AOSMD AOD454 N-channel enhancement mode field effect transistor Datasheet

AOD454
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOD454 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in PWM, load
switching and general purpose applications. Standard
Product AOD454 is Pb-free (meets ROHS & Sony
259 specifications). AOD454L is a Green Product
ordering option. AOD454 and AOD454L are
electrically identical.
VDS (V) = 40V
ID = 12 A (VGS = 10V)
RDS(ON) < 33 mΩ (VGS = 10V)
RDS(ON) < 47 mΩ (VGS = 4.5V)
TO-252
D-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current G
C
C
Repetitive avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation B
TC=100°C
Power Dissipation A
TA=70°C
V
A
12
IAR
12
A
EAR
20
mJ
30
20
2
W
1.3
TJ, TSTG
°C
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
10
PDSM
Junction and Storage Temperature Range
Alpha & Omega Semiconductor, Ltd.
±20
ID
IDM
PD
TA=25°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A
Maximum Junction-to-Case B
Units
V
12
TC=100°C
Pulsed Drain Current
Avalanche Current
Maximum
40
RθJA
RθJC
Typ
17.4
50
4
Max
30
60
7.5
Units
°C/W
°C/W
°C/W
AOD454
Electrical Characteristics (TJ=25°C unless otherwise noted)
Parameter
Symbol
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
ID=10mA, VGS=0V
VDS=32V, VGS=0V
IDSS
Zero Gate Voltage Drain Current
IGSS
VGS(th)
ID(ON)
Gate-Body leakage current
Gate Threshold Voltage
On state drain current
RDS(ON)
Static Drain-Source On-Resistance
gFS
VSD
IS
VGS=4.5V, ID=6A
Forward Transconductance
VDS=5V, ID=12A
Diode Forward Voltage
IS=1A, VGS=0V
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qg(4.5V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
Qrr
Body Diode Reverse Recovery Charge
Min
Typ
Units
40
V
TJ=55°C
VDS=0V, VGS=±20V
VDS=VGS, ID=250µA
VGS=10V, VDS=5V
VGS=10V, ID=12A
1
30
TJ=125°C
VGS=0V, VDS=20V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=20V, ID=12A
VGS=10V, VDS=20V, RL=1.7Ω,
RGEN=3Ω
IF=12A, dI/dt=100A/µs
IF=12A, dI/dt=100A/µs
Max
2.3
1
5
±100
3
25
39
34
25
0.76
33
52
47
404
95
37
2.7
500
150
60
µA
nA
V
A
mΩ
mΩ
S
V
A
1
12
pF
pF
pF
Ω
9.2
4.5
1.6
2.6
3.5
6
13.2
3.5
nC
nC
nC
nC
ns
ns
ns
ns
22.9
18.3
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of T J(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
Rev 3: Jan. 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOD454
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
20
30
10V
5V
25
VDS=5V
4.5V
15
4V
ID(A)
ID (A)
20
15
10
125°C
10
5
VGS=3.5V
5
25°C
0
0
0
1
2
3
4
2
5
2.5
50
3.5
4
4.5
1.8
40
Normalized On-Resistance
45
RDS(ON) (mΩ)
3
VGS(Volts)
Figure 2: Transfer Characteristics
VDS (Volts)
Fig 1: On-Region Characteristics
VGS=4.5V
35
30
VGS=10V
25
VGS=10V
ID=12A
1.6
1.4
VGS=4.5V
ID=6A
1.2
1
20
0
4
8
12
16
20
0.8
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
0
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
100
1.0E+01
ID=12A
90
1.0E+00
80
70
125°C
1.0E-01
125°C
60
IS (A)
RDS(ON) (mΩ)
25
50
1.0E-02
25°C
1.0E-03
40
30
1.0E-04
25°C
20
1.0E-05
10
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOD454
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
700
10
Capacitance (pF)
VGS (Volts)
600
VDS=20V
ID=12A
8
6
4
Ciss
500
400
300
Coss
200
Crss
2
100
0
0
2
4
6
8
0
10
0
Qg (nC)
Figure 7: Gate-Charge Characteristics
100.0
10µs
15
20
25
30
35
VDS (Volts)
Figure 8: Capacitance Characteristics
160
ID (Amps)
1ms
10ms
1.0
40
TJ(Max)=175°C
TA=25°C
100µs
Power (W)
10.0
10
200
TJ(Max)=175°C, TA=25°C
RDS(ON)
limited
5
120
80
DC
40
0
0.1
0.1
1
10
100
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=7.5°C/W
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
0.1
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOD454
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
25
tA =
12
10
L ⋅ ID
BV − VDD
Power Dissipation (W)
ID(A), Peak Avalanche Current
14
8
6
4
TA=25°C
2
0
20
15
10
5
0
0.00001
0.0001
0.001
0
25
Time in avalanche, t A (s)
Figure 12: Single Pulse Avalanche capability
50
75
100
14
150
175
50
TA=25°C
12
40
10
Power (W)
Current rating ID(A)
125
TCASE (°C)
Figure 13: Power De-rating (Note B)
8
6
30
20
4
10
2
0
0
0
25
50
75
100
125
150
0.001
175
ZθJA Normalized Transient
Thermal Resistance
1
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=60°C/W
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
TCASE (°C)
Figure 14: Current De-rating (Note B)
10
0.01
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
0.01
PD
Single Pulse
Ton
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000
Similar pages