JMNIC BF1100 Dual-gate mos-fet Datasheet

DISCRETE SEMICONDUCTORS
DATA SHEET
BF1100; BF1100R
Dual-gate MOS-FETs
Product specification
File under Discrete Semiconductors, SC07
Philips Semiconductors
1995 Apr 25
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
and substrate interconnected and an internal bias circuit to
ensure good cross-modulation performance during AGC.
FEATURES
• Specially designed for use at 9 to 12 V supply voltage
• Short channel transistor with high forward transfer
admittance to input capacitance ratio
CAUTION
The device is supplied in an antistatic package. The
gate-source input must be protected against static
discharge during transport or handling.
• Low noise gain controlled amplifier up to 1 GHz
• Superior cross-modulation performance during AGC.
APPLICATIONS
PINNING
• VHF and UHF applications such as television tuners and
professional communications equipment.
DESCRIPTION
Enhancement type field-effect transistor in a plastic
microminiature SOT143 or SOT143R package. The
transistor consists of an amplifier MOS-FET with source
4
1
s, b
2
d
drain
3
g2
gate 2
4
g1
gate 1
DESCRIPTION
source
handbook, halfpage
3
3
1
Top view
SYMBOL
d
d
handbook, halfpage
PIN
4
g2
g2
g1
g1
2
2
s,b
MAM124
1
Top view
BF1100 marking code: M56.
s,b
MAM125 - 1
BF1100R marking code: M57.
Fig.1 Simplified outline (SOT143) and symbol.
Fig.2 Simplified outline (SOT143R) and symbol.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
drain-source voltage
−
−
14
V
ID
drain current
−
−
30
mA
Ptot
total power dissipation
−
−
200
mW
Tj
operating junction temperature
−
−
150
°C
yfs
forward transfer admittance
24
28
33
mS
Cig1-s
input capacitance at gate 1
−
2.2
2.6
pF
Crs
reverse transfer capacitance
f = 1 MHz
−
25
35
fF
F
noise figure
f = 800 MHz
−
2
−
dB
1995 Apr 25
2
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDS
drain-source voltage
−
14
V
ID
drain current
−
30
mA
IG1
gate 1 current
−
±10
mA
IG2
gate 2 current
−
±10
mA
Ptot
total power dissipation
see Fig.3
BF1100
up to Tamb = 50 °C; note 1
−
200
mW
BF1100R
up to Tamb = 40 °C; note 1
−
200
mW
Tstg
storage temperature
−65
+150
°C
Tj
operating junction temperature
−
+150
°C
Note
1. Device mounted on a printed-circuit board.
MLD156
MLD155
40
250
handbook, halfpage
Ptot
(mW)
200
Y fs
(mS)
30
150
20
BF1100R
BF1100
100
10
50
0
0
0
50
100
50
150
200
Tamb ( oC)
Fig.4
Fig.3 Power derating curves.
1995 Apr 25
3
0
50
100
150
T j ( oC)
Forward transfer admittance as a function
of junction temperature; typical values.
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
Rth j-s
PARAMETER
CONDITIONS
VALUE
UNIT
BF1100
500
K/W
BF1100R
550
K/W
thermal resistance from junction to ambient
note 1
thermal resistance from junction to soldering point
note 2
BF1100
Ts = 92 °C
290
K/W
BF1100R
Ts = 78 °C
360
K/W
Notes
1. Device mounted on a printed-circuit board.
2. Ts is the temperature at the soldering point of the source lead.
STATIC CHARACTERISTICS
Tj = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
V(BR)G1-SS
gate 1-source breakdown voltage
VG2-S = VDS = 0; IG1-S = 1 mA
13.2
20
V
V(BR)G2-SS
gate 2-source breakdown voltage
VG1-S = VDS = 0; IG2-S = 1 mA
13.2
20
V
V(F)S-G1
forward source-gate 1 voltage
VG2-S = VDS = 0; IS-G1 = 10 mA
0.5
1.5
V
V(F)S-G2
forward source-gate 2 voltage
VG1-S = VDS = 0; IS-G2 = 10 mA
0.5
1.5
V
VG1-S(th)
gate 1-source threshold voltage
VG2-S = 4 V; VDS = 9 V;
ID = 20 µA
0.3
1
V
VG2-S = 4 V; VDS = 12 V;
ID = 20 µA
0.3
1
V
VG1-S = 4 V; VDS = 9 V;
ID = 20 µA
0.3
1.2
V
VG1-S = 4 V; VDS = 12 V;
ID = 20 µA
0.3
1.2
V
VG2-S = 4 V; VDS = 9 V;
RG1 = 180 kΩ; note 1
8
13
mA
VG2-S = 4 V; VDS = 12 V;
RG1 = 250 kΩ; note 2
8
13
mA
VG2-S(th)
IDSX
gate 2-source threshold voltage
drain-source current
IG1-SS
gate 1 cut-off current
VG2-S = VDS = 0; VG1-S = 12 V
−
50
nA
IG2-SS
gate 2 cut-off current
VG1-S = VDS = 0; VG2-S = 12 V
−
50
nA
Notes
1. RG1 connects gate 1 to VGG = 9 V; see Fig.27.
2. RG1 connects gate 1 to VGG = 12 V; see Fig.27.
1995 Apr 25
4
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
DYNAMIC CHARACTERISTICS
Common source; Tamb = 25 °C; VG2-S = 4 V; ID = 10 mA; unless otherwise specified.
