AD EVAL-AD1896EB Ad1896 7.75:1 to 1:8, 192 khz stereo asrc evaluation board Datasheet

a
AD1896 7.75:1 to 1:8, 192 kHz
Stereo ASRC Evaluation Board
EVAL-AD1896EB
OVERVIEW
INTEGRATED CIRCUIT FUNCTIONS
The AD1896 is a 24-bit, high-performance, single-chip, second
generation Asynchronous Sample Rate Converter (ASRC). The
AD1896 supports sample rates up to 192 kHz with 7.75:1
downsampling and 1:8 upsampling ranges while maintaining
the highest performance. In normal operation, input serial data
(@ input sample rate fS_IN) in 3-wire serial format is sourced to
the serial input port pins SCLK_I, LRCLK_I, and SDATA_I.
The output serial data (@ output sample rate fS_out) is accessed
via the output serial port pins SCLK_O, LRCLK_O, and
SDATA_O. The LRCLK_I and LRCLK_O signals define the
input and output sample frequency, respectively. The input and
output signals are typically asynchronous with respect to each
other and to the master clock, MCLK_I.
AD1896 ASRC (U13)
Asynchronous Sample Rate Converter
The AD1896 has very flexible serial input and output data ports
for glueless interconnection to audio DACs, DSPs, Digital Interface Receivers (DIR), and Digital Interface Transmitters (DIT).
The AD1896 input and output serial data ports can be configured in left-justified, right-justified (16, 18, 20, and 24 bits),
I2S, or TDM mode. Top-level pins are provided for controlling
the data formats and other functional modes of the AD1896
without any serial programming. Other features include bypass
mode, matched phase mode, group delay selection of the digital
filter, mute control, and mute flag pin for an internal error
flagging. Please refer to the AD1896 data sheet for the detailed
product description.
The overall setup of the evaluation board is described briefly
including jumper settings. The AD1896 evaluation board uses a
± 9 V to ± 15 V dc source. Clean regulated 5 V and 3.3 V are
generated to power the AD1896 and other on-board components. Separate 5 V supplies are used for analog and digital
sections. Op amps used for the analog filtering are powered
from ± 15 V. Please refer to Appendix A for the block diagram,
schematics, layout plots, Bill of Materials, and PLD code.
CS8414 SPDIF Receiver (U1)
Receives the digital signal from an external source in SPDIF/
AES format and recovers the data and clocks. The 3-wire signals are then sourced to the AD1896 input serial port. SPDIF
receiver supports sample rates up to 96 kHz.
CS8404 SPDIF Transmitter (U6)
Encodes the AD1896 output (3-wire format) in SPDIF format.
SPDIF transmitter supports sample rates up to 96 kHz.
AD1852 Stereo DAC (U12)
Stereo DAC for converting the AD1896 output into stereo analog
outputs. Supports up to 192 kHz sample rates unlike SPDIF
transmitter.
Input CPLD (U2)
This PLD is used to control the input serial port signals of the
AD1896. In addition, it controls SPDIF receiver and other
control signals of the AD1896.
Output CPLD (U3)
This PLD controls the output serial port signals of the AD1896
as well as the SPDIF transmitter and stereo DAC AD1852.
In addition to these components, there is a circuit that divides
the master clock of the AD1896 by two or three, based on the
master/slave clock mode and generates the on-board signals
256 fS, EXT256 fS, and 128 fS (Figure 9 of the AD1896EB
schematic). If the AD1896 output port is operating in 768 × fS
master mode, then the master clock is divided by three; and if
the AD1896 output port is operating in 512 × fS master mode,
then the master clock is divided by two. The 256 fS clock (for
DAC) is divided by two to generate the 128 fS master clock for
SPDIF transmitter.
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2001
EVAL-AD1896EB
• JP2 selects the internal interpolation ratio of the AD1852
stereo DAC (U12). Based on the sample rate, 8×, 4×, or 2×
interpolation could be selected. DAC should be configured
in 8×, 4×, or 2×… mode for 48 kHz, 96 kHz, or 192 kHz
sample rates, respectively.
The following section highlights key jumpers and switches on
the evaluation board. Please refer to the AD1896 evaluation
board schematic for more details. These switches and jumpers
configure the AD1896 and other components, such as, SPDIF
receiver, transmitter, and stereo DAC.
• JP3 enables the autoMUTE feature where the AD1896
MUTE_IN will be asserted if the MUTE_OUT output from
AD1896 is set high. The MUTE_OUT is set high when
sample rate of LRCLK_I and LRCLK_O changes.
SWITCH AND JUMPER FUNCTIONS
• S1 is used to switch the mux inside the PLD (U2) between
the Digital Interface Receiver (DIR), the CS8414 (U1), and
the Direct Digital Input (DDI HDR3) signals. The selected
signal is sourced to the input serial port of the AD1896. DIR
selection works in conjunction with the Switch S2 as
described below.
• JP4 jumper selects between an on-board clock oscillator
(12.288 MHz) and on-board third order overtone crystal
oscillator (33.8688 MHz) for master clock (MCLK_I) of
the AD1896. Please refer to Table IX for the maximum
allowable sample rates for 76 × fS, 512 × fS, and 256 × fS master
mode with 33.8688 MHz master clock. The on-board clock
oscillator (12.288 MHz) is enabled only for the SLAVE mode
operation of the AD1896 (Switch S4 position 7).
• S2 selects between the RCA SPDIF input (J1) and the
TOSLINK optical input (U4). The selected signal is
sourced to SPDIF receiver and recovered SCLK_I,
LRCLK_I, and SDATA_I signals drive the input serial
port of the AD1896.
• 10-pin header HDR1(TDM_IN) is used to input the
TDM_IN data from the SHARC DSP board.
• S3 is used to select the different input interface format of
the AD1896 input serial data. Total of six input serial modes
are possible: LJ, I2S, RJ-24, RJ-20, RJ-18, and RJ-16. Refer
to the Digital Audio Input Signals section for the configuration Table IV. Note that the input logic PLD (U2) reads
the S3 selection and controls the AD1896 and SPDIF receiver
CS8414 accordingly.
• 10-pin header HDR2 (TDM_OUT) is used to receive the
TDM_OUT data from the AD1896 to SHARC DSP board.
• 10-pin header HDR3 (DDI) is used to drive the input serial
port signals SCLK_I, LRCLK_I, and SDATA_I in 3-wire
format from an external source.
• S4 selects the master/slave mode of the input and output
serial ports of the AD1896. Refer to Table II for the mode
selection settings. In the slave operation, the corresponding
SCLK and LRCLK signals are externally provided by the
target system. In the master mode, these two signals are
internally generated from the MCLK_I signal at 768 × f S,
512 × fS, or 256 × fS rate. In MASTER MODE operation,
maximum sample rate for MASTER PORT is limited to 96 kHz.
• 10-pin header HDR5 (DDO) is used to drive the output
serial port signals SCLK_O, LRCLK_O and SDATA_O in
3-wire format from an external source.
LEDS
• DS1 (VERF) is illuminated when Validity+Error flag output on SPDIF receiver CS8414 goes high, indicating
problems with SPDIF receiver or missing audio signal to the
SPDIF receiver.
• S5 resets the AD1896 and other components.
• DS2 (PREEMP) indicates the pre-emphasized data to the
SPDIF receiver.
• S6 activates the BYPASS function of the AD1896 where the
input serial data is bypassed to the output serial port without
any signal processing.
• DS3 (3.3 V) is illuminated when 3.3 V dc supply is present
to power up the VDD_CORE of the AD1896.
• S7 is used to MUTE the AD1896 output serial data as well
as the AD1852 stereo DAC.
• DS4 (AVDD = 5 V) is illuminated when analog supply to the
stereo DAC AD1852 is present.
• S8 selects between SHORT or LONG group delay for the
AD1896.
• DS5 (RIGHT channel) and DS6 (LEFT channel) DAC
ZERO STATUS LEDs are illuminated when no input signal
is present to the stereo DAC AD1852 (U12).
• JP1 jumper is used to select output interface format and
word width of the AD1896 output serial data. Refer to the
Digital Audio Output Signals section for configuration
Tables V and VI. Again, the output logic PLD (U3) decodes
the JP1 signals and configures the AD1852 DAC and
CS8404 SPDIF transmitter to match the output data format
of the AD1896.
• DS7 (AUDIO) is illuminated when the SPDIF receiver
CS8414 is receiving audio data.
SHARC® is a registered trademark of Analog Devices, Inc.
