ON BCW70LT1G General purpose transistor Datasheet

BCW70LT1G
General Purpose Transistor
PNP Silicon
Features
• These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
www.onsemi.com
Compliant
COLLECTOR
3
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector−Emitter Voltage
VCEO
−45
Vdc
Emitter−Base Voltage
VEBO
−5.0
Vdc
IC
−100
mAdc
2
EMITTER
Symbol
Max
Unit
3
PD
225
mW
1.8
mW/°C
RqJA
556
°C/W
PD
300
mW
2.4
mW/°C
RqJA
417
°C/W
TJ, Tstg
−55 to +150
°C
Collector Current − Continuous
1
BASE
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR-5 Board
(Note 1) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction−to−Ambient
Total Device Dissipation Alumina
Substrate, (Note 2) @TA = 25°C
Derate above 25°C
Thermal Resistance, Junction−to−Ambient
Junction and Storage Temperature
1
2
SOT−23 (TO−236)
CASE 318
STYLE 6
MARKING DIAGRAM
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. FR−5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina
H2 M G
G
1
H2 = Device Code
M = Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary
depending upon manufacturing location.
ORDERING INFORMATION
Device
Package
Shipping†
BCW70LT1G
SOT−23
(Pb−Free)
3000 / Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 1999
November, 2016 − Rev. 4
1
Publication Order Number:
BCW70LT1/D
BCW70LT1G
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Max
Unit
−45
−
Vdc
−50
−
Vdc
−5.0
−
Vdc
−
−
−100
−10
nAdc
mAdc
215
500
−
−
−0.3
Vdc
−0.6
−0.75
Vdc
−
7.0
pF
−
10
dB
OFF CHARACTERISTICS
Collector−Emitter Breakdown Voltage
(IC = −2.0 mAdc, IB = 0)
V(BR)CEO
Collector−Emitter Breakdown Voltage
(IC = −100 mAdc, VEB = 0)
V(BR)CES
Emitter−Base Breakdown Voltage
(IE = −10 mAdc, IC = 0)
V(BR)EBO
Collector Cutoff Current
(VCB = −20 Vdc, IE = 0)
(VCB = −20 Vdc, IE = 0, TA = 100°C)
ICBO
ON CHARACTERISTICS
DC Current Gain
(IC = −2.0 mAdc, VCE = −5.0 Vdc)
hFE
Collector−Emitter Saturation Voltage
(IC = −10 mAdc, IB = −0.5 mAdc)
VCE(sat)
Base−Emitter On Voltage
(IC = −2.0 mAdc, VCE = −5.0 Vdc)
VBE(on)
SMALL−SIGNAL CHARACTERISTICS
Output Capacitance
(IE = 0, VCB = −10 Vdc, f = 1.0 MHz)
Cobo
Noise Figure
(IC = −0.2 mAdc, VCE = −5.0 Vdc, RS = 2.0 kW, f = 1.0 kHz, BW = 200 Hz)
NF
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
2
BCW70LT1G
TYPICAL NOISE CHARACTERISTICS
(VCE = − 5.0 Vdc, TA = 25°C)
10
7.0
IC = 10 mA
5.0
In, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
1.0
7.0
5.0
BANDWIDTH = 1.0 Hz
RS ≈ 0
30 mA
3.0
100 mA
300 mA
1.0 mA
2.0
BANDWIDTH = 1.0 Hz
RS ≈ ∞
IC = 1.0 mA
3.0
2.0
300 mA
1.0
0.7
0.5
100 mA
30 mA
0.3
0.2
1.0
10 mA
0.1
10
20
50
100 200
500 1.0k
f, FREQUENCY (Hz)
2.0k
5.0k
10k
10
20
50
Figure 1. Noise Voltage
100 200
500 1.0k 2.0k
f, FREQUENCY (Hz)
5.0k
10k
Figure 2. Noise Current
NOISE FIGURE CONTOURS
1.0M
500k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
500
2.0 dB
3.0 dB
200
100
RS , SOURCE RESISTANCE (OHMS)
RS , SOURCE RESISTANCE (OHMS)
(VCE = − 5.0 Vdc, TA = 25°C)
20
30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
500
2.0 dB
3.0 dB
200
100
5.0 dB
10
1.0M
500k
500 700 1.0k
5.0 dB
10
20
RS , SOURCE RESISTANCE (OHMS)
Figure 3. Narrow Band, 100 Hz
1.0M
500k
30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
500 700 1.0k
Figure 4. Narrow Band, 1.0 kHz
10 Hz to 15.7 kHz
200k
100k
50k
Noise Figure is Defined as:
NF + 20 log10
20k
10k
0.5 dB
1.0 dB
2.0 dB
3.0 dB
5.0 dB
200
100
10
20
30
50 70 100
200 300
ƫ
en2 ) 4KTRS ) In 2RS2 1ń2
4KTRS
en = Noise Voltage of the Transistor referred to the input. (Figure 3)
I = Noise Current of the Transistor referred to the input.
