v5.1 SX-A Family FPGAs ™ Leading-Edge Performance • • • 250 MHz System Performance 350 MHz Internal Performance • • • Specifications • • • • • • 12,000 to 108,000 Available System Gates Up to 360 User-Programmable I/O Pins Up to 2,012 Dedicated Flip-Flops 0.22 µ / 0.25 µ CMOS Process Technology • • Features • • • • • Hot-Swap Compliant I/Os Power-Up/Down Friendly (No Sequencing Required for Supply Voltages) 66 MHz PCI Compliant Nonvolatile, Single-Chip Solution • Configurable I/O Support for 3.3 V / 5 V PCI, 5 V TTL, 3.3 V LVTTL, 2.5 V LVCMOS2 2.5 V, 3.3 V, and 5 V Mixed-Voltage Operation with 5 V Input Tolerance and 5 V Drive Strength Devices Support Multiple Temperature Grades Configurable Weak-Resistor Pull-Up or Pull-Down for I/O at Power-Up Individual Output Slew Rate Control Up to 100% Resource Utilization and 100% Pin Locking Deterministic, User-Controllable Timing Unique In-System Diagnostic and Verification Capability with Silicon Explorer II Boundary-Scan Testing in Compliance with IEEE Standard 1149.1 (JTAG) Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft Table 1 • SX-A Product Profile Device A54SX08A A54SX16A A54SX32A A54SX72A 8,000 12,000 16,000 24,000 32,000 48,000 72,000 108,000 Logic Modules Combinatorial Cells Dedicated Flip-Flops Maximum Flip-Flops 768 512 256 512* 1,452 924 528 990 2,880 1,800 1,080 1,980 6,036 4,024 2,012 4,024 Maximum User I/Os 130 180 249 360 3 3 3 3 Capacity Typical Gates System Gates Global Clocks Quadrant Clocks 0 0 0 4 Boundary Scan Testing Yes Yes Yes Yes 3.3 V / 5 V PCI Yes Yes Yes Yes Input Set-Up (External) 0 ns 0 ns 0 ns 0 ns –F, Std, –1, –2 –F, Std, –1, –2, –3 –F, Std, –1, –2, –3 –F, Std, –1, –2, –3 Temperature Grades C, I, A, M C, I, A, M C, I, A, M C, I, A, M Package (by pin count) PQFP TQFP PBGA FBGA CQFP 208 100, 144 – 144 – 208 100, 144 – 144, 256 – 208 100, 144, 176 329 144, 256, 484 208, 256 208 – – 256, 484 208, 256 Speed Grades Note: *A maximum of 512 registers is possible if all 512 C cells are used to build an additional 256 registers February 2005 © 2005 Actel Corporation i See the Actel website for the latest version of the datasheet. SX-A Family FPGAs Ordering Information A54SX16A 2 PQ 208 Application (Temperature Range) Blank = Commercial (0 to +70˚) I = Industrial (-40 to +85˚C) A = Automotive (-40 to +125˚C) M = Military (-55 to +125˚C) B = MIL-STD-883 Class B Package Lead Count Package Type BG = 1.27 mm Plastic Ball Grid Array FG = 1.0 mm Fine Pitch Ball Grid Array PQ = Plastic Quad Flat Pack TQ = Thin (1.4 mm) Quad Flat Pack CQ = Ceramic Quad Flat Pack* Speed Grade Blank = Standard Speed –1 = Approximately 15% Faster than Standard –2 = Approximately 25% Faster than Standard –3 = Approximately 35% Faster than Standard –F = Approximately 40% Slower than Standard Part Number A54SX08A = 12,000 System Gates A54SX16A = 24,000 System Gates A54SX32A = 48,000 System Gates A54SX72A = 108,000 System Gates Note: *For more information about the CQFP package options, refer to the HiRel SX-A datasheet. Device Resources User I/Os (Including Clock Buffers) 208-Pin PQFP 100-Pin TQFP 144-Pin TQFP 176-Pin TQFP 329-Pin PBGA 144-Pin FBGA 256-Pin FBGA 484-Pin FBGA A54SX08A 130 81 113 – – 111 – – A54SX16A 175 81 113 – – 111 180 – A54SX32A 174 81 113 147 249 111 203 249 A54SX72A 171 – – – – – 203 360 Device Notes: Package Definitions: PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid Array ii v5.1 SX-A Family FPGAs Temperature Grade Offering Package A54SX08A A54SX16A A54SX32A A54SX72A C,I,A,M PQ208 C,I,A,M C,I,A,M C,I,A,M TQ100 C,I,A,M C,I,A,M C,I,A,M TQ144 C,I,A,M C,I,A,M C,I,A,M TQ176 C,I,M BG329 C,I,M FG144 C,I,A,M C,I,A,M C,I,A,M C,I,A,M C,I,A,M C,I,A,M FG484 C,I,M C,I,A,M CQ208 C,M,B C,M,B CQ256 C,M,B C,M,B FG256 Notes: 1. 2. 3. 4. 5. 6. 7. C = Commercial I = Industrial A = Automotive M = Military B = Mil-Std-883 Class B For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet. Speed Grade and Temperature Grade Matrix F –1 –2 –3 ✓ ✓ ✓ ✓ Industrial ✓ ✓ ✓ ✓ Automotive ✓ Military ✓ ✓ Mil-Std. 883B ✓ ✓ Commercial ✓ Std Notes: 1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet. 2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet. Contact your Actel Sales representative for more information on availability. v5.1 iii SX-A Family FPGAs Table of Contents General Description Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 SX-A Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 Detailed Specifications Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Typical SX-A Standby Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 PCI Compliance for the SX-A Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 SX-A Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Sample Path Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 C-Cell Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Cell Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Package Pin Assignments 208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 176-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 329-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 iv v5.1 SX-A Family FPGAs Table of Contents Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 v5.1 v SX-A Family FPGAs General Description Introduction SX-A Family Architecture The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 µm / 0.25 µm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing timeto-market. The SX-A family’s device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications. Interconnection between these logic modules is achieved using Actel’s patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. Routing Tracks Amorphous Silicon/ Dielectric Antifuse Tungsten Plug Via Metal 4 Metal 3 Tungsten Plug Via Metal 2 Metal 1 Tungsten Plug Contact Silicon Substrate Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3. Figure 1-1 • SX-A Family Interconnect Elements v5.1 1-1 SX-A Family FPGAs Logic Module Design different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays. The SX-A family architecture is described as a “sea-ofmodules” architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell). Module Organization The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-byregister basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic. All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells. Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops. The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000 S0 Routed Data Input S1 PRE DirectConnect Input HCLK CLKA, CLKB, Internal Logic D Q Y CLR CKS CKP Figure 1-2 • R-Cell D0 D1 Y D2 D3 Sa Sb DB A0 B0 Figure 1-3 • C-Cell 1 -2 v5.1 A1 B1 SX-A Family FPGAs Routing Resources The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection. interconnection to achieve its fast signal propagation time of less than 0.1 ns. FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns. In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays. The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance. The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort. Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry. DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable R-Cell C-Cell D0 D1 Routed S1 S0 Data Input PRE DirectConnect Input HCLK CLKA, CLKB, Internal Logic D Y Q D2 D3 Y Sa Sb A0 B0 A1 B1 CLR DB CKS Cluster 1 CKP Cluster 1 Cluster 2 Type 1 SuperCluster Cluster 1 Type 2 SuperCluster Figure 1-4 • Cluster Organization v5.1 1-3 SX-A Family FPGAs DirectConnect • No Antifuses • 0.1 ns Maximum Routing Delay FastConnect • One Antifuse • 0.3 ns Maximum Routing Delay Routing Segments • Typically Two Antifuses • Max. Five Antifuses Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters DirectConnect • No antifuses for smallest routing delay FastConnect • One antifuse Routing Segments • Typically 2 antifuses • Max. 5 antifuses Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters 1 -4 v5.1 SX-A Family FPGAs Clock Resources Actel’s high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported. and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A. In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD— corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating. For more information on how to use quadrant clocks in the A54SX72A device, refer to the Global Clock Networks in Actel’s Antifuse Devices and Using A54SX72A and RT54SX72S Quadrant Clocks application notes. HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board. Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-14. Table 1-1 • SX-A Clock Resources A54SX08A A54SX16A A54SX32A A54SX72A Routed Clocks (CLKA, CLKB) 2 2 2 2 Hardwired Clocks (HCLK) 1 1 1 1 Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD) 0 0 0 4 Constant Load Clock Network HCLKBUF Figure 1-7 • SX-A HCLK Clock Buffer Clock Network From Internal Logic CLKBUF CLKBUFI CLKINT CLKINTI Figure 1-8 • SX-A Routed Clock Buffer v5.1 1-5 SX-A Family FPGAs 4 QCLKBUFS 4 Quadrant 2 5:1 Quadrant 3 5:1 QCLKINT (to array) QCLKINT (to array) 4 Quadrant 0 5:1 Quadrant 1 5:1 QCLKINT (to array) QCLKINT (to array) Figure 1-9 • SX-A QCLK Architecture OE From Internal Logic Clock Network From Internal Logic CLKBUF CLKBUFI CLKINT CLKINTI CLKBIBUF CLKBIBUFI QCLKBUF QCLKBUFI QCLKINT QCLKINTI QCLKBIBUF QCLKBIBUFI Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer 1 -6 v5.1 SX-A Family FPGAs Other Architectural Features I/O Modules For a simplified I/O schematic, refer to Figure 1 in the application note, Actel eX, SX-A, and RTSX-S I/Os. Technology Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs. SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than VCCI and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and VCCI is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input. Each I/O module has an available power-up resistor of approximately 50 kΩ that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note Actel eX, SX-A, and RTSX-S I/Os. Just slightly before VCCA reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features. The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using 0.22 µ / 0.25 µ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance. Performance The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance. User Security Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up. The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs. Look for this symbol to ensure your valuable IP is secure (Figure 1-11). u e Figure 1-11 • FuseLock For more information, refer to Actel’s Implementation of Security in Actel Antifuse FPGAs application note. v5.1 1-7 SX-A Family FPGAs Power-Up/Down and Hot Swapping SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. VCCA and VCCI do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device’s output pins are driven to a high impedance state until normal chip operating conditions are reached. Table 1-4 summarizes the VCCA voltage at which the I/Os behave according to the user’s design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications. Table 1-2 • I/O Features Function Description Input Buffer Threshold Selections • • • 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only) Flexible Output Driver • • • 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only) Output Buffer “Hot-Swap” Capability (3.3 V PCI is not hot swappable) • I/O on an unpowered device does not sink current • Can be used for “cold-sparing” Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected. Power-Up Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device VCCA and VCCI can be powered in any order Table 1-3 • I/O Characteristics for All I/O Configurations Hot Swappable Slew Rate Control Power-Up Resistor TTL, LVTTL, LVCMOS2 Yes Yes. Only affects falling edges of outputs Pull-up or pull-down 3.3 V PCI No No. High slew rate only Pull-up or pull-down 5 V PCI Yes No. High slew rate only Pull-up or pull-down Table 1-4 • Power-Up Time at which I/Os Become Active Supply Ramp Rate 0.25 V/µs 0.025 V/µs 5 V/ms 2.5 V/ms 0.5 V/ms 0.25 V/ms 0.1 V/ms 0.025 V/ms Units µs µs ms ms ms ms ms ms A54SX08A 10 96 0.34 0.65 2.7 5.4 12.9 50.8 A54SX16A 10 100 0.36 0.62 2.5 4.7 11.0 41.6 A54SX32A 10 100 0.46 0.74 2.8 5.2 12.1 47.2 A54SX72A 10 100 0.41 0.67 2.6 5.0 12.1 47.2 1 -8 v5.1 SX-A Family FPGAs Boundary-Scan Testing (BST) Flexible Mode All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode. In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode. To select the Flexible mode, uncheck the Reserve JTAG box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. An external 10 k pull-up resistor to VCCI should be placed on the TMS pin to pull it High by default. Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes. Dedicated Mode In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification. To select Dedicated mode, the user must reserve the JTAG pins in Actel’s Designer software. Reserve the JTAG pins by checking the Reserve JTAG box in the Device Selection Wizard (Figure 1-12). The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard. Table 1-6 • Boundary-Scan Pin Configurations and Functions Designer "Reserve JTAG" Selection TAP Controller State Dedicated (JTAG) Checked Any Flexible (User I/O) Unchecked Test-Logic-Reset Flexible (JTAG) Unchecked Any EXCEPT TestLogic-Reset Mode TRST Pin Figure 1-12 • Device Selection Wizard The TRST pin functions as a dedicated Boundary-Scan Reset pin when the Reserve JTAG Test Reset option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high. When the Reserve JTAG Test Reset option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output. Table 1-5 • Reserve Pin Definitions Pin Function Reserve JTAG Reserve Reset JTAG Reserve Probe Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS) Test Regular I/O or JTAG reset with an internal pull-up Keeps pins from being used or regular I/O v5.1 1-9 SX-A Family FPGAs JTAG Instructions Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices. Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code. Table 1-7 • JTAG Instruction Code Instructions (IR4:IR0) Binary Code EXTEST 00000 SAMPLE/PRELOAD 00001 INTEST 00010 USERCODE 00011 IDCODE 00100 HighZ 01110 CLAMP 01111 Diagnostic 10000 BYPASS 11111 Reserved All others Table 1-8 • JTAG Instruction Code Device A54SX08A A54SX16A A54SX32A A54SX72A Process Revision Bits 31-28 Bits 27-12 0.22 µ 0 8, 9 40B4, 42B4 1 A, B 40B4, 42B4 0 9 40B8, 42B8 1 B 40B8, 42B8 0.25 µ 1 B 22B8 0.2 2µ 0 9 40BD, 42BD 1 B 40BD, 42BD 0.25 µ 1 B 22BD 0.22 µ 0 9 40B2, 42B2 1 B 40B2, 42B2 1 B 22B2 0.22 µ 0.25 µ 1 -1 0 v5.1 SX-A Family FPGAs Probing Capabilities SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST High. If the TRST pin is held Low, the TAP controller remains in the Test-Logic-Reset state so no probing can be performed. However, the user must drive the TRST pin High or allow the internal pull-up resistor to pull TRST High. When selecting the Reserve Probe Pin box as shown in Figure 1-12 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This Reserve option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the Reserve Probe Pin option, Designer Layout will override the Reserve Probe Pin option and place the user I/Os on those pins. To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the JTAG and probe circuitry. Table 1-9 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state. Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) JTAG Mode Dedicated Flexible TRST1 Security Fuse Programmed PRA, PRB2 TDI, TCK, TDO2 Low No User I/O3 JTAG Disabled High No Probe Circuit Outputs JTAG I/O User I/O3 User I/O3 Low No High No Probe Circuit Outputs JTAG I/O Yes Probe Circuit Secured Probe Circuit Secured Notes: 1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table. 2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention. 3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software. v5.1 1-11 SX-A Family FPGAs SX-A Probe Circuit Control Pins PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification. SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC’s standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds. Design Considerations In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70 Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum. Additional Channels 16 The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the TDI TCK Serial Connection Silicon Explorer II TMS 70 Ω 70 Ω 70 Ω 70 Ω TDO 70 Ω PRA 70 Ω Figure 1-13 • Probe Setup 1 -1 2 v5.1 PRB SX-A FPGA SX-A Family FPGAs Related Documents Design Environment The SX-A family of FPGAs is fully supported by both Actel Libero® Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw® for Actel from Mentor Graphics®, ModelSim® HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website). Application Notes Global Clock Networks in Actel’s Antifuse Devices http://www.actel.com/documents/GlobalClk.pdf Using A54SX72A and RT54SX72S Quadrant Clocks http://www.actel.com/documents/QCLK.pdf Implementation of Security in Actel Antifuse FPGAs http://www.actel.com/documents/ AntifuseSecurityAN.pdf Actel eX, SX-A, and RTSX-S I/Os http://www.actel.com/documents/antifuseIOan.pdf Actel SX-A and RT54SX-S Devices in Hot-Swap and ColdSparing Applications Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel’s integrated verification and logic analysis tool. Another tool included in the Designer software is the ACTgen macro builder, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems. http://www.actel.com/documents/ HotSwapColdSparing.pdf Datasheets HiRel SX-A Family FPGAs http://www.actel.com/documents/HRSXADS.pdf SX-A Automotive Family FPGAs http://www.actel.com/documents/SXAAutoDS.pdf Programming Programming support is provided through Actel's Silicon Sculptor II, a single-site programmer driven via a PC based GUI. In addition, BP Microsystems offers multi-site programmers that provide qualified support for Actel devices. Factory programming is available for high volume production needs. For detail information on programming, visit: http://www.actel.com/products/tools/prog.aspx . v5.1 1-13 SX-A Family FPGAs Pin Description CLKA/B, I/O PRA/B, I/O Clock A and B These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption. For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating). QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating). These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only. GND Ground TCK, I/O Test Clock Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. TDI, I/O Test Data Input Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. TDO, I/O Test Data Output Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete. TMS Low supply voltage. Probe A/B The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. Test Mode Select This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption. The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. I/O TRST, I/O HCLK Dedicated (Hardwired) Array Clock Input/Output Boundary Scan Reset Pin The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software. Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the Reserve JTAG Reset Pin is not selected in Designer. NC VCCI No Connection This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device. Supply Voltage Supply voltage for I/Os. See Table 2-2 on page 2-1. All VCCI power pins in the device should be connected. VCCA Supply Voltage Supply voltage for array. See Table 2-2 on page 2-1. All VCCA power pins in the device should be connected. 1 -1 4 v5.1 SX-A Family FPGAs Detailed Specifications Operating Conditions Table 2-1 • Absolute Maximum Ratings Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.3 to +6.0 V VCCA DC Supply Voltage for Arrays –0.3 to +3.0 V VI Input Voltage –0.5 to +5.75 V VO Output Voltage –0.5 to +VCCI+0.5 V TSTG Storage Temperature –65 to +150 °C Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions". Table 2-2 • Recommended Operating Conditions Parameter Temperature Range 2.5 V Power Supply Range (VCCA and VCCI) 3.3 V Power Supply Range (VCCI) 5 V Power Supply Range (VCCI) Commercial Industrial Units 0 to +70 –40 to +85 °C 2.25 to 2.75 2.25 to 2.75 V 3.0 to 3.6 3.0 to 3.6 V 4.75 to 5.25 4.75 to 5.25 V Typical SX-A Standby Current Table 2-3 • Typical Standby Current for SX-A at 25°C with VCCA = 2.5 V Product VCCI = 2.5 V VCCI = 3.3 V VCCI = 5 V A54SX08A 0.8 mA 1.0 mA 2.9 mA A54SX16A 0.8 mA 1.0 mA 2.9 mA A54SX32A 0.9 mA 1.0 mA 3.0 mA A54SX72A 3.6 mA 3.8 mA 4.5 mA VCCA VCCI* Maximum Input Tolerance Maximum Output Drive 2. 5 V 2.5 V 5.75 V 2.7 V 2.5 V 3.3 V 5.75 V 3.6 V 2.5 V 5V 5.75 V 5.25 V Table 2-4 • Supply Voltages Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant. v5.1 2-1 SX-A Family FPGAs Electrical Specifications Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications Commercial Symbol VOH VOL Parameter Min. Max. Industrial Min. Max. Units VCCI = Minimum VI = VIH or VIL (IOH = –1 mA) 0.9 VCCI 0.9 VCCI V VCCI = Minimum VI = VIH or VIL (IOH = –8 mA) 2.4 2.4 V VCCI = Minimum VI = VIH or VIL (IOL= 1 mA) 0.4 0.4 V VCCI = Minimum VI = VIH or VIL (IOL= 12 mA) 0.4 0.4 V 0.8 0.8 V VIL Input Low Voltage VIH Input High Voltage 2.0 5.75 2.0 5.75 V IIL/IIH Input Leakage Current, VIN = VCCI or GND –10 10 –10 10 µA IOZ Tristate Output Leakage Current –10 10 –10 10 µA tR , tF Input Transition Time tR, tF 10 10 ns CIO I/O Capacitance 10 10 pF ICC Standby Current 10 20 mA IV Curve* Can be derived from the IBIS model on the web. Note: *The IBIS model can be found at http://www.actel.com/techdocs/models/ibis.html. Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications Commercial Symbol VOH VOL Parameter Min. Max. Industrial Min. Max. Units VDD = MIN, VI = VIH or VIL (IOH = –100 µA) 2.1 2.1 V VDD = MIN, VI = VIH or VIL (IOH = –1 mA) 2.0 2.0 V VDD = MIN, VI = VIH or VIL (IOH =–-2 mA) 1.7 1.7 V VDD = MIN, VI = VIH or VIL (IOL= 100 µA) 0.2 0.2 V VDD = MIN, VI = VIH or VIL (IOL= 1 mA) 0.4 0.4 V VDD = MIN, VI = VIH or VIL (IOL= 2 mA) 0.7 0.7 V VIL Input Low Voltage, VOUT ≤ VVOL(max) -0.3 0.7 -0.3 0.7 V VIH Input High Voltage, VOUT ≥ VVOH(min) 1.7 5.75 1.7 5.75 V IIL/IIH Input Leakage Current, VIN = VCCI or GND –10 10 –10 10 µA –10 10 –10 IOZ Tristate Output Leakage Current, VOUT = VCCI or GND 10 µA tR , tF Input Transition Time tR, tF 10 10 ns CIO I/O Capacitance 10 10 pF ICC Standby Current 10 20 mA IV Curve* Can be derived from the IBIS model on the web. Note: *The IBIS model can be found at http://www.actel.com/techdocs/models/ibis.html. 2 -2 v5.1 SX-A Family FPGAs PCI Compliance for the SX-A Family The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1. Table 2-7 • DC Specifications (5 V PCI Operation) Symbol Parameter Condition Min. Max. Units VCCA Supply Voltage for Array 2.25 2.75 V VCCI Supply Voltage for I/Os 4.75 5.25 V VIH Input High Voltage 2.0 5.75 V VIL Input Low Voltage –0.5 0.8 V IIH Input High Leakage Current1 VIN = 2.7 – 70 µA IIL Input Low Leakage Current 1 VIN = 0.5 – –70 µA VOH Output High Voltage 2.4 – V VOL Output Low Voltage2 – 0.55 V CIN Input Pin Capacitance3 – 10 pF CCLK CLK Pin Capacitance 5 12 pF IOUT = –2 mA IOUT = 3 mA, 6 mA Notes: 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). v5.1 2-3 SX-A Family FPGAs Table 2-8 • AC Specifications (5 V PCI Operation) Symbol IOH(AC) Parameter Min. Max. Units –44 – mA (–44 + (VOUT – 1.4)/0.024) – mA – EQ 2-1 on page 2-5 – – –142 mA 95 – mA (VOUT/0.023) – mA 0.71 > VOUT > 0 1, 3 – EQ 2-2 on page 2-5 – (Test Point) VOUT = 0.71 3 – 206 mA Low Clamp Current –5 < VIN ≤ –1 Switching Current High Condition 0 < VOUT ≤ 1.4 1 1.4 ≤ VOUT < 2.4 1, 2 3.1 < VOUT < VCCI IOL(AC) (Test Point) VOUT = 3.1 3 Switching Current Low VOUT ≥ 2.2 1 2.2 > VOUT > 0.55 ICL slewR slewF Output Rise Slew Rate Output Fall Slew Rate 1, 3 1 –25 + (VIN + 1)/0.015 – mA 0.4 V to 2.4 V load 4 1 5 V/ns 2.4 V to 0.4 V load 4 1 5 V/ns Notes: 1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs. 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up. 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs. Pin 1/2 in. max. Output Buffer 50 pF 2 -4 v5.1 SX-A Family FPGAs Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family. 200.0 IOL MAX Spec IOL 150.0 100.0 Current (mA) IOL MIN Spec 50.0 0.0 0 –50.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 IOH MIN Spec 5 5.5 6 IOH MAX Spec –100.0 –150.0 –200.0 IOH Voltage Out (V) Figure 2-1 • 5 V PCI V/I Curve for SX-A Family IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45) IOL = 78.5 * VOUT * (4.4 – VOUT) for VCCI > VOUT > 3.1V for 0V < VOUT < 0.71V EQ 2-1 EQ 2-2 Table 2-9 • DC Specifications (3.3 V PCI Operation) Symbol Parameter Min. Max. Units VCCA Supply Voltage for Array 2.25 2.75 V VCCI Supply Voltage for I/Os 3.0 3.6 V VIH Input High Voltage 0.5VCCI VCCI + 0.5 V VIL Input Low Voltage IIPU Input Pull-up Voltage1 IIL Input Leakage Current2 VOH Condition –0.5 0.3VCCI V 0.7VCCI – V 0 < VIN < VCCI –10 +10 µA Output High Voltage IOUT = –500 µA 0.9VCCI – V VOL Output Low Voltage IOUT = 1,500 µA 0.1VCCI V CIN Input Pin Capacitance3 – 10 pF CCLK CLK Pin Capacitance 5 12 pF Notes: 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization. 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). v5.1 2-5 SX-A Family FPGAs Table 2-10 • AC Specifications (3.3 V PCI Operation) Symbol Min. Max. Units –12VCCI – mA (–17.1(VCCI – VOUT)) – mA – EQ 2-3 on page 2-7 – – –32VCCI mA 16VCCI – mA (26.7VOUT) – mA 0.18VCCI > VOUT > 0 1, 2 – EQ 2-4 on page 2-7 – (Test Point) VOUT = 0.18VCC 2 – 38VCCI mA ICL Low Clamp Current –3 < VIN ≤ –1 –25 + (VIN + 1)/0.015 – mA ICH High Clamp Current VCCI + 4 > VIN ≥ VCCI + 1 IOH(AC) Parameter Condition Switching Current High 0 < VOUT ≤ 0.3VCCI 1 0.3VCCI ≤ VOUT < 0.9VCCI 1 0.7VCCI < VOUT < VCCI IOL(AC) (Test Point) VOUT = 0.7VCC 2 Switching Current Low VCCI > VOUT ≥ 0.6VCCI 1, 2 1 0.6VCCI > VOUT > 0.1VCCI 1 25 + (VIN – VCCI – 1)/0.015 – mA 3 1 4 V/ns 1 4 V/ns slewR Output Rise Slew Rate 0.2VCCI - 0.6VCCI load slewF Output Fall Slew Rate 0.6VCCI - 0.2VCCI load 3 Notes: 1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs. 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs. Pin 1/2 in. max. Output Buffer 10 pF 1 k/25 Ω Pin Output Buffer 2 -6 1 k/25 Ω 10 pF v5.1 SX-A Family FPGAs Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family. 