only resetable by writing ‘1’ to rst_ovtemp_140. www.austriamicrosystems.com Revision 1v13 134 - 157 AS3658 Data Sheet Confidential 10.6 - Detailed Description - System Functions Watchdog The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must receive a continuous trigger signal within a programmable time window. If there is no signal anymore for a certain time period from a defined pad or special serial interface bit, it starts either a complete reset cycle or changes the state of an output pin, which can be used e.g. as an interrupt to the processor. The watchdog is highly configurable by the following register bits: The watchdog time window is defined by the register wtdg_min_timer and wtdg_max_timer. al id The complete block can be switched on by wtdg_on = 1 and off by wtdg_on = 0. The trigger signal can be configured by register wtdg_trigger and wtdg_gpio_input. (Pin CURR1-CURR4 (GPIO1GPIO4) or register bit) If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1 am lc s on A te G nt st il lv Any of the general purpose input / outputs can be configured to output the watchdog signal. The Watchdog delivers a signal “wtdg_alarm”, which is normal ‘0’ and goes to ‘1’ in the case of a timer-overflow. This signal can be used as e.g. a reset or interrupt for a processor. Table 156. Watchdog Register definitions Watchdog control Addr:60 Bit Bit Name These bits control the watchdog functions Default Access Description Switches on the complete watchdog 0 wtdg_on 1 0 wtdg_res_on wtdg_trigger 0 ca 2 1 R/W R/W 0 watchdog off 1 watchdog enabled If the watchdog expires and wtdg_res_on = 1 a reset cycle will be started 0 Use the register bit wtdg_sw_signal as trigger signal for the watchdog 1 Use one of the GPIO pins CURR1_GPIO1 … CURR4_GPIO4 as trigger input for the watchdog; the actual pin is selected by setting GPIOXIOSF to 01b(watchdog mode) and GPIOXMode=010b (GPIO digital input) (X=1...4) R/W Table 157. Watchdog minimum timer definitions Bit Watchdog_min timer These bits set the watchdog minimum timer Bit Name Default Access Description Wtdg_min_timer 00h R/W Defines the minimum watchdog trigger time (LSB=7.5ms, range: 0 – 1.9s) ch 7:0 ni Addr:61 Te Table 158. Watchdog max timer definitions Bit 7:0 Watchdog_max timer Addr:62 Bit Name Wtdg_max_timer www.austriamicrosystems.com These bits set the watchdog maximum timer Default FFh Access Description R/W Defines the maximum watchdog trigger time (LSB=7.5ms, range: 7.5ms – 1.9s), do not set to (00)h Revision 1v13 135 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 159. Watchdog software signal definitions Watchdog software signal Addr:63 This bit sets the watchdog software trigger Bit Bit Name Default Access Description 0 wtdg_sw_signal 0 R/W Trigger input by the serial interface if wtdg_trigger = 0 tmin al id Figure 57. Watchdog timing diagram tmax wtdg_trigger 10.7 lv tmax am lc s on A te G nt st il tmin General Purpose 10 Bit ADC Table 160. ADC Characteristics Resolution Input Voltage Range Differential Nonlinearity Integral Nonlinearity Input Offset Voltage Input Impedance Input Capacitance Power Supply Current Power Down Current Parameter Min Typ Max 10 Vin Unit 1.8 V DNL ± 0.25 LSB INL ± 0.5 LSB Vos 2 LSB Rin 100 9 Idd 1LSB 1.76mV (depending on selected channel) MΩ Cin Idd Note Bit 0 ca Symbol pF 500 µA 100 nA During conversion only ni Transient Parameters (25°C) Tc 40 µs Clock Frequency fc fclk_int/ 8 kHz Settling time of S&H ts Te ch Conversion Time ADC_IN1 pull up current www.austriamicrosystems.com 1 14.25 internal CLK frequency/8 Programmable: 0.2 to 0.2875 MHz µs 15 15.75 Revision 1v13 µA Pull up current for ADC_IN1, if adc_idc=1111b 136 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 161. ADC control Registers bits ADC_control Addr:96 Bit This register controls the 10 Bit ADC Bit Name Default Access Description Selects an ADC channel 0000b R/W ADC2_IN (LSB = 1.76mV) 0010 VBAT Battery voltage (LSB=5.27mV) 0011 VCHARGER (LSB=17. 