SYMBOL
PARAMETER
yfs
CONDITIONS
forward transfer admittance
input capacitance at gate 1
Cig1-s
input capacitance at gate 2
Cig2-s
drain-source capacitance
Cos
MIN.
TYP.
MAX.
UNIT
pulsed; Tj = 25 °C
VDS = 9 V
24
28
33
mS
VDS = 12 V
24
28
33
mS
VDS = 9 V
−
2.2
2.6
pF
VDS = 12 V
−
2.2
2.6
pF
VDS = 9 V
−
1.6
−
pF
VDS = 12 V
−
1.4
−
pF
VDS = 9 V
−
1.4
1.8
pF
VDS = 12 V
−
1.1
1.5
pF
VDS = 9 V
−
25
35
fF
VDS = 12 V
−
25
35
fF
VDS = 9 V
−
2
2.8
dB
VDS = 12 V
−
2
2.8
dB
f = 1 MHz
f = 1 MHz
f = 1 MHz
reverse transfer capacitance f = 1 MHz
Crs
F
f = 800 MHz; GS = GSopt; BS = BSopt
noise figure
MLD157
MLD158
120
0
handbook, halfpage
handbook,
gain halfpage
Vunw
(dBµV)
reduction
(dB)
10
(1)
110
(2)
20
100
30
90
40
80
50
0
1
2
3
4
0
10
20
30
VAGC (V)
40
50
gain reduction (dB)
(1) RG = 250 kΩ to VGG = 12 V
(2) RG = 180 kΩ to VGG = 9 V
fw = 50 MHz; funw = 60 MHz; Tamb = 25 °C.
f = 50 MHz.
Tj = 25 °C.
Fig.6
Fig.5
1995 Apr 25
Gain reduction as a function of the AGC
voltage; typical values.
5
Unwanted voltage for 1% cross-modulation
as a function of gain reduction; typical
values; see Fig.27.
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
MLD159
MLD160
20
20
handbook, halfpage
handbook, halfpage
ID
(mA)
16
ID
(mA)
16
V G1 S = 1.4 V
1.3 V
1.2 V
12
V G2 S = 4 V 3 V
2.5 V
2V
12
1.1 V
1.5 V
8
8
1.0 V
0.9 V
4
4
1V
0
0
0
4
8
12
0
16
0.4
0.8
1.2
1.6
2.0
V G1 S (V)
V DS (V)
VG2-S = 4 V.
Tj = 25 °C.
VDS = 9 to 12 V.
Tj = 25 °C.
Fig.7 Output characteristics; typical values.
Fig.8 Transfer characteristics; typical values.
MLD162
MLD161
250
40
handbook, halfpage
handbook, halfpage
I G1
(µA)
V G2 S = 4 V
y fs
(mS)
200
3.5 V
V G2 S = 4 V
3.5 V
30
3V
150
3V
20
100
2.5 V
10
2V
50
2.5 V
2V
0
0
0
1
2
V G1 S (V)
0
3
VDS = 9 to 12 V.
Tj = 25 °C.
Fig.9
1995 Apr 25
10
20
I D (mA)
30
VDS = 9 to 12 V.
Tj = 25 °C.
Gate 1 current as a function of gate 1
voltage; typical values.
Fig.10 Forward transfer admittance as a function
of drain current; typical values.
6
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
MLD164
MLD163
16
20
handbook, halfpage
handbook, halfpage
ID
(mA)
R G1 = 100 kΩ
ID
(mA)
12
147 kΩ
15
180 kΩ
205 kΩ
8
249 kΩ
10
301 kΩ
402 kΩ
511 kΩ
4
5
0
0
0
20
40
60
I G1 (µA)
80
0
4
8
12
V GG = V DS (V)
16
VG2-S = 4 V.
RG1 connected to VGG.
Tj = 25 °C.
VDS = 9 to 12 V.
VG2-S = 4 V.
Tj = 25 °C.
Fig.12 Drain current as a function of gate 1 supply
voltage (= VGG) and drain supply voltage;
typical values; see Fig.27.
Fig.11 Drain current as a function of gate 1 current;
typical values.
