Actel A1240A-2PG176M Act2 family fpgas Datasheet

v4.0.1
ACT™ 2 Family FPGAs
Fe a t ur es
• Datapath Performance at 105 MHz
• Up to 8000 Gate Array Gates
(20,000 PLD equivalent gates)
• 16-Bit Accumulator Performance to 39 MHz
• Replaces up to 200 TTL Packages
• Replaces up to eighty 20-Pin PAL
• Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 50 MHz
• Design Library with over 500 Macro Functions
• Two High-Speed, Low-Skew Clock Networks
• Single-Module Sequential Functions
• I/O Drive to 10 mA
• Wide-Input Combinatorial Functions
• Nonvolatile, User Programmable
• Up to 1232 Programmable Logic Modules
• Logic Fully Tested Prior to Shipment
• Up to 998 Flip-Flops
• 1.0-micron CMOS Technology
® Packages
Pr od uc t F am i l y P r o f i l e
Device
A1225A
A1240A
A1280A
Capacity
Gate Array Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Packages
20-Pin PAL Equivalent Packages
2,500
6,250
63
25
4,000
10,000
100
40
8,000
20,000
200
80
Logic Modules
S-Modules
C-Modules
451
231
220
684
348
336
1,232
624
608
Flip-Flops (maximum)
382
568
998
Routing Resources
Horizontal Tracks/Channel
Vertical Tracks/Channel
PLICE Antifuse Elements
36
15
250,000
36
15
400,000
36
15
750,000
User I/Os (maximum)
83
104
140
100 CPGA
100 PQFP
100 VQFP
84 PLCC
132 CPGA
144 PQFP
176 TQFP
84 PLCC
176 CPGA
160 PQFP
176 TQFP
84 PLCC
172 CQFP
105 MHz
70 MHz
39 MHz
100 MHz
69 MHz
38 MHz
85 MHz
67 MHz
36 MHz
1
Packages
Performance2
16-Bit Prescaled Counters
16-Bit Loadable Counters
16-Bit Accumulators
Notes:
1. See the “Product Plan” on page 3 for package availability.
2. Performance is based on ‘–2’ speed devices at commercial worst-case operating conditions using PREP Benchmarks, Suite #1, Version 1.2,
dated 3-28-93, any analysis is not endorsed by PREP.
D e ce m b e r 2 0 0 0
© 2000 Actel Corporation
1
A C T ™ 2 F a m il y F P GA s
D es cr i p t i o n
technology. This revolutionary architecture offers gate array
design flexibility, high performance, and fast
The ACT™ 2 family represents Actel’s second generation of
field programmable gate arrays (FPGAs). The ACT 2 family
presents a two-module architecture, consisting of C-modules
and S-modules. These modules are optimized for both
combinatorial and sequential designs. Based on Actel’s
patented channeled array architecture, the ACT 2 family
provides significant enhancements to gate density and
performance while maintaining downward compatibility
with the ACT 1 design environment and upward
compatibility with the ACT 3 design environment. The
devices are implemented in silicon gate, 1.0-µm, two-level
metal CMOS, and employ Actel’s PLICE® antifuse
time-to-production with user programming. The ACT 2
family is supported by the Designer and Designer Advantage
Systems, which offers automatic pin assignment, validation
of electrical and design rules, automatic placement and
routing, timing analysis, user programming, and diagnostic
probe capabilities. The systems are supported on the
following platforms: 386/486™ PC, Sun™, and HP™
workstations. The systems provide CAE interfaces to the
following design environments: Cadence, Viewlogic®,
Mentor Graphics®, and OrCAD™.
O r d e r i n g I nf o r m a t i o n
A1280
A
–
1
PG
176
C
Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
B = MIL-STD-883
Package Lead Count
Package Type
PL = Plastic J-Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
CQ = Ceramic Quad Flat Pack
PG = Ceramic Pin Grid Array
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
Speed Grade
Blank = Standard Speed
–1 = Approximately 15% faster than Standard
–2 = Approximately 25% faster than Standard
Die Revision
A = 1.0-µm CMOS process
Part Number
A1225 = 2500 Gates
A1240 = 4000 Gates
A1280 = 8000 Gates
2
v4.0
A C T ™ 2 F a m il y F PG A s
Pr od uc t P l a n
Speed Grade*
Application
Std
–1
–2
C
I
M
B
A1225A Device
✔
✔
✔
✔
—
—
—
100-pin Plastic Quad Flat Pack (PQ)
✔
100-pin Very Thin (1.0 mm) Quad Flat Pack (VQ) ✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
✔
✔
✔
✔
✔
—
—
—
—
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
✔
✔
✔
—
—
100-pin Ceramic Pin Grid Array (PG)
84-pin Plastic Leaded Chip Carrier (PL)
A1240A Device
132-pin Ceramic Pin Grid Array (PG)
176-pin Thin (1.4 mm) Quad Flat Pack (TQ)
144-pin Plastic Quad Flat Pack (PQ)
✔
✔
84-pin Plastic Leaded Chip Carrier (PL)
✔
✔
✔
✔
✔
—
—
—
✔
✔
✔
✔
✔
✔
—
—
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
✔
✔
✔
—
✔
✔
A1280A Device
176-pin Ceramic Pin Grid Array (PG)
176-pin Thin (1.4 mm) Quad Flat Pack (TQ)
160-pin Plastic Quad Flat Pack (PQ)
✔
✔
172-pin Ceramic Quad Flat Pack (CQ)
✔
Contact your Actel sales representatives for product availability.
