T DUC E NT PRO LACEM r at E T ente OLE RE P OBS ENDED upport C om/tsc S M il.c COM chnical w.inters E R e NO ww ur TData rSheet act o ERSIL o t n o c 8-INT 1-88 ® CA3094, CA3094A, CA3094B October 2000 File Number 30MHz, High Output Current Operational Transconductance Amplifier (OTA) Features The CA3094 is a differential input power control switch/amplifier with auxiliary circuit features for ease of programmability. For example, an error or unbalance signal can be amplified by the CA3094 to provide an on-off signal or proportional control output signal up to 100mA. This signal is sufficient to directly drive high current thyristors, relays, DC loads, or power transistors. The CA3094 has the generic characteristics of the CA3080 operational amplifier directly coupled to an integral Darlington power transistor capable of sinking or driving currents up to 100mA. • CA3094AT, E, M for Operation Up to 36V The gain of the differential input stage is proportional to the amplifier bias current (IABC), permitting programmable variation of the integrated circuit sensitivity with either digital and/or analog programming signals. For example, at an IABC of 100µA, a 1mV change at the input will change the output from 0 to 100µA (typical). The CA3094 is intended for operation up to 24V and is especially useful for timing circuits, in automotive equipment, and in other applications where operation up to 24V is a primary design requirement (see Figures 28, 29 and 30 in Typical Applications text). The CA3094A and CA3094B are like the CA3094 but are intended for operation up to 36V and 44V, respectively (single or dual supply). TEMP. RANGE ( oC) • CA3094E, M for Operation Up to 24V • CA3094BT, M for Operation Up to 44V • Designed for Single or Dual Power Supply • Programmable: Strobing, Gating, Squelching, AGC Capabilities • Can Deliver 3W (Average) or 10W (Peak) to External Load (in Switching Mode) • High Power, Single Ended Class A Amplifier will Deliver Power Output of 0.6W (1.6W Device Dissipation) • Total Harmonic Distortion (THD) at 0.6W in Class A Operation 1.4% (Typ) Applications • Error Signal Detector: Temperature Control with Thermistor Sensor; Speed Control for Shunt Wound DC Motor • Over Current, Over Voltage, Over Temperature Protectors • Dual Tracking Power Supply with CA3085 • Wide Frequency Range Oscillator • Analog Timer • Level Detector Ordering Information PART NUMBER (BRAND) 598.8 PACKAGE PKG. NO. • Alarm Systems • Voltage Follower CA3094AT, BT -55 to 125 8 Pin Metal Can T8.C • Ramp Voltage Generator CA3094E, AE -55 to 125 8 Ld PDIP E8.3 • High Power Comparator CA3094M, BM -55 to 125 8 Ld SOIC M8.15 • Ground Fault Interrupter (GFI) Circuits Pinouts CA3094 (PDIP, SOIC) TOP VIEW EXT. FREQUENCY COMPENSATION OR INHIBIT INPUT DIFFERENTIAL VOLTAGE INPUTS GND (V- IN DUAL SUPPLY OPERATION) 1 8 CA3094 (METAL CAN) TOP VIEW SINK OUTPUT (COLLECTOR) SINK OUTPUT (COLLECTOR) EXT. FREQUENCY COMPENSATION OR INHIBIT INPUT 7 V+ 3 6 DRIVE OUTPUT (EMITTER) 4 5 