n (Figure 4)
K = Boltzman’s Constant (1.38 x 10−23 j/°K)
T = Temperature of the Source Resistance (°K)
R = Source Resistance (Ohms)
5.0k
2.0k
1.0k
500
ƪ
S
500 700 1.0k
IC, COLLECTOR CURRENT (mA)
Figure 5. Wideband
www.onsemi.com
3
BCW70LT1G
100
1.0
TA = 25°C
IC, COLLECTOR CURRENT (mA)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
TYPICAL STATIC CHARACTERISTICS
0.8
IC = 1.0 mA
0.6
10 mA
50 mA
100 mA
0.4
0.2
TA = 25°C
PULSE WIDTH = 300 ms
80 DUTY CYCLE ≤ 2.0%
300 mA
200 mA
150 mA
40
100 mA
20
50 mA
5.0 10
0
20
5.0
10
15
20
25
30
35
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 6. Collector Saturation Region
θV, TEMPERATURE COEFFICIENTS (mV/°C)
TJ = 25°C
V, VOLTAGE (VOLTS)
1.2
1.0
0.8
VBE(sat) @ IC/IB = 10
0.6
VBE(on) @ VCE = 1.0 V
0.4
0.2
VCE(sat) @ IC/IB = 10
0
0.5 1.0
2.0
5.0
10
20
IC, COLLECTOR CURRENT (mA)
50
1.6
*APPLIES for IC/IB ≤ hFE/2
0.8
- 55°C to 25°C
0.8
25°C to 125°C
1.6
2.4
0.1
100
300
50
0.5
1.0 2.0
5.0
10 20
IC, COLLECTOR CURRENT (mA)
100
ts
VCC = - 3.0 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
200
t, TIME (ns)
t, TIME (ns)
0.2
- 55°C to 25°C
1000
700
500
VCC = 3.0 V
IC/IB = 10
TJ = 25°C
100
70
50
30
tr
20
100
70
50
30
td @ VBE(off) = 0.5 V
10
7.0
5.0
1.0
qVB for VBE
Figure 9. Temperature Coefficients
500
200
25°C to 125°C
*qVC for VCE(sat)
0
Figure 8. “On” Voltages
300
40
Figure 7. Collector Characteristics
1.4
0.2
250 mA
60
0
0
0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
IB, BASE CURRENT (mA)
0.1
IB = 400 mA
350 mA
tf
20
2.0
3.0
20 30
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
50 70
10
-1.0
100
Figure 10. Turn−On Time
- 2.0 - 3.0 - 5.0 - 7.0 -10
- 20 - 30
IC, COLLECTOR CURRENT (mA)
Figure 11. Turn−Off Time
www.onsemi.com
4
- 50 - 70 -100
BCW70LT1G
500
10
TJ = 25°C
TJ = 25°C
7.0
VCE = 20 V
Cib
C, CAPACITANCE (pF)
300
5.0 V
200
100
5.0
3.0
2.0
Cob
70
50
0.5 0.7 1.0
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
f,
T CURRENT-GAIN — BANDWIDTH PRODUCT (MHz)
TYPICAL DYNAMIC CHARACTERISTICS
2.0
3.0
5.0 7.0
10
20
30
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
IC, COLLECTOR CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 12. Current−Gain — Bandwidth Product
Figure 13. Capacitance
1.0
0.7
0.5
10
20
50
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
FIGURE 16
0.05
P(pk)
0.02
0.03
0.02
t1
0.01
0.01
0.01 0.02
SINGLE PULSE
0.05
0.1
0.2
0.5
1.0
t2
2.0
5.0
10
20
50
t, TIME (ms)
100 200
DUTY CYCLE, D = t1/t2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1 (SEE AN-569)
ZqJA(t) = r(t) w RqJA
TJ(pk) - TA = P(pk) ZqJA(t)
500 1.0k 2.0k
5.0k 10k 20k
50k 100
Figure 14. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
IC, COLLECTOR CURRENT (nA)
VCC = 30 V
A train of periodical power pulses can be represented by the model
as shown in Figure 16. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 14 was calculated for various duty cycles.
To find ZqJA(t), multiply the value obtained from Figure 14 by the
steady state value RqJA.
103
ICEO
102
101
ICBO
AND
ICEX @ VBE(off) = 3.0 V
10-1
Example:
Dissipating 2.0 watts peak under the following conditions:
t1 = 1.0 ms, t2 = 5.0 ms (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading
of r(t) is 0.22.
10-2
The peak rise in junction temperature is therefore
DT = r(t) x P(pk) x RqJA = 0.22 x 2.0 x 200 = 88°C.
100
-4
0
-2
0
0
+ 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
TJ, JUNCTION TEMPERATURE (°C)
For more information, see AN−569.
Figure 15. Typical Collector Leakage Current
www.onsemi.com
5
BCW70LT1G
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−08
ISSUE AR
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS.
0.25
3
E
1
2
T
HE
DIM
A
A1
b
c
D
E
e
L
L1
HE
T
L
3X b
L1
VIEW C
e
TOP VIEW
A
A1
SIDE VIEW
c
SEE VIEW C
MIN
0.89
0.01
0.37
0.08
2.80
1.20
1.78
0.30
0.35
2.10
0°
MILLIMETERS
NOM
MAX
1.00
1.11
0.06
0.10
0.44
0.50
0.14
0.20
2.90
3.04
1.30
1.40
1.90
2.04
0.43
0.55
0.54
0.69
2.40
2.64
−−−
10 °
MIN
0.035
0.000
0.015
0.003
0.110
0.047
0.070
0.012
0.014
0.083
0°
INCHES
NOM
0.039
0.002
0.017
0.006
0.114
0.051
0.075
0.017
0.021
0.094
−−−
MAX
0.044
0.004
0.020
0.008
0.120
0.055
0.080
0.022
0.027
0.104
10°
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
END VIEW
RECOMMENDED
SOLDERING FOOTPRINT*
3X
2.90
3X
0.90
0.95
PITCH
0.80
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage
may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer
is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of
any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices
intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was
negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright
laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
◊
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
BCW70LT1/D
Similar pages