150.0 IOL MAX Spec IOL Current (mA) 100.0 50.0 IOL MIN Spec 0.0 0 –50.0 0.5 1 1.5 2 2.5 3 3.5 4 IOH MIN Spec –100.0 IOH MAX Spec IOH –150.0 Voltage Out (V) Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4VCCI) IOL = (256/VCCI) * VOUT * (VCCI – VOUT) for 0.7 VCCI < VOUT < VCCI for 0V < VOUT < 0.18 VCCI EQ 2-3 EQ 2-4 v5.1 2-7 SX-A Family FPGAs Power Dissipation A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat. A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device’s maximum allowed junction temperature. The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps: 1. Estimate the power consumption of the application. 2. Calculate the maximum power allowed for the device and package. 3. Compare the estimated power and maximum power values. Estimating Power Dissipation The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation: PTotal = PDC + PAC EQ 2-5 DC Power Dissipation The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by: PDC = IStandby * VCCA EQ 2-6 Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator. AC Power Dissipation The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows: PAC = PC-cells + PR-cells + PCLKA + PCLKB + PHCLK + POutput Buffer + PInput Buffer EQ 2-7 or: PAC = VCCA2 * [(m * CEQCM * fm)C-cells + (m * CEQSM * fm)R-cells + (n * CEQI * fn)Input Buffer + (p * (CEQO + CL) * fp)Output Buffer + (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))CLKA + (0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))CLKB + (0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK] EQ 2-8 2 -8 v5.1 SX-A Family FPGAs Where: CEQCM = Equivalent capacitance of combinatorial modules (C-cells) in pF CEQSM = Equivalent capacitance of sequential modules (R-Cells) in pF CEQI = Equivalent capacitance of input buffers in pF CEQO = Equivalent capacitance of output buffers in pF CEQCR = Equivalent capacitance of CLKA/B in pF CEQHV = Variable capacitance of HCLK in pF CEQHF = Fixed capacitance of HCLK in pF CL = Output lead capacitance in pF fm = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz fp = Average output buffer switching rate in MHz fq1 = Average CLKA rate in MHz fq2 = Average CLKB rate in MHz fs1 = Average HCLK rate in MHz m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at fp q1 = Number of clock loads on CLKA q2 = Number of clock loads on CLKB r1 = Fixed capacitance due to CLKA r2 = Fixed capacitance due to CLKB s1 = Number of clock loads on HCLK x = Number of I/Os at logic low y = Number of I/Os at logic high Table 2-11 • CEQ Values for SX-A Devices A54SX08A A54SX16A A54SX32A A54SX72A Combinatorial modules (CEQCM) 1.70 pF 2.00 pF 2.00 pF 1.80 pF Sequential modules (CEQCM) 1.50 pF 1.50 pF 1.30 pF 1.50 pF Input buffers (CEQI) 1.30 pF 1.30 pF 1.30 pF 1.30 pF Output buffers (CEQO) 7.40 pF 7.40 pF 7.40 pF 7.40 pF Routed array clocks (CEQCR) 1.05 pF 1.05 pF 1.05 pF 1.05 pF Dedicated array clocks – variable (CEQHV) 0.85 pF 0.85 pF 0.85 pF 0.85 pF Dedicated array clocks – fixed (CEQHF) 30.00 pF 55.00 pF 110.00 pF 240.00 pF Routed array clock A (r1) 35.00 pF 50.00 pF 90.00 pF 310.00 pF v5.1 2-9 SX-A Family FPGAs Guidelines for Estimating Power The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation: Logic Modules (m) = 20% of modules Inputs Switching (n) = Number inputs/4 Outputs Switching (p) = Number of outputs/4 CLKA Loads (q1) = 20% of R-cells CLKB Loads (q2) = 20% of R-cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate (fm) = f/10 Average Input Switching Rate (fn) =f/5 Average Output Switching Rate (fp) = f/10 Average CLKA Rate (fq1) = f/2 Average CLKB Rate (fq2) = f/2 Average HCLK Rate (fs1) = f HCLK loads (s1) = 20% of R-cells To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet. 2 -1 0 v5.1 SX-A Family FPGAs Thermal Characteristics Introduction The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship between thermal resistance, temperature gradient and power. TJ – TA θ JA = ---------------P EQ 2-9 TC – TA θ JA = ----------------P EQ 2-10 Where: θJA = Junction-to-air thermal resistance θJC = Junction-to-case thermal resistance TJ = Junction temperature TA = Ambient temperature TC = Ambient temperature P = total power dissipated by the device Table 2-12 • Package Thermal Characteristics θJA 1.0 m/s 2.5 m/s 200 ft./min. 500 ft./min. Pin Count θJC Still Air Thin Quad Flat Pack (TQFP) 100 14 33.5 27.4 25 °C/W Thin Quad Flat Pack (TQFP) 144 11 33.5 28 25.7 °C/W 176 11 24.7 19.9 18 °C/W 208 8 26.1 22.5 20.8 °C/W 208 3.8 16.2 13.3 11.9 °C/W Plastic Ball Grid Array (PBGA) 329 3 17.1 13.8 12.8 °C/W Fine Pitch Ball Grid Array (FBGA) 144 3.8 26.9 22.9 21.5 °C/W Fine Pitch Ball Grid Array (FBGA) 256 3.8 26.6 22.8 21.5 °C/W Fine Pitch Ball Grid Array (FBGA) 484 3.2 18 14.7 13.6 °C/W Package Type Thin Quad Flat Pack (TQFP) 1 Plastic Quad Flat Pack (PQFP) Plastic Quad Flat Pack (PQFP) with Heat Spreader2 Units Notes: 1. The A54SX08A PQ208 has no heat spreader. 2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A. v5.1 2-11 SX-A Family FPGAs Theta-JA Junction-to-ambient thermal resistance (θJA) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another. A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.: θJA = 17.1°C/W is taken from Table 2-12 on page 2-11 TA = 125°C is the maximum limit of ambient (from the datasheet) 150°C – 125°C- = 1.46 W Max Junction Temp – Max. Ambient Temp- = --------------------------------------Max. Allowed Power = ----------------------------------------------------------------------------------------------------------17.1°C/W θ JA EQ 2-11 The device's power consumption must be lower than the calculated maximum power dissipation by the package. The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased. Theta-JC Junction-to-case thermal resistance (θJC) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required. Calculation for Heat Sink For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data TJ and TA are given as follows: TJ = 110°C TA = 70°C From the datasheet: θJA = 18.0°C/W θJC = 3.2 °C/W Junction Temp – Max. Ambient Temp 110°C – 70°C = 2.22 W P = Max ------------------------------------------------------------------------------------------------------------ = -----------------------------------θ JA 18.0°C/W EQ 2-12 The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by: Junction Temp – Max. Ambient Temp- = -----------------------------------110°C – 70°C = 13.33°C/W θ JA = Max ----------------------------------------------------------------------------------------------------------P 3.00 W EQ 2-13 2 -1 2 v5.1 SX-A Family FPGAs To determine the heat sink's thermal performance, use the following equation: θ JA(TOTAL) = θ JC + θ CS + θ SA EQ 2-14 where: θCS = = θSA = 0.37°C/W thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer thermal resistance of the heat sink in °C/W θ SA = θ JA(TOTAL) – θ JC – θ CS EQ 2-15 θ SA = 13.33°C/W – 3.20°C/W – 0.37°C/W θ SA = 9.76°C/W A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow. Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data. Note: The values may vary depending on the application. v5.1 2-13 SX-A Family FPGAs SX-A Timing Model Input Delays I/O Module t INYH = 0.5 ns Internal Delays Combinatorial Cell t RD1 = 0.3 ns t RD2 = 0.4 ns t PD = 1.0 ns Predicted Routing Delays I/O Module D Routed Clock t RCKH = 2.6 ns (100% Load) I/O Module t DHL = 2.7 ns Q t RD1 = 0.3 ns t ENZL= 1.3 ns t RCO= 0.7 ns I/O Module t DHL = 2.7 ns Register Cell I/O Module t INYH = 0.5 ns D t SUD = 0.7 ns t HD = 0.0 ns Hardwired Clock t HCKH = 1.6 ns t DHL = 2.7 ns t RD1 = 0.3 ns t RD4 = 0.7 ns t RD8 = 1.2 ns Register Cell t SUD = 0.7 ns t HD = 0.0 ns Output Delays Q t RD1 = 0.3 ns t ENZL= 1.3 ns t RCO= 0.7 ns Note: *Values shown for A54SX72A, –3, worst-case commercial conditions at 5 V PCI with standard place-and-route. Figure 2-3 • SX-A Timing Model Sample Path Calculations Hardwired Clock External Setup Routed Clock = (tINYH + tIRD1 + tSUD) – tHCKH External Setup = 0.5 + 0.3 + 0.7 - 1.6 = – 0.1 ns Clock-to-Out (Pad-to-Pad) = tHCKH + tRCO + tRD1 + tDHL = (tINYH + tIRD1 + tSUD) – tRCKH = 0.5 + 0.3 + 0.7 - 2.6 = –1.1 ns Clock-to-Out (Pad-to-Pad) = tRCKH + tRCO + tRD1 + tDHL = 1.6+0.7+0.3+2.7 = 5.3 ns = 2.6 + 0.7 + 0.3 + 2.7 = 6.3 ns 2 -1 4 v5.1 SX-A Family FPGAs Output Buffer Delays E D VCC In VCC VCC 50% 50% VOH Out VOL PAD To AC Test Loads (shown below) TRIBUFF GND En 1.5 V 1.5 V Out tDLH GND 50% 50% VCC 1.5 V VOL tENZL 10% tENLZ En 50% Out GND GND 50% 90% 1.5 V tENZH tENHZ Figure 2-4 • Output Buffer Delays AC Test Loads Load 1 (Used to measure propagation delay) To the Output Under Test 35 pF Load 2 (Used to measure enable delays) VCC To the Output Under Test GND R to VCC for tPZL R to GND for tPZH R = 1 kΩ 35 pF Load 3 (Used to measure disable delays) VCC To the Output Under Test GND R to VCC for tPZL R to GND for tPZH R = 1 kΩ 5 pF Figure 2-5 • AC Test Loads v5.1 2-15 SX-A Family FPGAs Input Buffer Delays PAD C-Cell Delays S A B Y INBUF Y VCC S, A, or B In 3V 1.5 V 1.5 V Out GND 0V VCC Out GND 50% 50% 50% 50% tPD tPD Out 50% tINY tINY GND 50% 50% VCC GND tPD Figure 2-6 • Input Buffer Delays tPD Figure 2-7 • C-Cell Delays Cell Timing Characteristics D PRESET CLK Q CLR (Positive Edge Triggered) t HD D t SUD CLK tHP t HPWH t RPWH t RCO tHPWL t RPWL Q tCLR CLR t WASYN PRESET Figure 2-8 • Flip-Flops 2 -1 6 v5.1 tPRESET VCC 50% SX-A Family FPGAs Timing Characteristics Long Tracks Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user’s design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software. Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays. Timing Derating SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. Critical Nets and Typical Nets Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical. Temperature and Voltage Derating Factors Table 2-13 • Temperature and Voltage Derating Factors (Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.25 V) Junction Temperature (TJ) VCCA –55°C –40°C 0°C 25°C 70°C 85°C 125°C 2.250 V 0.79 0.80 0.87 0.89 1.00 1.04 1.14 2.500 V 0.74 0.75 0.82 0.83 0.94 0.97 1.07 2.750 V 0.68 0.69 0.75 0.77 0.87 0.90 0.99 v5.1 2-17 SX-A Family FPGAs Timing Characteristics Table 2-14 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –2 Speed Parameter Description C-Cell Propagation Delays tPD –1 Speed Min. Max. Min. Max. Std. Speed Min. –F Speed Max. Min. Max. Units 1 Internal Array Module 0.9 1.1 1.2 1.7 ns 2 Predicted Routing Delays tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.4 0.6 ns tRD1 FO = 1 Routing Delay 0.3 0.4 0.5 0.6 ns tRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns tRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns tRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns tRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns tRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.7 0.8 0.9 1.3 ns tCLR Asynchronous Clear-to-Q 0.6 0.6 0.8 1.0 ns tPRESET Asynchronous Preset-to-Q 0.7 0.7 0.9 1.2 ns tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.2 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.4 1.5 1.8 2.5 ns tRECASYN Asynchronous Recovery Time 0.4 0.4 0.5 0.7 ns tHASYN Asynchronous Hold Time 0.3 0.3 0.4 0.6 ns tMPW Clock Pulse Width 1.6 1.8 2.1 2.9 ns Input Module Propagation Delays tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.8 0.9 1.0 1.4 ns tINYL Input Data Pad to Y Low 2.5 V LVCMOS 1.0 1.2 1.4 1.9 ns tINYH Input Data Pad to Y High 3.3 V PCI 0.6 0.6 0.7 1.0 ns tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.3 ns tINYH Input Data Pad to Y High 3.3 V LVTTL 0.7 0.7 0.9 1.2 ns tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.0 1.1 1.3 1.8 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2 -1 8 v5.1 SX-A Family FPGAs Table 2-14 • A54SX08A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –2 Speed Parameter Description –1 Speed Min. Max. Min. Max. Std. Speed Min. –F Speed Max. Min. Max. Units tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.9 ns tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.1 1.5 ns tINYH Input Data Pad to Y High 5 V TTL 0.5 0.6 0.7 0.9 ns tINYL Input Data Pad to Y Low 5 V TTL 0.8 0.9 1.1 1.5 ns Input Module Predicted Routing Delays 2 tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.6 ns tIRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns tIRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns tIRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns tIRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns tIRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.1 2-19 SX-A Family FPGAs Table 2-15 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –2 Speed Parameter Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.4 1.6 1.8 2.6 ns tHCKL Input High to Low (Pad to R-cell Input) 1.3 1.5 1.7 2.4 ns tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.4 3.2 0.4 3.6 0.5 4.2 0.7 5.8 ns ns 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.0 1.1 1.3 1.8 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.1 1.2 1.4 2.0 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.0 1.1 1.3 1.8 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.1 1.2 1.4 2.0 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.1 1.2 1.4 2.0 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.4 ns tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 0.7 0.8 0.9 1.3 ns tRCKSW Maximum Skew (50% Load) 0.7 0.8 0.9 1.3 ns tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.7 ns 2 -2 0 v5.1 SX-A Family FPGAs Table 2-16 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –2 