IABC CURRENT 2 8 1 TAB 7 2 PROGRAMMABLE INPUT (STROBE OR AGC) DIFFERENTIAL VOLTAGE INPUTS V+ 6 5 3 4 GND (V- IN DUAL SUPPLY OPERATION) DRIVE OUTPUT (EMITTER) IABC CURRENT PROGRAMMABLE INPUT (STROBE OR AGC) NOTE: Pin 4 is connected to case. 3-1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved CA3094, CA3094A, CA3094B Absolute Maximum Ratings Thermal Information Supply Voltage (Between V+ and V- Terminals) CA3094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V CA3094A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V CA3094B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V Differential Input Voltage (Terminals 2 and 3, Note 1). . . . . . . . . 5V DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current (Terminals 2 and 3) . . . . . . . . . . . . . . . . . . . . . . ±1mA Amplifier Bias Current (Terminal 5) . . . . . . . . . . . . . . . . . . . . . . 2mA Average Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA Thermal Resistance (Typical, Note 2) θJA ( oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A Metal Can Package . . . . . . . . . . . . . . . 175 100 Maximum Junction Temperature (Metal Can Package). . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Exceeding this voltage rating will not damage the device unless the peak input signal current (1mA) is also exceeded. 2. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = ±15V, IABC = 100µA Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS TA = 25oC - 0.4 5.0 mV TA = 0oC to 70oC - - 7.0 mV Change in VIO between IABC = 100µA and IABC = 5µA - 1 8.0 mV TA = 25oC - 0.02 0.2 µA INPUT PARAMETERS Input Offset Voltage VIO |∆VIO| Input Offset Voltage Change Input Offset Current IIO Input Bias Current II Device Dissipation PD Common Mode Rejection Ratio Common Mode Input Voltage Range Unity Gain Bandwidth Open Loop Bandwidth at -3dB Point TA = 0oC to 70oC - - 0.3 µA TA = 25oC - 0.2 0.50 µA TA = 0oC to 70oC - - 0.70 µA IOUT = 0mA 8 10 12 mW CMRR VICR 70 110 - dB V+ = 30V (High) 27 28.8 - V V- = 0V (Low) 1.0 0.5 - V V+ = 15V 12 13.8 - V V- = -15V -14 -14.5 - V fT IC = 7.5mA, VCE = 15V, IABC = 500µA - 30 - MHz BWOL IC = 7.5mA, VCE = 15V, IABC = 500µA - 4 - kHz PD = 220mW - 0.4 - % PD = 600mW Total Harmonic Distortion (Class A Operation) THD - 1.4 - % Amplifier Bias Voltage (Terminal 5 to Terminal 4) VABC - 0.68 - V Input Offset Voltage Temperature Coefficient ∆VIO/∆T - 4 - µV/oC Power Supply Rejection ∆VIO/∆V - 15 150 µV/V 1/F Noise Voltage EN f = 10Hz, IABC = 50µA - 18 - nV/ H z 1/F Noise Current IN f = 10Hz, IABC = 50µA - 1.8 - pA/ Hz Differential Input Resistance RI IABC = 20µA 0.50 1.0 - MΩ Differential Input Capacitance CI f = 1MHz, V+ = 30V - 2.6 - pF 3-2 CA3094, CA3094A, CA3094B Electrical Specifications TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = ±15V, IABC = 100µA Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 26 27 - V - 0.01 0.05 V OUTPUT PARAMETERS (Differential Input Voltage = 1V) Peak Output Voltage (Terminal 6) Peak Output Voltage (Terminal 6) Peak Output Voltage (Terminal 8) Peak Output Voltage (Terminal 8) With Q13 “ON” VOM+ With Q13 “OFF” VOM- Positive V OM+ Negative VOM- With Q13 “OFF” VOM+ With Q13 “ON” VOM- Positive V OM+ Negative VOM- Collector-to-Emitter Saturation Voltage (Terminal 8) V+ = 30V, RL = 2kΩ to GND V+ = 15V, V- = -15V, R L = 2kΩ to -15V 11 12 - V - -14.99 -14.95 V 29.95 29.99 - V - 0.040 - V 14.95 14.99 - V - -14.96 - V V+ = 30V, IC = 50mA, Terminal 6 Grounded - 0.17 0.80 V V+ = 30V - 2 10 µA 16,000 100,000 - V+ = 30V, RL = 2kΩ to 30V V+ = 15V, V- = -15V, RL = 2kΩ to 15V VCE( SAT) Output Leakage Current (Terminal 6 to Terminal 4) Composite Small Signal Current Transfer Ratio (Beta) (Q12 and Q13) hFE V+ = 30V, V CE = 5V, IC = 50mA Output Capacitance CO f = 1MHz, All Remaining Terminals Tied to Terminal 4 - 5.5 - pF - 17 - pF V+ = 30V, IABC = 100µA, ∆VOUT = 20V, RL = 2kΩ 20,000 100,000 - V/V 86 100 - dB 1650 2200 2750 µS IABC = 500µA, RL = 2kΩ - 500 - V/µs - 50 - V/µs IABC = 500µA, RL = 2kΩ - 0.70 - V/µs Terminal 6 Terminal 8 TRANSFER PARAMETERS Voltage Gain A Forward Transconductance to Terminal 1 gM Slew Rate (Open Loop) SR Positive Slope Negative Slope Unity Gain (Non-Inverting Compensated) Schematic Diagram EXTERNAL FREQUENCY COMPENSATION OR INHIBIT INPUT D3 1 7 V+ OUTPUT MODE D5 Q4 Q7 Q6 D2 INPUTS R1 2kΩ D4 Q8 Q5 Q9 DIFFERENTIAL VOLTAGE 2 INPUT DIFFERENTIAL VOLTAGE INPUT AMPLIFIER BIAS INPUT 5 IABC 8 Q1 Q2 Q12 3 Q13 Q10 Q3 Q11 R2 47kΩ D6 D1 6 4 3-3 “SINK” OUTPUT V- “SOURCE” (DRIVE) OUTPUT OUTPUT TERM INV NONINV “Source” 6 2 3 “Sink” 8 3 2 CA3094, CA3094A, CA3094B Operating Considerations 1/F Noise Measurement Circuit The “Sink” Output (Terminal 8) and the “Drive” Output (Terminal 6) of the CA3094 are not inherently current (or power) limited. Therefore, if a load is connected between Terminal 6 and Terminal 4 (V- or Ground), it is important to connect a current limiting resistor between Terminal 8 and Terminal 7 (V+) to protect transistor Q13 under shorted load conditions. Similarly, if a load is connected between Terminal 8 and Terminal 7 (V+), the current limiting resistor should be connected between Terminal 6 and Terminal 4 or ground. In circuit applications where the emitter of the output transistor is not connected to the most negative potential in the system, it is recommended that a 100Ω current limiting resistor be inserted between Terminal 7 and the V+ supply. When using the CA3094, A, or B audio amplifier circuits, it is frequently necessary to consider the noise performance of the device. Noise measurements are made in the circuit shown in Figure 20. This circuit is a 30dB, non-inverting amplifier with emitter follower output and phase compensation from Terminal 2 to ground. Source resistors (RS) are set to 0Ω or 1MΩ for E noise and I noise measurements, respectively. These measurements are made at frequencies of 10Hz, 100Hz and 1kHz with a 1Hz measurement bandwidth. Typical values for 1/f noise at 10Hz and 50µA IABC are: EN = 18nV ⁄ Hz and IN = 1.8pA ⁄ Hz . Test Circuits NOTES: 30V E OUT 3. Input Offset Voltage: VIO = ----------------- . 