AD AD7520 Cmos 10 12 bit monolithic multiplying d/a converter Datasheet

-..
CMOS10- & 12-BitMonolithic
Multiplying
OfA Converters
ANALOG
W DEVICES
AD7520/AD7521
I
1.1 Scope.
This specification covers the detail requirements for a 10- and a 12-bit monolithic CMOS multiplying
digital-to-analog converters.
1.2 Part Number.
OBS
The complete part numbers per Tables 1 and 2 of this specification are as follows:
Device
Part Number
-I
AD7520SQ/883B
AD7521 SQ/883B
-2
AD7520TQ/883B
AD7521 TQ/883B
-3
AD7520UQ/883B
AD7521 UQ/883B
1.2.3 Case Outline.
OLE
TE
SeeAppendix 1of General SpecificationADI-M-lOOO:package outline: Q-16-AD7520
Q-18-AD7521
1.3 Absolute Maximum Ratings. (TA = 25°Cunless otherwise noted)
VootoGND
VREFtOGND
Digital Input Voltage Range
Output Voltage (Pins 1 and 2)
Power Dissipation
Upto+75°C
Deratesabove+75°C
Digital Input Voltage Range
+17V
::!:25V
VootoGND
-IOOmVtoVoo
OperatingTemperature
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . .
StorageTemperature
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
450mW
6mW/oC
VootoGND
- 55°C to + 125°C
-65°C to + 150°C
1.5 Thermal Characteristics.
Thermal Resistance alC
alA
= 35°C/W
for Q-16 or Q-18
= 120°C/WforQ-16orQ-18
REV.B
~--
401
AD1520/AD7521
SPECIFICATIONS
AD7520
Test
Resolption
,
Symbol Device
IRES
-1,2,3
I-1
Relative Accuracy
ilRA
I
,-
Sub
Group
T min-T max 1
10
Sub
Sub
Group Group
4
2,3
2
2
2
1
1/2
Design
Limit
"
Test ConditionI
VDD= +15V
Units
Bits
1
I
-2
1
2
1
-3
1/2
2
1/2
:t LSB Max
..
:t ppnifC Max
Nonlinearity T empco
TCNL
-1,2,3
Gain Tempco
TCAE
-1,2,3
2
20
Output Leakage Current
Pin 1
lOUT!
-1,2,3
200
200
200
DigitalInputs =VIL.
:t nA Max
loUTI
-1,2,3
200
200
200
Digital Inputs
=VIH.
:t nA Max
Pin2
'
:t ppnifC Max
Output Current Settling Time2 tSL
-1,2,3
500
To :t 1/2LSB. All Digital Inputs os Max
VILto Vm and Vm to VIL.
Feedthrough Erro,3
FT
-1,2,3
30
VREF=20Vp-p,lookHz,All
Reference Input Resistance
RIN
OBS
Digital Input High Voltage
Digital Input Low Voltage
VIH
VIL
-1,2,3
-1,2,3
-1,2,3
Digital Input Leakage Current IIN
-1,2,3
Output Capacitance
Pin 1
Pin 2
COUT!
COUTI
-1,2,3
-1,2,3
CoU"rI
COUTI
-1,2,3
-1,2,3
IDD
-1,2,3
Pin 1
Pin 2
Supply Current from VDD
mVp-pmax
DigitalInput = VIL.
5
20
5
20
5
20
2.4
2.4
2.4
Vmin
0.8
Vmax
OLE
0.8
0.8
1.0
MeasuredatPin
15.
kO min
kO Max
:t j.LAMax
TE
120
37
All Digital Inputs Vm.
All Digital Inputs VIH.
pF Max
pF Max
37
120
All Digital Inputs VIL.
All Digital Inputs VIL.
pF Max
pF Max
mA Max
2
2
2
NOTES
'VREF= + tOY, unless otherwise stated.
2Thesedesignlimitsare
+ 25°C only.
3Feedthrough error can be further minimized by connecting the metal lid to ground.
All Digital Inputs VILor Vm.
Table 1.