Applications: C = Commercial
Availability: ✔ = Available
*Speed Grade:
I = Industrial
P = Planned
M = Military
— = Not Planned
B = MIL-STD-883
–1 = Approx. 15% faster than Standard
–2 = Approx. 25% faster than Standard
D ev i ce R es ou r c es
User I/Os
Device
Series
CPGA
PQFP
PLCC CQFP
TQFP
VQFP
Logic
Modules Gates 176-pin 132-pin 100-pin 160-pin 144-pin 100-pin 84-pin 172-pin 176-pin 100-pin
A1225A
451
2500
—
—
83
—
—
83
72
—
—
83
A1240A
684
4000
—
104
—
—
104
—
72
—
104
—
A1280A
1232
8000
140
—
—
125
—
—
72
140
140
—
.
v4.0
3
A C T ™ 2 F a m il y F P GA s
O pe r a t i ng C on d i t i on s
Abs ol ut e M axim u m Ra ti ngs 1
R ecom m en ded Oper at ing C ondi ti ons
Free air temperature range
Symbol
VCC
Parameter
DC Supply Voltage
Limits
Units
–0.5 to +7.0
V
VI
Input Voltage
–0.5 to VCC +0.5
V
VO
Output Voltage
–0.5 to VCC +0.5
V
IIO
I/O Source/Sink
Current2
±20
mA
TSTG
Storage Temperature
–65 to +150
Parameter
Temperature
Range1
Commercia Industria
l
l
Military
Units
0 to +70
–40 to
+85
–55 to
+125
°C
±5
±10
±10
%VCC
Power
Supply
Tolerance
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
°C
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5 V or less than GND – 0.5 V, the internal
protection diode will be forward biased and can draw excessive
current.
E lect r ica l Sp eci ficat i ons
Commercial
Symbol
Parameter
VOH1
Min.
Max.
Max.
3.84
V
3.7
2
VIH
Input Transition Time tR, tF
3.7
V
0.5
V
0.33
0.40
0.40
V
–0.3
0.8
–0.3
0.8
–0.3
0.8
V
2.0
VCC + 0.3
2.0
VCC + 0.3
2.0
VCC + 0.3
V
2
500
500
500
ns
2, 3
10
10
10
pF
4
2
10
20
mA
10
µA
Standby Current, ICC (typical = 1 mA)
–10
10
–10
10
–10
Notes:
1. Only one output tested at a time. VCC = min.
2. Not tested, for information only.
3. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.
4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operation.
5. VOUT , VIN = VCC or GND.
4
Units
(IOH = –6 mA)
VIL
Leakage Current
Min.
V
(IOL = 6 mA)
5
Max.
2.4
(IOL = 10 mA)
CIO I/O Capacitance
Min.
Military
(IOH = –10 mA) 2
(IOH = –4 mA)
VOL1
Industrial
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge T he r m a l C ha r a ct e r i s t i c s
Maximum junction temperature is 150°C.
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two different
air flow rates.
A sample calculation of the absolute maximum power
dissipation allowed for a PQFP 160-pin package at
commercial temperature is as follows:
Max.
junction temp. (°C) – Max. commercial temp.150°C – 70°C
---------------------------------------------------------------------------------------------------------------------------= --------------------------------- = 2.4 W
θja (°C/W)
33°C/W
Pin Count
θjc
θja
Still Air
θja
300 ft/min
Units
Ceramic Pin Grid Array
100
132
176
5
5
8
35
30
23
17
15
12
°C/W
°C/W
°C/W
Ceramic Quad Flat Pack
172
8
25
15
°C/W
100
144
160
13
15
15
48
40
38
40
32
30
°C/W
°C/W
°C/W
84
12
37
28
°C/W
100
12
43
35
°C/W
176
15
32
25
°C/W
Package Type
1
Plastic Quad Flat Pack
Plastic Leaded Chip Carrier2
Very Thin Quad Flat Pack
Thin Quad Flat Pack
3
4
Notes:(Maximum Power in Still Air)
1. Maximum Power Dissipation for PQFP packages are 1.9 Watts (100-pin), 2.3 Watts (144-pin), and 2.4 Watts (160-pin).
2. Maximum Power Dissipation for PLCC packages is 2.7 Watts.
3. Maximum Power Dissipation for VQFP packages is 2.3 Watts.
4. Maximum Power Dissipation for TQFP packages is 3.1 Watts.
Po w e r D i ss i pa t i o n
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +
IOH * (VCC – VOH) * M
Where:
ICC standby is the current flowing when no inputs or outputs
are changing.
greater reduction in board-level power dissipation can be
achieved.
The power due to standby current is typically a small
component of the overall power. Standby power is
calculated below for commercial, worst case conditions.
ICC
VCC
Power
ICC active is the current flowing due to CMOS switching.
2 mA
5.25V
10.5 mW
IOL, IOH are TTL sink/source currents.
The static power dissipated by TTL loads depends on the
number of outputs driving high or low and the DC load
current. Again, this value is typically small. For instance, a
32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with
all outputs driving low, and 140 mW with all outputs driving
high. The actual dissipation will average somewhere
between as I/Os switch states with time.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to VOL.
M equals the number of outputs driving TTL loads to VOH.
An accurate determination of N and M is problematical
because their values depend on the family type, design
details, and on the system I/O. The power can be divided
into two components: static and active.
S tat i c P ow er Co m ponen t
Actel FPGAs have small static power components that
result in lower power dissipation than PALs or PLDs. By
integrating multiple PALs/PLDs into one FPGA, an even
Ac ti ve P ower Com po nent
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency dependent, a function of the logic and the
external I/O. Active power dissipation results from charging
internal chip capacitances of the interconnect,
unprogrammed antifuses, module inputs, and module
outputs, plus external capacitance due to PC board traces
v4.0
5
A C T ™ 2 F a m il y F P GA s
and load device inputs. An additional component of the
active power dissipation is the totem-pole current in CMOS
transistor pairs. The net effect can be associated with an
equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.
r2
= Fixed capacitance due to second routed array
clock
CEQM
= Equivalent capacitance of logic modules in pF
CEQI
= Equivalent capacitance of input buffers in pF
E quiv al ent C apac it ance
CEQO
= Equivalent capacitance of output buffers in pF
The power dissipated by a CMOS circuit can be expressed by
the Equation 1.
CEQCR = Equivalent capacitance of routed array clock in
pF
Power (µW) = CEQ * VCC2 * F
CL
= Output lead capacitance in pF
Where:
fm
= Average logic module switching rate in MHz
CEQ is the equivalent capacitance expressed in pF.
fn
= Average input buffer switching rate in MHz
VCC is the power supply in volts.
fp
= Average output buffer switching rate in MHz
F is the switching frequency in MHz.
fq1
= Average first routed array clock rate in MHz
Equivalent capacitance is calculated by measuring ICC
active at a specified frequency and voltage for each circuit
component of interest. Measurements have been made over
a range of frequencies at a fixed value of VCC. Equivalent
capacitance is frequency independent so that the results
may be used over a wide range of operating conditions.