6mV) clamping at 10V 0100 V_USB Voltage (LSB=5.27mV) 0101 not used 0110 temperature sensor: DIE temperature [°C] = adc_result * 0.866 – 274 al id 0001 lv adc_select ADC1_IN (LSB = 1.76mV) am lc s on A te G nt st il 3:0 0000 0111 ADC test channel – do not use 1000 check voltage on MICS for remote control or external voltage measurement (LSB=3.52mV) 1001 VBACK voltage (LSB=3.52mV) select ADC sampling frequency 4 adc_slow 5 - 0b R/W - 0 275kHz (conversion time: 60µs) 1 70kHz (conversion time: 240µs) - reserved (do not use) 6 adc_on 0b R/W Writing a 1 into this bit continuously activates the ADC S/H and the input multiplexer. The ADC and the MUX are also activated for a conversion period when start_conversion is set to ‘1’ – useful for high impedance input sources on ADC1_IN or ADC2_IN 7 start_conversion 0b R/W Writing a 1 into this bit starts one ADC conversion. ca Table 162. ADC MSB result register Bit Bit Name 0 ni Addr:97 1 Default Access Description D3 NA R ADC result register D4 NA R ADC result register D5 NA R ADC result register ch 2 ADC_MSB result This register shows the MSB result of the ADC conversion D6 NA R ADC result register D7 NA R ADC result register 5 D8 NA R ADC result register 6 D9 NA R ADC result register 7 result_not_ready NA R Te 3 4 Indicates end of conversion www.austriamicrosystems.com 0 result is ready 1 conversion is running Revision 1v13 137 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 163. ADC LSB result register ADC_LSB result Addr:98 Bit Bit Name Default Access Description 0 D0 NA R ADC result register 1 D1 NA R ADC result register 2 D2 NA R ADC result register 7:3 - - - reserved (do not use) ADC idac Addr:46 Bit Bit Name lv Table 164. ADC IDAC register al id This register shows the LSB result of the ADC conversion This register controls the current sink on pin ADC_IN1 Default Access Description 0 am lc s on A te G nt st il Current source at ADC_IN1 input Set to 0000 if battery temperature supervision is enabled. adc_idac 000b R/W 0000 0µA (current sink disabled) 0001 1µA ... 1111 15 µA Figure 58. ADC Timing-diagram I2C Bus start_conversion=1 1 275kHz Sample ADC_ON ni result_not ready 12 13 old_Data Data not valid Data ready Te ch D<9:0> 3 ca start_adc 2 www.austriamicrosystems.com Revision 1v13 138 - 157 AS3658 Data Sheet Confidential 10.8 - Detailed Description - System Functions Internal References (V, I, fclk) The internal reference circuits needs the following external components: Table 165. Reference External Components Parameter Min Typ Max Unit Note CEXT External filter capacitor -10% 100 +10% nF Ceramic low-ESR capacitor between CREF and VSS RBIAS External bias current set resistor -1% 220 +1% kΩ Bias Current set resistor between RBIAS and VSS Table 166. References Parameters al id Symbol Parameter Min Typ Max Unit Note VCEXT Reference Voltage -1% 1.8 +1% V Low noise trimmed voltage reference – connected to Pad CREF; do not load fCLK Accuracy of Internal reference clock -10 fCLK +10 % Adjustable by serial interface register clk_int am lc s on A te G nt st il lv Symbol To reduce the current consumption of the chip, the circuit can be set into a special low power mode with the serial interface bit ‘low_power_on’. All specification parameters except the noise parameters are still valid for this mode. Table 167. Internal references Bit definitions Internal references Bit definitions Addr:59 These bits control the internal reference mode and internal clk frequency Bit Bit Name Default Access 0 low_power_on 0b R/W Description 0 Standard mode 1 Low power mode – all specification except noise parameters are still valid ca Sets the internal CLK frequency fCLK used for fuel gauge, DCDCs, PWM, charge pump. All frequencies, timings and delays in this datasheet are based on 2.2MHz clk_int clk_int ch ni 3:1 110b R/W 000b 1.6 MHz 001b 1.7 MHz 010b 1.8 MHz 011b 1.9 MHz 100b 2.0 MHz 101b 2.1 MHz 110b 2.2 MHz (default) 111b 2.3 MHz Te 10.8.1 Low Power Mode Use bit low_power_on (reg. References Control (see Table 167)) to activate the Low Power Mode. In this mode the on-chip voltage reference and the temperature supervision comparators are operating in pulsed mode. This reduces the quiescent current of the AS3658 by 45uA (typ.). Because of the pulsed function some specifications are not fulfilled in this mode (e.g. increased noise), but still the full functionality is available. Note: Low power mode can be controlled by the serial interface. www.austriamicrosystems.com Revision 1v13 139 - 157 AS3658 Data Sheet Confidential 10.9 - Detailed Description - System Functions Real-Time Clock (RTC) Module The RTC module provides time information to the system. It is implemented as a 6-bit counter that is incremented every second - with the 32kHz oscillator delivering the necessary accurate time base – and is reset to 0 each time the counter value is 60. An additional 24-bit minute counter is incriminated each time the 6-bit counter is reset to 0. Both counters are set to 0 at a