REV.B
402
-
AD7520/AD7521
Sub
Sub
Group Group
2,3
TIJIin-Tmax 1
12
Design
Limit
AD7521
Resolution
Symbol Device
RES
-1,2,3
Relative Accuracy
RA
Test
Sub
Group
4
:t LSB max
8
8
-2
4
8
4
4
8
2
2
2
2
20
Units
Bits
-I
-3
Test Condition 1
Voo= + lSV
8
:t ppm/°C max
Nonlinearity Tempco
TCNL
-1,2,3
Gain Tempco
TCAE
-1,2,3
Output Leakage Current
Pin 1
lOUT!
-1,2,3
200
200
200
Digital Inputs = VIL.-
:t nA max
IouT2
-1,2,3
200
200
200
Digital Inputs = V1H-
:t nA max
-1,2,3
500
:t ppm/°C max
OBS
Pin 2
Output Current Settling Time2 tSL
To :t 1/2LSB. All Digital Inputs ns max
V1L to VIH and VIH tOV1L-
OLE
Feedthrough Error2,3
FT
-1,2,3
30
Reference Input Resistance
RIN
-1,2,3
5
20
5
20
5
20
VREF= 20V pop, 100kHz, All
Digital Input = V1LMeasured at Pin 17
mV popmax
kil min
kil max
-
TE
Vmin
Digital Input High Voltage
VIH
-1,2,3
2.4
2.4
2.4
Digital Input Low Voltage
V1L
-1,2,3
0,8
0,8
0,8
Digital Input Leakage Current
IIN
-1,2,3
1.0
Output Capacitance
Pin 1
Pin 2
COOT! -1,2,3
COUT2 -1,2,3
120
37
All Digital Inputs VIH
All Digital Inputs VIH'
pFmax
pFmax
COOT!
COUT2
-1,2,3
-1,2,3
37
120
All Digital Inputs VIL'
All Digital Inputs VIL.
IDD
-1,2,3
2
pF max
pF max
mAmax
Pin 1
Pin 2
Supply Current from VDD
2
2
Vmax
:t !-LA max
-
All Digital Inputs V1Lor VIH-
NOTES
IV REF = + lOV, unless otherwise stated.
2These design limits are + 25°C only3Feedthrough
error can be further
minimized
by connecting
the metal lid to ground-
Table2,
REV,B
---
-
--
-
---
-----
4tH
AD7520/AD7521
3.2.1 Functional BlockDiagram and Terminal Assignments.
101e
VREF
101e
101e
2Ok
201e
2Ok
2Ok
loon
louT1
I
I
L__~,.__J
I
I
0
0
BIT1 (MSB) BIT2
I
0
BIT3
I 1Ok
I
L JvvI
0
BITN (LSB)
RFEEDBACK
AD7520:
DIGITALINPUTS(DTUTTL/CMOS
COMPATIBLE)AD7521:
OBS
N=10
N=12
OLE
BIT 1 (MSB) I 4
BIT 2
BIT 4
BIT 1 (MSBII 4
BIT 12 (LSB)
TE
3.2.4 Microcircuit Technology Group.
This microcircuitis coveredby technologygroup(80).
4.2.1 Life TestIBurn-In Circuit.
Steadystatelifetest isper MIL-STD-883Method 1005.Bum-in isper MIL-STD-883 Method 1015
test condition(B).
AD7520
AD7521
+10V
loun
+10V
1k
1k
+15V
+15V
2k
DATA
--
100k
-:
STANDARD
BURN.IN-DATA
LINE
2k
IS+15V
DATA
ONEPERBOARD
100k
":"
"-ONEPERBOARD
STANDARD BURN.IN-DATA
LINE IS +15V
REV.B
404
-..
CMOS10- & 12-Bit Monolithic
ANALOG
W DEVICES
0/A Converters
Multiplying
AD7520,AD7521
I
I
FEATURES
AD7520: 10-Bit Resolution
AD7521: 12-Bit Resolution
End Point Linearity: 8-,9- and 10-Bit
Nonlinearity Tempco: 2ppm of FSRfc
Low Power Dissipation: 2OmW
Current Settling Time: 5OOns
Feedthrough Error: 1/2LSB @ 100kHz
TTL/DTL/CMOS Compatible
AD7520, AD752I FUNCTIONAL
101<
101<
BLOCK DIAGRAM
101<
VREF
2Ok
OBS
201<
201<
201<
20k
IoUT2
Note: AD7533 i. recommended for new 10-bit designs.