–2–
REV. 0
EVAL-AD1896EB
S8
GRPDLYS 1
28 MMODE_2
MCLK_I 2
27 MMODE_1
MCLK_O 3
26 MMODE_0
JP4 CRYSTAL OSC./EXTERNAL CLK
SDATA_I 4
DDI-HDR3, SPDIF-J1,
TOSLINK-U4
25 SCLK_O
SCLK_I 5
24 LRCLK_O
LRCLK_I 6
VDD_IO 7
AD1896
22 VDD_CORE
21 DGND
BYPASS 9
20 TDM_IN
TDM IN HEADER HDR1
SMODE_IN_0 10
19 SMODE_OUT_0
SMODE_IN_1 11
18 SMODE_OUT_1
SMODE_IN_2 12
17 WLNGTH_OUT_0
S5
RESET 13
16 WLNGTH_OUT_1
S7
MUTE_IN 14
S3 (8-POSITION SWITCH)
DDO-HDR5, SPDIF-J2,
TDM_OUT-HDR2
23 SDATA_O
DGND 8
S6
S4 (8-POSITION SWITCH)
JP1 (4-POSITION JUMPER)
15 MUTE_OUT
Figure 1. Key Jumpers and Switches on the Evaluation Board
Table I. Pinout Table for 10-Pin Header Connectors
Pin
HDR1 (TDM_IN)
HDR2 (TDM_OUT)
HDR3 (DDI)
HDR5 (DDO)
1
3
5
7
2, 4, 6, 8, 10
5 V (O)
TDM_I (I)
SCLK_O (I/O)
LRCLK_O (I/O)
GND
5 V (O)
SDATA_O (O)
SCLK_O (I/O)
LRCLK_O (I/O)
GND
5 V (O)
SDATA_I (I)
LRCLK_I (I/O)
SCLK_I (I/O)
GND
5 V (O)
SDATA_O (O)
SCLK_O (I/O)
LRCLK_O (I/O)
GND
input sample rate up to 192 kHz is possible (input port in
slave mode) and set by an external source. All input serial
data formats and master/slave clock modes are supported.
DIGITAL AUDIO INPUT SIGNALS
Input serial port of the AD1896 can be driven in various ways
using this evaluation board.
1. RCA phone jack (J1) or TOSLINK (U4) optical connector
can be used to input the AES/EBU or SPDIF signal to the
SPDIF receiver CS8414 (U1). SPDIF receiver generated
SCLK_I, LRCLK_I, and SDATA_I signals drive the input
serial port of the AD1896. SPDIF input is supported only
when the AD1896 serial input port is in SLAVE mode (Switch
S4 position 3 to 7) and supports all input serial data formats
except RJ-24 bit and RJ-20 bit (Switch S3 positions 2, 3). The
SPDIF receiver limits input sample rates to 96 kHz.
2. Alternatively, an external data header (HDR3) can be used
to directly source all three signals SCLK_I, LRCLK_I, and
SDATA_I from an external source. Unlike SPDIF receiver,
SCLK_I and LRCLK_I signals of the input serial port are
bidirectional signals. Logic levels on pins MMODE_ [2:0]
control the direction of these signals. When the input serial port
is in master mode, these signals are generated by the AD1896;
whereas, in the slave mode these signals are provided by an
external source. MMODE_[2:0] pins are set by the 8-position
Switch S4. Tables II and III show the master/slave clock mode
corresponding to each switch position.
Input data format, such as, I2S, LJ, or RJ is set by the logic
levels on SMODE_IN_[2:0] pins as shown in Table IV. Set the
8-position Switch S3 on the evaluation board for the proper
input data format.
Table II. Input and Output Serial Port Modes
S4 Switch Position
7
6
5
4
3
2
1
0
MMODE_[2:0]
2
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Master/Slave Modes
0
1
0
1
0
1
0
1
Both Serial Ports are in Slave Mode
*Output Serial Port is Master with 768 fS_OUT
*Output Serial Port is Master with 512 fS_OUT
*Output Serial Port is Master with 256 fS_OUT
Matched Phase Mode
*Input Serial Port is Master with 768 fS_IN
*Input Serial Port is Master with 512 fS_IN
*Input Serial Port is Master with 256 fS_IN
*In MASTER MODE operation, maximum sample rate for Master Port is limited to 96 kHz.
REV. 0
–3–
EVAL-AD1896EB
Table III. Master/Slave Mode Configuration
Switch
SW4
fS_IN
fS_OUT
Input Header (HDR3)
SCLK_I
LRCLK_I
Output Header (HDR5)
SCLK_O
LRCLK_O
MCLK_I
[MHz]
Jumper
JP4 Short
0
1
2
3
4
5
6
7
132.3 kHz
66.15 kHz
44.1 kHz
Not Used
Set Externally
Set Externally
Set Externally
Set Externally
Set Externally
Set Externally
Set Externally
Not Used
132.3 kHz
66.15 kHz
44.1 kHz
Set Externally
Output
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
Output
Output
Output
Input
33.8688
33.8688
33.8688
33.8688
33.8688
33.8688
33.8688
33.8688
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-3
Output
Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
Output
Output
Output
Input
Table IV. Input Interface Formats
S3 Switch Position
0
1
2
3
4
5
6
7
SMODE_IN_[2:0]
2 1 0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
Input Interface Format
Left Justified
I2S
Right Justified, 24 Bits
Right Justified, 20 Bits
Right Justified, 18 Bits
Right Justified, 16 Bits
Not Used
Not Used
control the direction of these signals. Please refer to Table II
for the switch position S4 setting to control the Master/Slave
mode of the output serial port. The output interface mode,
such as I 2 S, LJ, RJ, and TDM mode, is set by the pins
SMODE_OUT_[2:0]. Also, the output port has two more pins
WLNGTH_OUT_[1:0] to set the output word width to 24, 20,
18, or 16 bits. The logic levels on SMODE_OUT_ [1:0] and
WLNGTH_OUT_ [1:0] pins allow different serial output data
formats. As shown in Tables V and VI, set the jumpers one and
two of JP1 for the word width and three and four of JP1 for the
output data format.
DIGITAL AUDIO OUTPUT SIGNALS
Similar to the input serial port, output serial data (SDATA_O,
SCLK_O, and LRCLK_O signals) can be accessed in three
different ways using this evaluation board.
1. Refer to Figure 8. Direct digital output header (HDR5) or,
alternatively, TDM_OUT header (HDR2) can be used to
monitor the output serial data of the AD1896 (SDATA_O
signal) in the digital form. HDR5 provides LRCLK_O,
SCLK_O, and SDATA_O in 3-wire interface format;
whereas, HDR2 should be used in TDM mode to interface
the TDM output data to the SHARC DSP board.
2. SPDIF output through connector J2, which is generated by
the SPDIF transmitter CS8404. In this case, SCLK_O,
LRCLK_O, and SDATA_O from AD1896 are encoded in
the SPDIF signal. Similar to the SPDIF receiver, the output
sample rates above 96 kHz are not possible due to the
transmitter functionality. Note that SPDIF output is supported
only for the output port in 768 fS_OUT, 512 fS_OUT, and
256 fS_OUT master mode (Switch S4 positions 4, 5, 6).
Table V. Output Interface Formats
JP1[4:3]
00
01
10
11
3. RCA jack J6 and J7 provide stereo LEFT and RIGHT analog
output signals from AD1852 DAC. Refer to Figure 10.
Interpolation ratio of the DAC needs to be set based on the
sample rate and set by jumper JP2. DAC analog output is
supported only when the AD1896 output port is configured in
768 f S_OUT, 512 fS_OUT, and 256 fS_OUT master mode
(Switch S4 positions 4, 5, 6).
SCLK_O and LRCLK_O signals of output serial port are
bidirectional signals. Logic levels on pins MMODE_ [2:0]
–4–
SMODE_OUT_[1:0]
1
0
0
0
1
1
0
1
0
1
Interface Format
Left-Justified (LJ)
I2 S
TDM Mode
Right-Justified (RJ)
Table VI. Output Signal Word Width
JP1[2:1]
00
01
10
11
WLNGTH_OUT_[1:0]
1
0
0
0
1
1
0
1
0
1
Word
24 Bits
20 Bits
18 Bits
16 Bits
REV. 0
EVAL-AD1896EB
DEFAULT CONFIGURATION
enabled for SLAVE mode only (Switch S3 position 7). The evaluation board contains 12.288 MHz (U15) clock oscillator. The
operating and quiescent currents for the ± 12 V dc supplies are
listed below.
The default configuration of this evaluation board is highlighted
in Tables VII and VIII. The AD1896 is configured in 24-bit
input and output data format, with input serial ports in slave
mode and output serial port in (768 fS) master mode. In this
configuration, input serial port needs to be driven by an external
system, such as, Audio Precision, for the slave mode operation.