power-on-reset. The host controller can set the counter to any value by setting the RTC 1…4 registers. am lc s on A te G nt st il lv al id To prevent ambiguous time information because of the 30-bit value being incremented before all of the 4 registers have been read or written, a 30-bit parallel shadow register is implemented. Every time a write/read access via the serial interface occurs the parallel shadow register is updated with the current value of the 30-bit counter. Any write access to the RTC 1 register will disable the update of the parallel register and set the value of the appropriate byte of the parallel register. Any subsequent write access to the RTC 4 register will transfer the current value of the 30-bit parallel register to the RTC 1…4 registers and the update of the parallel register is enabled again. Similarly, any read access to the RTC 1 register will freeze the current value of the parallel register and submit the appropriate byte to the host controller via the serial interface. Any subsequent read access to the RTC 4 register will enable the update of the parallel register again. This mechanism makes sure that the maximum error of the value that is written to or read from the registers is 1 second. The startup state after power on reset:RTCSecond=3F, RTCMinute1=FF, RTCMinute2=FF, RTCMinute3=FF To start the RTC, rtc_mode bits have to be set to a non zero value, and the RTC registers have to be set. The RTC stops automatically at its highest value (3F,FF,FF,FF) to prevent overrun. Table 168. RTC Second Register RTCSecond Addr:64 These bits represents the actual RTC second register register is reset at power-on-reset only Bit Bit Name Default Access Description 5:0 RTCSecond 00h R/W Bits 5:0 of the 6-bit RTC second counter 7:6 - - reserved Table 169. RTC Minute1 Register RTCMinute1 Addr:65 Bit Name 7:0 RTCMinute1 Default ca Bit These bits represents the actual RTC Minute1 register register is reset at power-on-reset only 00h Access Description R/W Bits 7…0 of the 24-bit RTC minute counter ni Table 170. RTC Minute2 Register RTCMinute2 ch Addr:66 These bits represents the actual RTC Minute2 register register is reset at power-on-reset only Bit Name Default Access Description RTCMinute2 00h R/W Bits 15:8 of the 24-bit RTC minute counter Te Bit 7:0 Table 171. RTC Minute3 Register RTCMinute3 Addr:67 These bits represents the actual RTC Minute3 register register is reset at power-on-reset only Bit Bit Name Default Access Description 7:0 RTCMinute3 00h R/W Bits 23:16 of the 24-bit RTC minute counter www.austriamicrosystems.com Revision 1v13 140 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions The RTC module includes an alarm function. When the content of the RTC 1…4 registers equals the content of the RTC Alarm 1…4 registers bit RTCAlarm will be set in the Interrupt 1 register. Furthermore the RTC module can generate an interrupt every second (RTC1Sec will be set) and every minute (RTC1min will be set every time the 6-bit second counter is reset to 0). For further details on interrupt generation please refer to Interrupt Controller on page 124. Table 172. RTC Alarm second Register RTC AlarmSecond Addr:68 lv These bits set the RTC Alarm Seconds register is reset at power-on-reset only al id To avoid ambiguous behavior during write access to the RTC Alarm 1…4 registers any write access to the RTC Alarm 1 register will disable the alarm function; any subsequent write access to the RTC Alarm 4 will enable the alarm function again. Bit Name Default Access Description 5:0 RTCAlarmSecond 3Fh R/W Bits 5…0 of 6-bit RTC second alarm value am lc s on A te G nt st il Bit Table 173. RTC Alarm minute1 Register RTC AlarmMinute1 Addr:69 These bits set the RTC Alarm Minute1 register is reset at power-on-reset only Bit Bit Name Default 7:0 RTCAlarmMinute1 FFh Access Description Bits 7:0 of the 24-bit RTC minute alarm value Table 174. RTC Alarm minute2 Register RTC AlarmMinute2 Addr:70 These bits set the RTC Alarm Minute2 register is reset at power-on-reset only Bit Bit Name Default 7:0 RTCAlarmMinute2 FFh Access Description Bits 15:8 of the 24-bit RTC minute alarm value Table 175. RTC Alarm minute3Register ca RTC AlarmMinute3 Bit Bit Name Default 7:0 ni Addr:71 FFh Access Description Bits 23:16 of the 24-bit RTC minute alarm value Te ch RTCAlarmMinute3 These bits set the RTC Alarm Minute3 register is reset at power-on-reset only www.austriamicrosystems.com Revision 1v13 141 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 