Speed Parameter Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.3 1.5 1.7 2.6 ns tHCKL Input High to Low (Pad to R-cell Input) 1.1 1.3 1.5 2.2 ns tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.4 3.2 0.5 3.6 0.5 4.2 0.8 5.8 ns ns 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 0.8 0.9 1.1 1.5 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.1 1.2 1.4 2 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 0.8 0.9 1.1 1.5 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.1 1.2 1.4 2 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.1 1.2 1.4 1.9 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.2 1.3 1.6 2.2 ns tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 0.7 0.8 0.9 1.3 ns tRCKSW Maximum Skew (50% Load) 0.7 0.8 0.9 1.3 ns tRCKSW Maximum Skew (100% Load) 0.8 0.9 1.1 1.5 ns v5.1 2-21 SX-A Family FPGAs Table 2-17 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –2 Speed Parameter Description Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.2 1.3 1.5 2.3 ns tHCKL Input High to Low (Pad to R-cell Input) 1.0 1.2 1.4 2.0 ns tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.4 3.2 0.4 3.6 0.5 4.2 0.8 5.8 ns ns 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 0.9 1.0 1.2 1.7 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.5 1.7 2.0 2.7 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 0.9 1.0 1.2 1.7 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.5 1.7 2.0 2.7 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.1 1.3 1.5 2.1 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.6 1.8 2.1 2.9 ns tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.1 1.5 ns tRCKSW Maximum Skew (50% Load) 0.8 1.0 1.1 1.5 ns tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.7 ns 2 -2 2 v5.1 SX-A Family FPGAs Table 2-18 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3V, TJ = 70°C) –2 Speed Parameter Description 2.5 V LVCMOS Output Module Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units Timing1,2 tDLH Data-to-Pad Low to High 3.9 4.4 5.2 7.2 ns tDHL Data-to-Pad High to Low 3.0 3.4 3.9 5.5 ns tDHLS Data-to-Pad High to Low—low slew 13.3 15.1 17.7 24.8 ns tENZL Enable-to-Pad, Z to L 2.8 3.2 3.7 5.2 ns tENZLS Data-to-Pad, Z to L—low slew 13.7 15.5 18.2 25.5 ns tENZH Enable-to-Pad, Z to H 3.9 4.4 5.2 7.2 ns tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.3 4.7 ns tENHZ Enable-to-Pad, H to Z 3.0 3.4 3.9 5.5 ns dTLH3 Delta Low to High 0.037 0.043 0.051 0.071 ns/pF dTHL3 Delta High to Low 0.017 0.023 0.023 0.037 ns/pF Delta High to Low—low slew 0.06 0.071 0.086 0.117 ns/pF dTHLS 3 Note: 1. Delays based on 35 pF loading. 2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software. 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. v5.1 2-23 SX-A Family FPGAs Table 2-19 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –2 Speed Parameter Description 3.3 V PCI Output Module Timing1 Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units tDLH Data-to-Pad Low to High 2.2 2.4 2.9 4.0 ns tDHL Data-to-Pad High to Low 2.3 2.6 3.1 4.3 ns tENZL Enable-to-Pad, Z to L 1.7 1.9 2.2 3.1 ns tENZH Enable-to-Pad, Z to H 2.2 2.4 2.9 4.0 ns tENLZ Enable-to-Pad, L to Z 2.8 3.2 3.8 5.3 ns tENHZ Enable-to-Pad, H to Z 2.3 2.6 3.1 4.3 ns dTLH2 Delta Low to High 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.025 ns/pF 3.3 V LVTTL Output Module Timing3 tDLH Data-to-Pad Low to High 3.0 3.4 4.0 5.6 ns tDHL Data-to-Pad High to Low 3.0 3.3 3.9 5.5 ns tDHLS Data-to-Pad High to Low—low slew 10.4 11.8 13.8 19.3 ns tENZL Enable-to-Pad, Z to L 2.6 2.9 3.4 4.8 ns tENZLS Enable-to-Pad, Z to L—low slew 18.9 21.3 25.4 34.9 ns tENZH Enable-to-Pad, Z to H 3 3.4 4 5.6 ns tENLZ Enable-to-Pad, L to Z 3.3 3.7 4.4 6.2 ns tENHZ Enable-to-Pad, H to Z 3 3.3 3.9 5.5 ns dTLH2 Delta Low to High 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.025 ns/pF Delta High to Low—low slew 0.053 0.067 0.073 0.107 ns/pF dTHLS 2 Notes: 1. Delays based on 10 pF loading and 25 Ω resistance. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. 2 -2 4 v5.1 SX-A Family FPGAs Table 2-20 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –2 Speed Parameter Description 5 V PCI Output Module Min. Max. –1 Speed Min. Max. Std. Speed Min. Max. –F Speed Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.4 2.8 3.2 4.5 ns tDHL Data-to-Pad High to Low 3.2 3.6 4.2 5.9 ns tENZL Enable-to-Pad, Z to L 1.5 1.7 2.0 2.8 ns tENZH Enable-to-Pad, Z to H 2.4 2.8 3.2 4.5 ns tENLZ Enable-to-Pad, L to Z 3.5 3.9 4.6 6.4 ns tENHZ Enable-to-Pad, H to Z 3.2 3.6 4.2 5.9 ns dTLH2 Delta Low to High 0.016 0.02 0.022 0.032 ns/pF dTHL2 Delta High to Low 0.03 0.032 0.04 0.052 ns/pF 5 V TTL Output Module Timing3 tDLH Data-to-Pad Low to High 2.4 2.8 3.2 4.5 ns tDHL Data-to-Pad High to Low 3.2 3.6 4.2 5.9 ns tDHLS Data-to-Pad High to Low—low slew 7.6 8.6 10.1 14.2 ns tENZL Enable-to-Pad, Z to L 2.4 2.7 3.2 4.5 ns tENZLS Enable-to-Pad, Z to L—low slew 8.4 9.5 11.0 15.4 ns tENZH Enable-to-Pad, Z to H 2.4 2.8 3.2 4.5 ns tENLZ Enable-to-Pad, L to Z 4.2 4.7 5.6 7.8 ns tENHZ Enable-to-Pad, H to Z 3.2 3.6 4.2 5.9 ns dTLH Delta Low to High 0.017 0.017 0.023 0.031 ns/pF dTHL Delta High to Low 0.029 0.031 0.037 0.051 ns/pF dTHLS Delta High to Low—low slew 0.046 0.057 0.066 0.089 ns/pF Notes: 1. Delays based on 50 pF loading. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. v5.1 2-25 SX-A Family FPGAs Table 2-21 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description C-Cell Propagation tPD –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 Internal Array Module Predicted Routing –2 Speed 0.9 1.0 1.2 1.4 1.9 ns Delays2 tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1 1.4 ns tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns tRD12 FO = 12 Routing Delay 1.7 2 2.2 2.6 3.6 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.8 1.0 1.4 ns tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.3 1.5 1.6 1.9 2.7 ns tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns tMPW Clock Minimum Pulse Width 1.4 1.7 1.9 2.2 3.0 ns Input Module Propagation Delays tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.5 0.6 0.7 0.8 1.1 ns tINYL Input Data Pad to Y Low 2.5 V LVCMOS 0.8 0.9 1.0 1.1 1.6 ns tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.0 1.4 ns tINYH Input Data Pad to Y High 3.3 V LVTTL 0.7 0.7 0.8 1.0 1.4 ns tINYL Input Data Pad to Y Low 3.3 V LVTTL 0.9 1.1 1.2 1.4 2.0 ns tINYH Input Data Pad to Y High 5 V PCI 0.5 0.5 0.6 0.7 0.9 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2 -2 6 v5.1 SX-A Family FPGAs Table 2-21 • A54SX16A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tINYL Input Data Pad to Y Low 5 V PCI 0.7 0.8 0.9 1.1 1.5 ns tINYH Input Data Pad to Y High 5 V TTL 0.5 0.5 0.6 0.7 0.9 ns tINYL Input Data Pad to Y Low 5 V TTL 0.7 0.8 0.9 1.1 1.5 ns Input Module Predicted Routing Delays 2 tIRD1 FO = 1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns tIRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns tIRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns tIRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns tIRD8 FO = 8 Routing Delay 1.2 1.4 1.5 0.8 2.5 ns tIRD12 FO = 12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.1 2-27 SX-A Family FPGAs Table 2-22 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.2 1.4 1.6 1.8 2.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.0 1.1 1.2 1.5 2.2 ns tHPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tHPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.3 2.8 0.3 3.4 0.4 3.8 0.4 4.4 0.7 6.0 ns ns 357 294 263 227 167 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.0 1.2 1.3 1.6 2.2 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.8 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.8 ns tRPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tRPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (50% Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (100% Load) 1.0 1.1 1.3 1.5 2.1 ns 2 -2 8 v5.1 SX-A Family FPGAs Table 2-23 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.2 1.4 1.6 1.8 2.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.0 1.1 1.3 1.5 2.2 ns tHPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tHPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.3 2.8 0.3 3.4 0.4 3.8 0.4 4.4 0.6 6.0 ns ns 357 294 263 227 167 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.0 1.2 1.3 1.5 2.1 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.1 1.3 1.4 1.7 2.3 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.7 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.8 ns tRPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tRPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (50% Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (100% Load) 1.0 1.1 1.3 1.5 2.1 ns v5.1 2-29 SX-A Family FPGAs Table 2-24 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI =4.75 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.2 1.4 1.6 1.8 2.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.0 1.1 1.2 1.5 2.2 ns tHPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tHPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.3 2.8 0.3 3.4 0.4 3.8 0.4 4.4 0.7 6.0 ns ns 357 294 263 227 167 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.0 1.2 1.3 1.6 2.2 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 1.1 1.3 1.5 1.7 2.4 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.8 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 1.3 1.5 1.7 2.0 2.8 ns tRPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns tRPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (50% Load) 0.8 0.9 1.0 1.2 1.7 ns tRCKSW Maximum Skew (100% Load) 1.0 1.1 1.3 1.5 2.1 ns 2 -3 0 v5.1 SX-A Family FPGAs Table 2-25 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –3 Speed Parameter Description 2.5 V LVCMOS Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing 1, 2 tDLH Data-to-Pad Low to High 3.4 3.9 4.5 5.2 7.3 ns tDHL Data-to-Pad High to Low 2.6 3.0 3.3 3.9 5.5 ns tDHLS Data-to-Pad High to Low—low slew 11.6 13.4 15.2 17.9 25.0 ns tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns tENZH Enable-to-Pad, Z to H 3.4 3.9 4.5 5.2 7.3 ns tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns tENHZ Enable-to-Pad, H to Z 2.6 3.0 3.3 3.9 5.5 ns dTLH3 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF dTHL3 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF dTHLS 3 Note: 1. Delays based on 35 pF loading. 2. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software. 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. v5.1 2-31 SX-A Family FPGAs Table 2-26 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description 3.3 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.0 2.3 2.6 3.1 4.3 ns tDHL Data-to-Pad High to Low 2.2 2.5 2.8 3.3 4.6 ns tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns tENZH Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 4.3 ns tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns tENHZ Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 4.6 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF 3.3 V LVTTL Output Module Timing3 tDLH Data-to-Pad Low to High 2.8 3.2 3.6 4.3 6.0 ns tDHL Data-to-Pad High to Low 2.7 3.1 3.5 4.1 5.7 ns tDHLS Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 20.4 ns tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns tENZLS Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 34.9 ns tENZH Enable-to-Pad, Z to H 2.8 3.2 3.6 4.3 6.0 ns tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns tENHZ Enable-to-Pad, H to Z 2.7 3.1 3.5 4.1 5.7 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF Delta High to Low—low slew 0.053 0.053 0.067 0.073 0.107 ns/pF dTHLS 2 Notes: 1. Delays based on 10 pF loading and 25 Ω resistance. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. 2 -3 2 v5.1 SX-A Family FPGAs Table 2-27 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description 5 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.2 2.5 2.8 3.3 4.6 ns tDHL Data-to-Pad High to Low 2.8 3.2 3.6 4.2 5.9 ns tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns tENZH Enable-to-Pad, Z to H 2.2 2.5 2.8 3.3 4.6 ns tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.6 4.2 5.9 ns dTLH2 Delta Low to High 0.016 0.016 0.02 0.022 0.032 ns/pF dTHL2 Delta High to Low 0.026 0.03 0.032 0.04 0.052 ns/pF 5 V TTL Output Module Timing3 tDLH Data-to-Pad Low to High 2.2 2.5 2.8 3.3 4.6 ns tDHL Data-to-Pad High to Low 2.8 3.2 3.6 4.2 5.9 ns tDHLS Data-to-Pad High to Low—low slew 6.7 7.7 8.7 10.2 14.3 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns tENZLS Enable-to-Pad, Z to L—low slew 7.4 8.4 9.5 11.0 15.4 ns tENZH Enable-to-Pad, Z to H 1.9 2.2 2.5 2.9 4.1 ns tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.3 3.9 5.4 ns dTLH2 Delta Low to High 0.014 0.017 0.017 0.023 0.031 ns/pF dTHL2 Delta High to Low 0.023 0.029 0.031 0.037 0.051 ns/pF Delta High to Low—low slew 0.043 0.046 0.057 0.066 0.089 ns/pF dTHLS 2 Notes: 1. Delays based on 50 pF loading. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. v5.1 2-33 SX-A Family FPGAs Table 2-28 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description C-Cell Propagation tPD –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 Internal Array Module Predicted Routing –2 Speed 0.8 0.9 1.1 1.2 1.7 ns Delays2 tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns tRD12 FO = 12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns tPRESET Asynchronous Preset-to-Q 0.6 0.7 0.7 0.9 1.2 ns tSUD Flip-Flop Data Input Set-Up 0.6 0.7 0.8 0.9 1.2 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.2 1.4 1.5 1.8 2.5 ns tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns tMPW Clock Pulse Width 1.4 1.6 1.8 2.1 2.9 ns Input Module Propagation Delays tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.6 0.7 0.8 0.9 1.2 ns tINYL Input Data Pad to Y Low 2.5 V LVCMOS 1.2 1.3 1.5 1.8 2.5 ns tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns tINYL Input Data Pad to Y Low 3.3 V PCI 0.6 0.7 0.8 0.9 1.3 ns tINYH Input Data Pad to Y High 3.3 V LVTTL 0.8 0.9 1.0 1.2 1.6 ns tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.4 1.6 1.8 2.2 3.0 ns tINYH Input Data Pad to Y High 5 V PCI 0.7 0.8 0.9 1.0 1.4 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2 -3 4 v5.1 SX-A Family FPGAs Table 2-28 • A54SX32A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tINYL Input Data Pad to Y Low 5 V PCI 0.9 1.1 1.2 1.4 1.9 ns tINYH Input Data Pad to Y High 5 V TTL 0.9 1.1 1.2 1.4 1.9 ns tINYL Input Data Pad to Y Low 5 V TTL 1.4 1.6 1.8 2.1 2.9 ns Input Module Predicted Routing Delays 2 tIRD1 FO = 1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns tIRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns tIRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns tIRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1 1.4 ns tIRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns tIRD12 FO = 12 Routing Delay 1.7 2 2.2 2.6 3.6 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.1 2-35 SX-A Family FPGAs Table 2-29 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.7 2.0 2.2 2.6 4.0 ns tHCKL Input High to Low (Pad to R-cell Input) 1.7 2.0 2.2 2.6 4.0 ns tHPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.6 2.8 0.6 3.2 0.7 3.6 0.8 4.2 1.3 5.8 ns ns 357 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.2 2.5 2.9 3.4 4.7 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.1 2.4 2.7 3.2 4.4 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.4 2.7 3.1 3.6 5.1 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 2.2 2.5 2.8 3.3 4.6 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.5 2.9 3.2 3.8 5.3 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 2.4 2.7 3.1 3.6 5.0 ns tRPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 1.0 1.1 1.3 1.5 2.1 ns tRCKSW Maximum Skew (50% Load) 0.9 1.0 1.2 1.4 1.9 ns tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.4 1.9 ns 2 -3 6 v5.1 SX-A Family FPGAs Table 2-30 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.7 2.0 2.2 2.6 4.0 ns tHCKL Input High to Low (Pad to R-cell Input) 1.7 2.0 2.2 2.6 4.0 ns tHPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.6 2.8 0.6 3.2 0.7 3.6 0.8 4.2 1.3 5.8 ns ns 357 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.2 2.5 2.8 3.3 4.6 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.1 2.4 2.7 3.2 4.5 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.3 2.7 3.1 3.6 5 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 2.2 2.5 2.9 3.4 4.7 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.4 2.8 3.2 3.7 5.2 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 2.4 2.8 3.1 3.7 5.1 ns tRPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 1.0 1.1 1.3 1.5 2.1 ns tRCKSW Maximum Skew (50% Load) 0.9 1.0 1.2 1.4 1.9 ns tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.4 1.9 ns v5.1 2-37 SX-A Family FPGAs Table 2-31 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.7 1.9 2.2 2.6 4.0 ns tHCKL Input High to Low (Pad to R-cell Input) 1.7 2.0 2.2 2.6 4.0 ns tHPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tHPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.6 2.8 0.6 3.2 0.7 3.6 0.8 4.2 1.3 5.8 ns ns 357 313 278 238 172 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.2 2.5 2.8 3.3 4.7 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.1 2.5 2.8 3.3 4.5 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.4 2.7 3.1 3.6 5.1 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 2.2 2.6 2.9 3.4 4.7 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.5 2.8 3.2 3.8 5.3 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 2.4 2.8 3.1 3.7 5.2 ns tRPWH Minimum Pulse Width High 1.4 1.6 1.8 2.1 2.9 ns tRPWL Minimum Pulse Width Low 1.4 1.6 1.8 2.1 2.9 ns tRCKSW Maximum Skew (Light Load) 1.0 1.1 1.3 1.5 2.1 ns tRCKSW Maximum Skew (50% Load) 1.0 1.1 1.3 1.5 2.1 ns tRCKSW Maximum Skew (100% Load) 1.0 1.1 1.3 1.5 2.1 ns 2 -3 8 v5.1 SX-A Family FPGAs Table 2-32 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3V, TJ = 70°C) –3 Speed Parameter Description 2.5 V LVCMOS Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing 1,2 tDLH Data-to-Pad Low to High 3.3 3.8 4.2 5.0 7.0 ns tDHL Data-to-Pad High to Low 2.5 2.9 3.2 3.8 5.3 ns tDHLS Data-to-Pad High to Low—low slew 11.1 12.8 14.5 17.0 23.8 ns tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns tENZH Enable-to-Pad, Z to H 3.3 3.8 4.2 5.0 7.0 ns tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.2 3.8 5.3 ns dTLH3 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF dTHL3 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF dTHLS 3 Note: 1. Delays based on 35 pF loading. 2. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software. 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. v5.1 2-39 SX-A Family FPGAs Table 2-33 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description 3.3 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 1.9 2.2 2.4 2.9 4.0 ns tDHL Data-to-Pad High to Low 2.0 2.3 2.6 3.1 4.3 ns tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns tENZH Enable-to-Pad, Z to H 1.9 2.2 2.4 2.9 4.0 ns tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns tENHZ Enable-to-Pad, H to Z 2.0 2.3 2.6 3.1 4.3 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF 3.3 V LVTTL Output Module Timing3 tDLH Data-to-Pad Low to High 2.6 3.0 3.4 4.0 5.6 ns tDHL Data-to-Pad High to Low 2.6 3.0 3.3 3.9 5.5 ns tDHLS Data-to-Pad High to Low—low slew 9.0 10.4 11.8 13.8 19.3 ns tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns tENZLS Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 34.9 ns tENZH Enable-to-Pad, Z to H 2.6 3.0 3.4 4.0 5.6 ns tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns tENHZ Enable-to-Pad, H to Z 2.6 3.0 3.3 3.9 5.5 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF Delta High to Low—low slew 0.053 0.053 0.067 0.073 0.107 ns/pF dTHLS 2 Notes: 1. Delays based on 10 pF loading and 25 Ω resistance. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. 2 -4 0 v5.1 SX-A Family FPGAs Table 2-34 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description 5 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.1 2.4 2.8 3.2 4.5 ns tDHL Data-to-Pad High to Low 2.8 3.2 3.6 4.2 5.9 ns tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns tENZH Enable-to-Pad, Z to H 2.1 2.4 2.8 3.2 4.5 ns tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.6 4.2 5.9 ns dTLH2 Delta Low to High 0.016 0.016 0.02 0.022 0.032 ns/pF dTHL2 Delta High to Low 0.026 0.03 0.032 0.04 0.052 ns/pF 5 V TTL Output Module Timing3 tDLH Data-to-Pad Low to High 1.9 2.2 2.5 2.9 4.1 ns tDHL Data-to-Pad High to Low 2.5 2.9 3.3 3.9 5.4 ns tDHLS Data-to-Pad High to Low—low slew 6.6 7.6 8.6 10.1 14.2 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns tENZLS Enable-to-Pad, Z to L—low slew 7.4 8.4 9.5 11.0 15.4 ns tENZH Enable-to-Pad, Z to H 1.9 2.2 2.5 2.9 4.1 ns tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.3 3.9 5.4 ns dTLH2 Delta Low to High 0.014 0.017 0.017 0.023 0.031 ns/pF dTHL2 Delta High to Low 0.023 0.029 0.031 0.037 0.051 ns/pF Delta High to Low—low slew 0.043 0.046 0.057 0.066 0.089 ns/pF dTHLS 2 Notes: 1. Delays based on 50 pF loading. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. v5.1 2-41 SX-A Family FPGAs Table 2-35 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description C-Cell Propagation tPD –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Delays1 Internal Array Module Predicted Routing –2 Speed 1.0 1.1 1.3 1.5 2.0 ns Delays2 tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 0.1 ns tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns tRD2 FO = 2 Routing Delay 0.4 0.5 0.6 0.7 1 ns tRD3 FO = 3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns tRD4 FO = 4 Routing Delay 0.7 0.9 1 1.1 1.5 ns tRD8 FO = 8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns tRD12 FO = 12 Routing Delay 1.7 2.2 2.5 3 4.2 ns R-Cell Timing tRCO Sequential Clock-to-Q 0.7 0.8 0.9 1.1 1.5 ns tCLR Asynchronous Clear-to-Q 0.6 0.7 0.7 0.9 1.2 ns tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.8 1.0 1.4 ns tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.0 1.4 ns tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns tWASYN Asynchronous Pulse Width 1.3 1.5 1.7 2.0 2.8 ns tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns tHASYN Asynchronous Hold Time 0.3 0.3 0.3 0.4 0.6 ns tMPW Clock Minimum Pulse Width 1.5 1.7 2.0 2.3 3.2 ns Input Module Propagation Delays tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.6 0.7 0.8 0.9 1.3 ns tINYL Input Data Pad to Y Low 2.5 V LVCMOS 0.8 1.0 1.1 1.3 1.7 ns tINYH Input Data Pad to Y High 3.3 V PCI 0.6 0.7 0.7 0.9 1.2 ns tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.0 1.4 ns tINYH Input Data Pad to Y High 3.3 V LVTTL 0.7 0.7 0.8 1.0 1.4 ns tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.0 1.2 1.3 1.5 2.1 ns tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.8 1.1 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 2 -4 2 v5.1 SX-A Family FPGAs Table 2-35 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.0 1.2 1.6 ns tINYH Input Data Pad to Y High 5 V TTL 0.7 0.8 0.9 1.0 1.4 ns tINYL Input Data Pad to Y Low 5 V TTL 0.9 1.1 1.2 1.4 1.9 ns Input Module Predicted Routing Delays2 tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns tIRD2 FO = 2 Routing Delay 0.4 0.5 0.6 0.7 1 ns tIRD3 FO = 3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns tIRD4 FO = 4 Routing Delay 0.7 0.9 1 1.1 1.5 ns tIRD8 FO = 8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns tIRD12 FO = 12 Routing Delay 1.7 2.2 2.5 3 4.2 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. v5.1 2-43 SX-A Family FPGAs Table 2-36 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.6 1.9 2.1 2.5 3.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.6 1.9 2.1 2.5 3.8 ns tHPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tHPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 1.4 3.0 1.6 3.4 1.8 4.0 2.1 4.6 3.3 6.4 ns ns 333 294 250 217 156 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.3 2.6 2.9 3.4 4.8 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.8 3.2 3.7 4.3 6.0 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.4 2.8 3.2 3.7 5.2 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 2.9 3.3 3.8 4.5 6.2 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.6 3.0 3.4 4.0 5.6 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 3.1 3.6 4.0 4.7 6.6 ns tRPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tRPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tRCKSW Maximum Skew (Light Load) 1.9 2.2 2.5 3.0 4.1 ns tRCKSW Maximum Skew (50% Load) 1.8 2.1 2.4 2.8 3.9 ns tRCKSW Maximum Skew (100% Load) 1.8 2.1 2.4 2.8 3.9 ns Quadrant Array Clock Networks tQCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.6 3.0 3.4 4.0 5.6 ns tQCHKL Input High to Low (Light Load) (Pad to R-cell Input) 2.6 3.0 3.3 3.9 5.5 ns tQCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.8 3.2 3.6 4.3 6.0 ns tQCHKL Input High to Low (50% Load) (Pad to R-cell Input) 2.8 3.2 3.6 4.2 5.9 ns tQCKH Input Low to High (100% Load) (Pad to R-cell Input) 3.0 3.4 3.9 4.6 6.4 ns 2 -4 4 v5.1 SX-A Family FPGAs Table 2-36 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tQCHKL Input High to Low (100% Load) (Pad to R-cell Input) 2.9 3.4 tQPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tQPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tQCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.3 0.5 ns tQCKSW Maximum Skew (50% Load) 0.4 0.5 0.5 0.6 0.9 ns tQCKSW Maximum Skew (100% Load) 0.4 0.5 0.5 0.6 0.9 ns v5.1 3.8 4.5 6.3 ns 2-45 SX-A Family FPGAs Table 2-37 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.6 1.9 2.1 2.5 3.