An on-board third overtone crystal oscillator at 33.8688 MHz
clocks the AD1896. Since the output serial port is configured
in 768 f S master mode and the AD1896 is clocked by
33.8688 MHz clock, the output sample rate will be 44.1 kHz
for this configuration. The maximum input sample rate for this
case can be up to 192 kHz based on the requirement that the
AD1896 master clock must be higher than 138 times the
maximum input or output sample rate. The AD1896 can be
clocked by secondary on-board clock oscillator (U15) by first
inserting the desired clock oscillator in socket U15 and then
switching the clock source selection from on-board crystal to
clock oscillator (U15) by jumper JP4; however, clock oscillator is
+12 V Quiescent Current
–12 V Quiescent Current
+12 V Normal Operation Current
–12 V Normal Operation Current
AD1896
AP1 TRANSMITTER
SCLK_I
SCLK
~250 mA
~5 mA
~300 mA–360 mA
~5 mA
AP2 RECEIVER
SCLK_O
SCLK
LRCLK
LRCLK_I LRCLK_O
LRCLK
SDATA
SDATA_I SDATA_O
SDATA
Figure 2. Input and Output Serial Port Direction in Default
Configuration
Table VII. Default Jumper/Switch Settings
DAC
Interpolation
Ratio Select
(JP2)
Clock
Source
(JP4)
Group
Delay
(S8)
Bypass
Mode
(S6)
Mute
(S7)
Position 6
Position 1, 2
Shorted
Position 2, 3
Shorted
Pushed Up
Pushed
Down
Pushed
Down
Output Port
Master,
768 fS_OUT
48 kHz
Sample
Rate
33.8688 MHz
Crystal
Oscillator
Short
Off
Off
Input
Mode
(S3)
Output
Mode
(JP1)
Master/Slave
Mode
(S4)
Position 0
Position 1, 2, 3, 4
Shorted
LJ-24 Bits
LJ-24 Bits
Table VIII. Default Evaluation Board Configuration
Input
Output
Master/Slave
Mode (S3) Mode (JP1) Mode (S4)
LJ
X
LJ-24
X Both Ports in
SLAVE Mode
Input Source
(HDR3, HDR1,
J1, U4)
DIRECT
INPUT
Output Source
(HDR2, HDR5,
J2)
X SPDIF
I2 S
I2S-24
O_MAS_768
X TDM_IN
RJ-24
RJ-24
O_MAS_512
SPDIF
RJ-20
RJ-20
O_MAS_256
TOSLINK
RJ-18
RJ-18
MATCHED
PHASE
Group Delay
(S8)
RJ-16
RJ-16
I_MAS_768
Short
X Enable
TDM
I_MAS_512
Long
Disable
DIRECT
OUTPUT
Clock Source
(JP4)
96/48
X On-Board
X
33.8688 MHz Crystal
192/48
X External
256 fS Clock
TDM_OUT
Bypass Mode
(S6)
I_MAS_256
REV. 0
X
DAC
Interpolation
Ratio Select
(JP2)
–5–
Automute
Enable (JP3)
X
Mute
(S7)
Enable
X Enable
Disable
Disable
X
EVAL-AD1896EB
DEFAULT SETUP
AD1852 DAC
U12
256fS
LEFT OUT
MCLK_I
SCLK_I
fS_IN
fS_OUT
SET EXTERNALLY
44.1kHz
INPUT DATA:
DIRECT DIGITAL INPUT HEADER
HDR3 (DDI)
LRCLK_I
RIGHT OUT
SDATA_I
OUTPUT DATA:
DIRECT DIGITAL OUTPUT HEADER
HDR5 (DDO)
AD1896
U13
SCLK_I
SCLK
SCLK
SCLK_O
LRCLK
LRCLK_I LRCLK_O
LRCLK
SDATA
SDATA_I
SDATA_O
SDATA
MCLK_I
MCLK_O
1
2 3
JUMPER JP4
CS8404 DIT
U6
SDATA_I
33.868MHz CRYSTAL
LRCLK_I
SPDIF OUTPUT
SCLK_I
128fS
MCLK_I
CLOCK DIVIDER
256fS
128fS
Figure 3. Default Setup (Refer to Figure 5 for Detailed Setup)
TYPICAL PERFORMANCE
Typical performance of the AD1896 for 44.1 kHz:48 kHz (asynchronous) sample rate is listed below.
1.
2.
3.
4.
DNR, No Filter
DNR, A-Weighted
THD+N, No Filter
Frequency Response
–139 dBFS, 20 Hz to 20 kHz (–60 dBFS)
–142 dBFS, 20 Hz to 20 kHz (–60 dBFS)
–120 dBFS, 20 Hz to 20 kHz (0 dBFS)
± 0.015 dB, 20 Hz to 20 kHz (0 dBFS)
Table IX. MCLK_I Frequencies for Common Sample Rates in Master Mode
MCLK_I Frequency (MHz)
512 fS
768 fS
Sample Rate (kHz)
256 fS
44.100
48.000
96.000
11.289600
12.288000
24.576000
EXTERNAL 192 kHz CLOCK GENERATOR CIRCUIT
22.579200
24.576000
33.868800
ATTACHMENTS
Appendix A
An external circuit can be used to generate the 192 kHz clock
signals (SCLK, LRCLK) using on-board 128 fS clock oscillator (U15) running at 24.576 MHz. Please refer to Figure 4 for
the schematic and instructions on how to connect the external circuit to the AD1896EB. In general, external SCLK and
LRCLK can be used for converting the audio input data to 192 kHz
rate by connecting SCLK to SCLK_O (DDO_SCLK_O,
HDR5 on the AD1896EB) and LRCLK to LRCLK_O
(DDO_LRCLK_O, HDR5 on the AD1896EB). On-board SPDIF
transmitter CS8404 (U6) does not support sample rates above
96 kHz.
1. External 192 kHz Clock Generator Circuit
2. AD1896 Evaluation Board Block Diagram, Schematics, and
Layout Plots
3. Bill of Materials
4. PLD Code
FURTHER INFORMATION
Ordering Information
Order number is EVAL-AD1896EB
For Application Questions or Technical Support
Contact Analog Devices’ Central Applications Department at
1-781-937-1428 for assistance.
–6–
REV. 0
EVAL-AD1896EB
5V
5V
U2
J1
CLR
LD
ENT
BCLK
ENP
MCLK
24.576MHz
LRCLK
CLK RCO
D0
Q0
D1
Q1
D2
Q2
D3
Q3
BCLK
12.288MHz
MCLK
HEADER10
DDO DIRECT DIGITAL OUTPUT HEADER
74AC161
U3
NOTES
1. REPLACE U15, 12.288MHz OSCILLATOR WITH 24.576MHz
2. SET S3, I/P IF MODE TO 1 FOR I2S
3. SET S4, MASTER/SLAVE MODE TO 7
4. JUMPER JP4, MCLK_SRCE PINS 1 AND 2
5. JUMPER JP1, O/P I/F MODE POSITIONS 1, 2, AND 4 FOR 24-BIT I2S OUTPUT
6. JUMPER JP2, SELECT POSITION 1 ONLY FOR 192kHz DAC OPERATION
7. SET S1 TO DIR
8. SET S2 TO SELECT COAX OR OPTICAL INPUT
CLR
LD
ENT
ENP
CLK RCO
D0
Q0
D1
Q1
D2
Q2
D3
Q3
LRCLK
192kHz
74AC161
Figure 4. 192 kHz Clock Generator for AD1896EB
REV. 0
–7–
–8–
RESET
S5
15V INPUT
RESET
GENERATOR
3
3
DIR
CS8414
REGULATOR
MASTER/SLAVE CLOCK MODE (S4)
INPUT INTERFACE MODE (S3)
(LJ/I2S/RJ)
INPUT SIGNAL SOURCE (S1)
(DIR/DDI)
TOSLINK
256fS
3
3
3V/5V IODVDD
5V DVDD
4
3
I/F MODE
DATA
RESET
5V AVDD 5V DVDD
SWITCH S2
SPDIF IN (J1)
DIRECT DIGITAL INPUT (HDR3)
TDM INPUT (HDR1)
3
OSCILLATOR
5V DVDD
TDM_IN
VERF
PRE-EMPHASIS
AUDIO MODE
768fS
512fS
3.3V DVDD
2
MUTE (S7)
ASRC
AD1896
3/5 IODVDD
2, 3
PROG DVDR
256fS
3
RESET
Y1
33MHz
(3rd OT)
I/F MODE
DATA
SPDIF STATUS
INPUT
INTERFACE
PLD
MACH 4
5V DVDD
BYPASS (S6)
NOT USED (S8)
2
3
256fS
256fS
RESET
MUTE
DATA
(DDIO)
(DAC)
ZEROL
AD1852
DAC
5V AVDD 2
2
128fS
SPDIF OUT (J2)
ZEROR
DAC RIGHT (J7)
DAC LEFT (J6)
OUTPUT
WORDLENGTH (JP1)
(16/18/20/24 BITS)
OUTPUT INTERFACE
MODE (JP1)
(LJ/I2S/TDM/RJ)
RESET
DIRECT DIGITAL OUTPUT (HDR5)
TDM OUTPUT (HDR2)
NOTES
DIGITAL DATA INTERFACE SIGNALS
1. /2 SCLK_0, LRCLK_0
2. /3 BCLK, LRCLK, SDATA
3. /4 MCLK, BCLK, LRCLK, SDATA
3
3
5V DVDD
DIT
CS8404A
DATA
256fS
3
I/F MODE
3
DATA
5V DVDD
2
MODE
OUTPUT
INTERFACE
PLD
MACH 4
(DIT)
256fS
128fS
RESET
3
M/S MODE
I/F MODE
4
DATA
5V DVDD
3
EVAL-AD1896EB
Figure 5. Evaluation Board Block Diagram
REV. 0
EVAL-AD1896EB
SAMPLE RATE CONVERTER
96-040C.SCH
INPUT INTERFACE
96-020C.SCH
TDO-2
RESET
EXT256fS
TDM-IN
SCLK-O
LRCLK-O
SCLK-I
LRCLK-I
TDM-I
SDATA-I
SCLK-I
LRCLK-I
RESET
IMODE0
IMODE1
IMODE2
WDLEN0
WDLEN1
OMODE0
OMODE1
CMODE0
CMODE1
CMODE2
SCLK-O
LRCLK-O
DIV2/DIV3
OSC-EN
SLVCLK0
SLVCLK1
TDI-2
TCK
TMS
DEEMP
SDATA-I
CMODE0
CMODE1
CMODE2
IMODE0
IMODE1
IMODE2
OUTPUT INTERFACE
96-030C.SCH
128fS
TDI-2
TCK
TMS
CMODE2
CMODE1
CMODE0
SCLK-O
LRCLK-O
SDATA-O
TDO-2
RESET
SDATA
LRCLK
BCLK
EXT256fS
SLVCLK0
SLVCLK1
OSC-EN
DIV2/DIV3
IDPM0
IDPM1
OMODE0
OMODE1
WDLEN0
WDLEN1
SDATA-O
MUTE
128fS
EXT256fS
256fS
MONITOR DAC
96-050C.SCH
IDPM0
IDPM1
SDATA
LRCLK
BCLK
MCLK
DEEMP
MUTE
RESET
POWER SUPPLIES AND
POWER CONNECTIONS
96-060C.SCH
UNLESS OTHERWISE NOTED
1.0
1.1
1.2
1.3
ALL RESISTOR VALUES ARE EXPRESSED IN OHMS.