176. RTCT Register RTCT Addr:72 Bit Bit Name These bits set the RTC correction and RTC interrupt mode register is reset at power-on-reset only Default Access Description 0000000 R/W 100001 -472.8ppm 111111 -7.6ppm 000000 0ppm(default) 000001 7.6ppm lv RTC_TBC<6:0> - 480.4ppm am lc s on A te G nt st il 6:0 100000 al id These bits are used to correct the inaccuracy of the used 32kHz crystal. Correction is done all 8 seconds by removing or adding two clock cycles. Trimming register for RTC, 128 steps @ 7.6ppm 7 rtc_irq_mode 0 R/W 011110 472.8ppm 011111 480.4ppm 0 generate an interrupt every second 1 generate an interrupt every minute The interrupt has to be enabled by rtc_rep_int_m=0 Table 177. Reset Timer Register Reset Timer Addr:22 These bits set RTC modes Bit Name Default Access 4 rtc_alarm_wakeup_en ROM R/W ca Bit rtc_mode ROM ROM 0 Disables RTC alarm wakeup in power off mode 1 Enable RTC alarm wakeup in power off mode 0 Disables RTC repeated wakeup in power off mode 1 Enable RTC repeated wakeup in power off mode 00 32kHz oscillator off 01 32kHz oscillator enabled 10 32kHz oscillator enabled, Pin Q32k enabled 11 reserved (do not use) R/W R/W Te ch 7:6 rtc_rep_wakeup_en ni 5 Description www.austriamicrosystems.com Revision 1v13 142 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10.10 Touchpen Interface The touchpen interface controls a resistive touchpen. It has the following features: Low Power Pen Detect Measure pen X,Y position Measure pen pressure (Z-position) al id Interrupt, if X,Y,Z data is available; one dedicated output – CURR4_GPIO4 can be configured to be used as touchpen interrupt output and/or standard interrupt output XINT The conversion interval can be adjusted Up to 16 ADC conversion can be averaged internally The sample time of the ADC can be adjusted lv The pin CURR3_GPIO3 can be configured to enable/disable the ADC conversion (useful if the processor updates the LCD to avoid parallel reading of the touchpen position) am lc s on A te G nt st il The touchpen interface shares the pins with the SPDIF output and the I2S Output 3. If the touchpen interface is used, the SPDIF and the I2S Output 3 cannot be used (and has to be disabled). Note: The touchpen interface and the ‘General Purpose 10 Bit ADC’ can be used at the same time. Figure 59. Touchpen Block diagram $ *+&*,-$., %"$$,"*+ $&,-&$ *+&*,-$., %"$$,"*+ &&&"" '( !) ; ;< " " !"#$%" " ca ni /0"& "1,0"2%3 ch *,-$0,60$&,6 1&,,6$$,"+*= "*%+ ' '5 ' !" $$$$ ,$) $$$$) ### '4 $>@A *$> A > ? 1*, )-& 9 ; < *6 *-6 '('7'8$"*%+" > 6, ,% $>(@A$ B6B$ $&$ *$>( A >( ?( Te ,*$0"& ,&.*$,&& ,6,*+ &+ &""&$,&& > 6, C/ && 6, .&%$ www.austriamicrosystems.com ' 6,"& 3%"9:; < 0*1 6,"& ' 6,"& =%"9:; < 0*1 6,"& ' 6,"& >%"9:; < Revision 1v13 3%" &*$"*& 3+"9; < =+"9; < >+"9; < /0"& &.* 143 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions The touchpen controller is operating according to the following state diagram: Figure 60. Touchpen State diagram (" (& *+, am lc s on A te G nt st il lv al id (& (" !"#"$%#&#&" ' . (&- *+, *+, ca ) ) ni 10.10.1 Software guidelines Te ch 1. Setup the configuration registers (tpen – control 1..3) according the hardware 2. Enable receiving of touchpen interrupts (either through XINT or GPIO4_CURR4) 3. Upon receiving of a touchpen interrupt, readout tpen_xmsb, tpen_ymsb (and if required tpen_pressmsb and tpen_xypresslsb) with a single I2C blockread. This ensured, that the x,y,z is correctly readout and all data belong to one single touchpen x,y,z conversion 4. Perform all the required processing with the data (e.g. accept a pen-down only if the pen is forced onto the touchscreen with a minimum pressure [z-position]) www.austriamicrosystems.com Revision 1v13 144 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions 10.10.2 Touchpen Registers Table 178. Touchpen Register Map Register Definition Addr Default Content Name b7 b6 b5 b4 b3 b2 b1 b0 XD2 108 NA XD9 XD8 XD7 XD6 XD5 XD4 XD3 tpen_ymsb 109 NA YD9 YD8 YD7 YD6 YD5 YD4 YD3 YD2 tpen_pressmsb 110 NA PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 tpen_xypresslsb 111 NA PD1 PD0 0 YD1 YD0 0 XD1 XD0 tpen – control 1 112 00h tpen_st_ tpen_eo pen c tpen – control 2 113 00h tpen_so tpen_wa tpen_curr cpd it press tpen – control 3 114 00h tpen_soc tpen_convint tpen_on lv tpen_avg al id tpen_xmsb tpen_pu tpen_sample am lc s on A te G nt st il tpen_timeo tpen_deb ut _en ounce Note: The cells marked in color are Read only Table 179. Touchpannel Result