Equivalent capacitance values are shown below.
fq2
= Average second routed array clock rate in MHz
(1)
C E Q Va lues f or Ac tel F PG A s
Modules (CEQM)
5.8
Input Buffers (CEQI)
12.9
Output Buffers (CEQO)
23.8
Routed Array Clock Buffer Loads (CEQCR)
3.9
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic
must be known. Equation 2 shows a piece-wise linear
summation over all components.
Fi xed Ca paci ta nce Val ues fo r Act el FP GA s
(pF )
Device Type
r1
routed_Clk1
r2
routed_Clk2
A1225A
A1240A
A1280A
106
134
168
106.0
134.2
167.8
D et erm i nin g A ve ra ge S wi t chi ng F re quenc y
To determine the switching frequency for a design, you must
have a detailed understanding of the data input values to
the circuit. The following guidelines are meant to represent
worst-case scenarios so that they can be generally used to
predict the upper limits of power dissipation. These
guidelines are as follows:
Power = VCC2 * [(m * CEQM* fm)modules +(n * CEQI* fn)inputs
+ (p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR *
fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR *
fq2)routed_Clk2
(2)
+ (r2 * fq2)routed_Clk2]
Where:
Logic Modules (m)
80% of modules
Inputs switching (n)
# inputs/4
Outputs switching (p)
# outputs/4
First routed array clock loads (q1)
40%of
sequential
modules
Second routed array clock loads (q2)
40%of
sequential
modules
m
= Number of logic modules switching at fm
n
= Number of input buffers switching at fn
Load capacitance (CL)
35 pF
p
= Number of output buffers switching at fp
Average logic module switching rate (fm)
F/10
q1
= Number of clock loads on the first routed array
clock
Average input switching rate (fn)
F/5
Average output switching rate (fp)
F/10
q2
= Number of clock loads on the second routed
array clock
Average first routed array clock rate (fq1)
F
r1
= Fixed capacitance due to first routed array
clock
6
Average second routed array clock rate F/2
(fq2)
v4.0
A C T ™ 2 F a m il y F PG A s
A CT 2 Ti m i n g M od el *
Input Delays
Internal Delays
Predicted
Routing
Delays
Combinatorial
I/O Module
Logic Module
tINYL = 2.6 ns t
IRD2 = 4.8 ns†
Output Delays
I/O Module
tDLH = 8.0 ns
D
Q
tRD1 = 1.4 ns
tRD2 = 1.7 ns
tRD4 = 3.1 ns
tRD8 = 4.7 ns
tPD = 3.8 ns
G
Sequential
Logic Module
tINH = 2.0 ns
tINSU = 4.0 ns
tINGL = 4.7 ns
Combinatorial
Logic
included
in tSUD
ARRAY
CLOCKS
tCKH = 11.8 ns
FO = 256
D
I/O Module
tDLH = 8.0 ns
D
Q
Q
tRD1 = 1.4 ns
tENHZ = 7.1 ns
G
tSUD = 0.4 ns
tHD = 0.0 ns
tCO = 3.8 ns
tOUTH = 0.0 ns
tOUTSU = 0.4 ns
tGLH = 9.0 ns
FMAX = 100 MHz
*Values shown for A1240A-2 at worst-case commercial conditions.
† Input Module Predicted Routing Delay
v4.0
7
A C T ™ 2 F a m il y F P GA s
P ar am e t e r M ea s ur e m e nt
O ut put Buf f e r De lay s
E
D
VCC
In
50%
PAD
VOL
GND
50%
VOH
E
1.5 V
1.5 V
TRIBUFF
PAD To AC test loads (shown below)
VCC
VCC
50%
VCC
50%
GND
1.5 V
PAD
E
PAD
GND
10%
VOL
tDLH
tENZL
tDHL
tENLZ
GND
50%
VOH
50%
90%
1.5 V
tENZH
tENHZ
A C T es t Lo ads
Load 1
(Used to measure propagation delay)
Load 2
(Used to measure rising/falling edges)
VCC
GND
To the output under test
50 pF
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 kΩ
To the output under test
50 pF
Inp ut Bu ffer D ela ys
PAD
Modu le Del ay s
S
A
B
Y
INBUF
Y
VCC
S, A or B
50% 50%
VCC
Y
GND
50%
3V
PAD
1.5 V 1.5 V
VCC
Y
GND
50%
50%
tINYH
8
0V
tPLH
GND
50%
tPHL
VCC
Y
50%
tPHL
tINYL
v4.0
GND
tPLH
50%
A C T ™ 2 F a m il y F PG A s
S eq u en t i a l M od ul e T i m i ng C ha r a ct er i st i c s
Fl ip- Fl ops and La tch es
D
E
CLK
Y
PRE
CLR
(Positive edge triggered)
tHD
D1
tSUD
tA
tWCLKA
G, CLK
tSUENA
tWCLKI
tHENA
E
tCO
Q
tRS
PRE, CLR
tWASYN
Note:
D represents all data functions involving A, B, and S for multiplexed flip-flops.
v4.0
9
A C T ™ 2 F a m il y F P GA s
Se q ue nt i al T i m i n g C h ar ac t er i st i c s (continued)
Inpu t Buffe r Lat che s
PAD
DATA
IBDL
G
PAD
CLK
CLKBUF
DATA
tINH
G
tINSU
tHEXT
CLK
tSUEXT
Out put B uffer L at ches
D
PAD
OBDLHS
G
D
tOUTSU
G
tOUTH
10
v4.0
A C T ™ 2 F a m il y F PG A s
Ti m i n g D er a t i n g F a ct o r ( T e m p e r a t u r e a n d V o l t a g e )
Industrial
(Commercial Minimum/Maximum Specification) x
Military
Min.
Max.
Min.
Max.