ALL RESISTORS ARE 1%, 1/10 W, THICK FILM TYPES.
ALL MF RESISTORS ARE 0.1%, 1/10 W, METAL FILM TYPES.
R, K, AND M ARE USED INSTEAD OF A DECIMAL POINT IN RESISTOR VALUES.
2. ALL RESISTOR NETWORKS ARE 5%, 1/16 W TYPES WITH THEIR VALUES EXPRESSED IN OHMS.
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
ALL CAPACITOR VALUES ARE EXPRESSED IN FARADS.
U, N, AND P ARE USED INSTEAD OF A DECIMAL POINT IN CAPACITOR VALUES.
ALL 100N BYPASS CAPACITORS ARE 20%, 50 V, Z5U, CERAMIC MONOLITHIC TYPES.
ALL NON-ELECTROLYTIC CAPACITORS ARE 10%, 50 V, X7R, CERAMIC MONOLITHIC TYPES.
ALL NP0 CAPACITORS ARE 5%, 50 V, CERAMIC MONOLITHIC TYPES.
ALL MY CAPACITORS ARE 5%, 50 V, METALLIZED POLYESTER TYPES.
ALL PPS CAPACITORS ARE 5%, 50 V, METALLIZED PPS FILM TYPES.
ALL PC CAPACITORS ARE 5%, 50 V, METALLIZED POLYCARBONATE TYPES.
ALL ELECTROLYTIC CAPACITORS ARE 20%, 10 V (OR HIGHER), ALUMINUM ELECTROLYTE TYPES.
ALL TA CAPACITORS ARE 20%, 10 V (OR HIGHER), TANTALUM ELECTROLYTE TYPES.
4. FOR COMPLETE INFORMATION ON ANY COMPONENT, PLEASE SEE THE ASSOCIATED BILL OF MATERIALS.
5. ALL NET NAMES PRECEDED BY/ARE ACTIVE LOW SIGNALS.
Figure 6. Evaluation Board
REV. 0
–9–
TDM I/O
HDR1
–10–
R7
75
C63
47pF
C62
47pF
R8
3.4k
R43
100
C66
47pF
C65
47pF
C67
47pF
R44
100
HDR 5 2
R42
100
EXT256fS
DDI-BCLK
DDI-LRCLK
DDI-SDATA
C64
47pF
R41
100
3
6
6
3
DPDT
5
2
C28
68nF
DDI
M3
M2
M1
M0
R9
475
DVDD
PREEMP
AUDIO
VERF
R1
10k
DVDD
C1
10nF
C1
10nF
SPDIF / DDI
INPUT SELECT
S1
1
4
2
5
DPDT
OPTICAL / COAX
INPUT SELECT
S2
4
1
C9
100nF
R40
100
R39
100
DVDD DIRECT DIGITAL
INPUT (DDI)
HDR3
CONSUMER
SPDIF INPUT
J1
RCA
TORX173
SHIELD
SHIELD
GND
GND
OUT
VCC
SPDIF OPTICAL
INPUT U4
600Z
FB3
HDR 4 2
VCC
DVDD
LRCLK-O
SCLK-O
TDM-I
6
U1A
CE/F2
CD/F1
CC/F0
CB/E2
CA/E1
CO/E0
VERF
CBL
ERF
U
C
MCK
SCK
FSYNC
SDATA
74HC04
U5D
9
CS8414
CS12/FCK
M3
M2
M1
M0
RXN
RXP
FILT
SEL
74HC04
U5C
5
74HC04
U5B
3
74HC04
8
4
2
PREEMP
AUDIO
VERF
R11
392
R38
392
392
DEEMP
RED
PREAMP
DS2
RED
AUDIO
DS7
RED
VERF
CS8414 SIGNAL STATUS
DVDD
DS1
R10
U5A
1
M3
M2
M1
M0
DIR-SCK
DIR-FSYNC
DIR-SDATA
TST2
C10
100nF
TCK
I/O14
I/O13
I/O12
4
OCTAL
C
TST1
M4A5-64/32
I/O15
I/O11
I/O16
I/O9
I/O10
I/O17
I/O18
I/O19
I/O20
I/O21
I/O22
I/O23
I/O24
I/O25
I/O26
I/O8
I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0
CLK1/I1
I/O27
I/O28
CLK0/I0
I/O29
TCK
I/O30
TMS
I/O31
TDI
DVDD
TDO
U2A
TCK
TMS
TDO-2
TDI-2
HDR 5 2
AD1895 INPUT
MODE SELECT
S3
1
0
2
6
2 4
TDO-2
TDI
TMS
ISP PORT
HDR4
DDI-BCLK
DDI-LRCLK
DDI-SDATA
OCTAL
4
C
MASTER / SLAVE
CLOCK RATIO SELECT
S4
1
0
2
6
2 4
IMODE2
IMODE1
IMODE0
SDATA-I
LRCLK-I
SCLK-I
RESET
CMODE2
CMODE1
CMODE0
EVAL-AD1896EB
Figure 7. Evaluation Board
REV. 0
REV. 0
–11–
Figure 8. Evaluation Board
I/O13
I/O11
I/O12
WDLEN1
M4A5-64/32
I/O14
I/O10
WDLEN0
I/O15
I/O16
I/O17
I/O18
I/O19
I/O9
I/O21
I/O4
CMODE0
OMODE1
I/O22
I/O3
CMODE1
I/O8
I/O23
I/O2
CMODE2
I/O7
I/O24
I/O1
IDPM1
SDATA-O
I/O25
I/O0
IDPM0
OMODE0
I/O26
CLK1/I1
I/O20
I/O27
CLK0/I0
I/O5
I/O28
TCK
TCK
I/O6
I/O29
TMS
TMS
LRCLK-O
I/O30
TDI
TDI-2
SCLK-O
I/O31
TDO
TDO-2
U3A
TST9
SLVCLK0
SLVCLK1
DIV2/DIV3
OSC-EN
HDR 4 2
OUTPUT
MODE SELECT
JP1
WDLNGTH-0
WDLNGTH-1
OPMODE-0
OPMODE-1
BCLK
LRCLK
SDATA
SPST
RESET
S5
DVDD
128fS
EXT256fS
HDR 4X2
TDM OUTPUT
HDR2
1
3
VCC
C14
100nF
CS8404
U8
TXN
TXP
ADM811TART
2
4
DVDD
CBL/SBC
GND RESET
MR
RST
TRNPT/FC1
C1/FC0
C6/C2
C7/C3
EM1/C8
EM0/C9
C9/C15
PRO
C/SBF
U
V
M2
M1
M0
MCK
SCK
FSYNC
SDATA
U6A
HDR 5 2
DVDD DIRECT DIGITAL
OUTPUT (DDO)
HDR5
DVDD
R16
332
RESET
R17
90.0
T1
8
6
5
SC937-02
4
2
1
SPDIF OUT
J2
RCA
EVAL-AD1896EB
SPDT
3
3
SPDT
2
1
BYPASS
S6
2
1
NOT USED
S8
R5
10k
SPDT
MUTE
BYPASS
R6
10k
–12–
HDR 3 1
1
2
3
MCLK SOURCE
JP4
3
2
1
MUTE
S7
R4
10k
DVDD
2
CMODE2
CMODE2
1
DVDD
10
JP3
2
4
1
VDD
U15
OSC8
GND OUT
EN
HDR 2 1
MUTE ENABLE
OSC-EN
R37
10k
1
74AHC02
9
8 U14C
MUTE-O
MUTE-I
U14A
MCLK-O
5
8
DVDD
C59
100nF
MUTE
C57
1nF
NP0
L1
1.8H
2
3
U16B
4
SD
Q
Q
6
5
2Y
74HC153
A
2G
2C3
2C2
2C1
2C0
1G
1C3
1C2
1C1
1Y
U19A
1C0
B
MCLK/3
MCLK/2
MCLK
1 74AHC74
CD
CLK
D
U17A
SLVCLK0
3
2
4
DVDD
SLVCLK1
C55
22pF
NP0
74AHCT04
R46
10k
DVDD
C56
15pF
NP0
U16A
74AHCT04
1
33M8688Hz
Y1
SCLK-O
LRCLK-O
LRCLK-O
AD1896
SDATA-O
SCLK-0
R36
47.5
TST6 TST7 TST8
SDATA-O
MCLK-I
RESET
BYPASS
74AHC02
3
CMODE1
CMODE1
RESET
CMODE0
CMODE0
NC
OMODE0
OMODE1
WDLEN1
WDLEN1
OMODE0
WDLEN0
WDLEN0