Register Bits Touchpad_XMSB result Addr:108 X-MSB result register Bit Bit Name Default Access Description 7:0 tpen_xmsb 00000000 R X – MSB Data Table 180. Touchpannel Result Register Bits Touchpad_YMSB result Addr:109 Y-MSB result register Bit Bit Name Default Access Description 7:0 tpen_ymsb 00000000 R Y – MSB Data ca Table 181. Touchpannel Result Register Bits Touchpad_Pressure result Addr:110 7:0 Bit Name Default Access Description tpen_pressmsb 00000000 R Pressure - Data ni Bit Pressure result register ch Table 182. Touchpannel Result Register Bits Touchpad_XY - LSB result Te Addr:111 X - MSB result register Bit Bit Name Default Access Description 1:0 tpen_xlsb 00 R X – LSB Data 4:3 tpen_ylsb 00 R Y – LSB Data 7:6 tpen_presslsb 00 R Pressure – LSB Data www.austriamicrosystems.com Revision 1v13 145 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 183. Touchpannel Control Register Bits Touchpad – control 1 Addr:112 Bit Bit Name This register controls the different modes of the Touchpad Default Access Description Enables Touch Pen Function tpen_on 0 0 OFF (No wakeup on pen down) 1 Pen Detect enabled wakes up Pen Digitizer Check Pen_Status -> if pendetect or tpen_soc_pd=1 and tpen_soc=1 then perform X,Y,Z measurements R/W al id 0 Conversion Interval Timer 00 R/W 01 every 512 clock periods (0,5 ms) ADC – Averaging limited to max. 4 10 every 1024 clock periods (1ms) ADC – Averaging limited to max. 8 11 every 10240 clock periods (10ms) lv tpen_convint No delay between conversions am lc s on A te G nt st il 2:1 00 Start Conversion (x,y, and z conversion) 3 tpen_soc 0 0 No Conversion if pen down detected 1 Start Conversion if pen down detected or tpen_soc_pd=1 and tpen_on=1 (X, Y and Z-Pressure Measurement) R/W Averaging of x and y measurement 5:4 tpen_avg 0 R/W 00 no averaging 01 4 measurements (per channel) 10 8 measurements (per channel) 11 16 measurements (per channel) ADC - End of Conversion bit tpen_eoc 0 ni tpen_st_pen TP in Power down or Conversion ongoing 1 Valid TP data available (x,y, and pressure) generates an interrupt on GPIO4_CURR4 and/or XINT; the interrupt is released when the readout from the tpen_xmsb is started Pen status 0 R 0 penup 1 pendown Te ch 7 0 R/W ca 6 www.austriamicrosystems.com Revision 1v13 146 - 157 AS3658 Data Sheet Confidential - Detailed Description - System Functions Table 184. Touchpannel Control Register Bits Touchpad – control 2 Addr:113 Bit Bit Name This register controls the different modes of the Touchpad Default Access Description Internal Resistor used for Pen detection Do not use this Setting 00001 4kΩ 00010 8kΩ ... tpen_pu 00000 R/W 00100 16kΩ lv 4:0 al id 00000 ... 01000 32kΩ am lc s on A te G nt st il ... 10000 64kΩ (most sensitive) ... 11111 ~ 2kΩ Current used for pressure measurement 5 tpen_currpress 6 0 tpen_wait 7 0 tpen_soc_pd 0 R/W R/W 0 200µA 1 400µA 0 Do not wait until tpen_xmsb is readout 1 Start next ADC – conversion after data is read from Register tpen_xmsb 0 Start conversion only if tpen_st_pen is 1 and tpen_soc=1 and tpen_on=1 1 Measure regardless of pen Status (only if tpen_soc=1 and tpen_on=1) R/W Table 185. Touchpannel Control Register Bits Bit Name ni Bit tpen_sample This register controls the different modes of the Touchpad Default Access Te 2 3 tpen_debounce Description Sample Time of ADC 00 R/W ch 0:1 Touchpad – control 3 ca Addr:114 0 R/W 0 3µs 1 10µs 2 50µs 3 200µs 0 Pen-down Debounce Time 100µs 1 Pen-down Debounce Time = 3ms Enables Timeout Signal (ADC conversion is stopped during tiemeout = 1) tpen_timeout _en www.austriamicrosystems.com 0 R/W Revision 1v13 0 off 1 GPIO3_CURR3 can be configured as input for the timeout signal – see block diagram 147 - 157 AS3658 Data Sheet Confidential - Register map 11 Register map Table 186. Register Map Default hex Content Addr Register Definition Step Down Voltage1 0 0h sd1_freq ROM sd1_clki nv u step_down1_v Step Down Voltage2 1 1h sd2_freq ROM sd2_clki nv u step_down2_v Step Down Voltage3 2 2h sd3_freq ROM sd3_clki nv u step_down3_v LDO_RF1 Voltage 3 3h ROM rf1_swpr rf1_lcurr ot_en _en ldo_rf1_v LDO_RF2 Voltage 4 4h ROM double_r slow_sta rf2_lcurr eset rtup _en ldo_rf2_v LDO_RF3 Voltage 5 LDO_DIG1 Voltage 6 LDO_DIG2 Voltage 7 LDO_DIG3 Voltage 8 LDO_DIG4 Voltage 9 USB Charger Control b5 b4 b3 b2 b1 rf3_hotpl rf3_lcurr ug_en _en 5h ROM 6h ROM ldo_dig1_v 7h ROM ldo_dig2_v 8h ROM ldo_dig3_v 9h ROM ldo_dig4_v 10 Ah No_char dis_bats ROM ext_bats w_temp usb_chg w_en ging En _prot Charger Control1 