100 4. For Power Supply Rejection Test: (1) vary V+ by -2V; then (2) vary V- by +2V. 300kΩ 7 9.9kΩ 5 5. Equations: E O UT – E OUT 0 1 (1) V+ Rejection = ------------------------------------------------200 2 CA3094 6 3 1 10kΩ 8 100Ω EOUT 1kΩ 4 100Ω E OUT – E O UT 0 2 (2) V- Rejection = ------------------------------------------------200 1 6. Power Supply Rejection: ( d B ) = 20 log --------------------------------------------- . V REJECTIO N † † Maximum Reading of Step 1 or Step 2 100pF 30V 15V FIGURE 1. INPUT OFFSET VOLTAGE AND POWER SUPPLY REJECTION TEST CIRCUIT 30V 30V RABC 7 5 1MΩ 8 2 300kΩ 7 CA3094 6 5 3 1 - 3 + 150kΩ 220Ω 4 2 CA3094A EOUT 1MΩ 15V 0.001µF 4 15V NOTES: 7. PDISSIPATION = (V+)(I) E OUT 8. I O S = -------------------------------VOLTS 10 6 --------------------AMPS FIGURE 2. INPUT OFFSET CURRENT TEST CIRCUIT 3-4 I NOTE: I = --I 2 FIGURE 3. INPUT BIAS CURRENT TEST CIRCUIT CA3094, CA3094A, CA3094B Test Circuits (Continued) 4.7kΩ 30V 10kΩ 7 100Ω 8 NOTES: - 2 CA3094 + 3 9. 6 100Ω 4 VCMR 10. Input Voltage Range for CMRR = 1V to 27V. 10kΩ 0.8V TO 27.2V 9.9kΩ 1 EOUT 11. 1kΩ 200Ω 100 × 26V . CMRR = -------------------------------------------E 2OUT – E 1OUT 100pF 100 × 26V CMRR (dB) = 20 log -------------------------------------------. E 2OUT – E 1OUT 15V FIGURE 4. COMMON MODE RANGE AND REJECTION RATIO TEST CIRCUIT +15V +15V -15V 10kΩ +15V IABC RS 500Ω IABC 5 10kΩ 3.6kΩ 7 5 RS (NOTE) 8 - 2 91Ω 3 + 6 + 6 100Ω 3kΩ 1 10Ω OUTPUT (RMS) 4 120Ω RS (NOTE) CA3094A 10Ω CA3094A 3 8 - 2 7 OUTPUT 4 RL = 2kΩ CC -15V IABC (µA) CCOMP (pF) 5 0 50 50 500 500 RS (Ω) IABC (µA) 56K 500 560K 50 56M 5 NOTE: RS = 1MΩ (1/F Noise Current Test). RS = 0Ω (1/F Noise Voltage Test). FIGURE 5. 1/F NOISE TEST CIRCUIT -15V FIGURE 6. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT +15V +15V IABC 56kΩ 5 5 7 2V 0V 7 8 2 CA3094A 13kΩ 3 ±10V 6 3 + 4 15kΩ 2kΩ 6 CA3094A 10kΩ + EOUT 10kΩ 8 - 2 - 4 2kΩ EOUT 1 220Ω -15V 0.001µF -15V FIGURE 7. OPEN LOOP SLEW RATE vs IABC TEST CIRCUIT 3-5 FIGURE 8. SLEW RATE vs NON-INVERTING UNITY GAIN TEST CIRCUIT CA3094, CA3094A, CA3094B Test Circuits (Continued) 120VAC RLOAD V+ = 30V +15V R5 7 R1 R2 R3 R4 S2 56kΩ 8 EOUT 5 5 3 7 R2 S1 R3 8 R6 (NOTE 12) - 2 3 2 6 4 + 6 R7 MT1 R8 C1 OUTPUT 4 2kΩ 1 51Ω MT2 CA3094A D1 CA3094A R1 + COMMON RC CC NOTES: -15V CLOSED LOOP GAIN (dB) R1 (kΩ) R2 (kΩ) R3 (kΩ) 0 10 ∞ 10 20 10 1 10 40 1 0.1 10 FIGURE 9. PHASE COMPENSATION TEST CIRCUIT S1 12. C1 = 0.5µF D1 = 1N914 R1 = 0.51MΩ = 3 min. R2 = 5.1MΩ = 30 min. R3 = 22MΩ = 2 hrs. R4 = 44MΩ = 4 hrs. R5 = 1.5kΩ R6 = 50kΩ R7 = 5.1kΩ R8 = 1.5kΩ 3 29V 3V 0 27V 6 0 Time = 1 hr. S2 Set to R 4 13. Potentiometer required for initial time set to permit device interconnecting. Time variation with temperature <0.3%/oC. FIGURE 10. PRESETTABLE ANALOG TIMER Application Information For additional application information, refer to Application Note AN6048, “Some Applications of a Programmable Power/Switch Amplifier IC” and AN6077 “An IC Operational Transconductance Amplifier (OTA) with Power Capability”. Design Considerations The selection of the optimum amplifier bias current (IABC) depends on: 1. The Desired Sensitivity - The higher the IABC, the higher the sensitivity, i.e., a greater drive current capability at the output for a specific voltage change at the input. 