OMODE1
IMODE1
IMODE2
IMODE1
IMODE2
TDM-I
IMODE0
TDM-I
LRCLK-I
LRCLK-I
IMODE0
SDATA-I
SCLK-I
SCLK-I
U13A
SDATA-I
TST3 TST4 TST5
U16C
10
13
12
U16F
74AHCT04
13
Q
8
9
8
74AHCT04
9
SPARE
U16D
R45
22.1
74AHC74
CD
CLK
Q
U18B
SD
10
DVDD
74AHCT04
11
6
74AHCT04
5
D
8
9
CD Q
13 74AHC74
Q
U17B
SD
10
CLK
D
U16E
11
12
DVDD
11
12
DIV2/DIV3
3
2
4
Q
6
5
EXT256fS
256fS
128fS
1 74AHC74
CD
Q
U18A
SD
CLK
D
5
U14B
U14D
74AHC02
12
11
74AHC02
6
13
4
EVAL-AD1896EB
Figure 9. Evaluation Board
REV. 0
REV. 0
FIgure 10. Evaluation Board
–13–
RESET
DEEMP
MUTE
CLATCH
CCLK
CDATA
24
PD/RST
9
DEEMP
23
MUTE
3
4
5
27
SDATA
25
26 L/RCLK
BCLK
2
MCLK
SDATA
LRCLK
BCLK
256FS
U12A
AD1852
21
IDPM0
20
IDPM1
10
7
6
96/48
192/48
NC
2
4
HDR 2 2
1
3
SELECT
JP2
R3
10k
IDPM0
IDPM1
R2
10k
DVDD
U5E
12
10
13
12
16
17
C25
100nF
FILTB
FILTR
19
14
22
ZEROL
8
ZEROR
OUTR–
OUTR+
OUTL–
OUTL+
74HC04
13
U5F
74HC04
11
+ C38
15F
TA
C26
100nF
DS6
RED
ZERO
LEFT
R15
392
DDD
+ C39
15F
TA
R14
392
DS5
RED
ZERO
RIGHT
C27
100nF
R23
2.8k
R22
2.8k
R21
2.8k
R20
2.8k
R25
3.01k
R29
1.5k
C46
1nF
NP0
C45
1nF
NP0
R27
3.01k
R30
1.5k
R31
1.5k
R26
3.01k
C44
1nF
NP0
C43
1nF
NP0
R28
1.5k
R24
3.01k
OP275
U11B
OP275
U11A
C49
270pF
NP0
3
2
C50
270pF
NP0
C48
270pF
NP0
5
6
C47
270pF
NP0
1
7
R33
549
R32
549
C52
2.2nF
PPS
C51
2.2nF
PPS
R35
53.6k
RIGHT OUTPUT
J7
RCA
R34
53.6k
LEFT OUTPUT
J6
RCA
EVAL-AD1896EB
–14–
BINDING POST
(BLUE)
–15VDC CR2
J5
DL4001
DVDD
C11
100nF
CR4
1SMB15AT3
TA
BINDING POST
(GREEN)
GND
J4
BINDING POST
(YELLOW)
+15VDC
CR1
J3
DL4001
C33
47F
TA
FB6
600Z
FB9
600Z
C15
100nF
+ C36
15F
TA
4
5
7
8
GND
SD
IN
IN
AVEE
4
5
7
8
GND
SD
IN
IN
NR
ERR
OUT
OUT
ADP3303-3.3
U9
NR
ERR
OUT
OUT
ADP3303-5
U10
3
6
2
1
3
6
2
1
4
C16
100nF
C3
OPEN
C40
100F
+ C35
47F
TA
D3V3
ANALOG
GROUND
+
DS3
RED
3.3V
R12
392
DS4
RED
5VA
R13
392
+ C32
47F
TA
DVDD
C13
100nF
AVDD
DIGITAL
GROUND
R19
715
R18
243
C19
100nF
C4
OPEN
+ C37
15F
TA
1
ADJ
VIN +VOUT
U7
LM317MDT
C12
100nF
3
+ C42
100F
+ C41
100F
AVCC
C17
100nF
+
C20
100nF
FB5
600Z
FB7
600Z
C18
100nF
FB8
600Z
CR3
1SMB15AT3
+ C34
15V
15F
TA
FB4
600Z
C29
100nF
C5
100nF
DVDD
22
VA+
GND
7
14
VCC
C70
100nF
C23
100nF
OP275
U11C
C24
100nF
74AHC02
U14E
DVDD
AVEE
4
V–
V+
AVCC
8
38
VCC
GND
7
14
VCC
C58
100nF
38
VCC
GND
7
C69
100nF
74AHC74
U16C
DVDD
C22
100nF
AVDD
FB10
600Z
AD1852
U12B
14
VCC
C68
100nF
74HC04
U3B
18
AVDD
GND
7
14
VCC
DVDD
C31
GND
7
14
VCC
C60
100nF
GND
8
7
VDD
74AHC74
U18C
DVDD
C53
100nF
DVDD
100nF
GND
18
CS8404
U6B
19
VD+
DVDD
D3V3
C54
100nF
GND
8
74HC153
U19B
16
VCC
C61
100nF
AD1896
U13B
DVDD
GND
21
22
VCORE
C8
100nF
M4-64/32
U2B
DVDD
GND GND GND GND
17 6
39
28
16
VCC
DVDD
DGND AGND AGND
1 11
15
28
DVDD
DVDD
74AHCT04
U16G
DVDD
C21
100nF
C30
100nF
C7
100nF
M4-64/32
U3B
DVDD
DGND
8
CS8414
U1B
7
VD+
C6
100nF
DVDD
FB2
600Z
GND GND GND GND
17 6
39
28
16
VCC
DVDD
AGND
21
FB1
600Z
EVAL-AD1896EB
Figure 11. Evaluation Board
REV. 0
EVAL-AD1896EB
Figure 12. Audio ASRC
Figure 13. Component Side
REV. 0
–15–
EVAL-AD1896EB
Figure 14. Ground Planes
Figure 15. Power Planes
–16–
REV. 0
EVAL-AD1896EB
Figure 16. Bottom Layer
REV. 0
–17–
EVAL-AD1896EB
BILL OF MATERIALS
Item Qty
Ref
Detail
Title
Mfr P/N
Mfr Name
LH99321 Rev 0
AD1852JRS
AD1895YRS
ADM811TART
ADP3303AR-3.3
ADP3303AR-5
CS8404A-CS
CS8414-CS
LM317MDT
M4A5-64/32-10VC
OP275GS
74AHC02
74AHC74
74AHCT04
74HC14
74HC153
SC937-02
22R1 Ω
47R5 Ω
75R0 Ω
90R9 Ω
100 Ω
243 Ω
332 Ω
392 Ω
PCB FAB AD1895 Evaluation
IC DAC Stereo 24-Bit 192kS/s SSOP-28
IC Async Sample Rate Converter SSOP-28
IC Reset Generator SOT-143
Voltage Regulator 3 V 3 SO-8
Voltage Regulator 5 V SO-8
IC Digital Audio Transmitter 96 kHz SOIC-24L
IC Digital Audio Receiver 96 kHz SOIC-28L
Voltage Regulator Pos Adj DPAK
IC PLD CMOS ISP TQFP44
IC OPAMP Dual Bipolar/JFET SO-8
IC Quad 2-Input NOR SO-14
IC Dual D Flip-Flop SO-14
IC Hex Inverter SO-14
IC Hex Schmitt Trigger Inverter SO-14
IC Dual 4-Input MUX SO-14
Transformer Signal AES/EBU
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
LH99321 Rev 0
AD1852JRS
AD1895YRS
ADM811TART
ADP3303AR-3.3
ADP3303AR-5
CS8404A-CS
CS8414-CS
LM317MDT
M4A5-64/32-10VC
OP275GS
74AHC02D
SN74AHC74D
SN74AHCT04D
MM74HC14M
M74HC153M
SC937-02
ERJ-6ENF22.1
ERJ-6ENF47.5
ERJ-6ENF75.0
ERJ-6ENF90R9
ERJ-6ENF1000
ERJ-6ENF2430
ERJ-6ENF3320
ERJ-6ENF3920
Prototype Circuits, Inc.