11 Bh Auto ch_det_ charging usb_hol CHOVD Ch_pwr ROM Isolate_b at 500ms _tmax d_chdet Resume etEn off_en Battery voltage monitor 12 Ch SupRes ROM FastRes En En Charger Config 13 Dh ROM FuelGauge 15 Charger Current 16 ldo_rf3_v auto_sh ROM ntc_type ntc_hyst ntc_high _temp utdown Fh ROM ch 10h ROM power_o ff_at_vs uplow ch_voltage ChEn ResVoltRise Vsupply_min Eh ntc_on usb_Current ResVoltFall ChVoltResume ca 14 ni Charger supervision b0 al id b6 lv b7 am lc s on A te G nt st il Name ChVoltEOC ch_timeout CalMod CalReq ConstantCurrent UpdReq FGEn TrickleCurrent 17 11h ROM GPIO 1 18 12h ROM gpio1_pulls gpio1_in vert gpio1_iosf gpio1_mode GPIO 2 19 13h ROM gpio2_pulls gpio2_in vert gpio2_iosf gpio2_mode GPIO 3 20 14h ROM gpio3_pulls gpio3_in vert gpio3_iosf gpio3_mode GPIO 4 21 15h ROM gpio4_pulls gpio4_in vert gpio4_iosf gpio4_mode Te Charge Pump Control www.austriamicrosystems.com sdx_1A_mode Revision 1v13 sd1_dvm_time cp_puls eskip cp_freq 148 - 157 AS3658 Data Sheet Confidential - Register map Table 186. Register Map Default hex Content Addr Register Definition Reset Timer 22 16h ROM Reg Power1 Ctrl @ 6 msec 23 17h ROM cp_on sd3_on sd2_on ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on Reg Power1 Ctrl @ 7 msec 24 18h ROM cp_on @7 msec sd3_on @7 msec sd2_on @7 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @7 @7 @7 @7 @7 msec msec msec msec msec Reg Power1 Ctrl @ 8 msec 25 19h ROM cp_on @8 msec sd3_on @8 msec sd2_on @8 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @8 @8 @8 @8 @8 msec msec msec msec msec b6 b5 b4 b3 b2 rtc_rep_ rtc_alar xon_ena wakeup m_wake ble _en up_en b0 res_timer al id rtc_mode b1 lv b7 am lc s on A te G nt st il Name sd3_on @9 msec sd2_on @9 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @9 @ 9 @ 9 @ 9 @ 9 msec msec msec msec msec 26 1Ah ROM cp_on @9 msec Reg Power1 Ctrl @ 10 msec 27 1Bh ROM cp_on @10 msec sd3_on @ 10 msec sd2_on @ 10 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @ 10 @ 10 @10 @10 @ 10 msec msec msec msec msec Reg Power1 Ctrl @ 11 msec 28 1Ch ROM cp_on @ 11 msec sd3_on @11 msec sd2_on @ 11 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @ 11 @ 11 @ 11 @ 11 @ 11 msec msec msec msec msec 1Dh ROM cp_on @ 12 msec sd3_on @ 12 msec sd2_on @ 12 msec ldo_dig1 ldo_rf2_ ldo_rf1_ sd1_on ldo_dig2 _on _on on on @ 12 @ 12 @ 12 @ 12 @ 12 msec msec msec msec msec rf3_sw stpup2_ stpup1_ on on Reg Power1 Ctrl @ 9 msec Reg Power1 Ctrl @ 12 msec 29 Reg Power2 Ctrl 30 1Eh ROM Reg GPIO Ctrl 31 sd3_gpi sd2_gpi 1Fh ROM ldo_dig3 _gpio o o Step Up DC/DC Control 32 20h 00h Step Up1 DC/ DC Control 33 21h stpup1_o stpup1_ stpup1_ 00h c_timeou shortprot clkinv t stpup1_v 00h stpup2_p rot stpup2_v ni 34 22h ch Step Up2 DC/ DC Control rf1_sw ldo_dig4 ldo_dig3 _on _on stpup2_fb stpup1_f stpup2_ req clkinv 35 23h 00h Step Down Control2 36 24h sd2_dis 00h sd3_dis_ pon _pon Step down charger control 37 25h 02h sd3_dis sd2_dis sd1_dis _curmin _curmin _curmin sdc_pas sdc_freq s_mode sdc_pon u Backup Battery charger 38 26h 40h BBCPwr BBCVolt Save BBCRes Off DCDC_CURR1 39 value 27h 00h Te Step Down Control1 www.austriamicrosystems.com sd2_nsw _on ldo_rf3 sd1_gpi ldo_dig2 ldo_dig1 ldo_rf2_ ldo_rf1_ o _gpio _gpio gpio gpio stpup2_f stpup2_f stpup1_r req b_auto es ca stpup2_r es rf2_sw sd2_psw sd1_nsw _on _on sd1_psw _on sd1_dis sdX_lpo sd3_nsw _pon _on sd3_psw _on BBCCur BBCMode dcdc_curr1_current Revision 1v13 149 - 157 AS3658 Data Sheet Confidential - Register map Table 186. Register Map Default Content b6 b5 b4 b3 28h 00h dcdc_curr2_current CURR1 value 41 29h 00h curr1_current CURR2 value 42 2Ah 00h curr2_current CURR3 value 43 2Bh 00h curr3_current CURR4 value 44 2Ch 00h curr4_current DCDC_CURR3 45 value 2Dh 00h dcdc_curr3_current 2Eh 00h ADC idac 46 b2 b1 b0 al id b7 lv DCDC_CURR2 40 value hex Name Addr Register Definition adc_idac 2Fh ovtmp_ FFh LowBat_i nt_m int_m Interrupt Mask2 48 30h FFh Interrupt Mask3 49 31h FFh onkey_ int_m chdet_ int_m am lc s on A te G nt st il Interrupt Mask1 47 usb_chd charging cheoc_i chstate_ et_ _tmax_i nt_m int_m int_m nt_m stpup1_i bat_tem hphcurr_ dig2_lv_i dig1_lv_i sd3_lv_i sd2_lv_i sd1_lv_i nt_m p_m int_m nt_m nt_m nt_m nt_m nt_m voxm_in mic_rem mic_con rtc_rep_i rtc_alar dig4_lv_i dig3_lv_i t_m _int_m _int_m nt_m m_int_m nt_m nt_m - Interrupt Status1 50 32h NA LowBat_i ovtmp_i Interrupt Status2 51 33h NA hphcurr_ dig2_lv_i dig1_lv_i sd3_lv_i sd2_lv_i sd1_lv_i stpup1_i bat_tem p_i i Interrupt Status3 52 34h NA Low voltage