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.7 1.9 2.1 2.5 3.8 ns tHPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tHPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 1.4 3.0 1.6 3.4 1.8 4.0 2.1 4.6 3.3 6.4 ns ns 333 294 250 217 156 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.2 2.6 2.9 3.4 4.8 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.8 3.3 3.7 4.3 6.0 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.4 2.8 3.2 3.7 5.2 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 2.9 3.4 3.8 4.5 6.2 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.6 3.0 3.4 4.0 5.6 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 3.1 3.6 4.1 4.8 6.7 ns tRPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tRPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tRCKSW Maximum Skew (Light Load) 1.9 2.2 2.5 3 4.1 ns tRCKSW Maximum Skew (50% Load) 1.9 2.1 2.4 2.8 3.9 ns tRCKSW Maximum Skew (100% Load) 1.9 2.1 2.4 2.8 3.9 ns Quadrant Array Clock Networks tQCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.3 1.5 1.7 1.9 2.7 ns tQCHKL Input High to Low (Light Load) (Pad to R-cell Input) 1.3 1.5 1.7 2 2.8 ns tQCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.5 1.7 1.9 2.2 3.1 ns tQCHKL Input High to Low (50% Load) (Pad to R-cell Input) 1.5 1.8 2 2.3 3.2 ns tQCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.7 1.9 2.2 2.5 3.5 ns 2 -4 6 v5.1 SX-A Family FPGAs Table 2-37 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tQCHKL Input High to Low (100% Load) (Pad to R-cell Input) 1.7 2 tQPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tQPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tQCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.3 0.5 ns tQCKSW Maximum Skew (50% Load) 0.4 0.5 0.5 0.6 0.9 ns tQCKSW Maximum Skew (100% Load) 0.4 0.5 0.5 0.6 0.9 ns v5.1 2.2 2.6 3.6 ns 2-47 SX-A Family FPGAs Table 2-38 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input Low to High (Pad to R-cell Input) 1.6 1.8 2.1 2.4 3.8 ns tHCKL Input High to Low (Pad to R-cell Input) 1.6 1.9 2.1 2.5 3.8 ns tHPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tHPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 1.4 3.0 1.6 3.4 1.8 4.0 2.1 4.6 3.3 6.4 ns ns 333 294 250 217 156 MHz Routed Array Clock Networks tRCKH Input Low to High (Light Load) (Pad to R-cell Input) 2.3 2.6 3.0 3.5 4.9 ns tRCKL Input High to Low (Light Load) (Pad to R-cell Input) 2.8 3.2 3.6 4.3 6.0 ns tRCKH Input Low to High (50% Load) (Pad to R-cell Input) 2.5 2.9 3.2 3.8 5.3 ns tRCKL Input High to Low (50% Load) (Pad to R-cell Input) 3.0 3.4 3.9 4.6 6.4 ns tRCKH Input Low to High (100% Load) (Pad to R-cell Input) 2.6 3.0 3.4 3.9 5.5 ns tRCKL Input High to Low (100% Load) (Pad to R-cell Input) 3.2 3.6 4.1 4.8 6.8 ns tRPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tRPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tRCKSW Maximum Skew (Light Load) 1.9 2.2 2.5 3.0 4.1 ns tRCKSW Maximum Skew (50% Load) 1.9 2.2 2.5 3.0 4.1 ns tRCKSW Maximum Skew (100% Load) 1.9 2.2 2.5 3.0 4.1 ns Quadrant Array Clock Networks tQCKH Input Low to High (Light Load) (Pad to R-cell Input) 1.2 1.4 1.6 1.8 2.6 ns tQCHKL Input High to Low (Light Load) (Pad to R-cell Input) 1.3 1.4 1.6 1.9 2.7 ns tQCKH Input Low to High (50% Load) (Pad to R-cell Input) 1.4 1.6 1.8 2.1 3.0 ns tQCHKL Input High to Low (50% Load) (Pad to R-cell Input) 1.4 1.7 1.9 2.2 3.1 ns tQCKH Input Low to High (100% Load) (Pad to R-cell Input) 1.6 1.8 2.1 2.4 3.4 ns 2 -4 8 v5.1 SX-A Family FPGAs Table 2-38 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units tQCHKL Input High to Low (100% Load) (Pad to R-cell Input) 1.6 1.9 tQPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns tQPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns tQCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.3 0.5 ns tQCKSW Maximum Skew (50% Load) 0.4 0.5 0.5 0.6 0.9 ns tQCKSW Maximum Skew (100% Load) 0.4 0.5 0.5 0.6 0.9 ns v5.1 2.1 2.5 3.5 ns 2-49 SX-A Family FPGAs Table 2-39 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3V, TJ = 70°C) –3 Speed Parameter Description 2.5 V LVCMOS Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1, 2 tDLH Data-to-Pad Low to High 3.9 4.5 5.1 6.0 8.4 ns tDHL Data-to-Pad High to Low 3.1 3.6 4.1 4.8 6.7 ns tDHLS Data-to-Pad High to Low—low slew 12.7 14.6 16.5 19.4 27.2 ns tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns tENZH Enable-to-Pad, Z to H 3.9 4.5 5.1 6.0 8.4 ns tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns tENHZ Enable-to-Pad, H to Z 3.1 3.6 4.1 4.8 6.7 ns dTLH3 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF dTHL3 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF dTHLS 3 Note: 1. Delays based on 35 pF loading. 2. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software. 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 2 -5 0 v5.1 SX-A Family FPGAs Table 2-40 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C) –3 Speed Parameter Description 3.3 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.3 2.7 3.0 3.6 5.0 ns tDHL Data-to-Pad High to Low 2.5 2.9 3.2 3.8 5.3 ns tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns tENZH Enable-to-Pad, Z to H 2.3 2.7 3.0 3.6 5.0 ns tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.2 3.8 5.3 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF 3.3 V LVTTL Output Module Timing3 tDLH Data-to-Pad Low to High 3.2 3.7 4.2 5.0 6.9 ns tDHL Data-to-Pad High to Low 3.2 3.7 4.2 4.9 6.9 ns tDHLS Data-to-Pad High to Low—low slew 10.3 11.9 13.5 15.8 22.2 ns tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns tENZLS Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 34.9 ns tENZH Enable-to-Pad, Z to H 3.2 3.7 4.2 5.0 6.9 ns tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns tENHZ Enable-to-Pad, H to Z 3.2 3.7 4.2 4.9 6.9 ns dTLH2 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF dTHL2 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF Delta High to Low—low slew 0.053 0.053 0.067 0.073 0.107 ns/pF dTHLS 2 Notes: 1. Delays based on 10 pF loading and 25 Ω resistance. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. v5.1 2-51 SX-A Family FPGAs Table 2-41 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C) –3 Speed Parameter Description 5 V PCI Output Module –2 Speed –1 Speed Std. Speed –F Speed Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units Timing1 tDLH Data-to-Pad Low to High 2.7 3.1 3.5 4.1 5.7 ns tDHL Data-to-Pad High to Low 3.4 3.9 4.4 5.1 7.2 ns tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns tENZH Enable-to-Pad, Z to H 2.7 3.1 3.5 4.1 5.7 ns tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns tENHZ Enable-to-Pad, H to Z 3.4 3.9 4.4 5.1 7.2 ns dTLH2 Delta Low to High 0.016 0.016 0.02 0.022 0.032 ns/pF dTHL2 Delta High to Low 0.026 0.03 0.032 0.04 0.052 ns/pF 5 V TTL Output Module Timing3 tDLH Data-to-Pad Low to High 2.4 2.8 3.1 3.7 5.1 ns tDHL Data-to-Pad High to Low 3.1 3.5 4.0 4.7 6.6 ns tDHLS Data-to-Pad High to Low—low slew 7.4 8.5 9.7 11.4 15.9 ns tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns tENZLS Enable-to-Pad, Z to L—low slew 7.4 8.4 9.5 11.0 15.4 ns tENZH Enable-to-Pad, Z to H 2.4 2.8 3.1 3.7 5.1 ns tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns tENHZ Enable-to-Pad, H to Z 3.1 3.5 4.0 4.7 6.6 ns dTLH2 Delta Low to High 0.014 0.017 0.017 0.023 0.031 ns/pF dTHL2 Delta High to Low 0.023 0.029 0.031 0.037 0.051 ns/pF Delta High to Low—low slew 0.043 0.046 0.057 0.066 0.089 ns/pF dTHLS 2 Notes: 1. Delays based on 50 pF loading. 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation: Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]) where Cload is the load capacitance driven by the I/O in pF dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF. 3. Delays based on 35 pF loading. 2 -5 2 v5.1 SX-A Family FPGAs Package Pin Assignments 208-Pin PQFP 1 208 208-Pin PQFP Figure 3-1 • 208-Pin PQFP (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v5.1 3-1 SX-A Family FPGAs 208-Pin PQFP 208-Pin PQFP Pin Number 3 -2 Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 1 GND GND GND GND 36 I/O I/O I/O I/O 2 TDI, I/O TDI, I/O TDI, I/O TDI, I/O 37 I/O I/O I/O I/O 3 I/O I/O I/O I/O 38 I/O I/O I/O I/O 4 NC I/O I/O I/O 39 NC I/O I/O I/O 5 I/O I/O I/O I/O 40 VCCI VCCI VCCI VCCI 6 NC I/O I/O I/O 41 VCCA VCCA VCCA VCCA 7 I/O I/O I/O I/O 42 I/O I/O I/O I/O 8 I/O I/O I/O I/O 43 I/O I/O I/O I/O 9 I/O I/O I/O I/O 44 I/O I/O I/O I/O 10 I/O I/O I/O I/O 45 I/O I/O I/O I/O 11 TMS TMS TMS TMS 46 I/O I/O I/O I/O 12 VCCI VCCI VCCI VCCI 47 I/O I/O I/O I/O 13 I/O I/O I/O I/O 48 NC I/O I/O I/O 14 NC I/O I/O I/O 49 I/O I/O I/O I/O 15 I/O I/O I/O I/O 50 NC I/O I/O I/O 16 I/O I/O I/O I/O 51 I/O I/O I/O I/O 17 NC I/O I/O I/O 52 GND GND GND GND 18 I/O I/O I/O GND 53 I/O I/O I/O I/O 19 I/O I/O I/O VCCA 54 I/O I/O I/O I/O 20 NC I/O I/O I/O 55 I/O I/O I/O I/O 21 I/O I/O I/O I/O 56 I/O I/O I/O I/O 22 I/O I/O I/O I/O 57 I/O I/O I/O I/O 23 NC I/O I/O I/O 58 I/O I/O I/O I/O 24 I/O I/O I/O I/O 59 I/O I/O I/O I/O 25 NC NC NC I/O 60 VCCI VCCI VCCI VCCI 26 GND GND GND GND 61 NC I/O I/O I/O 27 VCCA VCCA VCCA VCCA 62 I/O I/O I/O I/O 28 GND GND GND GND 63 I/O I/O I/O I/O 29 I/O I/O I/O I/O 64 NC I/O I/O I/O 30 TRST, I/O TRST, I/O TRST, I/O TRST, I/O 65 I/O I/O NC I/O 31 NC I/O I/O I/O 66 I/O I/O I/O I/O 32 I/O I/O I/O I/O 67 NC I/O I/O I/O 33 I/O I/O I/O I/O 68 I/O I/O I/O I/O 34 I/O I/O I/O I/O 69 I/O I/O I/O I/O 35 NC I/O I/O I/O 70 NC I/O I/O I/O v5.1 SX-A Family FPGAs 208-Pin PQFP Pin Number 208-Pin PQFP A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 71 I/O I/O I/O I/O 106 NC I/O I/O I/O 72 I/O I/O I/O I/O 107 I/O I/O I/O I/O 73 NC I/O I/O I/O 108 NC I/O I/O I/O 74 I/O I/O I/O QCLKA 109 I/O I/O I/O I/O 75 NC I/O I/O I/O 110 I/O I/O I/O I/O 76 PRB, I/O PRB, I/O PRB, I/O PRB,I/O 111 I/O I/O I/O I/O 77 GND GND GND GND 112 I/O I/O I/O I/O 78 VCCA VCCA VCCA VCCA 113 I/O I/O I/O I/O 79 GND GND GND GND 114 VCCA VCCA VCCA VCCA 80 NC NC NC NC 115 VCCI VCCI VCCI VCCI 81 I/O I/O I/O I/O 116 NC I/O I/O GND 82 HCLK HCLK HCLK HCLK 117 I/O I/O I/O VCCA 83 I/O I/O I/O VCCI 118 I/O I/O I/O I/O 84 I/O I/O I/O QCLKB 119 NC I/O I/O I/O 85 NC I/O I/O I/O 120 I/O I/O I/O I/O 86 I/O I/O I/O I/O 121 I/O I/O I/O I/O 87 I/O I/O I/O I/O 122 NC I/O I/O I/O 88 NC I/O I/O I/O 123 I/O I/O I/O I/O 89 I/O I/O I/O I/O 124 I/O I/O I/O I/O 90 I/O I/O I/O I/O 125 NC I/O I/O I/O 91 NC I/O I/O I/O 126 I/O I/O I/O I/O 92 I/O I/O I/O I/O 127 I/O I/O I/O I/O 93 I/O I/O I/O I/O 128 I/O I/O I/O I/O 94 NC I/O I/O I/O 129 GND GND GND GND 95 I/O I/O I/O I/O 130 VCCA VCCA VCCA VCCA 96 I/O I/O I/O I/O 131 GND GND GND GND 97 NC I/O I/O I/O 132 NC NC NC I/O 98 VCCI VCCI VCCI VCCI 133 I/O I/O I/O I/O 99 I/O I/O I/O I/O 134 I/O I/O I/O I/O 100 I/O I/O I/O I/O 135 NC I/O I/O I/O 101 I/O I/O I/O I/O 136 I/O I/O I/O I/O 102 I/O I/O I/O I/O 137 I/O I/O I/O I/O 103 TDO, I/O TDO, I/O TDO, I/O TDO, I/O 138 NC I/O I/O I/O 104 I/O I/O I/O I/O 139 I/O I/O I/O I/O 105 GND GND GND GND 140 I/O I/O I/O I/O v5.1 3-3 SX-A Family FPGAs 208-Pin PQFP 208-Pin PQFP Pin Number 3 -4 Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 141 NC I/O I/O I/O 176 NC I/O I/O I/O 142 I/O I/O I/O I/O 177 I/O I/O I/O I/O 143 NC I/O I/O I/O 178 I/O I/O I/O QCLKD 144 I/O I/O I/O I/O 179 I/O I/O I/O I/O 145 VCCA VCCA VCCA VCCA 180 CLKA CLKA CLKA CLKA 146 GND GND GND GND 181 CLKB CLKB CLKB CLKB 147 I/O I/O I/O I/O 182 NC NC NC NC 148 VCCI VCCI VCCI VCCI 183 GND GND GND GND 149 I/O I/O I/O I/O 184 VCCA VCCA VCCA VCCA 150 I/O I/O I/O I/O 185 GND GND GND GND 151 I/O I/O I/O I/O 186 PRA, I/O PRA, I/O PRA, I/O PRA, I/O 152 I/O I/O I/O I/O 187 I/O I/O I/O VCCI 153 I/O I/O I/O I/O 188 I/O I/O I/O I/O 154 I/O I/O I/O I/O 189 NC I/O I/O I/O 155 NC I/O I/O I/O 190 I/O I/O I/O QCLKC 156 NC I/O I/O I/O 191 I/O I/O I/O I/O 157 GND GND GND GND 192 NC I/O I/O I/O 158 I/O I/O I/O I/O 193 I/O I/O I/O I/O 159 I/O I/O I/O I/O 194 I/O I/O I/O I/O 160 I/O I/O I/O I/O 195 NC I/O I/O I/O 161 I/O I/O I/O I/O 196 I/O I/O I/O I/O 162 I/O I/O I/O I/O 197 I/O I/O I/O I/O 163 I/O I/O I/O I/O 198 NC I/O I/O I/O 164 VCCI VCCI VCCI VCCI 199 I/O I/O I/O I/O 165 I/O I/O I/O I/O 200 I/O I/O I/O I/O 166 I/O I/O I/O I/O 201 VCCI VCCI VCCI VCCI 167 NC I/O I/O I/O 202 NC I/O I/O I/O 168 I/O I/O I/O I/O 203 NC I/O I/O I/O 169 I/O I/O I/O I/O 204 I/O I/O I/O I/O 170 NC I/O I/O I/O 205 NC I/O I/O I/O 171 I/O I/O I/O I/O 206 I/O I/O I/O I/O 172 I/O I/O I/O I/O 207 I/O I/O I/O I/O 173 NC I/O I/O I/O 208 TCK, I/O TCK, I/O TCK, I/O TCK, I/O 174 I/O I/O I/O I/O 175 I/O I/O I/O I/O v5.1 SX-A Family FPGAs 100-Pin TQFP 100 1 100-Pin TQFP Figure 3-2 • 100-Pin TQFP Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v5.1 3-5 SX-A Family FPGAs 100-TQFP 100-TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 1 GND GND GND 36 GND GND GND 2 TDI, I/O TDI, I/O TDI, I/O 37 NC NC NC 3 I/O I/O I/O 38 I/O I/O I/O 4 I/O I/O I/O 39 HCLK HCLK HCLK 5 I/O I/O I/O 40 I/O I/O I/O 6 I/O I/O I/O 41 I/O I/O I/O 7 TMS TMS TMS 42 I/O I/O I/O 8 VCCI VCCI VCCI 43 I/O I/O I/O 9 GND GND GND 44 VCCI VCCI VCCI 10 I/O I/O I/O 45 I/O I/O I/O 11 I/O I/O I/O 46 I/O I/O I/O 12 I/O I/O I/O 47 I/O I/O I/O 13 I/O I/O I/O 48 I/O I/O I/O 14 I/O I/O I/O 49 TDO, I/O TDO, I/O TDO, I/O 15 I/O I/O I/O 50 I/O I/O I/O 16 TRST, I/O TRST, I/O TRST, I/O 51 GND GND GND 17 I/O I/O I/O 52 I/O I/O I/O 18 I/O I/O I/O 53 I/O I/O I/O 19 I/O I/O I/O 54 I/O I/O I/O 20 VCCI VCCI VCCI 55 I/O I/O I/O 21 I/O I/O I/O 56 I/O I/O I/O 22 I/O I/O I/O 57 VCCA VCCA VCCA 23 I/O I/O I/O 58 VCCI VCCI VCCI 24 I/O I/O I/O 59 I/O I/O I/O 25 I/O I/O I/O 60 I/O I/O I/O 26 I/O I/O I/O 61 I/O I/O I/O 27 I/O I/O I/O 62 I/O I/O I/O 28 I/O I/O I/O 63 I/O I/O I/O 29 I/O I/O I/O 64 I/O I/O I/O 30 I/O I/O I/O 65 I/O I/O I/O 31 I/O I/O I/O 66 I/O I/O I/O 32 I/O I/O I/O 67 VCCA VCCA VCCA 33 I/O I/O I/O 68 GND GND GND 34 PRB, I/O PRB, I/O PRB, I/O 69 GND GND GND 35 VCCA VCCA VCCA 70 I/O I/O I/O 3 -6 v5.1 SX-A Family FPGAs 100-TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 71 I/O I/O