0.69
1.11
0.67
1.23
Ti m i ng D er a t i n g F a ct o r f o r D e si g ns at Ty pi c a l Te m p er a t u r e ( T J = 25 ° C ) an d
V ol t a g e ( 5 . 0 V)
(Commercial Maximum Specification) x
0.85
Te m p er a t u r e an d Vo l t a ge D er at i n g Fa ct or s
( n or m a l i z ed t o W or s t - C a se Co m m e r c i al , T J = 4 . 7 5 V , 7 0° C )
–55
–40
0
25
70
85
125
4.50
0.75
0.79
0.86
0.92
1.06
1.11
1.23
4.75
0.71
0.75
0.82
0.87
1.00
1.05
1.16
5.00
0.69
0.72
0.80
0.85
0.97
1.02
1.13
5.25
0.68
0.69
0.77
0.82
0.95
0.98
1.09
5.50
0.67
0.69
0.76
0.81
0.93
0.97
1.08
Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, T J = 4.75V, 70°C)
1.3
Derating Factor
1.2
1.1
125˚C
1.0
85˚C
70˚C
0.9
25˚C
0.8
0˚C
–40˚C
–55˚C
0.7
0.6
4.50
4.75
5.00
5.25
5.50
Voltage (V)
Note:
This derating factor applies to all routing and propagation delays.
v4.0
11
A C T ™ 2 F a m il y F P GA s
A 12 25 A Ti m i ng Ch a r ac t e r i s t i cs
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C)
Logic Module Propagation Delays1
‘–2’ Speed
Parameter
Description
Max.
tPD1
Single Module
3.8
tCO
Sequential Clk to Q
tGO
tRS
Min.
Max.
‘Std’ Speed
Max.
Units
4.3
5.0
ns
3.8
4.3
5.0
ns
Latch G to Q
3.8
4.3
5.0
ns
Flip-Flop (Latch) Reset to Q
3.8
4.3
5.0
ns
Predicted Routing Delays
Min.
‘–1’ Speed
Min.
2
tRD1
FO=1 Routing Delay
1.1
1.2
1.4
ns
tRD2
FO=2 Routing Delay
1.7
1.9
2.2
ns
tRD3
FO=3 Routing Delay
2.3
2.6
3.0
ns
tRD4
FO=4 Routing Delay
2.8
3.1
3.7
ns
tRD8
FO=8 Routing Delay
4.4
4.9
5.8
ns
Sequential Timing Characteristics
3,4
tSUD
Flip-Flop (Latch) Data Input
Setup
0.4
0.4
0.5
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Setup
0.8
0.9
1.0
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active
Pulse Width
4.5
5.0
6.0
ns
tWASYN
Flip-Flop (Latch) Asynchronous
Pulse Width
4.5
5.0
6.0
ns
tA
Flip-Flop Clock Input Period
9.4
11.0
13.0
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Setup
0.4
0.4
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Setup
0.4
0.4
0.5
ns
fMAX
Flip-Flop (Latch) Clock
Frequency
105.0
90.0
75.0
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained
from the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
12
v4.0
A C T ™ 2 F a m il y F PG A s
A 12 25 A Ti m i ng Ch a r ac t e r i s t i cs (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Input Module Propagation Delays
‘–2’ Speed
‘Std’ Speed
Max.
Unit
s
3.3
3.8
ns
2.6
3.0
3.5
ns
5.0
5.7
6.6
ns
4.7
5.4
6.3
ns
Parameter
Description
tINYH
Pad to Y High
2.9
tINYL
Pad to Y Low
tINGH
G to Y High
tINGL
G to Y Low
Input Module Predicted Routing Delays
Min.
‘–1’ Speed
Max.
Min.
Max.
Min.
1
tIRD1
FO=1 Routing Delay
4.1
4.6
5.4
ns
tIRD2
FO=2 Routing Delay
4.6
5.2
6.1
ns
tIRD3
FO=3 Routing Delay
5.3
6.0
7.1
ns
tIRD4
FO=4 Routing Delay
5.7
6.4
7.6
ns
tIRD8
FO=8 Routing Delay
7.4
8.3
9.8
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 256
10.2
11.8
11.0
13.0
12.8
15.7
ns
tCKL
Input High to Low
FO = 32
FO = 256
10.2
12.0
11.0
13.2
12.8
15.9
ns
tPWH
Minimum Pulse Width
High
FO = 32
FO = 256
3.4
3.8
4.1
4.5
4.5
5.0
ns
tPWL
Minimum Pulse Width
Low
FO = 32
FO = 256
3.4
3.8
4.1
4.5
4.5
5.0
ns
tCKSW
Maximum Skew
FO = 32
FO = 256
tSUEXT
Input Latch External
Setup
FO = 32
FO = 256
0.0
0.0
0.0
0.0
0.0
0.0
ns
tHEXT
Input Latch External
Hold
FO = 32
FO = 256
7.0
11.2
7.0
11.2
7.0
11.2
ns
tP
Minimum Period
FO = 32
FO = 256
7.7
8.1
8.3
8.8
9.1
10.0
ns
fMAX
Maximum Frequency
FO = 32
FO = 256
0.7
3.5
130.0
125.0
0.7
3.5
120.0
115.0
0.7
3.5
110.0
100.0
ns
MHz
Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns.
Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to
determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device
prior to shipment.
v4.0
13
A C T ™ 2 F a m il y F P GA s
A 12 25 A Ti m i ng Ch a r ac t e r i s t i cs (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Output Module Timing
Parameter
‘–2’ Speed
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
TTL Output Module Timing1
tDLH
Data to Pad High
8.0
9.0
10.6
ns
tDHL
Data to Pad Low
10.1
11.4
13.4
ns
tENZH
Enable Pad Z to High
8.9
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.6
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.3
9.5
11.1
ns
tGLH
G to Pad High
8.9
10.2
11.9
ns
tGHL
G to Pad Low
11.2
12.7
14.9
ns
dTLH
Delta Low to High
0.07
0.08
0.09
ns/pF
dTHL
Delta High to Low
0.12
0.13
0.16
ns/pF
CMOS Output Module Timing
1
tDLH
Data to Pad High
10.1
11.5
13.5
ns
tDHL
Data to Pad Low
8.4
9.6
11.2
ns
tENZH
Enable Pad Z to High
8.9
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.6
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.3
9.5
11.1
ns
tGLH
G to Pad High
8.9
10.2
11.9
ns
tGHL
G to Pad Low
11.2
12.7
14.9
ns
dTLH
Delta Low to High
0.12
0.13
0.16
ns/pF
dTHL
Delta High to Low
0.09
0.10
0.12
ns/pF
Note:
1. Delays based on 50 pF loading.
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.