Analog Devices, Inc.
Analog Devices, Inc.
Analog Devices, Inc.
Analog Devices, Inc.
Analog Devices, Inc.
Crystal Semiconductor
Crystal Semiconductor
Motorola
Lattice
Analog Devices, Inc.
Philips
Texas Instruments
Texas Instruments
Fairchild
ST Microelectronics
Scientific Conversion, Inc.
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
475 Ω
549 Ω
715 Ω
1.5 kΩ
2.8 kΩ
3.01 kΩ
3.4 kΩ
10 kΩ
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
Chip Resistor 1% 100 mW Thick Film 0805
ERJ-6ENF4750
ERJ-6ENF5490
ERJ-6ENF7150
ERJ-6ENF1501
ERJ-6ENF2801
ERJ-6ENF3011
ERJ-6ENF3401
ERJ-6ENF1002
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
53.6 kΩ
15 pF
22 pF
47 pF
270 pF
1 nF
Chip Resistor 1% 100 mW Thick Film 0805
Chip Capacitor 5% 50 V NP0 Ceramic 0805
Chip Capacitor 5% 50 V NP0 Ceramic 0805
Chip Capacitor 5% 50 V NP0 Ceramic 0805
Chip Capacitor 5% 50 V NP0 Ceramic 0805
Chip Capacitor 5% 50 V NP0 Ceramic 0805
ERJ-6ENF5362
ECU-V1H150JCN
ECU-V1H220JCN
ECU-V1H470JCG
ECU-V1H271JCG
ECU-V1H102JCX
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
2.2 nF
10 nF
68 nF
100 nF
Chip Capacitor 5% 50 V PPS Film 0805
Chip Capacitor 10% 50 V X7R Ceramic 0805
Chip Capacitor 10% 50 V X7R Ceramic 0805
Chip Capacitor 10% 50 V X7R Ceramic 0805
ECH-U1H222JB5
ECU-V1H103KBG
ECJ-2YB1H683K
ECJ-2YB1H104K
Panasonic
Panasonic
Panasonic
Panasonic
15 µF
Chip Capacitor 20% 20 V Tantalum 7343
ECS-T1DD156R
Panasonic
47 µF
Chip Capacitor 20% 10 V Tantalum 7343
ECS-T1AD476R
Panasonic
100 µF
33M8688 Hz
SMD Capacitor 20% 25 V Aluminum CASE-F
SMD Crystal HCM49
Panasonic
Citizen
FB1–FB10
L1
DS1–DS7
600Z
1.8 µs
Red
Chip Ferrite Bead 600 Ω @100 MHz 0805
Chip Inductor 20% 0R82 Ω RLP167
Chip LED 1206LED
EEV-FC1E101P
HCM49-33.8688
MABJT
HZ0805E601R
ELJ-FA1R8KF
CMD15-21VRD/TR8
2
2
2
CR1, CR2
CR3, CR4
J1, J2
DL4001
1SMB15AT3
Black Insert
Chip Diode 50 V 1A SOD-87
Chip Transient Suppressor 15 V 600 W SMB
Connector RCA Female Right Angle CTP-021
DL4001
1SMB15AT3
CTP-021-A-S-BLK
54
1
J6
White Insert
Connector RCA Female Right Angle CTP-021
CTP-021-A-S-WHT
55
1
J7
Red Insert
Connector RCA Female Right Angle CTP-021
CTP-021-A-S-RED
56
57
58
1
1
1
JP3
JP2
JP4
Header 2 1
Header 2 2
Header 3 1
Connector 2P 2 1 Male 100ctr SIP2
Connector 4P 2 2 Male 100ctr HDR2X2
Connector 3P 3 1 Male 100ctr HDR3X1
2340-6111TN
2380-6121TN
2340-6111TN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
1
1
1
6
1
1
7
26
27
28
29
30
31
32
33
1
2
1
4
4
4
1
8
34
35
36
37
38
39
2
1
1
6
4
5
40
41
42
43
2
2
1
35
44
5
45
3
46
47
3
1
U12
U13
U8
U9
U10
U6
U1
U7
U2, U3
U11
U14
U17, U18
U16
U5
U19
T1
R45
R36
R7
R17
R39–R44
R18
R16
R10–R15,
R38
R9
R32, R33
R19
R28–R31
R20–R23
R24–R27
R8
R1–R6,
R37, R46
R34, R35
C56
C55
C62–C67
C47–C50
C43–C46,
C57
C51, C52
C1, C2
C28
C5–C27,
C29–C31,
C53, C54,
C58–C61,
C68–C70
C34, C36–
C39
C32, C33,
C35
C40–C42
Y1
48
49
50
10
1
7
51
52
53
–18–
Steward
Panasonic
Chicago Miniature
Lamp, Inc.
Microsemi
ON Semiconductor
Connect-Tech Products,
Products, Inc.
Connect-Tech Products,
Products, Inc.
Connect-Tech Products,
Products, Inc.
3M
3M
3M
REV. 0
EVAL-AD1896EB
BILL OF MATERIALS (continued)
Item Qty
Ref
Detail
Title
Mfr P/N
Mfr Name
59
3
Header 4 2
Connector 8P 4 2 Male 100ctr HDR4X2
2380-6121TN
3M
60
2
Header 5 2
Connector 10P 5 2 Male 100ctr HDR5X2
2380-6121TN
3M
61
1
HDR1,
HDR2, JP1
HDR3,
HDR5
HDR4
Header 5 2
1
1
2
2
1
3
1
1
1
1
4
51138-44624
30310-6002HB
1108800
SG-531P-12.288MC
EG-2215
PT65526
FSM6JSMA
10SP001
TORX173
111-0107-001
111-0104-001
111-0110-001
SPCS-12
3M
62
63
64
65
66
67
68
69
70
71
72
Connector 10P 5 2 Male 100ctr Shrouded
HDR5X2SHR
Socket Oscillator Half Size OSC8
IC CMOS Oscillator 12.288 MHz OSC8
Switch Slide DPDT Side Act PCB
Switch Rotary 8 Pos Octal
Switch PB NO Momentary Tactile
Switch Slide SPDT Vert Act PCB
IC Fiber Optic Receiver
Connector Binding Post
Connector Binding Post
Connector Binding Post
Spacer Nylon 3/4" Snap-In
REV. 0
U15
U15
S1, S2
S3, S4
S5
S6–S8
U4
J3
J4
J5
Socket 4/8
12M288 Hz
EG-2215
PT65526
FSM6JSMA
10SP001
TORX173
Yellow
Green
Blue
Spacer Snap-in
–19–
Aries
Epson Electronics
E-Switch
APEM
Augat
Mouser
Toshiba
Johnson Components, Inc.
Johnson Components, Inc.
Johnson Components, Inc.
SPC Technology
EVAL-AD1896EB
in_pld.abl
MODULE IF_Logic
TITLE
'AD1896 EVB Input Interface Logic'
//===================================================================================
// FILE:
input_pld.abl
// REVISION DATE:
03-20-01
// REVISION BY:
Chirag Patel
// REVISION:
1.0
//
// DESCRIPTION:
//
// This input interface PLD (U2) selects between the External Data Interface header
// (HDR3) and the on-board CS8414 DIR (U1) for the AD1896 ASRC input signals, depending
// upon the SPDIF/DDI switch position (S1). When the SPDIF Receiver DIR is the selected
// signal source the digital audio signals, SDATA_I, SCLK_I and LRCLK_I are derived from
// the DIR output. SPDIF receiver needs the digital data in the SPDIF format in order to
// generate these signals. When the external data is the selected source the digital
// signals from (HDR3) are applied to the AD1896.
//
//
//
//
//
//
Signals SCLK_I, LRCLK_I, DDI_SCLK, DDI_LRCLK, DIR_SCLK, DIR_FSYNC on the PLD are
bi-directional signals. The direction of these signals are controlled by the
MASTER_SLAVE MODE switch position (S4). When the AD1896 input serial port is set in the
master mode, the SCLK_I and LRCLK_I are generated from the AD1896 input serial port.
On the other hand, these signals are provided from the external source in the slave mode
operation.
// PLD also decodes the Input Interface Format Switch (S3) and sets the Interface mode pins
// for both the CS8414 DIR and the AD1896 ASRC.