AD7541A or AD7545 is recommended for new
12-bit designs.
louT1
101<
RFEEDBACK
OLE
DIGITAL INPUTS (DTL/TTl/CMOS COMPATIBLE)
AD7520:
AD752I:
Logic:
GENERAL DESCRIPTION
The AD7520 (AD752I) is a low cost, monolithic to-bit
(12-bit) multiplying digital-to-analog converter packaged in a
I6-pin (I8-pin) DIP. The devices use advanced CMOS and thin
fdm technologies providing up to to-bit accuracy with TTL/
DTL/CMOS compatibility.
N=10
N=12
PIN CONFIGURATIONS
The AD7520 (AD7521) operates from +5V to +15V supply
and dissipates only 20mW, including the ladder network.
Typical AD7520 (AD752I) applications include: digital/
analog multiplication, CRT character generation, programmable power supplies, digitally controlled gain circuits, etc.
ORDERING
BIT 1 IMSBJ
I4
BIT 10 IlSBI
BIT
1 CMSBI
BIT 12 IlSBI
INFORMATION
TemperatUre
Nonlinearity
Range
to +85°C
16-PIN DIP
0 to +70oC
-25°C
AD7520JN
AD7521JN
AD7520JD
AD7520SD
AD7521JD
AD7521SD
0.1% (9-Bit)
AD7520KN
AD7521KN
AD7520KD
AD7521KD
AD752OTD
AD7521TD
0.05% (lo-Bit)
AD7520LN
AD7521LN
AD7520LD
AD7521LD
AD7520UD
AD7521UD
0.2% (8-Bit)
TE
A switch is closed to 'oUTl for its
digital input in a "HIGH" state.
-55°C
to +125°C
18-PIN DIP
PACKAGEIDENTIFICATION 1
Suffix D:
Ceramic DIP Package
AD7520: (DI6B)
AD752I: (DI8B)
Suffix N:
Plastic DIP Package
AD7520 (NI6B)
AD752I (NI8B)
1
See Section 19 for package outline information.
.
SPECIFICA
JIONS(Voo=+15,VREF= +10V,TA= +25°Cunlessotherwisenoted)
PARAMETER
AD7520
DC ACCURACY!
Resolution
Relative Accuracy (See Figure 5)
Nonlineari7
Gain
Error
10 Bits
12 Bits
J, 0.2% of FSR max (8 Bit)
S, 0.2% of FSR max (8 Bit)
K, 0.1% of FSR max (9 Bit)
T, 0.1% of FSR max (9 Bit)
L, 0.05% of FSR max (10 Bit)
U, 0.05% of FSR max (10 Bit)
.
2ppm
Tempco
AD7521
of FSR/
C max
0.3% of FSR ty~
Gain Error Tempc02
Output Leakage Current
(either output)
Power Supply Rejection
(See Figure 6)
AC ACCURACY
lOppm
of F!)R/
C max
200nA max
50ppm of FSR/% typ
OBS
Output Current Settling Time
(See Figure 10)
.
4
Feedthrough Error (See Figure 9)
..
.
.
.
S,T,U: over -55°C to +125°C
-10V~VREF~+10V
.
-10V~VREF~+ 10V
-10V~VREF~+10V
-lOV~VREF~+lOV
.
.
Over specified temperature
.
.
..
*
500ns typ
5kil min
10kil typ
20kil max
'oun
'oun
'oun
'oun
120pF typ
37pF typ
37pF typ
120pF typ
Equivalent to 10kil typ
Johnson noise
Output Noise (both outputs)
(See Figure 7)
DIGITAL INPUTS5
Low State Threshold
High State Threshold
Input Current (low to high state)
Input Coding
POWER REQUIREMENTS
Power Supply Voltage Range
IDD
*
*
.
.