14
v4.0
A C T ™ 2 F a m il y F PG A s
A 12 40 A Ti m i ng Ch a r ac t e r i s t i cs
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C)
Logic Module Propagation Delays1
‘–2’ Speed
Parameter
Description
Max.
tPD1
Single Module
3.8
tCO
Sequential Clk to Q
tGO
tRS
Min.
Max.
‘Std’ Speed
Max.
Units
4.3
5.0
ns
3.8
4.3
5.0
ns
Latch G to Q
3.8
4.3
5.0
ns
Flip-Flop (Latch) Reset to Q
3.8
4.3
5.0
ns
Predicted Routing Delays
Min.
‘–1’ Speed
Min.
2
tRD1
FO=1 Routing Delay
1.4
1.5
1.8
ns
tRD2
FO=2 Routing Delay
1.7
2.0
2.3
ns
tRD3
FO=3 Routing Delay
2.3
2.6
3.0
ns
tRD4
FO=4 Routing Delay
3.1
3.5
4.1
ns
tRD8
FO=8 Routing Delay
4.7
5.4
6.3
ns
Sequential Timing Characteristics
3, 4
tSUD
Flip-Flop (Latch) Data Input
Setup
0.4
0.4
0.5
ns
tHD
Flip-Flop (Latch) Data Input
Hold
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Setup
0.8
0.9
1.0
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active
Pulse Width
4.5
6.0
6.5
ns
tWASYN
Flip-Flop (Latch)
Asynchronous Pulse Width
4.5
6.0
6.5
ns
tA
Flip-Flop Clock Input Period
9.8
12.0
15.0
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Setup
0.4
0.4
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Setup
0.4
0.4
0.5
ns
fMAX
Flip-Flop (Latch) Clock
Frequency
100.0
80.0
66.0
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained
from the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
v4.0
15
A C T ™ 2 F a m il y F P GA s
A 12 40 A Ti m i ng Ch a r ac t e r i s t i cs (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Input Module Propagation Delays
‘–2’ Speed
Parameter
Description
tINYH
Pad to Y High
2.9
tINYL
Pad to Y Low
tINGH
G to Y High
tINGL
G to Y Low
Input Module Predicted Routing Delays
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
3.3
3.8
ns
2.6
3.0
3.5
ns
5.0
5.7
6.6
ns
4.7
5.4
6.3
ns
1
tIRD1
FO=1 Routing Delay
4.2
4.8
5.6
ns
tIRD2
FO=2 Routing Delay
4.8
5.4
6.4
ns
tIRD3
FO=3 Routing Delay
5.4
6.1
7.2
ns
tIRD4
FO=4 Routing Delay
5.9
6.7
7.9
ns
tIRD8
FO=8 Routing Delay
7.9
8.9
10.5
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 256
10.2
11.8
11.0
13.0
12.8
15.7
ns
tCKL
Input High to Low
FO = 32
FO = 256
10.2
12.0
11.0
13.2
12.8
15.9
ns
tPWH
Minimum Pulse Width
High
FO = 32
FO = 256
3.8
4.1
4.5
5.0
5.5
5.8
ns
tPWL
Minimum Pulse Width Low
FO = 32
FO = 256
3.8
4.1
4.5
5.0
5.5
5.8
ns
tCKSW
Maximum Skew
FO = 32
FO = 256
tSUEXT
Input Latch External Setup
FO = 32
FO = 256
0.0
0.0
0.0
0.0
0.0
0.0
ns
tHEXT
Input Latch External Hold
FO = 32
FO = 256
7.0
11.2
7.0
11.2
7.0
11.2
ns
tP
Minimum Period
FO = 32
FO = 256
8.1
8.8
9.1
10.0
11.1
11.7
ns
fMAX
Maximum Frequency
FO = 32
FO = 256
0.5
2.5
125.0
115.0
0.5
2.5
110.0
100.0
0.5
2.5
90.0
85.0
ns
MHz
Note:
These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual
worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
16
v4.0
A C T ™ 2 F a m il y F PG A s
A 12 4 0A T i m i ng C ha r a ct er i s t i c s (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Output Module Timing
Parameter
‘–2’ Speed
Description
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
TTL Output Module Timing1
tDLH
Data to Pad High
8.0
9.0
10.6
ns
tDHL
Data to Pad Low
10.1
11.4
13.4
ns
tENZH
Enable Pad Z to High
8.9
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.7
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.4
9.5
11.1
ns
tGLH
G to Pad High
9.0
10.2
11.9
ns
tGHL
G to Pad Low
11.2
12.7
14.9
ns
dTLH
Delta Low to High
0.07
0.08
0.09
ns/pF
dTHL
Delta High to Low
0.12
0.13
0.16
ns/pF
CMOS Output Module Timing
1
tDLH
Data to Pad High
10.2
11.5
13.5
ns
tDHL
Data to Pad Low
8.4
9.6
11.2
ns
tENZH
Enable Pad Z to High
8.9
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.7
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.4
9.5
11.1
ns
tGLH
G to Pad High
9.0
10.2
11.9
ns
tGHL
G to Pad Low
11.2
12.7
14.9
ns
dTLH
Delta Low to High
0.12
0.13
0.16
ns/pF
dTHL
Delta High to Low
0.09
0.10
0.12
ns/pF
Note:
1. Delays based on 50 pF loading.
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.
v4.0
17
A C T ™ 2 F a m il y F P GA s
A 12 80 A Ti m i ng Ch a r ac t e r i s t i cs
(Worst-Case Commercial Conditions, V CC = 4.75 V, T J = 70°C)
Logic Module Propagation Delays1
‘–2’ Speed
Parameter
Description
Max.
tPD1
Single Module
3.8
tCO
Sequential Clk to Q
tGO
tRS
Min.
Max.
‘Std’ Speed
Max.
Units
4.3
5.0
ns
3.8
4.3
5.0
ns
Latch G to Q
3.8
4.3
5.0
ns
Flip-Flop (Latch) Reset to Q
3.8
4.3
5.0
ns
Predicted Routing Delays
Min.