Status1 53 35h NA Low voltage Status2 54 36h NA GPIO Signal 55 37h NA PWM Frequency Control High Time 56 38h 00h pwm_h_time PWM Frequency Control Low Time 57 39h 00h pwm_l_time CURR control 58 3Ah 00h - voxm_i onkey_i usb_chd charging cheoc_i chstate_ et_i _tmax_i i mic_rem mic_con rtc_rep_i rtc_alar dig4_lv_i dig3_lv_i _i _i m_i stpup1_d stpup1_ et oc dig2_lv dig1_lv ca gpio4_in gpio3_in gpio2_in gpio1_in pwm_div dcdc_curr3_ctrl gpio4 Reg_low standby _bias_m clk_div2 _mode_ ode on 59 3Bh 0ch Watchdog Control 60 3Ch 02h Watchdog_min Timer 61 3Dh 00h wtdg_min_timer Watchdog_max 62 Timer 3Eh FFh wtdg_max_timer Watchdog Software Signal 63 3Fh 00h Te gpio3 dcdc_curr2_ctrl References Control www.austriamicrosystems.com sd3_lv bat_high bat_lowt dcdc_cu dcdc_cu dcdc_cu temp emp rr3_lv rr2_lv rr1_lv ni ch chdet_i clk_int sd2_lv sd1_lv dig4_lv dig3_lv gpio2 gpio1 dcdc_curr1_ctrl low_pow er_on wtdg_tri wtdg_re wtdg_on gger s_on wtdg_ sw_sig Revision 1v13 150 - 157 AS3658 Data Sheet Confidential - Register map Table 186. Register Map Default hex Content Addr RTCSecond 64 40h 00h second<7:0> RTCMinute1 65 41h 00h minute<7:0> RTCMinute2 66 42h 00h minute<15:8> RTCMinute3 67 43h 00h minute<23:16> RTCAlarmSeco 68 nd 44h 3Fh alarmsecond<7:0> RTCAlarmMinu 69 te1 45h FFh alarmminute<7:0> RTCAlarmMinu 70 te2 46h FFh alarmminute<15:8> RTCAlarmMinu 71 te3 47h FFh alarmminute<23:16> b6 b5 b4 b3 b2 rtc_irq_ mode RTCT 72 48h 00h SRAM 73 49h 00h Audio Set1 74 4Ah 00h Audio Set2 75 4Bh I2S_sele 00h I2S_mclk _en ct Audio Set3 76 4Ch 00h linmix_of micmix_ dacmix_ f off off DAC_L 77 4Dh 00h dac_mut e_off DAC_R 78 4Eh 00h ADC_L 79 4Fh 00h ADC_R 80 50h 00h adcmux adc2dac adr_vol HPH out R 81 51h 00h hp_ovc_to hpcm_of f hpr_vol HPH out L 82 52h 00h hp_mux hpl_vol Line out R 83 53h 00h b0 rtc_tbc<6:0> sram<7:0> equ_on aud_ldo mclk256 mclk_inv ert _on ibr_hph agc_off gnd_sw _on mix_on I2S_3_o n dith_on mic_on voxm_o hp_pulld pll_mod n _en e ca ad_fs2 hp_mute adc_mut adc_on _off ibr_dac hp_on ni ibr_line adl_vol liner_vol 54h 00h line_mut e LINE_IN_R 85 55h 00h mute_mi c_sf LINE_IN_L 86 56h 00h MIC_R 87 57h 00h MIC_L 88 58h 00h msup_off mute_off rdet_off _d SPDIF 89 59h sdo3_se spdif_co spdif_m spdif_inv 00h audio_off sclk_inv ert lect py_ok clk_inv alid EQ_LP 90 5Ah 00h ch lin_on dar_vol 84 www.austriamicrosystems.com dac_on dal_vol Line out L Te b1 al id b7 am lc s on A te G nt st il Name lv Register Definition mic_agc _off line_on dac2line _on linel_vol mute_off _inr lir_vol mute_off _inl lil_vol pre_gain mr_vol ml_vol spdif_cntr eq_lp_gain Revision 1v13 151 - 157 AS3658 Data Sheet Confidential - Register map Table 186. Register Map Default hex Content Addr Register Definition EQ_Band1 91 5Bh 00h eq_band1_gain EQ_Band2 92 5Ch 00h eq_band2_gain EQ_Band3 93 5Dh 00h eq_band3_gain EQ_HP 94 5Eh 00h eq_hp_gain EQ_preamp 95 5Fh 00h ADC_control 96 60h 00h start_con version adc_on ADC_MSB result 97 61h NA ADC_LSB result 98 62h NA ChargerStatus 99 63h NA ChargerStatus_ 100 64h usb NA DeltaChargeMS 101 65h NA sign DeltaChargeLS 102 66h NA 2 ElapsedTimeM 103 67h NA 2 ElapsedTimeLS 104 68h NA 2 105 69h NA Onkey_r eset_5s Overtemperatu 106 6Ah re Control NA B B SB B b5 b4 b3 b2 b1 eq_ pre_gain D9 D8 D7 adc_select D6 lv result_no t_ready adc_slo w ChLinear NoBat EOC CVM Trickle ch_over batsw_o voltage n 7 15 7 14 2 6 2 14 2 6 2 13 2 5 2 13 2 5 2 12 2 2 4 12 2 2 4 b0 al id b6 D5 D4 D3 D2 D1 D0 11 2 3 2 11 2 3 2 Resume ChAct ChDet batsw_ USB_Ch USB_Ch mode Act Det 10 2 2 2 2 2 10 2 2 2 2 2 9 1 9 1 8 2 0 2 8 2 0 2 xon_inp power_o force_re ut ff set reset_reason rst_ov_t ov_temp temp_p emp_14 ov_temp _140 _110 mc_on 0 rom_ valid 107 6Bh NA tpen_xmsb 108 6Ch NA XD9 XD8 XD7 XD6 XD5 XD4 XD3 XD2 tpen_ymsb 109 6Dh NA YD9 YD8 YD7 YD6 YD5 YD4 YD3 YD2 tpen_pressmsb 110 6Eh NA PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 tpen_xypressls 111 6Fh b NA PD1 PD0 0 YD1 YD0 0 XD1 XD0 tpen – control 1 112 70h 00h tpen – control 2 113 71h tpen_wa tpen_cur 00h tpen_soc pd it rpress Te ni ca Boot_status ch Reset Control b7 am lc s on A te G nt st il Name tpen – control 3 114 72h tpen_st_ tpen_eo pen c tpen_avg tpen_convint tpen_tim tpen_de eout_en bounce ASIC ID 1 127 7Fh NA 1 1 0 0 ASIC ID 2 128 80h NA 0 1 0 1 Reg_ standby mod 129 81h sd3_stb sd2_stb 00h cp_stby_ on y_on y_on Revision 1v13 tpen_on tpen_pu 00h www.austriamicrosystems.com tpen_so c rom_adr 1 1 tpen_sample 0 1 rev ldo_dig1 sd1_stb ldo_dig2 ldo_rf1_ _stby_o _stby_o ldo_rf2_ y_on stby_on stby_on n n 152 - 157 AS3658 Data Sheet Confidential - Register map Table 186. Register Map Default b7 b6 b5 b4 b3 b2 00 b1 b0 usb_add_trim_current<2:0> i2s master control1 131 83h 00 i2s master control2 132 84h 00 step Down Control3 133 85h 00 UniqueID0, addrf0 197 C5h NA ID<7:0>, addrf<7:0> UniqueID1, addrf1 198 C6h NA ID<15:8>, addrf<15:8> UniqueID2, addrf2 199 C7h NA ID<23:16>, addrf<23:16> UniqueID3, addrf3 200 C8h NA ID<31:24>, addrf<31:24> UniqueID4, romf0 201 C9h NA ID<39:32>, romf0 UniqueID5, romf1 202 CAh NA ID<47:40>, romf1 UniqueID6, romf2 203 CBh NA ID<55:48>, romf2 UniqueID7, romf3 204 CCh NA ID<63:56>, romf3 UniqueID8, romf4 205 CDh NA ID<71:64>, romf4 UniqueID9, romf5 206 CEh NA ID<79:72>, romf5 UniqueID10, romf6 207 CFh NA ID<87:80>, romf6 i2s_clk_divider<7:0> i2s_lrclk i2s_mas pcm_mo sdo_on_ i2s_mclk _sclk_ou mclk1_e de _out_en ter_on n t_en al id Usb_current_tri 130 82h m Content i2s_clk_divider<10:8> sd3_uvli sd2_uvli sd1_uvli mit mit mit Entries marked are read only Entries are not reset in power off mode Te ch ni ca am lc s on A te G nt st il lv hex Name Addr Register Definition www.austriamicrosystems.com Revision 1v13 153 - 157 AS3658 Data Sheet Confidential - Package Drawings and Marking 12 Package Drawings and Marking PACKAGE OUTLINE DWG NO. 97SPP01046A ISSUE O DATE OCT.010, 2007 am lc s on A te G nt st il ±0. lv ASE Advanced Semiconductor Engineering Korea, Inc. al id Figure 61. CTBGA124 8x8 0.5mm pitch TOP VIEW BOTTOM VIEW ca (124 SOLDER BALLS ) ch ni SIDE VIEW NOTE 1. GENERAL TOLERANCE : ± 0.10 Te TITLE : POD for FBGA 8mm X 8mm X 1.09mm, 2L, 0.65CAP, 124BGA, 0.50PITCH, 0.30BALL www.austriamicrosystems.com Unit : mm Dimension & Tolerance ASME Y14.5M Customer : AMS COMPANY ASE KOREA SHEET 1 OF 2 Revision 1v13 154 - 157 AS3658 Data Sheet Confidential - Package Drawings and Marking al id Figure 62. CTBGA124 Marking lv Table 187. Package Code AYWWZZZ A Y WW ZZZ B ... for Green year working week assembly / packaging free choice x B, C, D, E, E1 or F 12.1 am lc s on A te G nt st il Table 188. Boot ROM revison Pinout Drawing (Top view) CTBGA 8x8mm Figure 63. Pinout drawing Bottom View (Ball Side) 14 13 A 12 11 10 9 8 7 6 5 4 3 2 1 A B B C C D D E E F ca F G H H J K K L L M M ch ni J G Te N P 14 13 12 www.austriamicrosystems.com 11 10 9 8 7 6 5 4 Revision 1v13 c N c P 3 2 Inner Balls PCB Layout Example shown with dotted blue lines 1 155 - 157 AS3658 Data Sheet Confidential - Ordering Information 13 Ordering Information The device is available as the standard products listed in Table 189. Table 189. Ordering Information Marking Descriptiom Delivery Form Audio Management Unit for Portable AS3658B Power and Devices, Boot-ROM Version B Tape and Reel in Dry Pack AS3658C-BCTP Audio Management Unit for Portable AS3658C Power and Devices, Boot-ROM Version C Tape and Reel in Dry Pack AS3658D-BCTP Audio Management Unit for Portable AS3658D Power and Devices, Boot-ROM Version D Tape and Reel in Dry Pack AS3658E-BCTP Audio Management Unit for Portable AS3658E Power and Devices, Boot-ROM Version E Tape and Reel in Dry Pack AS3658E1-BCTP AS3658E1 Power and Audio Management Unit for Portable Devices, Boot-ROM Version E1 Tape and Reel in Dry Pack Audio Management Unit for Portable AS3658F Power and Devices, Boot-ROM Version F Tape and Reel in Dry Pack am lc s on A te G nt st il AS3658F-BCTP lv AS3658B-BCTP Package BGA124 8x8mm, 0.5mm pitch BGA124 8x8mm, 0.5mm pitch BGA124 8x8mm, 0.5mm pitch BGA124 8x8mm, 0.5mm pitch BGA124 8x8mm, 0.5mm pitch BGA124 8x8mm, 0.5mm pitch al id Model Description: AS3658x-BCTP x: Boot-ROM version B: Teperature Range: Z = -40ºC to 85ºC CT: Pacakage: CTBGA Te ch ni ca P:Delivery Form: Tape and Reel in Dry Pack www.austriamicrosystems.com Revision 1v13 156 - 157 AS3658 Data Sheet Confidential - Ordering Information Copyrights Copyright © 1997-2010, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. All products and companies mentioned are trademarks or registered trademarks of their respective companies. al id Disclaimer am lc s on A te G nt st il lv Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. ca The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services. ni Contact Information Headquarters ch austriamicrosystems AG A-8141 Schloss Premstaetten, Austria Te Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01 For Sales Offices, Distributors and Representatives, please visit: http://www.austriamicrosystems.com/contact www.austriamicrosystems.com B Revision 1v13 157 - 157