MLD165
12
MLD166
12
handbook, halfpage
handbook, halfpage
ID
(mA)
ID
(mA)
8
8
4
4
0
0
0
2
4
6
8
10
V GG (V)
0
VDS = 9 V; VG2-S = 4 V.
RG1 = 180 kΩ (connected to VGG); Tj = 25 °C.
8
V GG (V)
12
VDS = 12 V; VG2-S = 4 V.
RG1 = 250 kΩ (connected to VGG); Tj = 25 °C.
Fig.13 Drain current as a function of gate 1 voltage
(= VGG); typical values; see Fig.27.
1995 Apr 25
4
Fig.14 Drain current as a function of gate 1 voltage;
(= VGG); typical values; see Fig.27.
7
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
MLD167
50
MLD168
50
handbook, halfpage
handbook, halfpage
I G1
(µA)
40
I G1
(µA)
40
V GG = 9 V
V GG = 12 V
11 V
8V
10 V
7V
30
9V
30
8V
6V
7V
5V
20
20
4V
10
10
0
0
0
2
4
V G2 S (V)
6
0
2
4
V G2 S (V)
6
VDS = 9 V.
RG1 = 180 kΩ (connected to VGG).
Tj = 25 °C.
VDS = 12 V.
RG1 = 250 kΩ (connected to VGG).
Tj = 25 °C.
Fig.15 Gate 1 current as a function of gate 2 voltage;
typical values.
Fig.16 Gate 1 current as a function of gate 2 voltage;
typical values.
MLD169
MLD170
16
16
handbook, halfpage
handbook, halfpage
ID
(mA)
ID
(mA)
V GG = 9 V
12
12
V GG = 12 V
8
11 V
10 V
9V
8V
7V
8V
7V
6V
8
5V
4V
4
4
0
0
0
2
4
V G2 S (V)
6
0
2
VDS = 9 V.
VDS = 12 V.
RG1 = 180 kΩ (connected to VGG).
Tj = 25 °C.
RG1 = 250 kΩ (connected to VGG).
Tj = 25 °C.
Fig.17 Drain current as a function of the gate 2
voltage; typical values; see Fig.27.
1995 Apr 25
4
V G2 S (V)
6
Fig.18 Drain current as a function of the gate 2
voltage; typical values; see Fig.27.
8
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
MLD172
10 2
handbook, halfpage
MLD173
10 3
10 3
ϕ rs
(deg)
y rs
(µS)
y is
(mS)
10 2
10
ϕ rs
b is
10 2
y rs
10
1
10
g is
10 1
10
102
f (MHz)
1
10 3
10
VDS = 9 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
102
f (MHz)
10 3
VDS = 9 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
Fig.19 Input admittance as a function of
frequency; typical values.
MLD174
10 2
Fig.20 Reverse transfer admittance and phase as
a function of frequency; typical values.
10
handbook, halfpage
yos
(mS)
ϕ fs
y fs
(mS)
MLD175
10 2
y fs
bos
(deg)
1
ϕ fs
10
10
10 1
gos
10 2
10
1
1
10
102
f (MHz)
10 3
VDS = 9 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
102
f (MHz)
10 3
VDS = 9 V; VG2 = 4 V.
ID =10 mA; Tamb = 25 °C.
Fig.21 Forward transfer admittance and phase as
a function of frequency; typical values.
1995 Apr 25
1
Fig.22 Output admittance as a function of
frequency; typical values.
9
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
MLD176
10 2
handbook, halfpage
MLD177
10 3
10 3
ϕ rs
(deg)
y rs
(µS)
y is
(mS)
10 2
10
ϕ rs
b is
10 2
y rs
10
1
10
g is
10 1
10
102
f (MHz)
1
1
10 3
10
VDS = 12 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
102
f (MHz)
10 3
VDS = 12 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
Fig.23 Input admittance as a function of
frequency; typical values.
MLD178
10 2
y fs
MLD179
10 2
10
handbook, halfpage
yos
(mS)
ϕ fs
y fs
(mS)
Fig.24 Reverse transfer admittance and phase as
a function of frequency; typical values.
(deg)
bos
1
ϕ fs
10
10
10 1
gos
10 2
10
1
1
10
102
f (MHz)
10 3
VDS = 12 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
f (MHz)
10 3
VDS = 12 V; VG2 = 4 V.
ID = 10 mA; Tamb = 25 °C.
Fig.25 Forward transfer admittance and phase as
a function of frequency; typical values.
1995 Apr 25
102
Fig.26 Output admittance as a function of
frequency; typical values.
10
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
VAGC
handbook, full pagewidth
R1
10 k Ω
C1
4.7 nF
C2
R GEN
50 Ω
R2
50 Ω
C3
DUT
4.7 nF
12 pF
L1
≈ 450 nH
RL
50 Ω
C4
RG
4.7 nF
VI
VGG
V DS
For VGG = VDS = 9 V, RG = 180 kΩ.