‘–1’ Speed
Min.
2
tRD1
FO=1 Routing Delay
1.7
2.0
2.3
ns
tRD2
FO=2 Routing Delay
2.5
2.8
3.3
ns
tRD3
FO=3 Routing Delay
3.0
3.4
4.0
ns
tRD4
FO=4 Routing Delay
3.7
4.2
4.9
ns
tRD8
FO=8 Routing Delay
6.7
7.5
8.8
ns
Sequential Timing Characteristics
3,4
tSUD
Flip-Flop (Latch) Data Input
Setup
0.4
0.4
0.5
ns
tHD
Flip-Flop (Latch) Data Input Hold
0.0
0.0
0.0
ns
tSUENA
Flip-Flop (Latch) Enable Setup
0.8
0.9
1.0
ns
tHENA
Flip-Flop (Latch) Enable Hold
0.0
0.0
0.0
ns
tWCLKA
Flip-Flop (Latch) Clock Active
Pulse Width
5.5
6.0
7.0
ns
tWASYN
Flip-Flop (Latch) Asynchronous
Pulse Width
5.5
6.0
7.0
ns
tA
Flip-Flop Clock Input Period
11.7
13.3
18.0
ns
tINH
Input Buffer Latch Hold
0.0
0.0
0.0
ns
tINSU
Input Buffer Latch Setup
0.4
0.4
0.5
ns
tOUTH
Output Buffer Latch Hold
0.0
0.0
0.0
ns
tOUTSU
Output Buffer Latch Setup
0.4
0.4
0.5
ns
fMAX
Flip-Flop (Latch) Clock
Frequency
85.0
75.0
50.0
MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained
from the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
18
v4.0
A C T ™ 2 F a m il y F PG A s
A 12 8 0A T i m i ng C ha r a ct er i s t i c s (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Input Module Propagation Delays
‘–2’ Speed
Parameter
Description
tINYH
Pad to Y High
2.9
tINYL
Pad to Y Low
tINGH
G to Y High
tINGL
G to Y Low
Input Module Predicted Routing Delays
Min.
Max.
‘–1’ Speed
Min.
Max.
‘Std’ Speed
Min.
Max.
Units
3.3
3.8
ns
2.7
3.0
3.5
ns
5.0
5.7
6.6
ns
4.8
5.4
6.3
ns
1
tIRD1
FO=1 Routing Delay
4.6
5.1
6.0
ns
tIRD2
FO=2 Routing Delay
5.2
5.9
6.9
ns
tIRD3
FO=3 Routing Delay
5.6
6.3
7.4
ns
tIRD4
FO=4 Routing Delay
6.5
7.3
8.6
ns
tIRD8
FO=8 Routing Delay
9.4
10.5
12.4
ns
Global Clock Network
tCKH
Input Low to High
FO = 32
FO = 384
10.2
13.1
11.0
14.6
12.8
17.2
ns
tCKL
Input High to Low
FO = 32
FO = 384
10.2
13.3
11.0
14.9
12.8
17.5
ns
tPWH
Minimum Pulse Width
High
FO = 32
FO = 384
5.0
5.8
5.5
6.4
6.6
7.6
ns
tPWL
Minimum Pulse Width Low
FO = 32
FO = 384
5.0
5.8
5.5
6.4
6.6
7.6
ns
tCKSW
Maximum Skew
FO = 32
FO = 384
tSUEXT
Input Latch External Setup
FO = 32
FO = 384
0.0
0.0
0.0
0.0
0.0
0.0
ns
tHEXT
Input Latch External Hold
FO = 32
FO = 384
7.0
11.2
7.0
11.2
7.0
11.2
ns
tP
Minimum Period
FO = 32
FO = 384
9.6
10.6
11.2
12.6
13.3
15.3
ns
fMAX
Maximum Frequency
FO = 32
FO = 384
0.5
2.5
105.0
95.0
0.5
2.5
90.0
80.0
0.5
2.5
75.0
65.0
ns
MHz
Note:
These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual
worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.
v4.0
19
A C T ™ 2 F a m il y F P GA s
A 12 80 A Ti m i ng Ch a r ac t e r i s t i cs (continued)
( W or st -C as e C om m er cia l Cond it ion s)
Output Module Timing
‘–2’ Speed
‘–1’ Speed
‘Std’ Speed
Parameter
Min.
Min.
Min.
Description
Max.
Max.
Max.
Units
TTL Output Module Timing1
tDLH
Data to Pad High
8.1
9.0
10.6
ns
tDHL
Data to Pad Low
10.2
11.4
13.4
ns
tENZH
Enable Pad Z to High
9.0
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.8
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.4
9.5
11.1
ns
tGLH
G to Pad High
9.0
10.2
11.9
ns
tGHL
G to Pad Low
11.3
12.7
14.9
ns
dTLH
Delta Low to High
0.07
0.08
0.09
ns/pF
dTHL
Delta High to Low
0.12
0.13
0.16
ns/pF
CMOS Output Module Timing
1
tDLH
Data to Pad High
10.3
11.5
13.5
ns
tDHL
Data to Pad Low
8.5
9.6
11.2
ns
tENZH
Enable Pad Z to High
9.0
10.0
11.8
ns
tENZL
Enable Pad Z to Low
11.8
13.2
15.5
ns
tENHZ
Enable Pad High to Z
7.1
8.0
9.4
ns
tENLZ
Enable Pad Low to Z
8.4
9.5
11.1
ns
tGLH
G to Pad High
9.0
10.2
11.9
ns
tGHL
G to Pad Low
11.3
12.7
14.9
ns
dTLH
Delta Low to High
0.12
0.13
0.16
ns/pF
dTHL
Delta High to Low
0.09
0.10
0.12
ns/pF
Note:
1. Delays based on 50 pF loading.
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.
20
v4.0
A C T ™ 2 F a m il y F PG A s
Pi n D es c r i pt i on
CLKA
Clock A (Input)
TTL Clock input for clock distribution networks. The Clock
input is buffered prior to clocking the logic modules. This
pin can also be used as an I/O.