*
*
*
*
0.8V max
2.4V min
1JlA typ
Binary
All digital inputs low to high
and high to low
VREF = 20V p-p, 100kHz
All digital inputs low
All
All
All
All
TE
digital
digital
digital
digital
inputs
inputs
inputs
inputs
Over specified temperature range
Over specified temperature range
Over specified temperature range
See Tables I & II under Applications
*
*
*
20mW typ
All digital inputs at GND
All digital inputs high or low
NOTES
Full scale range (FSR) is 10V for unipolar mode and :t10V for bipolar mode.
Using the internal RFEEDBACK
3 Ladder and feedback resistor temp co is approximately
-1 SOppmf C.
I
2
4To minimize feedthrough
with the ceramic package, the user must ground
grounded,
then the feedthrough
is lOmV typical and 3OmV maximum.
s Digital input
levels should
Specifications
subject
VOL. I, 9-154
not go below ground
to, change
without
or exceed
the positive
notice.
DIGITAL-TO-ANALOG
CONVERTERS
high
high
low
low
*
+5V to +15V
5nA typ
2mA max
Total Dissipation (Including ladder)
.
range
To 0.05% of FSR
OLE
10m V p-p max
REFERENCE INPUT
Input Resistance3
ANALOG OUTPUT
Output Capacitance
(See Figure 8)
.
.
TEST CONDITIONS
the metal
supply voltage,
lid. If the lid is not
otherwise
damage
may occur.
1000
ABSOLUTE MAXIMUM RATINGS
(TA
= +25°C
DIGITAL INPUT VOLTAGE
unless otherwise noted)
VDD(toGND)
VREF(toGND)
Digital Input Voltage Range.
Output Voltage (Pin 1, Pin 2)
Power Dissipation (package)
upto+75°c
derates above +75°C by . .
Operating Temperature
jN,KN,LNVersions
jD, KD, LD Versions. . . .
SO, TD, UD Versions. . . .
Storage Temperature.
. .. . .
+I7V
i25V
. . . . . . . . . . . . . VDD to GND
. . . . . . . . . . -IOOmV to VDD
450mW
. . . . . . . . . . . . . . . .6mW/C
./"
-; 1.0
I
a
"",-I
.P
+./"
,\1'°
0\-1°"":""
0.1
Oto+70°C
. . . . . . . . . . . -25°C to +85°C
. . . . . . . . . . -55°C to +I25°C
. . . . . . . . . . -65°C to +I50°C
OBS
""vV>
0\1"'/
0'(>'/
0.01
/
./
0.001
-55 -50 -4D
-20
20
0
1.
Do not apply voltages higher than VDD or less than
GND potential on any terminal except VREF'
2.
The digital control inputs are zener protected; however,
permanent damage may occur on unconnected units
under high energy electrostatic fields. Keep unused units
in conductive foam at all times.
PERFORMANCE
CURVES
TA = +25°C, VDD= +15V unlessotherwisenoted
OLE
Figure 2. Supply
Current
1000
IZ
w
a:
a:
::>
u
I::>
80
120 125
100
::>
0
-----
vs. Temperature
- ""
TE
100
~
1000
60
40
TEMPERATURE - °C
<t
"I
'"
./'" "[;IGITAL INPUTVOLTAGE= +5V
100
10
1~
104
<t
"-
/
10
1~
107
REFERENCE FREQUENCY - Hz
/'
I
a
+5V
10
CAUTION:
TYPICAL
-
100
Figure 3. Output Current Bandwidth
.P
700
1!
I
J
1.0
..w
I
I
DIGITAL INPUT VOLTAGE
I
/
0.001
5
6
7
8
9
10
VDD
11
-
12
13
= VDD
14
15
16
.!I'
....
"'
0
0
0
t:
w
\
500
400
:;:
Volts
t:)
z
Figure 1. Supply Current vs. Supply Voltage
600
300
""
.......
::::;
IIw
en
I-
Z
w
a:
a:
::>
u
200
100
0
2.0
2.5
3.0
3.5
4.0
DIGITAL INPUT VOL TAGE STEP - Volts
Figure 4. Output Current Settling
Time vs. Digital Input Voltage
4.5
5.0
II
CIRCUIT DESCRIPTION
RFEEDBACK
GENERAL CIRCUIT INFORMATION
The AD7520 (AD7521), a to-bit (I2-bit) multiplying D/A converter, consists of a highly stable thin film R-2R ladder and
ten (twelve) CMOS current switches on a monolithic chip.