I/O 72 I/O I/O I/O 73 I/O I/O I/O 74 I/O I/O I/O 75 I/O I/O I/O 76 I/O I/O I/O 77 I/O I/O I/O 78 I/O I/O I/O 79 I/O I/O I/O 80 I/O I/O I/O 81 I/O I/O I/O 82 VCCI VCCI VCCI 83 I/O I/O I/O 84 I/O I/O I/O 85 I/O I/O I/O 86 I/O I/O I/O 87 CLKA CLKA CLKA 88 CLKB CLKB CLKB 89 NC NC NC 90 VCCA VCCA VCCA 91 GND GND GND 92 PRA, I/O PRA, I/O PRA, I/O 93 I/O I/O I/O 94 I/O I/O I/O 95 I/O I/O I/O 96 I/O I/O I/O 97 I/O I/O I/O 98 I/O I/O I/O 99 I/O I/O I/O 100 TCK, I/O TCK, I/O TCK, I/O v5.1 3-7 SX-A Family FPGAs 144-Pin TQFP 144 1 144-Pin TQFP Figure 3-3 • 144-Pin TQFP (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 3 -8 v5.1 SX-A Family FPGAs 144-Pin TQFP 144-Pin TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 1 GND GND GND 38 I/O I/O I/O 2 TDI, I/O TDI, I/O TDI, I/O 39 I/O I/O I/O 3 I/O I/O I/O 40 I/O I/O I/O 4 I/O I/O I/O 41 I/O I/O I/O 5 I/O I/O I/O 42 I/O I/O I/O 6 I/O I/O I/O 43 I/O I/O I/O 7 I/O I/O I/O 44 VCCI VCCI VCCI 8 I/O I/O I/O 45 I/O I/O I/O 9 TMS TMS TMS 46 I/O I/O I/O 10 VCCI VCCI VCCI 47 I/O I/O I/O 11 GND GND GND 48 I/O I/O I/O 12 I/O I/O I/O 49 I/O I/O I/O 13 I/O I/O I/O 50 I/O I/O I/O 14 I/O I/O I/O 51 I/O I/O I/O 15 I/O I/O I/O 52 I/O I/O I/O 16 I/O I/O I/O 53 I/O I/O I/O 17 I/O I/O I/O 54 PRB, I/O PRB, I/O PRB, I/O 18 I/O I/O I/O 55 I/O I/O I/O 19 NC NC NC 56 VCCA VCCA VCCA 20 VCCA VCCA VCCA 57 GND GND GND 21 I/O I/O I/O 58 NC NC NC 22 TRST, I/O TRST, I/O TRST, I/O 59 I/O I/O I/O 23 I/O I/O I/O 60 HCLK HCLK HCLK 24 I/O I/O I/O 61 I/O I/O I/O 25 I/O I/O I/O 62 I/O I/O I/O 26 I/O I/O I/O 63 I/O I/O I/O 27 I/O I/O I/O 64 I/O I/O I/O 28 GND GND GND 65 I/O I/O I/O 29 VCCI VCCI VCCI 66 I/O I/O I/O 30 VCCA VCCA VCCA 67 I/O I/O I/O 31 I/O I/O I/O 68 VCCI VCCI VCCI 32 I/O I/O I/O 69 I/O I/O I/O 33 I/O I/O I/O 70 I/O I/O I/O 34 I/O I/O I/O 71 TDO, I/O TDO, I/O TDO, I/O 35 I/O I/O I/O 72 I/O I/O I/O 36 GND GND GND 73 GND GND GND 37 I/O I/O I/O 74 I/O I/O I/O v5.1 3-9 SX-A Family FPGAs 144-Pin TQFP 144-Pin TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 75 I/O I/O I/O 111 I/O I/O I/O 76 I/O I/O I/O 112 I/O I/O I/O 77 I/O I/O I/O 113 I/O I/O I/O 78 I/O I/O I/O 114 I/O I/O I/O 79 VCCA VCCA VCCA 115 VCCI VCCI VCCI 80 VCCI VCCI VCCI 116 I/O I/O I/O 81 GND GND GND 117 I/O I/O I/O 82 I/O I/O I/O 118 I/O I/O I/O 83 I/O I/O I/O 119 I/O I/O I/O 84 I/O I/O I/O 120 I/O I/O I/O 85 I/O I/O I/O 121 I/O I/O I/O 86 I/O I/O I/O 122 I/O I/O I/O 87 I/O I/O I/O 123 I/O I/O I/O 88 I/O I/O I/O 124 I/O I/O I/O 89 VCCA VCCA VCCA 125 CLKA CLKA CLKA 90 NC NC NC 126 CLKB CLKB CLKB 91 I/O I/O I/O 127 NC NC NC 92 I/O I/O I/O 128 GND GND GND 93 I/O I/O I/O 129 VCCA VCCA VCCA 94 I/O I/O I/O 130 I/O I/O I/O 95 I/O I/O I/O 131 PRA, I/O PRA, I/O PRA, I/O 96 I/O I/O I/O 132 I/O I/O I/O 97 I/O I/O I/O 133 I/O I/O I/O 98 VCCA VCCA VCCA 134 I/O I/O I/O 99 GND GND GND 135 I/O I/O I/O 100 I/O I/O I/O 136 I/O I/O I/O 101 GND GND GND 137 I/O I/O I/O 102 VCCI VCCI VCCI 138 I/O I/O I/O 103 I/O I/O I/O 139 I/O I/O I/O 104 I/O I/O I/O 140 VCCI VCCI VCCI 105 I/O I/O I/O 141 I/O I/O I/O 106 I/O I/O I/O 142 I/O I/O I/O 107 I/O I/O I/O 143 I/O I/O I/O 108 I/O I/O I/O 144 TCK, I/O TCK, I/O TCK, I/O 109 GND GND GND 110 I/O I/O I/O 3 -1 0 v5.1 SX-A Family FPGAs 176-Pin TQFP 1 176 176-Pin TQFP Figure 3-4 • 176-Pin TQFP (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v5.1 3-11 SX-A Family FPGAs 176-Pin TQFP 176-Pin TQFP 176-Pin TQFP 176-Pin TQFP Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function 1 GND 37 I/O 73 I/O 109 VCCA 2 TDI, I/O 38 I/O 74 I/O 110 GND 3 I/O 39 I/O 75 I/O 111 I/O 4 I/O 40 I/O 76 I/O 112 I/O 5 I/O 41 I/O 77 I/O 113 I/O 6 I/O 42 I/O 78 I/O 114 I/O 7 I/O 43 I/O 79 I/O 115 I/O 8 I/O 44 GND 80 I/O 116 I/O 9 I/O 45 I/O 81 I/O 117 I/O 10 TMS 46 I/O 82 VCCI 118 I/O 11 VCCI 47 I/O 83 I/O 119 I/O 12 I/O 48 I/O 84 I/O 120 I/O 13 I/O 49 I/O 85 I/O 121 I/O 14 I/O 50 I/O 86 I/O 122 VCCA 15 I/O 51 I/O 87 TDO, I/O 123 GND 16 I/O 52 VCCI 88 I/O 124 VCCI 17 I/O 53 I/O 89 GND 125 I/O 18 I/O 54 I/O 90 I/O 126 I/O 19 I/O 55 I/O 91 I/O 127 I/O 20 I/O 56 I/O 92 I/O 128 I/O 21 GND 57 I/O 93 I/O 129 I/O 22 VCCA 58 I/O 94 I/O 130 I/O 23 GND 59 I/O 95 I/O 131 I/O 24 I/O 60 I/O 96 I/O 132 I/O 25 TRST, I/O 61 I/O 97 I/O 133 GND 26 I/O 62 I/O 98 VCCA 134 I/O 27 I/O 63 I/O 99 VCCI 135 I/O 28 I/O 64 PRB, I/O 100 I/O 136 I/O 29 I/O 65 GND 101 I/O 137 I/O 30 I/O 66 VCCA 102 I/O 138 I/O 31 I/O 67 NC 103 I/O 139 I/O 32 VCCI 68 I/O 104 I/O 140 VCCI 33 VCCA 69 HCLK 105 I/O 141 I/O 34 I/O 70 I/O 106 I/O 142 I/O 35 I/O 71 I/O 107 I/O 143 I/O 36 I/O 72 I/O 108 GND 144 I/O 3 -1 2 v5.1 SX-A Family FPGAs 176-Pin TQFP Pin Number A54SX32A Function 145 I/O 146 I/O 147 I/O 148 I/O 149 I/O 150 I/O 151 I/O 152 CLKA 153 CLKB 154 NC 155 GND 156 VCCA 157 PRA, I/O 158 I/O 159 I/O 160 I/O 161 I/O 162 I/O 163 I/O 164 I/O 165 I/O 166 I/O 167 I/O 168 I/O 169 VCCI 170 I/O 171 I/O 172 I/O 173 I/O 174 I/O 175 I/O 176 TCK, I/O v5.1 3-13 SX-A Family FPGAs 329-Pin PBGA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 A B C D E F G H J K L M N P R T U V W Y AA AB AC Figure 3-5 • 329-Pin PBGA (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 3 -1 4 v5.1 SX-A Family FPGAs 329-Pin PBGA 329-Pin PBGA 329-Pin PBGA 329-Pin PBGA Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function A1 GND AA15 I/O AC6 I/O B20 I/O A2 GND AA16 I/O AC7 I/O B21 I/O A3 VCCI AA17 I/O AC8 I/O B22 GND A4 NC AA18 I/O AC9 VCCI B23 VCCI A5 I/O AA19 I/O AC10 I/O C1 NC A6 I/O AA20 TDO, I/O AC11 I/O C2 TDI, I/O A7 VCCI AA21 VCCI AC12 I/O C3 GND A8 NC AA22 I/O AC13 I/O C4 I/O A9 I/O AA23 VCCI AC14 I/O C5 I/O A10 I/O AB1 I/O AC15 NC C6 I/O A11 I/O AB2 GND AC16 I/O C7 I/O A12 I/O AB3 I/O AC17 I/O C8 I/O A13 CLKB AB4 I/O AC18 I/O C9 I/O A14 I/O AB5 I/O AC19 I/O C10 I/O A15 I/O AB6 I/O AC20 I/O C11 I/O A16 I/O AB7 I/O AC21 NC C12 I/O A17 I/O AB8 I/O AC22 VCCI C13 I/O A18 I/O AB9 I/O AC23 GND C14 I/O A19 I/O AB10 I/O B1 VCCI C15 I/O A20 I/O AB11 PRB, I/O B2 GND C16 I/O A21 NC AB12 I/O B3 I/O C17 I/O A22 VCCI AB13 HCLK B4 I/O C18 I/O A23 GND AB14 I/O B5 I/O C19 I/O AA1 VCCI AB15 I/O B6 I/O C20 I/O AA2 I/O AB16 I/O B7 I/O C21 VCCI AA3 GND AB17 I/O B8 I/O C22 GND AA4 I/O AB18 I/O B9 I/O C23 NC AA5 I/O AB19 I/O B10 I/O D1 I/O AA6 I/O AB20 I/O B11 I/O D2 I/O AA7 I/O AB21 I/O B12 PRA, I/O D3 I/O AA8 I/O AB22 GND B13 CLKA D4 TCK, I/O AA9 I/O AB23 I/O B14 I/O D5 I/O AA10 I/O AC1 GND B15 I/O D6 I/O AA11 I/O AC2 VCCI B16 I/O D7 I/O AA12 I/O AC3 NC B17 I/O D8 I/O AA13 I/O AC4 I/O B18 I/O D9 I/O AA14 I/O AC5 I/O B19 I/O D10 I/O v5.1 3-15 SX-A Family FPGAs 329-Pin PBGA 329-Pin PBGA 329-Pin PBGA 329-Pin PBGA Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function Pin Number A54SX32A Function D11 VCCA H1 I/O L14 GND P12 GND D12 NC H2 I/O L20 NC P13 GND D13 I/O H3 I/O L21 I/O P14 GND D14 I/O H4 I/O L22 I/O P20 I/O D15 I/O H20 VCCA L23 NC P21 I/O D16 I/O H21 I/O M1 I/O P22 I/O D17 I/O H22 I/O M2 I/O P23 I/O D18 I/O H23 I/O M3 I/O R1 I/O D19 I/O J1 NC M4 VCCA R2 I/O D20 I/O J2 I/O M10 GND R3 I/O D21 I/O J3 I/O M11 GND R4 I/O D22 I/O J4 I/O M12 GND R20 I/O D23 I/O J20 I/O M13 GND R21 I/O E1 VCCI J21 I/O M14 GND R22 I/O E2 I/O J22 I/O M20 VCCA R23 I/O E3 I/O J23 I/O M21 I/O T1 I/O E4 I/O K1 I/O M22 I/O T2 I/O E20 I/O K2 I/O M23 VCCI T3 I/O E21 I/O K3 I/O N1 I/O T4 I/O E22 I/O K4 I/O N2 TRST, I/O T20 I/O E23 I/O K10 GND N3 I/O T21 I/O F1 I/O K11 GND N4 I/O T22 I/O F2 TMS K12 GND N10 GND T23 I/O F3 I/O K13 GND N11 GND U1 I/O F4 I/O K14 GND N12 GND U2 I/O F20 I/O K20 I/O N13 GND U3 VCCA F21 I/O K21 I/O N14 GND U4 I/O F22 I/O K22 I/O N20 NC U20 I/O F23 I/O K23 I/O N21 I/O U21 VCCA G1 I/O L1 I/O N22 I/O U22 I/O G2 I/O L2 I/O N23 I/O U23 I/O G3 I/O L3 I/O P1 I/O V1 VCCI G4 I/O L4 NC P2 I/O V2 I/O G20 I/O L10 GND P3 I/O V3 I/O G21 I/O L11 GND P4 I/O V4 I/O G22 I/O L12 GND P10 GND V20 I/O G23 GND L13 GND P11 GND V21 I/O 3 -1 6 v5.1 SX-A Family FPGAs 329-Pin PBGA Pin Number A54SX32A Function V22 I/O V23 I/O W1 I/O W2 I/O W3 I/O W4 I/O W20 I/O W21 I/O W22 I/O W23 NC Y1 NC Y2 I/O Y3 I/O Y4 GND Y5 I/O Y6 I/O Y7 I/O Y8 I/O Y9 I/O Y10 I/O Y11 I/O Y12 VCCA Y13 NC Y14 I/O Y15 I/O Y16 I/O Y17 I/O Y18 I/O Y19 I/O Y20 GND Y21 I/O Y22 I/O Y23 I/O v5.1 3-17 SX-A Family FPGAs 144-Pin FBGA 1 2 3 4 5 6 7 8 9 10 11 A B C D E F G H J K L M Figure 3-6 • 144-Pin FBGA (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 3 -1 8 v5.1 12 SX-A Family FPGAs 144-Pin FBGA 144-Pin FBGA Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function A1 I/O I/O I/O D1 I/O I/O I/O A2 I/O I/O I/O D2 VCCI VCCI VCCI A3 I/O I/O I/O D3 TDI, I/O TDI, I/O TDI, I/O A4 I/O I/O I/O D4 I/O I/O I/O A5 VCCA VCCA VCCA D5 I/O I/O I/O A6 GND GND GND D6 I/O I/O I/O A7 CLKA CLKA CLKA D7 I/O I/O I/O A8 I/O I/O I/O D8 I/O I/O I/O A9 I/O I/O I/O D9 I/O I/O I/O A10 I/O I/O I/O D10 I/O I/O I/O A11 I/O I/O I/O D11 I/O I/O I/O A12 I/O I/O I/O D12 I/O I/O I/O B1 I/O I/O I/O E1 I/O I/O I/O B2 GND GND GND E2 I/O I/O I/O B3 I/O I/O I/O E3 I/O I/O I/O B4 I/O I/O I/O E4 I/O I/O I/O B5 I/O I/O I/O E5 TMS TMS TMS B6 I/O I/O I/O E6 VCCI VCCI VCCI B7 CLKB CLKB CLKB E7 VCCI VCCI VCCI B8 I/O I/O I/O E8 VCCI VCCI VCCI B9 I/O I/O I/O E9 VCCA VCCA VCCA B10 I/O I/O I/O E10 I/O I/O I/O B11 GND GND GND E11 GND GND GND B12 I/O I/O I/O E12 I/O I/O I/O C1 I/O I/O I/O F1 I/O I/O I/O C2 I/O I/O I/O F2 I/O I/O I/O C3 TCK, I/O TCK, I/O TCK, I/O F3 NC NC NC C4 I/O I/O I/O F4 I/O I/O I/O C5 I/O I/O I/O F5 GND GND GND C6 PRA, I/O PRA, I/O PRA, I/O F6 GND GND GND C7 I/O I/O I/O F7 GND GND GND C8 I/O I/O I/O F8 VCCI VCCI VCCI C9 I/O I/O I/O F9 I/O I/O I/O C10 I/O I/O I/O F10 GND GND GND C11 I/O I/O I/O F11 I/O I/O I/O C12 I/O I/O I/O F12 I/O I/O I/O v5.1 3-19 SX-A Family FPGAs 144-Pin FBGA 144-Pin FBGA Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function G1 I/O I/O I/O K1 I/O I/O I/O G2 GND GND GND K2 I/O I/O I/O G3 I/O I/O I/O K3 I/O I/O I/O G4 I/O I/O I/O K4 I/O I/O I/O G5 GND GND GND K5 I/O I/O I/O G6 GND GND GND K6 I/O I/O I/O G7 GND GND GND K7 GND GND GND G8 VCCI VCCI VCCI K8 I/O I/O I/O G9 I/O I/O I/O K9 I/O I/O I/O G10 I/O I/O I/O K10 GND GND GND G11 I/O I/O I/O K11 I/O I/O I/O G12 I/O I/O I/O K12 I/O I/O I/O H1 TRST, I/O TRST, I/O TRST, I/O L1 GND GND GND H2 I/O I/O I/O L2 I/O I/O I/O H3 I/O I/O I/O L3 I/O I/O I/O H4 I/O I/O I/O L4 I/O I/O I/O H5 VCCA VCCA VCCA L5 I/O I/O I/O H6 VCCA VCCA VCCA L6 I/O I/O I/O H7 VCCI VCCI VCCI L7 HCLK HCLK HCLK H8 VCCI VCCI VCCI L8 I/O I/O I/O H9 VCCA VCCA VCCA L9 I/O I/O I/O H10 I/O I/O I/O L10 I/O I/O I/O H11 I/O I/O I/O L11 I/O I/O I/O H12 NC NC NC L12 I/O I/O I/O J1 I/O I/O I/O M1 I/O I/O I/O J2 I/O I/O I/O M2 I/O I/O I/O J3 I/O I/O I/O M3 I/O I/O I/O J4 I/O I/O I/O M4 I/O I/O I/O J5 I/O I/O I/O M5 I/O I/O I/O J6 PRB, I/O PRB, I/O PRB, I/O M6 I/O I/O I/O J7 I/O I/O I/O M7 VCCA VCCA VCCA J8 I/O I/O I/O M8 I/O I/O I/O J9 I/O I/O I/O M9 I/O I/O I/O J10 I/O I/O I/O M10 I/O I/O I/O J11 I/O I/O I/O M11 TDO, I/O TDO, I/O TDO, I/O J12 VCCA VCCA VCCA M12 I/O I/O I/O 3 -2 0 v5.1 SX-A Family FPGAs 256-Pin FBGA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H J K L M N P R T Figure 3-7 • 256-Pin FBGA (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v5.1 3-21 SX-A Family FPGAs 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function A1 GND GND GND C6 I/O I/O I/O A2 TCK, I/O TCK, I/O TCK, I/O C7 I/O I/O I/O A3 I/O I/O I/O C8 I/O I/O I/O A4 I/O I/O I/O C9 CLKA CLKA CLKA A5 I/O I/O I/O C10 I/O I/O I/O A6 I/O I/O I/O C11 I/O I/O I/O A7 I/O I/O I/O C12 I/O I/O I/O A8 I/O I/O I/O C13 I/O I/O I/O A9 CLKB CLKB CLKB C14 I/O I/O I/O A10 I/O I/O I/O C15 I/O I/O I/O A11 I/O I/O I/O C16 I/O I/O I/O A12 NC I/O I/O D1 I/O I/O I/O A13 I/O I/O I/O D2 I/O I/O I/O A14 I/O I/O I/O D3 I/O I/O I/O A15 GND GND GND D4 I/O I/O I/O A16 GND GND GND D5 I/O I/O I/O B1 I/O I/O I/O D6 I/O I/O I/O B2 GND GND GND D7 I/O I/O I/O B3 I/O I/O I/O D8 PRA, I/O PRA, I/O PRA, I/O B4 I/O I/O I/O D9 I/O I/O QCLKD B5 I/O I/O I/O D10 I/O I/O I/O B6 NC I/O I/O D11 NC I/O I/O B7 I/O I/O I/O D12 I/O I/O I/O B8 VCCA VCCA VCCA D13 I/O I/O I/O B9 I/O I/O I/O D14 I/O I/O I/O B10 I/O I/O I/O D15 I/O I/O I/O B11 NC I/O I/O D16 I/O I/O I/O B12 I/O I/O I/O E1 I/O I/O I/O B13 I/O I/O I/O E2 I/O I/O I/O B14 I/O I/O I/O E3 I/O I/O I/O B15 GND GND GND E4 I/O I/O I/O B16 I/O I/O I/O E5 I/O I/O I/O C1 I/O I/O I/O E6 I/O I/O I/O C2 TDI, I/O TDI, I/O TDI, I/O E7 I/O I/O QCLKC C3 GND GND GND E8 I/O I/O I/O C4 I/O I/O I/O E9 I/O I/O I/O C5 NC I/O I/O E10 I/O I/O I/O 3 -2 2 v5.1 SX-A Family FPGAs 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function E11 I/O I/O I/O G16 I/O I/O I/O E12 I/O I/O I/O H1 I/O I/O I/O E13 NC I/O I/O H2 I/O I/O I/O E14 I/O I/O I/O H3 VCCA VCCA VCCA E15 I/O I/O I/O H4 TRST, I/O TRST, I/O TRST, I/O E16 I/O I/O I/O H5 I/O I/O I/O F1 I/O I/O I/O H6 VCCI VCCI VCCI F2 I/O I/O I/O H7 GND GND GND F3 I/O I/O I/O H8 GND GND GND F4 TMS TMS TMS H9 GND GND GND F5 I/O I/O I/O H10 GND GND GND F6 I/O I/O I/O H11 VCCI VCCI VCCI F7 VCCI VCCI VCCI H12 I/O I/O I/O F8 VCCI VCCI VCCI H13 I/O I/O I/O F9 VCCI VCCI VCCI H14 I/O I/O I/O F10 VCCI VCCI VCCI H15 I/O I/O I/O F11 I/O I/O I/O H16 NC I/O I/O F12 VCCA VCCA VCCA J1 NC I/O I/O F13 I/O I/O I/O J2 NC I/O I/O F14 I/O I/O I/O J3 NC I/O I/O F15 I/O I/O I/O J4 I/O I/O I/O F16 I/O I/O I/O J5 I/O I/O I/O G1 NC I/O I/O J6 VCCI VCCI VCCI G2 I/O I/O I/O J7 GND GND GND G3 NC I/O I/O J8 GND GND GND G4 I/O I/O I/O J9 GND GND GND G5 I/O I/O I/O J10 GND GND GND