//===================================================================================
LIBRARY 'MACH';
DECLARATIONS
//
IF_Logic DEVICE 'M4-64/32-15VC';
"INPUTS ===========================================================================
// TDI, TCK, TMS
pin 4,7,26 istype 'com';
//JTAG I/P's
DIR_SDATA
pin 1 istype 'com';
//CS8414 DIR SDATA OUT
SPDIF_DDI
pin 12 istype 'com';
//SPDIF_DDI SWITCH S1
DDI_SDATA
pin 22 istype 'com';
//EXTERNAL DATA INPUT DDI
RESET
Pin 23 istype 'com';
//Active hi reset output
to AD1896
RESET_LO
Pin 44 istype 'com';
//Active low reset input
MS_MODE2, MS_MODE1, MS_MODE0
pin 24,25,30 istype 'com'; //MASTER/SLAVE MODE SWITCH S4
IN_MODE2,IN_MODE1,IN_MODE0
pin 18,15,14 istype 'com'; //INPUT SERIAL MODE
SWITCH S3
"OUTPUTS =========================================================================
// TDO
pin 29 istype 'com';
//JTAG O/P
M0, M1, M2, M3
pin 8,9,10,11 istype 'com'; //SPDIF_RVR MODE SELECT
SMODE_I_0, SMODE_I_1, SMODE_I_2
pin 33,32,31 istype 'com'; //INPUT SERIAL MODE FORMAT
FOR AD1896
SDATA_I
pin 37 istype 'com';
//SERIAL DATA INPUT TO
AD1896 ASRC
//IO SIGNALS
DIR_FSYNC, DIR_SCLK
IO'S
DDI_LRCLK, DDI_SCLK
SCLK IO'S FOR HDR3
LRCLK_I, SCLK_I
AD1896 ASRC
pin 2,3;
//DIR_FYSNC AND DIR_SCLK
pin 21,20;
//EXTERNAL LRCLK AND
pin 35,36;
//LRCLK_I AND SCLK_I IO'S TO
"NODES
–20–
REV. 0
EVAL-AD1896EB
I_SDATA, ISCLK, ILRCLK
node istype 'com';
//================================================================================
in_pld.abl
"MACROS
//INPUT SERIAL DATA FORMATS
// S3 position 0, LEFT-JUSTIFIED
LJ
=
( IN_MODE2 & IN_MODE1 & IN_MODE0);
// S3 position 1, I2S
I2S
=
( IN_MODE2 & IN_MODE1 & !IN_MODE0);
// S3 position 2, RIGHT-JUSTIFIED 24-BITS
RJ24
=
( IN_MODE2 & !IN_MODE1 & IN_MODE0);
// S3 position 3, RIGHT-JUSTIFIED 20-BITS
RJ20
=
( IN_MODE2 & !IN_MODE1 & !IN_MODE0);
// S3 position 4, RIGHT-JUSTIFIED 18-BITS
RJ18
=
( !IN_MODE2 & IN_MODE1 & IN_MODE0);
// S3 position 5, RIGHT-JUSTIFIED 16-BITS
RJ16
=
( !IN_MODE2 & IN_MODE1 & !IN_MODE0);
// S3 positons 6,7 are not used
//MASTER_SLAVE MODE MAPPING
// S4 position
BOTH_SLAVE
// S4 position
O_MAS_768
// S4 position
O_MAS_512
// S4 position
O_MAS_256
// S4 position
MATCH_PHASE
// S4 position
IN_MAS_768
// S4 position
IN_MAS_512
// S4 position
IN_MAS_256
7,
=
6,
=
5,
=
4,
=
3,
=
2,
=
1,
=
0,
=
INPUT/OUTPUT SERIAL PORTS IN SLAVE MODE
(!MS_MODE2 & !MS_MODE1 & !MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX768
(!MS_MODE2 & !MS_MODE1 & MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX512
(!MS_MODE2 & MS_MODE1 & !MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX256
(!MS_MODE2 & MS_MODE1 & MS_MODE0);
INPUT SERIAL PORT IN MATCHED_PHASE MODE
(MS_MODE2 & !MS_MODE1 & !MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX768
(MS_MODE2 & !MS_MODE1 & MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX512
(MS_MODE2 & MS_MODE1 & !MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX256
(MS_MODE2 & MS_MODE1 & MS_MODE0);
"==========================================================================
EQUATIONS
// AD1896 ASRC Input
SMODE_I_2 = RJ24
SMODE_I_1 = RJ24
SMODE_I_0 = RJ24
Serial Port Interface Mode Select
# RJ20 # RJ18 # RJ16;
# RJ20;
# RJ18 # I2S;
// CS8414 DIR Interface Mode Select, DIR_FSYNC and DIR_SCLK are bi-directional signals.
// If AD1896 input serial port is in slave mode, the CS8414 DIR RJ-24 and RJ-20 modes
// are not supported.
M0 =
(RJ16 & (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256))
# ((LJ # RJ24 # RJ20 # I2S) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));
M1 =
((I2S # RJ18) & (BOTH_SLAVE # MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256))
# (I2S & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));
M2 = RJ18 # RJ16;
M3 = 0;
REV. 0
–21–
EVAL-AD1896EB
in_pld.abl
// IO control logic
DDI_SCLK.oe
=
DDI_LRCLK.oe =
DIR_FSYNC.oe =
DIR_SCLK.oe
=
SCLK_I.oe
=
LRCLK_I.oe
=
DDI_SCLK
DDI_LRCLK
DIR_SCLK
DIR_FSYNC
=
=
=
=
(IN_MAS_768
(IN_MAS_768
(IN_MAS_768
(IN_MAS_768
(BOTH_SLAVE
(BOTH_SLAVE
#
#
#
#
#
#
IN_MAS_512 # IN_MAS_256);
IN_MAS_512 # IN_MAS_256);
IN_MAS_512 # IN_MAS_256);
IN_MAS_512 # IN_MAS_256);
MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256);
MATCH_PHASE # O_MAS_768 # O_MAS_512 # O_MAS_256);
ISCLK;
ILRCLK;
((!ISCLK) & (LJ # RJ24 # RJ20 # RJ18 # RJ16)) # (ISCLK & I2S);
ILRCLK;
// AD1896 ASRC Input Serial port signals
SCLK_I
= ((LJ # RJ24 # RJ20 # RJ18 # RJ16 # I2S) & (ISCLK) & (!SPDIF_DDI))
# ((((LJ # RJ24 # RJ20) & (!ISCLK)) # ((I2S # RJ18 # RJ16) & (ISCLK))) &
(SPDIF_DDI));
LRCLK_I
(!SPDIF_DDI));
SDATA_I
(SPDIF_DDI));
= (SPDIF_DDI & DIR_FSYNC) # (((I2S & !DDI_LRCLK) # (!I2S & DDI_LRCLK)) &
= (DDI_SDATA & !SPDIF_DDI) # (((LJ#RJ24#RJ20#RJ18#RJ16#I2S)&(DIR_SDATA)) &
// Internal node signals
ISCLK
= ((DDI_SCLK) & (BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &
(!SPDIF_DDI))
# ((LJ#RJ24#RJ20) & ((DIR_SCLK) &
(BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) & (SPDIF_DDI)))
# ((SCLK_I) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256))
# ((I2S # RJ18 # RJ16) & (DIR_SCLK) &
(BOTH_SLAVE#MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) & (SPDIF_DDI));
ILRCLK = ((DDI_LRCLK) & (BOTH_SLAVE # MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &
(!SPDIF_DDI))
# ((DIR_FSYNC) & (BOTH_SLAVE # MATCH_PHASE#O_MAS_768#O_MAS_512#O_MAS_256) &
(SPDIF_DDI))
# ((LRCLK_I) & (IN_MAS_768 # IN_MAS_512 # IN_MAS_256));
I_SDATA
= (DDI_SDATA & !SPDIF_DDI) # (DIR_SDATA & SPDIF_DDI);
"====================================================================================
END IF_Logic
–22–
REV. 0
EVAL-AD1896EB
out_pld.abl
//===================================================================================
MODULE
IF_Logic
TITLE
'AD1896 EVB Output Interface Logic'
//===================================================================================
// FILE:
output_pld.abl
// REVISION DATE: 03-20-01
// REVISION BY:
Chirag Patel
// REVISION:
1.0
// DESCRIPTION:
// This output interface PLD (U3) decodes output interface signals of AD1896 and sources
// these signals to the DAC, DIT and external header (HDR2, HDR5).
// Signals SCLK_O, LRCLK_O, DDO_SCLK and DDO_LRCLK on the PLD are bi-directional signals.
// The direction of these signals are controlled by the MASTER_SLAVE MODE switch position
(S4).
// When the AD1896 output serial port is set in the master mode, the SCLK_O and LRCLK_O are
// generated from the AD1896 output serial port. On the other hand, these signals are provided
// from the external source in the slave mode operation.