2. Required Input Resistance - The lower the IABC, the higher the input resistance. 3-6 If the desired sensitivity and required input resistance are not known and are to be experimentally determined, or the anticipated equipment design is sufficiently flexible to tolerate a wide range of these parameters, it is recommended that the equipment designer begin his calculations with an IABC of 100µA, since the CA3094 is characterized at this value of amplifier bias current. The CA3094 is extremely versatile and can be used in a wide variety of applications. CA3094, CA3094A, CA3094B Typical Applications Z2 Z1 + EIN EIN EOUT (NOTE) CA3094 + EOUT CA3094 (NOTE) Where EOUT = EIN E OUT Z 2 Where ----------------- = f ------- depends on the characteristics of Z1 and Z2 E Z 1 IN NOTE: In single-ended output operation, the CA3094 may require a pull up or pull down resistor. FIGURE 11A. INVERTING OP AMP FIGURE 11B. NON-INVERTING MODE, AS A FOLLOWER FIGURE 11. APPLICATION OF THE CA3094 V+ = 18V S1 Problem: To calculate the maximum value of R required to switch a 100mA output current comparator 18V 2kΩ Given: I ABC = 5µA, R ABC = 3.6MΩ ≈ ----------PULL UP 5µA RABC 220kΩ VOLTAGE A 2/3V+ 0 R1 100kΩ R +18 II = 500nA at IABC = 100µA (from Figure 3) 5 II = 5µA can be determined by drawing a line on Figure 3 through IABC = 100µA and IB = 500nA parallel to the typical TA = 25oC curve. 7 II 8 0 VOLTAGE AT TERMINAL 8 + 2 A 1N914 CA3094 Then: II = 33nA at IABC = 5µA EOUT - 3 12V C R 6 MAX o 18V – 12V = ---------------------------- = 180 MΩ at T = 25 C A 33nA MAX = 180MΩ × 2 ⁄ 3 † = 120M Ω at T 4 R2 220kΩ R o A = – 55 C † Ratio of II at TA = 25 oC to II at TA = -55oC for any given value of IABC TIME DELAY (s) = RC (APPROX.) FIGURE 12. RC TIMER V+ A 0 0 V+ 100 kΩ 270 kΩ 0.01µF INPUT A B R1 1MΩ B 100 kΩ 220kΩ D R2 2.2MΩ 3 100 kΩ 100 kΩ 5 + CA3094 2 12VDC C1 0.5µF 8 V+ E 0 EOUT 4 R3 1MΩ 6 3/ V+ 4 D 0 7 E C 1N914 C 0 RLOAD 2kΩ On a negative going transient at input (A), a negative pulse at C will turn “on” the CA3094, and the output (E) will go from a low to a high level. At the end of the time constant determined by C1, R 1, R2, R3, the CA3094 will return to the “off” state and the output will be pulled low by RLOAD. This condition will be independent of the interval when input (A) returns to a high level. FIGURE 13. RC TIMER TRIGGERED BY EXTERNAL NEGATIVE PULSE 3-7 CA3094, CA3094A, CA3094B Typical Applications (Continued) + +15V 10kΩ MIN R 1MΩ MAX 7 2.7MΩ 510Ω TYPE 1N914 5 1kΩ 47kΩ 8 5VDC 8 CA3094 2 330kΩ C - EOUT 2 + 3 - 20kΩ + EOUT 6 C1 0.01µF 7 100kΩ - 3 4 OUTPUT CA3094 6 1N914 4 2ms NOTES: 120s 14. R = 1MΩ, C = 1µF. CURRENT INPUT 15. Time Constant: t ≈ RC x 120. 