Most applications require the addition of only an output
operational amplifier and a voltage or current reference.
IOUT1
R
IREF
---
VREF
The simplified D/A circuit is shown in Figure 11. An inverted
R-2R ladder structure is used - that is, the binarily weighted
currents are switched between the loUT! and louT2 bus lines,
thus maintaining a constant current in each ladder leg independent of the switch state.
OBS
10k
VREF
2Ok
10k
20k
"" 1Ok11
IOUT2
'CO"", ~"'"
Figure 13. AD7520 (AD7521) Equivalent CircuitAl/ Digital Inputs Low
10k
20k
EQUIV ALENT CIRCUIT ANALYSIS
20k
OLE
The equivalent circuits for all digital inpu ts high and all digital inputs low are shown in Figures 13 and 14. In Figure 13 with all
digital inputs low, the reference current is switched to louTZ'
The current source ILEAKAGE is composed of surface and.
IoUT2
IOUT1
I
I
I
I
0
0
BIT 1 (MSB) BIT2
L_--5t-_J
L 10k
I
I
0
0
BIT 3
BIT N (lSB)
RFEEDBACK
AD7520:
DIGITAL INPUTS (DTl/TTL/CMOS COMPATIBLE) AD7521:
(Switches
shown
for
TE
junction leakages to the substrate while the Id24
Inputs
N=10
N=12
"High")
Figure 11. AD7520 (AD7521) Functional Diagram
One of the CMOS current switches is shown in Figure 12. The
geometries of devices 1, 2 and 3 are optimized to make the
digital control inputs DTL/TTL/CMOS compatible over the
full military temperature range. The input stage drives two
inverters (devices 4,5,6 and 7) which in turn drive the two
output N-channels. The "ON" resistances of the first six
switches are binarilyscaled so the voltage drop across each
switch is the same. For example, switch-l of Figure 12 was
designed for an "ON" resistance of 20 ohms, switch-2 of 40
ohms and so on. For a 10V reference input, the current
through switch 1 is 0.5mA, the current through switch 2 is
O.25mA, and so on, thus maintaining a constant 10mV drop
across each switch. It is essential that each switch voltage drop
be equal if the binarily weighted current division property of
the ladder is to be maintained.
current source represents a constant I-bit current drain
through the termination resistor on the R-2R ladder. The
"ON" capacitance of the output N channel switch is 120pF,
as shown on the IoUT2 terminal. The "OFF" switch capacitance is 37pF, as shown on the IoUTl terminal. Analysis of
the circuit for all digital inputs high, as shown in Figure 14 is
similar to Figure 13; however, the "ON" switches are now on
terminalloUTl ' hence the 120pF at that terminal.
RFEEDBACK
---
'REF
R '" 10k11
R
VREF
R ~
IoUT2
Figure 14. AD7520
DTL/TTL/CMOS
INPUT
Figure 12. CMOS Switch
R
'Dun
(AD7521)
Al/ Digital Inputs High
V+
( 4~96)
Equivalent Circuit-
I
TEST CIRCUITS
Note:
+15V
VREF
The following test circuits apply for the AD7S20.
Similar circuits can be used for the AD7S 21.
.
2QV P1' 100kHz
SINE WAVE
15
DC PARAMETERS
BIT 1 IMSOI
10 BIT
BINARY
COUNTER
13
1~
Ilou12
VOUT
2
BIT 10 (LSB)
I.
15
14
5
~I
16
5 AD7520
-'5V
Vo..
I.
BIT 1 IMSB) I.
..o..c.
~
,"
1 Ioun
LINEARITY
AO1520
~'3
IUBI
ERROR
X
100
211ou12
Figure 9. Feedthrough Error
""0.0'"
JV'I...
