CET CEU01N6 N-channel enhancement mode field effect transistor Datasheet

CED01N6/CEU01N6
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
650V, 0.9A, RDS(ON) = 15 Ω @VGS = 10V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
Lead free product is acquired.
D
TO-251 & TO-252 package.
G
D
G
S
CEU SERIES
TO-252(D-PAK)
ABSOLUTE MAXIMUM RATINGS
Parameter
G
D
S
CED SERIES
TO-251(I-PAK)
Tc = 25 C unless otherwise noted
Symbol
Limit
650
Units
V
VGS
±30
V
ID
0.9
A
IDM
3.6
A
31
W
Drain-Source Voltage
VDS
Gate-Source Voltage
Drain Current-Continuous
Drain Current-Pulsed
S
a
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
0.25
W/ C
Single Pulsed Avalanche Energy d
EAS
60
mJ
Avalanche Current
IAS
0.8
A
TJ,Tstg
-55 to 150
C
Operating and Store Temperature Range
Thermal Characteristics
Symbol
Limit
Units
Thermal Resistance, Junction-to-Case
Parameter
RθJC
4
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
50
C/W
Rev 1.
2005.Decemcer
http://www.cetsemi.com
1
CED01N6/CEU01N6
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
650
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 600V, VGS = 0V
1
µA
IGSSF
VGS = 30V, VDS = 0V
10
µA
IGSSR
VGS = -30V, VDS = 0V
-10
µA
4
V
15
Ω
Off Characteristics
V
On Characteristics
Gate Threshold Voltage
VGS(th)
VGS = VDS, ID = 250µA
RDS(on)
VGS = 10V, ID = 0.4A
Forward Transconductance
gFS b
VDS = 20V, ID = 0.4A
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Static Drain-Source
On-Resistance
2
12
Dynamic Characteristics c
VDS = 25V, VGS = 0V,
f = 1.0 MHz
0.5
S
136
pF
46
pF
19
pF
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 300V, ID = 0.4A,
VGS = 10V, RGEN = 4.7Ω
19
38
ns
13
26
ns
24
48
ns
Turn-Off Fall Time
tf
35
70
ns
Total Gate Charge
Qg
6
8
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 480V, ID = 0.8A,
VGS = 10V
1.0
nC
4.4
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 0.8A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
d.L = 190mH, IAS = 0.8A, VDD = 50V, RG = 25Ω, Starting TJ = 25 C .
2
0.8
A
1.6
V
6
CED01N6/CEU01N6
2.5
1.5
25 C
1.2
ID, Drain Current (A)
ID, Drain Current (A)
VGS=10,9,8V
VGS=6V
0.9
0.6
0.3
2.0
1.5
1.0
0.5
VGS=5V
0.0
0.0
0
5
10
15
20
25
1
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
C, Capacitance (pF)
5
6
7
Figure 2. Transfer Characteristics
Ciss
120
80
Coss
40
Crss
0
0
5
10
15
20
25
3.0
2.5
ID=0.4A
VGS=10V
2.0
1.5
1.0
0.5
0.0
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
IS, Source-drain current (A)
VTH, Normalized
Gate-Source Threshold Voltage
4
Figure 1. Output Characteristics
160
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
3
VGS, Gate-to-Source Voltage (V)
200
1.2
2
VDS, Drain-to-Source Voltage (V)
240
1.3
-55 C
TJ=125 C
VGS=0V
10
10
10
-25
0
25
50
75
100
125
150
0
-1
-2
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10
VDS=480V
ID=0.8A
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CED01N6/CEU01N6
6
4
2
0
0
1
2
3
4
5
RDS(ON)Limit
10
1ms
10ms
DC
10
10
6
100µs
0
-1
6
TC=25 C
TJ=150 C
Single Pulse
-2
10
0
10
1
10
2
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
td(off)
tf
90%
90%
VOUT
VOUT
VGS
RGEN
toff
tr
td(on)
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
PDM
0.1
-1
t1
0.05
t2
0.02
0.01
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-2
10
-2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
3
10
4
3
Similar pages