16. Pulse Width: ω ≈ K(C1/C). LINE 5 C 47kΩ PAPER OR MYLAR™ FIGURE 14. FREE RUNNING PULSE GENERATOR OR R VOLTAGE INPUT FIGURE 15. CURRENT OR VOLTAGE CONTROLLED OSCILLATOR 15V 1kΩ 300kΩ R2 51kΩ OUTPUT 30V fOUT ≈ 5kHz 5 R 100kΩ 7 8 510Ω 27kΩ 300kΩ 100kΩ LED 50kΩ RP R 100kΩ 5 2 + 3 - CA3094A R1 4.3kΩ C 6 1000pF 4 7 8 2 27kΩ -15V + CA3094A 3 C 6 560pF 4 FIGURE 16. SINGLE SUPPLY ASTABLE MULTIVIBRATOR 3-8 1 NOTE: f OUT = -------------------------------------------------- 2R 1 ( 2RC ) ln ----------- + 1 R2 1 If: R 2 = 3.08R1, f OUT = --------RC FIGURE 17. DUAL SUPPLY ASTABLE MULTIVIBRATOR Mylar™ is a trademark of E.I. Dupont de Nemours CA3094, CA3094A, CA3094B Typical Applications (Continued) +15V 150kΩ 5 +15V 2kΩ 7 - 3 INPUT 2kΩ RA 200kΩ CA3094 5 2 + 7 R (NOTE 17) 51kΩ 8 4 R1 100kΩ CA3094A 2 6 RB 200kΩ OUTPUT - 3 INPUT OUTPUT 8 51kΩ 300kΩ + R1 100kΩ 6 -15V NOTES: 4 R2 100kΩ 19. RB Upper Threshold = [ V+ ] ----------------------------------------- R1 RA --------------------- + R B R 1 + R A . NOTES: 17. 18. R 1 R2 R = --------------------- . R1 + R2 R1 ±Threshold = [ ±Supply ] --------------------- . R1 + R2 20. R1 RB --------------------R1 + RB Lower Threshold = [ V+ ] ------------------------------------------ . R1 RB --------------------- + R A R 1 + R B FIGURE 18A. DUAL SUPPLY FIGURE 18B. SINGLE SUPPLY FIGURE 18. COMPARATORS (THRESHOLD DETECTORS) DUAL AND SINGLE SUPPLY TYPES 1.5MΩ TYPE D1201F HEATER PTC TEMP. SENSOR 10Ω 117V 60Hz + - 330kΩ 1.5kΩ 7 68kΩ 50µF 50V 1N914 MT2 5 26V 60Hz 75kΩ 10kΩ TEMP. SET 8 2 1N914 CA3094 6 G 3 R 75kΩ 4 75kΩ FOR NTC SENSOR, INTERCHANGE POSITION OF SENSOR AND R . NOTE: All Resistors are 1/2W. FIGURE 19. TEMPERATURE CONTROLLER 3-9 MT1 1kΩ 0.01µF CA3094, CA3094A, CA3094B Typical Applications (Continued) NOTE 23 2 V+ INPUT (NOTE 21) 1 CA3085A VOLTAGE REG. 5.6Ω 3 +15V REG. OUTPUT 8 6 4 7 R 5kΩ REF. 1.6V 0.01µF 10kΩ NOTES: 21. V+ Input Range = 19V to 30V for 15V output. 0.0056µF 1.5kΩ 22. V- Input Range = -16V to -30V for -15V output. COMMON RETURN 23. Max IOUT = ±100mA. 24. Regulation: 200kΩ 100Ω ∆V OUT Max Line = ----------------------------------------------------------- × 100 = 0.075% ⁄ V [V ( Initial ) ]∆V OUT IN 1 5 0.03µF 7 5.1kΩ 2 + 3 - ∆V O UT Max Load = --------------------------------------- × 100 = 0.075% V OUT VOUT ( Initial ) (IL from 1mA to 50mA) CA3094A 8 6 -15V REG. OUTPUT 4 10kΩ ±1% V- INPUT (NOTE 22) 10kΩ ±1% FIGURE 20. DUAL VOLTAGE TRACKING REGULATOR CIRCUIT TRIPS ON POSITIVE PEAKS WILL SWITCH WITHIN 1.5 CYCLES 36V 1mA ILOAD VOLTAGE BETWEEN TERMINALS 2 AND 4 3 33kΩ RTRIP 200mV RANGE IABC 10µA 200 Ω IA 20µA 3.3MΩ 60mV TYPICAL 100Ω 3.3 kΩ VOLTAGE BETWEEN TERMINALS 3 AND 4 (ADJUSTABLE WITH RTRIP) VOLTS +3V GROUND FAULT SIGNAL 60Hz 5 R 47kΩ 100kΩ 2 NOTES: - 3 (NOTE 27) L C 0.02µF t 7 47kΩ CA3094B + 6 C2 0.1µF (NOTE 28) 4 8 CIRCUIT BREAKER CONTROL SOLENOID 25. Differential current sensor provides 60mV signal ≈ 5mA of unbalance (Trip) current. 