CLKB
Clock B (Input)
TTL Clock input for clock distribution networks. The Clock
input is buffered prior to clocking the logic modules. This
pin can also be used as an I/O.
DCLK
Diagnostic Clock (Input)
TTL Clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND
Ground
LOW supply voltage.
I/O
Input/Output (Input, Output)
The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output levels are compatible
with standard TTL and CMOS specifications. Unused I/O
pins are automatically driven LOW by the ALS software.
MODE
Mode (Input)
The MODE pin controls the use of multifunction pins
(DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the
special functions are active. When the MODE pin is LOW,
the pins function as I/Os. To provide Actionprobe capability,
the MODE pin should be terminated to GND through a 10K
resistor so that the MODE pin can be pulled high when
required.
NC
PRA
Probe A (Output)
The Probe A pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe B pin to allow real-time diagnostic output of any
signal path within the device. The Probe A pin can be used
as a user-defined I/O when debugging has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRA is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
PRB
Probe B (Output)
The Probe B pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe A pin to allow real-time diagnostic output of any
signal path within the device. The Probe B pin can be used
as a user-defined I/O when debugging has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRB is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
SDI
Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
V CC
5.0V Supply Voltage
HIGH supply voltage.
No Connection
This pin is not connected to circuitry within the device.
v4.0
21
A C T ™ 2 F a m il y F P GA s
Pa c ka ge P i n A s si g nm e n t s
84- Pi n PL CC
1
84
84-Pin
PLCC
Signal
A1225A Function
A1240A Function
A1280A Function
2
CLKB, I/O
CLKB, I/O
CLKB, I/O
4
PRB, I/O
PRB, I/O
PRB, I/O
6
GND
GND
GND
10
DCLK, I/O
DCLK, I/O
DCLK, I/O
12
MODE
MODE
MODE
22
VCC
VCC
VCC
23
VCC
VCC
VCC
28
GND
GND
GND
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
22
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s
84- Pi n PL CC
1
84
84-Pin
PLCC
Signal
A1225A Function
A1240A Function
A1280A Function
43
VCC
VCC
VCC
49
GND
GND
GND
63
GND
GND
GND
64
VCC
VCC
VCC
65
VCC
VCC
VCC
70
GND
GND
GND
76
SDI, I/O
SDI, I/O
SDI, I/O
81
PRA, I/O
PRA, I/O
PRA, I/O
83
CLKA, I/O
CLKA, I/O
CLKA, I/O
84
VCC
VCC
VCC
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
v4.0
23
A C T ™ 2 F a m il y F P GA s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
100- P in P Q FP
100-Pin
PQFP
100
1
Pin Number
A1225A Function
Pin Number
A1225A Function
2
DCLK, I/O
66
VCC
4
MODE
67
VCC
9
GND
72
GND
16
VCC
79
SDI, I/O
17
VCC
84
GND
22
GND
87
PRA, I/O
34
GND
89
CLKA, I/O
40
VCC
90
VCC
46
GND
92
CLKB, I/O
57
GND
94
PRB, I/O
64
GND
96
GND
65
VCC
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
24
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
144- P in P Q FP
1
144
144-Pin
PQFP
v4.0
25
A C T ™ 2 F a m il y F P GA s
144- P in P Q FP
Pin Number
A1240A Function
Pin Number
A1240A Function
2
MODE
89
VCC
9
GND
90
VCC
10
GND
91
VCC
11
GND
92
VCC
18
VCC
93
VCC
19
VCC
100
GND
20
VCC
101
GND
21
VCC
102
GND
28
GND
110
SDI, I/O
29
GND
116
GND
30
GND
117
GND
44
GND
118
GND
45
GND
123
PRA, I/O
46
GND
125
CLKA, I/O
54
VCC
126
VCC
55
VCC
127
VCC
56
VCC
128
VCC
64
GND
130
CLKB, I/O
65
GND
132
PRB, I/O
79
GND
136
GND
80
GND
137
GND
81
GND
138
GND
88
GND
144
DCLK, I/O
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
26
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
160- P in P Q FP
160
1
160-Pin
PQFP
v4.0
27
A C T ™ 2 F a m il y F P GA s
160- P in P Q FP
Pin Number
A1280A Function
Pin Number
A1280A Function
2
DCLK, I/O
69
GND
6
VCC
80
GND
11
GND
86
VCC
16
PRB, I/O
89
GND
18
CLKB, I/O
98
VCC
20
VCC
99
GND
21
CLKA, I/O
109
GND
23
PRA, I/O
114
VCC
30
GND
120
GND
35
VCC
125
GND
38
SDI, I/O
130
GND
40
GND
135
VCC
44
GND
138
VCC
49
GND
139
VCC
54
VCC
140
GND
57
VCC
145
GND
58
VCC
150
VCC
59
GND
155
GND
60
VCC
159
MODE
61
GND
160
GND
64
GND
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
28
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
100- P in VQF P
100
1
100-Pin
VQFP
100- P in VQF P
Pin Number
A1225A Function
Pin Number
A1225A Function
2
MODE
65
VCC
7
GND
70
GND
14
VCC
77
SDI, I/O
15
VCC
82
GND
20
GND
85
PRA, I/O
32
GND
87
CLKA, I/O
38
VCC
88
VCC
44
GND
90
CLKB, I/O
55
GND
92
PRB, I/O
62
GND
94
GND
63
VCC
100
DCLK, I/O
64
VCC
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
v4.0
29
A C T ™ 2 F a m il y F P GA s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
176- P in T Q FP
176
1
176-Pin
TQFP
30
v4.0
A C T ™ 2 F a m il y F PG A s
176- P in T Q FP
Pin Number
A1240A Function
A1280A Function
1
GND
GND
2
MODE
MODE
8
NC
10
NC
Pin Number
A1240A Function
A1280A Function
101
NC
NC
103
NC
I/O
NC
106
GND
GND
I/O
107
NC
I/O
11
NC
I/O
108
NC
I/O
13
NC
VCC
109
GND
GND
18
GND
GND
110
VCC
VCC
19
NC
I/O
111
GND
GND
20
NC
I/O
112
VCC
VCC
22
NC
I/O
113
VCC
VCC
23
GND
GND
114
NC
I/O
24
NC
VCC
115
NC
I/O
25
VCC
VCC
116
NC
VCC
26
NC
I/O
121
NC
NC
27
NC
I/O
124
NC
I/O
28
VCC
VCC
125
NC
I/O
29
NC
I/O
126
NC
NC
33
NC
NC
133
GND
GND
37
NC
I/O
135
SDI, I/O
SDI, I/O
38
NC
NC
136
NC
I/O
45
GND
GND
140
NC
VCC
52
NC
VCC
143
NC
I/O
54
NC
I/O
144
NC
I/O
55
NC
I/O
145
NC
NC
57
NC
NC
147
NC
I/O
61
NC
I/O
151
NC
I/O
64
NC
I/O
152
PRA, I/O
PRA, I/O
66
NC
I/O
154
CLKA, I/O
CLKA, I/O
67
GND
GND
155
VCC
VCC
68
VCC
VCC
156
GND
GND
74
NC
I/O
158
CLKB, I/O
CLKB, I/O
77
NC
NC
160
PRB, I/O
PRB, I/O
78
NC
I/O
161
NC
I/O
80
NC
I/O
165
NC
NC
82
NC
VCC
166
NC
I/O
86
NC
I/O
168
NC
I/O
89
GND
GND
170
NC
VCC
96
NC
I/O
173
NC
I/O
97
NC
I/O
175
DCLK, I/O
DCLK, I/O
Notes:
1. NC: Denotes No Connection
2. All unlisted pin numbers are user I/Os.
3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
v4.0
31
A C T ™ 2 F a m il y F P GA s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
172- P in CQF P
172
Pin #1
Index
1
172-Pin
CQFP
172-Pin CQFP
Pin Number
1
7
12
17
22
23
24
27
32
37
50
55
65
66
75
80
98
103
106
A1280A Function
Pin Number
MODE
GND
VCC
GND
GND
VCC
VCC
VCC
GND
GND
VCC
GND
GND
VCC
GND
VCC
GND
GND
GND
107
108
109
110
113
118
123
131
136
141
148
150
151
152
154
156
161
166
171
A1280A Function
VCC
GND
VCC
VCC
VCC
GND
GND
SDI, I/O
VCC
GND
PRA, I/O
CLKA, I/O
VCC
GND
CLKB, I/O
PRB, I/O
GND
VCC
DCLK, I/O
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
32
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
100- P in CP GA
1
2
3
4
5
6
7
8
9
10 11
A
A
B
B
C
C
D
D
E
E
100-Pin
CPGA
F
F
G
G
H
H
J
J
K
K
L
L
1
2
3
4
5
6
7
8
9
10 11
Orientation Pin
Pin Number
A1225A Function
Pin Number
A1225A Function
A4
PRB, I/O
E11
VCC
A7
PRA, I/O
F3
VCC
B6
VCC
F9
VCC
C2
MODE
F10
VCC
C3
DCLK, I/O
F11
GND
C5
GND
G1
VCC
C6
CLKA, I/O
G3
GND
C7
GND
G9
GND
C8
SDI, I/O
J5
GND
D6
CLKB, I/O
J7
GND
D10
GND
K6
VCC
E3
GND
Note:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
v4.0
33
A C T ™ 2 F a m il y F P GA s
Pa c ka ge P i n A s si g nm e n t s (cont i nued)
132- P in CP GA
1
2
3
4
5
6
7
8
9
10 11 12 13
A
A
B
B
C
C
D
D
E
E
F
F
132-Pin
CPGA
G
G
H
H
J
J
K
K
L
L
M
M
N
N
1
2
3
4
5
6
7
8
9
10 11 12 13
Orientation Pin
Pin Number
A1240A Function
Pin Number
A1240A Function
A1
MODE
G2
VCC
B5
GND
G3
VCC
B6
CLKB, I/O
G4
VCC
B7
CLKA, I/O
G10
VCC
B8
PRA, I/O
G11
VCC
B9
GND
G12
VCC
B12
SDI, I/O
G13
VCC
C3
DCLK, I/O
H13
GND
C5
GND
J2
GND
C6
PRB, I/O
J3
GND
C7
VCC
J11
GND
C9
GND
K7
VCC
D7
VCC
K12
GND
E3
GND
L5
GND
E11
GND
L7
VCC
E12
GND
L9
GND
F4
GND
M9
GND
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
34
v4.0
A C T ™ 2 F a m il y F PG A s
Pa c ka ge P i n A s si g nm e n t s (cont i nued )
176- P in CP GA
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
A
A
B
B
C
C
D
D
E
E
F
F
G
G
176-Pin
CPGA
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
1
Pin Number
A9
B3
B8
B14
C3
C8
C9
D4
D5
D6
D7
D8
D10
D11
D12
E4
E12
F4
F12
G4
G12
2
3
4
5
6
7
8
A1280A Function
9
10 11 12 13 14 15
Pin Number
CLKA, I/O
DCLK, I/O
CLKB, I/O
SDI, I/O
MODE
GND
PRA, I/O
GND
VCC
GND
PRB, I/O
VCC
GND
VCC
GND
GND
GND
VCC
GND
GND
VCC
H2
H3
H4
H12
H13
H14
J4
J12
J13
J14
K4
K12
L4
M4
M5
M6
M8
M10
M11
M12
N8
A1280A Function
VCC
VCC
GND
GND
VCC
VCC
VCC
GND
GND
VCC
GND
GND
GND
GND
VCC
GND
GND
GND
VCC
GND
VCC
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.
v4.0
35
A C T ™ 2 F a m il y F P GA s
Li s t o f C ha ng e s
The following table lists critical changes that were made in the current version of the document.
Previous version
unspecified
Changes in current version (production (unmarked) v4.0.1–web-only)
Page
In the 176-Pin CPGA package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a
35
user I/O. Pin A9 is CLKA, I/O
D at a S he et Ca t e g o r i e s
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories
are as follows:
Adv anc ed
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
P rel im i nar y
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unm ar ked (pr odu ct ion)
The data sheet contains information that is considered to be final.
36
v4.0
A C T ™ 2 F a m il y F PG A s
v4.0
37
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44 (0)1256 305600
Fax: +44 (0)1256 355420
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172104-6/12.00
Similar pages