For VGG = VDS = 12 V, RG = 250 kΩ.
Fig.27 Cross-modulation test set-up.
1995 Apr 25
11
MGC420
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
Table 1
f
(MHz)
BF1100; BF1100R
Scattering parameters: VDS = 9 V; VG2-S = 4 V; ID = 10 mA
s11
s21
s12
s22
MAGNITUDE
(ratio)
ANGLE
(deg)
MAGNITUDE
(ratio)
ANGLE
(deg)
MAGNITUDE
(ratio)
ANGLE
(deg)
MAGNITUDE
(ratio)
ANGLE
(deg)
0.986
−3.6
2.528
174.4
0.001
63.7
1.000
−2.0
50
100
0.983
−7.4
2.531
169.8
0.001
80.7
1.000
−4.2
200
0.974
−14.7
2.490
159.5
0.002
81.0
0.996
−8.1
300
0.960
−21.8
2.446
149.8
0.002
80.3
0.994
−11.9
400
0.953
−28.7
2.412
139.8
0.003
76.3
0.992
−15.7
500
0.933
−35.4
2.341
130.1
0.003
76.5
0.987
−19.4
600
0.915
−42.0
2.283
120.4
0.004
79.0
0.984
−23.0
700
0.895
−47.9
2.205
111.6
0.003
81.5
0.981
−26.7
800
0.880
−53.5
2.146
102.9
0.003
90.8
0.978
−30.3
900
0.864
−59.6
2.087
93.4
0.003
106.6
0.974
−33.9
1000
0.839
−65.0
1.998
84.4
0.003
135.4
0.971
−37.6
Table 2
Table 3
f
(MHz)
Noise data: VDS = 9 V; VG2-S = 4 V; ID = 10 mA
Γopt
f
(MHz)
Fmin
(dB)
(ratio)
(deg)
800
2.00
0.67
43.9
rn
0.89
Scattering parameters: VDS = 12 V; VG2-S = 4 V; ID = 10 mA
s21
s11
MAGNITUDE
(ratio)
ANGLE
(deg)
MAGNITUDE
(ratio)
s12
ANGLE
(deg)
MAGNITUDE
(ratio)
s22
ANGLE
(deg)
MAGNITUDE
(ratio)
ANGLE
(deg)
50
0.986
−3.7
2.478
174.7
0.001
72.2
1.000
−1.6
100
0.984
−7.4
2.480
170.3
0.001
80.9
1.000
−3.5
200
0.974
−14.6
2.440
160.6
0.002
82.7
0.997
−6.6
300
0.960
−21.8
2.400
151.4
0.002
79.9
0.996
−9.7
400
0.953
−28.7
2.371
141.9
0.003
77.7
0.994
−12.8
500
0.933
−35.3
2.306
132.7
0.003
77.1
0.991
−15.8
600
0.915
−41.9
2.255
123.6
0.004
77.1
0.989
−18.7
700
0.894
−47.8
2.183
115.3
0.004
79.3
0.986
−21.7
800
0.879
−53.5
2.131
107.2
0.003
83.9
0.984
−24.6
900
0.863
−59.5
2.080
98.2
0.003
95.1
0.982
−27.5
1000
0.838
−65.0
1.999
89.7
0.003
115.8
0.980
−30.4
Table 4
Noise data: VDS = 12 V; VG2-S = 4 V; ID = 10 mA
Γopt
f
(MHz)
Fmin
(dB)
(ratio)
(deg)
800
2.00
0.66
43.3
1995 Apr 25
12
rn
0.97
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
PACKAGE OUTLINES
handbook, full pagewidth
0.75
0.60
3.0
2.8
0.150
0.090
B
1.9
4
3
0.1
max
o
10
max
0.2 M A B
A
2.5
max
1.4
1.2
o
10
max
2
1
1.1
max
o
30
max
0.88
0
0.1
0.48
0
0.1
0.1 M A B
MBC845
1.7
TOP VIEW
Dimensions in mm.
Fig.28 SOT143.
3.0
2.8
handbook, full pagewidth
0.150
0.090
0.40
0.25
B
1.9
3
4
0.1
max
o
10
max
0.2 M A
A
1.4
1.2
o
2.5
max
10
max
2
1.1
max
o
30
max
1
0.48
0.38
0.88
0.78
1.7
0.1 M B
TOP VIEW
Dimensions in mm.
Fig.29 SOT143R.
1995 Apr 25
13
MBC844
Philips Semiconductors
Product specification
Dual-gate MOS-FETs
BF1100; BF1100R
DEFINITIONS
Data Sheet Status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1995 Apr 25
14
Similar pages