G6 VCCI VCCI VCCI J11 VCCI VCCI VCCI G7 GND GND GND J12 I/O I/O I/O G8 GND GND GND J13 I/O I/O I/O G9 GND GND GND J14 I/O I/O I/O G10 GND GND GND J15 I/O I/O I/O G11 VCCI VCCI VCCI J16 I/O I/O I/O G12 I/O I/O I/O K1 I/O I/O I/O G13 GND GND GND K2 I/O I/O I/O G14 NC I/O I/O K3 NC I/O I/O G15 VCCA VCCA VCCA K4 VCCA VCCA VCCA v5.1 3-23 SX-A Family FPGAs 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function K5 I/O I/O I/O M10 I/O I/O I/O K6 VCCI VCCI VCCI M11 I/O I/O I/O K7 GND GND GND M12 NC I/O I/O K8 GND GND GND M13 I/O I/O I/O K9 GND GND GND M14 NC I/O I/O K10 GND GND GND M15 I/O I/O I/O K11 VCCI VCCI VCCI M16 I/O I/O I/O K12 I/O I/O I/O N1 I/O I/O I/O K13 I/O I/O I/O N2 I/O I/O I/O K14 I/O I/O I/O N3 I/O I/O I/O K15 NC I/O I/O N4 I/O I/O I/O K16 I/O I/O I/O N5 I/O I/O I/O L1 I/O I/O I/O N6 I/O I/O I/O L2 I/O I/O I/O N7 I/O I/O I/O L3 I/O I/O I/O N8 I/O I/O I/O L4 I/O I/O I/O N9 I/O I/O I/O L5 I/O I/O I/O N10 I/O I/O I/O L6 I/O I/O I/O N11 I/O I/O I/O L7 VCCI VCCI VCCI N12 I/O I/O I/O L8 VCCI VCCI VCCI N13 I/O I/O I/O L9 VCCI VCCI VCCI N14 I/O I/O I/O L10 VCCI VCCI VCCI N15 I/O I/O I/O L11 I/O I/O I/O N16 I/O I/O I/O L12 I/O I/O I/O P1 I/O I/O I/O L13 I/O I/O I/O P2 GND GND GND L14 I/O I/O I/O P3 I/O I/O I/O L15 I/O I/O I/O P4 I/O I/O I/O L16 NC I/O I/O P5 NC I/O I/O M1 I/O I/O I/O P6 I/O I/O I/O M2 I/O I/O I/O P7 I/O I/O I/O M3 I/O I/O I/O P8 I/O I/O I/O M4 I/O I/O I/O P9 I/O I/O I/O M5 I/O I/O I/O P10 NC I/O I/O M6 I/O I/O I/O P11 I/O I/O I/O M7 I/O I/O QCLKA P12 I/O I/O I/O M8 PRB, I/O PRB, I/O PRB, I/O P13 VCCA VCCA VCCA M9 I/O I/O I/O P14 I/O I/O I/O 3 -2 4 v5.1 SX-A Family FPGAs 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function P15 I/O I/O I/O P16 I/O I/O I/O R1 I/O I/O I/O R2 GND GND GND R3 I/O I/O I/O R4 NC I/O I/O R5 I/O I/O I/O R6 I/O I/O I/O R7 I/O I/O I/O R8 I/O I/O I/O R9 HCLK HCLK HCLK R10 I/O I/O QCLKB R11 I/O I/O I/O R12 I/O I/O I/O R13 I/O I/O I/O R14 I/O I/O I/O R15 GND GND GND R16 GND GND GND T1 GND GND GND T2 I/O I/O I/O T3 I/O I/O I/O T4 NC I/O I/O T5 I/O I/O I/O T6 I/O I/O I/O T7 I/O I/O I/O T8 I/O I/O I/O T9 VCCA VCCA VCCA T10 I/O I/O I/O T11 I/O I/O I/O T12 NC I/O I/O T13 I/O I/O I/O T14 I/O I/O I/O T15 TDO, I/O TDO, I/O TDO, I/O T16 GND GND GND v5.1 3-25 SX-A Family FPGAs 484-Pin FBGA 1 2 3 4 5 6 7 8 9 10 11121314 15161718 19 20212223 242526 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF Figure 3-8 • 484-Pin FBGA (Top View) Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 3 -2 6 v5.1 SX-A Family FPGAs 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function A1 NC* NC AA26 NC* I/O AC9 I/O I/O A2 NC* NC AB1 NC* NC AC10 I/O I/O A3 NC* I/O AB2 VCCI VCCI AC11 I/O I/O A4 NC* I/O AB3 I/O I/O AC12 I/O QCLKA A5 NC* I/O AB4 I/O I/O AC13 I/O I/O A6 I/O I/O AB5 NC* I/O AC14 I/O I/O A7 I/O I/O AB6 I/O I/O AC15 I/O I/O A8 I/O I/O AB7 I/O I/O AC16 I/O I/O A9 I/O I/O AB8 I/O I/O AC17 I/O I/O A10 I/O I/O AB9 I/O I/O AC18 I/O I/O A11 NC* I/O AB10 I/O I/O AC19 I/O I/O A12 NC* I/O AB11 I/O I/O AC20 VCCI VCCI A13 I/O I/O AB12 PRB, I/O PRB, I/O AC21 I/O I/O A14 NC* NC AB13 VCCA VCCA AC22 I/O I/O A15 NC* I/O AB14 I/O I/O AC23 NC* I/O A16 NC* I/O AB15 I/O I/O AC24 I/O I/O A17 I/O I/O AB16 I/O I/O AC25 NC* I/O A18 I/O I/O AB17 I/O I/O AC26 NC* I/O A19 I/O I/O AB18 I/O I/O AD1 I/O I/O A20 I/O I/O AB19 I/O I/O AD2 I/O I/O A21 NC* I/O AB20 TDO, I/O TDO, I/O AD3 GND GND A22 NC* I/O AB21 GND GND AD4 I/O I/O A23 NC* I/O AB22 NC* I/O AD5 I/O I/O A24 NC* I/O AB23 I/O I/O AD6 I/O I/O A25 NC* NC AB24 I/O I/O AD7 I/O I/O A26 NC* NC AB25 NC* I/O AD8 I/O I/O AA1 NC* I/O AB26 NC* I/O AD9 VCCI VCCI AA2 NC* I/O AC1 I/O I/O AD10 I/O I/O AA3 VCCA VCCA AC2 I/O I/O AD11 I/O I/O AA4 I/O I/O AC3 I/O I/O AD12 I/O I/O AA5 I/O I/O AC4 NC* I/O AD13 VCCI VCCI AA22 I/O I/O AC5 VCCI VCCI AD14 I/O I/O AA23 I/O I/O AC6 I/O I/O AD15 I/O I/O AA24 I/O I/O AC7 VCCI VCCI AD16 I/O I/O AA25 NC* I/O AC8 I/O I/O AD17 VCCI VCCI Note: *These pins must be left floating on the A54SX32A device. v5.1 3 -27 SX-A Family FPGAs 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function AD18 I/O I/O AF1 NC* NC B10 I/O I/O AD19 I/O I/O AF2 NC* NC B11 NC* I/O AD20 I/O I/O AF3 NC I/O B12 NC* I/O AD21 I/O I/O AF4 NC* I/O B13 VCCI VCCI AD22 I/O I/O AF5 NC* I/O B14 CLKA CLKA AD23 VCCI VCCI AF6 NC* I/O B15 NC* I/O AD24 NC* I/O AF7 I/O I/O B16 NC* I/O AD25 NC* I/O AF8 I/O I/O B17 I/O I/O AD26 NC* I/O AF9 I/O I/O B18 VCCI VCCI AE1 NC* NC AF10 I/O I/O B19 I/O I/O AE2 I/O I/O AF11 NC* I/O B20 I/O I/O AE3 NC* I/O AF12 NC* NC B21 NC* I/O AE4 NC* I/O AF13 HCLK HCLK B22 NC* I/O AE5 NC* I/O AF14 I/O QCLKB B23 NC* I/O AE6 NC* I/O AF15 NC* I/O B24 NC* I/O AE7 I/O I/O AF16 NC* I/O B25 I/O I/O AE8 I/O I/O AF17 I/O I/O B26 NC* NC AE9 I/O I/O AF18 I/O I/O C1 NC* I/O AE10 I/O I/O AF19 I/O I/O C2 NC* I/O AE11 NC* I/O AF20 NC* I/O C3 NC* I/O AE12 I/O I/O AF21 NC* I/O C4 NC* I/O AE13 I/O I/O AF22 NC* I/O C5 I/O I/O AE14 I/O I/O AF23 NC* I/O C6 VCCI VCCI AE15 NC* I/O AF24 NC* I/O C7 I/O I/O AE16 NC* I/O AF25 NC* NC C8 I/O I/O AE17 I/O I/O AF26 NC* NC C9 VCCI VCCI AE18 I/O I/O B1 NC* NC C10 I/O I/O AE19 I/O I/O B2 NC* NC C11 I/O I/O AE20 I/O I/O B3 NC* I/O C12 I/O I/O AE21 NC* I/O B4 NC* I/O C13 PRA, I/O PRA, I/O AE22 NC* I/O B5 NC* I/O C14 I/O I/O AE23 NC* I/O B6 I/O I/O C15 I/O QCLKD AE24 NC* I/O B7 I/O I/O C16 I/O I/O AE25 NC* NC B8 I/O I/O C17 I/O I/O AE26 NC* NC B9 I/O I/O C18 I/O I/O Note: 3 -2 8 *These pins must be left floating on the A54SX32A device. v5.1 SX-A Family FPGAs 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function C19 I/O I/O E2 NC* I/O G1 NC* I/O C20 VCCI VCCI E3 I/O I/O G2 NC* I/O C21 I/O I/O E4 I/O I/O G3 NC* I/O C22 I/O I/O E5 GND GND G4 I/O I/O C23 I/O I/O E6 TDI, IO TDI, IO G5 I/O I/O C24 I/O I/O E7 I/O I/O G22 I/O I/O C25 NC* I/O E8 I/O I/O G23 VCCA VCCA C26 NC* I/O E9 I/O I/O G24 I/O I/O D1 NC* I/O E10 I/O I/O G25 NC* I/O D2 TMS TMS E11 I/O I/O G26 NC* I/O D3 I/O I/O E12 I/O I/O H1 NC* I/O D4 VCCI VCCI E13 VCCA VCCA H2 NC* I/O D5 NC* I/O E14 CLKB CLKB H3 I/O I/O D6 TCK, I/O TCK, I/O E15 I/O I/O H4 I/O I/O D7 I/O I/O E16 I/O I/O H5 I/O I/O D8 I/O I/O E17 I/O I/O H22 I/O I/O D9 I/O I/O E18 I/O I/O H23 I/O I/O D10 I/O I/O E19 I/O I/O H24 I/O I/O D11 I/O I/O E20 I/O I/O H25 NC* I/O D12 I/O QCLKC E21 I/O I/O H26 NC* I/O D13 I/O I/O E22 I/O I/O J1 NC* I/O D14 I/O I/O E23 I/O I/O J2 NC* I/O D15 I/O I/O E24 I/O I/O J3 I/O I/O D16 I/O I/O E25 VCCI VCCI J4 I/O I/O D17 I/O I/O E26 GND GND J5 I/O I/O D18 I/O I/O F1 VCCI VCCI J22 I/O I/O D19 I/O I/O F2 NC* I/O J23 I/O I/O D20 I/O I/O F3 NC* I/O J24 I/O I/O D21 VCCI VCCI F4 I/O I/O J25 VCCI VCCI D22 GND GND F5 I/O I/O J26 NC* I/O D23 I/O I/O F22 I/O I/O K1 I/O I/O D24 I/O I/O F23 I/O I/O K2 VCCI VCCI D25 NC* I/O F24 I/O I/O K3 I/O I/O D26 NC* I/O F25 I/O I/O K4 I/O I/O E1 NC* I/O F26 NC* I/O K5 VCCA VCCA Note: *These pins must be left floating on the A54SX32A device. v5.1 3 -29 SX-A Family FPGAs 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function K10 GND GND M5 I/O I/O P4 I/O I/O K11 GND GND M10 GND GND P5 VCCA VCCA K12 GND GND M11 GND GND P10 GND GND K13 GND GND M12 GND GND P11 GND GND K14 GND GND M13 GND GND P12 GND GND K15 GND GND M14 GND GND P13 GND GND K16 GND GND M15 GND GND P14 GND GND K17 GND GND M16 GND GND P15 GND GND K22 I/O I/O M17 GND GND P16 GND GND K23 I/O I/O M22 I/O I/O P17 GND GND K24 NC* NC M23 I/O I/O P22 I/O I/O K25 NC* I/O M24 I/O I/O P23 I/O I/O K26 NC* I/O M25 NC* I/O P24 VCCI VCCI L1 NC* I/O M26 NC* I/O P25 I/O I/O L2 NC* I/O N1 I/O I/O P26 I/O I/O L3 I/O I/O N2 VCCI VCCI R1 NC* I/O L4 I/O I/O N3 I/O I/O R2 NC* I/O L5 I/O I/O N4 I/O I/O R3 I/O I/O L10 GND GND N5 I/O I/O R4 I/O I/O L11 GND GND N10 GND GND R5 TRST, I/O TRST, I/O L12 GND GND N11 GND GND R10 GND GND L13 GND GND N12 GND GND R11 GND GND L14 GND GND N13 GND GND R12 GND GND L15 GND GND N14 GND GND R13 GND GND L16 GND GND N15 GND GND R14 GND GND L17 GND GND N16 GND GND R15 GND GND L22 I/O I/O N17 GND GND R16 GND GND L23 I/O I/O N22 VCCA VCCA R17 GND GND L24 I/O I/O N23 I/O I/O R22 I/O I/O L25 I/O I/O N24 I/O I/O R23 I/O I/O L26 I/O I/O N25 I/O I/O R24 I/O I/O M1 NC* NC N26 NC* NC R25 NC* I/O M2 I/O I/O P1 NC* I/O R26 NC* I/O M3 I/O I/O P2 NC* I/O T1 NC* I/O M4 I/O I/O P3 I/O I/O T2 NC* I/O Note: 3 -3 0 *These pins must be left floating on the A54SX32A device. v5.1 SX-A Family FPGAs 484-Pin FBGA 484-Pin FBGA Pin Number A54SX32A Function A54SX72A Function Pin Number A54SX32A Function A54SX72A Function T3 I/O I/O V2 NC* I/O T4 I/O I/O V3 I/O I/O T5 I/O I/O V4 I/O I/O T10 GND GND V5 I/O I/O T11 GND GND V22 VCCA VCCA T12 GND GND V23 I/O I/O T13 GND GND V24 I/O I/O T14 GND GND V25 NC* I/O T15 GND GND V26 NC* I/O T16 GND GND W1 I/O I/O T17 GND GND W2 I/O I/O T22 I/O I/O W3 I/O I/O T23 I/O I/O W4 I/O I/O T24 I/O I/O W5 I/O I/O T25 NC* I/O W22 I/O I/O T26 NC* I/O W23 VCCA VCCA U1 I/O I/O W24 I/O I/O U2 VCCI VCCI W25 NC* I/O U3 I/O I/O W26 NC* I/O U4 I/O I/O Y1 NC* I/O U5 I/O I/O Y2 NC* I/O U10 GND GND Y3 I/O I/O U11 GND GND Y4 I/O I/O U12 GND GND Y5 NC* I/O U13 GND GND Y22 I/O I/O U14 GND GND Y23 I/O I/O U15 GND GND Y24 VCCI VCCI U16 GND GND Y25 I/O I/O U17 GND GND Y26 I/O I/O U22 I/O I/O U23 I/O I/O U24 I/O I/O U25 VCCI VCCI U26 I/O I/O V1 NC* I/O Note: *These pins must be left floating on the A54SX32A device. v5.1 3 -31 SX-A Family FPGAs Datasheet Information List of Changes The following table lists critical changes that were made in the current version of the document. Previous Version Changes in Current Version (v5 . 1) v5.0 v4.0 Page Revised Table 1 and the timing data to reflect the phase out of the –3 speed grade for the A54SX08A device. The "Thermal Characteristics" section was updated. 2-11 The "176-Pin TQFP" was updated to add pins 81 to 90. 3-11 The "484-Pin FBGA" was updated to add pins R4 to Y26 3-26 The "Temperature Grade Offering" is new. 1-iii The "Speed Grade and Temperature Grade Matrix" is new. 1-iii "SX-A Family Architecture" was updated. 1-1 "Clock Resources" was updated. 1-5 "User Security" was updated. 1-7 "Power-Up/Down and Hot Swapping" was updated. 1-7 "Dedicated Mode" is new 1-9 Table 1-5 is new. 1-9 "JTAG Instructions" is new 1-10 "Design Considerations" was updated. 1-12 The "Programming" section is new. 1-13 "Design Environment" was updated. 1-13 "Pin Description" was updated. 1-14 Table 2-1 was updated. 2-1 Table 2-2 was updated. 2-1 Table 2-3 is new. 2-1 Table 2-4 is new. 2-1 Table 2-5 was updated. 2-2 Table 2-6 was updated. 2-2 "Power Dissipation" is new. 2-8 Table 2-11 was updated. 2-9 Table 2-12 was updated. 2-11 The was updated. 2-14 The "Sample Path Calculations" were updated. 2-14 Table 2-13 was updated. 2-17 v5.1 4-1 SX-A Family FPGAs Previous Version Changes in Current Version (v5 . 1) Page Table 2-13 was updated. 2-17 All timing tables were updated. v3.0 v2.0.1 2-18 to 2-52 The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and 1-i Design Theft" section was updated. The "Ordering Information" section was updated. 1-ii The "Temperature Grade Offering" section was updated. 1-iii The Figure 1-1 • SX-A Family Interconnect Elements was updated. 1-1 The “"Clock Resources" section“was updated 1-5 The Table 1-1 • SX-A Clock Resources is new. 1-5 The "User Security" section is new. 1-7 The "I/O Modules" section was updated. 1-7 The Table 1-2 • I/O Features was updated. 1-8 The Table 1-3 • I/O Characteristics for All I/O Configurations is new. 1-8 The Table 1-4 • Power-Up Time at which I/Os Become Active is new 1-8 The Figure 1-12 • Device Selection Wizard is new. 1-9 The "Boundary-Scan Pin Configurations and Functions" section is new. 1-9 The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new. 1-11 The "SX-A Probe Circuit Control Pins" section was updated. 1-12 The "Design Considerations" section was updated. 1-12 The Figure 1-13 • Probe Setup was updated. 1-12 The Design Environment was updated. 1-13 The Figure 1-13 • Design Flow is new. 1-11 The "Absolute Maximum Ratings*" section was updated. 1-12 The "Recommended Operating Conditions" section was updated. 1-12 The "Electrical Specifications" section was updated. 1-12 The "2.5V LVCMOS2 Electrical Specifications" section was updated. 1-13 The "SX-A Timing Model" and "Sample Path Calculations" equations were updated. 1-23 The "Pin Description" section was updated. 1-14 The "Design Environment" section has been updated. 1-13 The "I/O Modules" section, and Table 1-2 • I/O Features have been updated. 1-8 The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing 1-23 numbers. 4 -2 v5.1 SX-A Family FPGAs Datasheet Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information. Advanced This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. Unmarked (production) This datasheet version contains information that is considered to be final. Datasheet Supplement The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families. International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR) The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States. v5.1 4-3 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. www.actel.com Actel Corporation Actel Europe Ltd. Actel Japan www.jp.actel.com Actel Hong Kong www.actel.com.cn 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0) 1276 401 450 Fax +44 (0) 1276 401 490 EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 5172147-8/02.05