26. All Resistors are 1/2 Watt, ±10%. 27. RC selected for 3dB point at 200Hz. 28. C2 = AC bypass. 29. Offset adj. included in R TRIP . 30. Input impedance from 2 to 3 = 800kΩ. 1kΩ 0.001µF 31. With no input signal Terminal 8 (output) at 36V. FIGURE 21. GROUND FAULT INTERRUPTER (GFI) AND WAVEFORMS PERTINENT TO GROUND FAULT DETECTOR 3-10 CA3094, CA3094A, CA3094B Typical Applications (Continued) TREBLE “BOOST” (CW) 15kΩ D1 - D4 1N5391 “CUT” (CCW) 0.01µF 820Ω V+ + 0.12µF 1800Ω 220Ω 1W 68Ω 0.001µF 5600Ω 5µF + Q2 V- 2N6292 30Ω † R1 (NOTES 32, 33) Q1 6.8pF 1 VOLUME C1 + 2 27Ω Q3 STANCOR NO. P-8609 OR EQUIVALENT (120VAC TO 26.8VCT AT 1A) D4 3µH 0.47Ω 330Ω 22Ω 8 CA3094B - 4700 µF 0.47Ω 2N6107 3 D3 2N6292 + 7 120V 60Hz D2 15µF + 220Ω 1W 0.001µF INPUT D1 4700µF 6 8 LEAD TO-5 4 5 THERMAL COMPENSATION NETWORK † 47Ω 1Ω RL 8Ω R2 1.8MΩ (NOTES 32, 33) 0.47 µF 680 kΩ † OPTIONAL THERMAL COMPENSATION NETWORK 0.2µF 25µF + 0.02µF 1kΩ “BOOST” 100kΩ (CW) “CUT” (CCW) C2 0.47µF 1N5391 10kΩ BASS 8.2Ω JUMPER (NOTES 32, 33) TYPICAL PERFORMANCE DATA FOR 12W AUDIO AMPLIFIER CIRCUIT Power Output (8Ω load, Tone Control Set at “Flat”) Music (at 5% THD, Regulated Supply). . . . . . . . . . . . . . . . . . 15W Continuous (at 0.2% IMD, 60Hz and 2kHz Mixed in a 4:1 Ratio, Unregulated Supply) See Figure 8 in AN6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W Total Harmonic Distortion At 1W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . . . 0.05% At 12W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . .0.57% Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40dB Hum and Noise (Below Continuous Power Output). . . . . . . . . .83dB Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250kΩ Tone Control Range . . . . . . . . . . . . . . . . . .See Figure 9 in AN6048 NOTES: 32. For standard input: Short C2; R1 = 250kΩ, C1 = 0.047µF; remove R2. 33. For ceramic cartridge input: C1 = 0.0047µF, R1 = 2.5MΩ, remove jumper from C2; leave R2 . FIGURE 22. 12W AUDIO AMPLIFIER CIRCUIT FEATURING TRUE COMPLEMENTARY SYMMETRY OUTPUT STAGE WITH CA3094 IN DRIVER STAGE 3-11 CA3094, CA3094A, CA3094B Typical Performance Curves 5 103 V+ = +15V, V- = -15V 125 oC 90 oC 3 2 INPUT OFFSET CURRENT (nA) INPUT OFFSET VOLTAGE (mV) 4 25oC -55oC 1 0 70oC 25oC -55oC -1 -2 70oC 90oC 125oC -3 -4 -5 -6 V+ = +15V, V- = -15V 102 101 1 -55oC 25 oC 125 oC 0.1 -7 -8 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 10 3 DEVICE DISSIPATION (µW) INPUT BIAS CURRENT (nA) 105 10 2 125oC 25oC -55oC 3 10 100 1000 FIGURE 24. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) V+ = +15V, V- = -15V 10 1 1.0 AMPLIFIER BIAS CURRENT (µA) FIGURE 23. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) 10 4 0.01 0.1 1000 1.0 TA = 25 oC 104 103 V+ = +15V, V- = -15V V+ = +6V, V- = -6V V+ = +3V, V- = -3V 102 101 0.88µA 0.1 0.1 1 10 100 1 0.1 1000 1.0 10 100 AMPLIFIER BIAS CURRENT (µA) AMPLIFIER BIAS CURRENT (µA) FIGURE 25. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) FIGURE 26. DEVICE DISSIPATION vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) 15.0 V+ = +15V, V- = -15V TA = 125oC 25oC 103 COMMON MODE INPUT VOLTAGE (V) AMPLIFIER SUPPLY CURRENT (µA) 104 -55oC 102 101 1.0 0.1 0.1 125 oC 25 oC -55 oC 1.0 10 100 1000 AMPLIFIER BIAS CURRENT (µA) FIGURE 27. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) 3-12 1000 14.5 V+ = +15V, V- = -15V TA = 25oC 14.0 V+CMR 13.5 13.0 0 -13.0 -13.5 -14.0 -14.5 -15.0 0.1 V-CMR 1.0 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 FIGURE 28. COMMON MODE INPUT VOLTAGE vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5) CA3094, CA3094A, CA3094B Typical Performance Curves (Continued) 100 50 1/F NOISE CURRENT (pA/√Hz) 1/F NOISE VOLTAGE (nV/√Hz) 45 V+ = +15V, V- = -15V RS = 0Ω, TA = 25 oC FOR TEST CIRCUIT, SEE FIGURE 20 40 35 30 IABC = 5µA 25 500µA 20 50µA V+ = +15V, V- = -15V RS = 1MΩ, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 20 10 IABC = 500µA 50µA 1.0 5µA 15 10 101 10 2 FREQUENCY (Hz) 0.1 101 10 3 FIGURE 29. 1/F NOISE VOLTAGE vs FREQUENCY 1000 FORCED BETA = 10 TA = 25oC 1000 100 10 1 1 10 100 COLLECTOR CURRENT (mA) 1000 FIGURE 31. COLLECTOR EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT OF OUTPUT TRANSISTOR (Q13) 1 105 90 50µA 5µA 70 0 PHASE ANGLE (IABC = 500µA) -50 50 -100 40 -150 30 -200 20 V+ = +15V, V- = -15V, RL = 2kΩ (TERMINAL 6 TO V-), TA = 25 oC FOR TEST CIRCUIT, SEE FIGURE 21 10 0 -10 1 101 102 103 10 4 105 10 6 107 FREQUENCY (Hz) FIGURE 33. OPEN LOOP VOLTAGE GAIN vs FREQUENCY 3-13 FORWARD TRANSCONDUCTANCE (µS) IABC = 500µA PHASE ANGLE (DEGREES) OPEN LOOP VOLTAGE GAIN (dB) 100 10 100 COLLECTOR CURRENT (mA) 1000 FIGURE 32. COMPOSITE DC BETA vs COLLECTOR CURRENT OF DARLINGTON CONNECTED OUTPUT TRANSISTORS (Q12, Q13) 110 60 V+ = 20V, VCE = 10V TA = 25oC 100 10 80 103 FIGURE 30. 1/F NOISE CURRENT vs FREQUENCY COMPOSITE DC BETA (Q12, Q13) COLLECTOR-TO-EMITTER SATURATION VOLTAGE (mV) 10000 102 FREQUENCY (Hz) V+ = +15V, V- = -15V 104 103 102 101 1 0.1 -55oC 25oC 125oC 1.0 10 100 AMPLIFIER BIAS CURRENT (µA) FIGURE 34. FORWARD TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT 1000 CA3094, CA3094A, CA3094B Typical Performance Curves 100 SLEW RATE (V/µs) V+ = +15V, V- = -15V, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 22 10 1.0 0.1 10 100 V+ = +15V, V- = -15V, IABC = 500µA, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 23 10 1.0 0.1 1000 0 20 AMPLIFIER BIAS CURRENT (µA) 40 60 80 FIGURE 35. SLEW RATE vs AMPLIFIER BIAS CURRENT 1000 FIGURE 36. SLEW RATE vs CLOSED LOOP VOLTAGE GAIN V+ = +15V, V- = -15V, IABC = 500mA, TA = 25oC 100mV OUTPUT SIGNAL WITH 10% OVERSHOOT FOR PHASE COMPENSATION TEST CIRCUIT, SEE FIGURE 24 100 80 60 40 CC 1000 20 800 10 RC 8 6 4 600 400 200 2 1 0 10 20 30 40 50 60 70 CLOSED LOOP VOLTAGE GAIN (dB) FIGURE 37. PHASE COMPENSATION CAPACITANCE AND RESISTANCE vs CLOSED LOOP VOLTAGE GAIN 3-14 100 CLOSED LOOP VOLTAGE GAIN (dB) PHASE COMPENSATION RESISTANCE (Ω) 1 PHASE COMPENSATION CAPACITANCE (pF) SLEW RATE (V/µs) 100 (Continued)