//
// PLD also decodes the Output Interface Format and data width Jumper header (JP1) and sets
// the Interface mode pins for the AD1896 ASRC, AD1852 DAC and CS8404 DIT to meet the interface
// requirements of all three devices in any given mode.
//===================================================================================
LIBRARY 'MACH';
DECLARATIONS
//
IF_Logic DEVICE 'M4-64/32-15VC';
"INPUTS ===========================================================================
// TDI, TCK, TMS
pin 4, 7, 26 istype 'com';
//JTAG I/P's
SDATA_O
pin 3 istype 'com, buffer';
MS_MODE2, MS_MODE1, MS_MODE0 pin 42, 43, 44 istype 'com';
WDLNGTH1, WDLNGTH0
pin 19, 18 istype 'com';
OPMODE1, OPMODE0
pin 21, 20 istype 'com';
"OUTPUTS ========================================================================
// TDO
pin 29 istype 'com';
//JTAG O/P
SMODE_O_1, SMODE_O_0 pin 9, 8 istype 'com';
WDLNGTH_O_1, WDLNGTH_O_0
pin 11, 10 istype 'com';
OSC_EN, SLVCLK1, SLVCLK0, DIV2_3
pin 14,12, 13, 15 istype 'com';
IDPM1, IDPM0
pin 41, 40 istype 'com';
DDO_SDATA
pin 34 istype 'com, buffer';
SDATA_DAC_DIT
pin 22 istype 'com, buffer';
LRCLK_DAC, SCLK_DAC
pin 36, 35 istype 'com, buffer';
FSYNC_DIT, SCLK_DIT
pin 23, 24 istype 'com, buffer';
M2,M1,M0
pin 31,32,33 ISTYPE 'com';
TST9
pin 37 istype 'com, buffer';
//IO SIGNALS
SCLK_O, LRCLK_O
DDO_SCLK, DDO_LRCLK
pin 1, 2 istype 'com, buffer';
pin 30, 25 istype 'com, buffer';
"NODES
I_SDATA, ISCLK, ILRCLK
node istype 'com, buffer';
//================================================================================
out_pld.abl
"MACROS
REV. 0
–23–
EVAL-AD1896EB
//OUTPUT SERIAL DATA FORMATS
// JP1[4:3]
LJ
// JP1[4:3]
I2S
// JP1[4:3]
TDM
// JP1[4:3]
RJ
0, LEFT-JUSTIFIED
=
(!OPMODE1 & !OPMODE0);
1, I2S
=
(!OPMODE1 & OPMODE0);
2, TDM MODE
=
(OPMODE1 & !OPMODE0);
3, RIGHT-JUSTIFIED
=
(OPMODE1 & OPMODE0);
// OUTPUT DATA BIT WIDTH SETTINGS
// JP1[2:1]
BITS_24
// JP1[2:1]
BITS_20
// JP1[2:1]
BITS_18
// JP1[2:1]
BITS_16
0, 24-BITS
=
( !WDLNGTH1
0, 20-BITS
=
( !WDLNGTH1
0, 18-BITS
=
( WDLNGTH1
0, 16-BITS
=
( WDLNGTH1
& !WDLNGTH0);
&
WDLNGTH0);
& !WDLNGTH0);
&
WDLNGTH0);
// OUTPUT SERIAL DATA FORMAT MAPPING
// LJ-24 BITS
LJ24 = (LJ &
// I2S-24 BITS
I2S24 = (I2S
// TDM-24 BITS
TDM24 = (TDM
// RJ-24 BITS
RJ24 = (RJ &
// RJ-20 BITS
RJ20 = (RJ &
// LJ-18 BITS
RJ18 = (RJ &
// LJ-16 BITS
RJ16 = (RJ &
BITS_24);
& BITS_24);
& BITS_24);
BITS_24);
BITS_20);
BITS_18);
BITS_16);
//MASTER_SLAVE MODE MAPPING
// S4 position
BOTH_SLAVE
// S4 position
O_MAS_768
// S4 position
O_MAS_512
// S4 position
O_MAS_256
// S4 position
MATCH_PHASE
// S4 position
IN_MAS_768
// S4 position
IN_MAS_512
// S4 position
IN_MAS_256
7,
=
6,
=
5,
=
4,
=
3,
=
2,
=
1,
=
0,
BOTH SERIAL PORT IN SLAVE MODE
(!MS_MODE2 & !MS_MODE1 & !MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX768
(!MS_MODE2 & !MS_MODE1 & MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX512
(!MS_MODE2 & MS_MODE1 & !MS_MODE0);
OUTPUT SERIAL PORT IN MASTER MODE FSX256
(!MS_MODE2 & MS_MODE1 & MS_MODE0);
INPUT SERIAL PORT IN MATCHED_PHASE MODE
(MS_MODE2 & !MS_MODE1 & !MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX768
(MS_MODE2 & !MS_MODE1 & MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX512
(MS_MODE2 & MS_MODE1 & !MS_MODE0);
INPUT SERIAL PORT IN MASTER MODE FSX256
=
(MS_MODE2 & MS_MODE1 & MS_MODE0);
"====================================================================================
out_pld.abl
–24–
REV. 0
EVAL-AD1896EB
EQUATIONS
// AD1896 ASRC
WDLNGTH_O_1
WDLNGTH_O_0
SMODE_O_1
SMODE_O_0
Output Serial Port Interface Mode and word length Select
= WDLNGTH1;
= WDLNGTH0;
= OPMODE1;
= OPMODE0;
// CS8414 DIT Interface Mode Select. The chip is configured in the LJ mode when AD1896 output
format are
// set either RJ24, RJ20, RJ18 or RJ16. Also need to invert the incoming SCLK signal in the
LJ24, RJ24, RJ20,
// RJ18 and RJ16 mode to match the DIT interface requirment for DIT_SCLK.
M0 = LJ;
M1 = 0;
M2 = I2S;
// AD1852 Stereo DAC input serial Interface mode select. NOTE that the DAC requires serial
programing for
// RJ20, RJ18, RJ16 mode. Since AD1896 EVB does not allow serial programming of the AD1852
registers,
// AD1852 will be configured in RJ24 mode when AD1896 output port is configured in RJ20, RJ18
and RJ16 mode.
IDPM1 = LJ;
IDPM0 = I2S;
// AD1896, DIR, DIT, AD1852 MCLK control logic. Based on the Master/Slave operation of the
AD1896 in/out ports,
// 33.8688MHz crystal frequency will be divided by either 1, 2 or 3 and the ouput of the divider is feed into the DAC and DIT.
// On-board 12.288MHz clock oscillator is enabled only when input and ouput serial ports are
configured in SLAVE mode.
OSC_EN
SLVCLK1
SLVCLK0
DIV2_3
=
=
=
=
(BOTH_SLAVE);
(O_MAS_768) # (BOTH_SLAVE);
(O_MAS_512) # (BOTH_SLAVE);
(!O_MAS_512) & (O_MAS_768);
// IO control logic for bi-directional signals
DDO_SCLK.OE
DDO_LRCLK.OE
SCLK_O.OE
LRCLK_O.OE
=
=
=
=
(O_MAS_768 # O_MAS_512 # O_MAS_256);
(O_MAS_768 # O_MAS_512 # O_MAS_256);
(BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 # IN_MAS_256);
(BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 # IN_MAS_256);
// AD1896 ASRC Output Serial port signals
DDO_SDATA = SDATA_O;
DDO_SCLK = ISCLK;
DDO_LRCLK = ILRCLK;
SCLK_O
LRCLK_O
= ISCLK;
= ILRCLK;
// DAC AND DIT SIGNALS
SDATA_DAC_DIT = SDATA_O;
LRCLK_DAC
= ILRCLK;
REV. 0
–25–
EVAL-AD1896EB
SCLK_DAC
= ISCLK;
FSYNC_DIT
SCLK_DIT
= ILRCLK;
= ((!ISCLK) & (LJ # RJ24 # RJ20 # RJ18 # RJ16))
# (ISCLK & I2S);
// Internal node signals
out_pld.abl
ISCLK
=
((SCLK_O) & (O_MAS_768 # O_MAS_512 # O_MAS_256))
# ((DDO_SCLK) & (BOTH_SLAVE # MATCH_PHASE # IN_MAS_768 # IN_MAS_512 #
IN_MAS_256));
ILRCLK = ((LRCLK_O) & (O_MAS_768 # O_MAS_512 # O_MAS_256))
# ((DDO_LRCLK) & (BOTH_SLAVE#MATCH_PHASE#IN_MAS_768#IN_MAS_512#IN_MAS_256) & (LJ
# TDM # RJ24 # RJ20 # RJ18 # RJ16))
# ((!DDO_LRCLK) & (BOTH_SLAVE#MATCH_PHASE#IN_MAS_768#IN_MAS_512#IN_MAS_256) &
(I2S));
"====================================================================================
END IF_Logic
–26–
REV. 0
–27–
–28–
PRINTED IN U.S.A.
C02625–0–12/01(0)
Similar pages