CLOCK
-15V
BIT,
iMSii
12 BIT
REFERENCE
OAC
+100mV
0JJ..D... -Figure 5. Relative Accuracy
OBS
+15V
UNGROUNDED
SINE WAVE
GENERATOR
40Hz.
-10V
Figure 70. Output Current Settling Time
5001<
2V p.p
51< 0.01%
VRE>
BIT 1 (MSB)
I
15 ,.
5.
1611ou11
1 Iou11
AD7520
13
BIT
VERnoR
X 100
OLE
~B'C.
10 CLSB)
TERMINOLOGY
RELATIVE ACCURACY: Relative accuracy or end-point
nonlinearity is a measure of the maximum deviation from
a straight line passing through the end-points of the DAC
transfer function. It is measured after adjusting for ideal
zero and full scale and is expressed in % or ppm of full
scale range or (sub) multiples of lLSB.
TE
Figure 6. Power Supply Rejection
RESOLUTION: Value of the LSB. For example, a unipolar
converter with n bits has a resolution ot (2-0) (VREF)' A
bipolar converter of n bits has a resolution of [2-(0-1)]
[V REF]' Resolution in no way implies linearity.
AC PARAMETERS
-ITV IADJUST FOR VOUT ~ OV)
Ik
loon
IOk
F'lkHz
BW'IHz
SETTLING TIME: Time required for the output function of
the DAC to settle to within 1/2 LSB for a given digital
input stimulus, i.e., 0 to Full Scale.
OUAN
VOUT
I
.:~g~L
130.0
WAVE
ANALYZER
O.I.FI.
V
GAIN: Ratio of the DAC's operational amplifier output
voltage to the input voltage.
FEEDTHROUGH ERROR: Error caused by capacitive
coupling from VREF to output with all switches OFF.
< Ik
-SOV
Figure 7. Noise
OUTPUT CAPACITANCE:
Capacity from 'oUTl and
'oUT2 terminals to ground.
+15V
b
NC
Ik
Figure 8. Output Capacitance
VOL. I, !J-756 DIGITAL-TO-ANALOGCONVERTERS
OUTPUT LEAKAGE CURRENT: Current which appears on
'oUTl terminal with all digital inputs LOW or on 'oUT2
terminal when all inputs are HIGH.
APPLICATIONS
UNIPOLAR BINARY OPERATION
(2-QUADRANT MULTIPLICATION)
Figure 15 shows the analog circuit connections required for
unipolar binary (2-quadrant multiplication) operation. The
logic inputs are omitted for clarity. With a dc reference voltage or current (positive or negative polarity) applied at pin 15,
the circuit is a unipolar D/ A converter. With an ac reference
voltage or current the circuit provides 2-quadrant multiplication (digitally controlled attenuation). The input/output
relationship is shown in Table I. Protection Schottky shown
in Figure 15 is not required when using TRlFET output
amplifiers such as the AD542 or AD544.
R1 provides full scale trim capability [i.e.-load the DAC
register to 11 1111 1111, adjsut R1 for VOUT = -VREF
(1 - 2-1°)]. Alternatively, Full Scale can be adjusted by
omitting Rl and R2 and trimming the reference voltage
magnitude.
OBS
C1 phase compensation (10 to 25pF) may be required for
stability when using high speed amplifiers. (C1 is used to
cancel the pole formed by the DAC internal feedback resistance and output capacitance at loUT 1).
BIPOLAR OPERATION
(4-QUADRANT MULTIPLICATION)
Figure 16 and Table II illustrate the circuitry and code relationship for bipolar operation. With a dc reference (positive
or negative polarity) or an ac reference the circuit provides
offset biiuty operation. Protection Schottky shown in
Figure 16 is not required when using TRlFET output amplifiers such as the AD542 or AD544.
With the DAC register loaded to 10 0000 0000, adjust R1 for
VOUT = OV (alternatively, one can omit R1 and R2 and adjust
the ratio of R3 to R4 for VOUT
= OV).
Offset Adjustment
1.
Make VREF approximately
2.
Tie all digital inputs to +15V (Logic "I").
3.
Adjust amplifier #2 offset trimpot for OV :tlmV at
amplifier #2 output.
4.
Tie MSB (Bit 1) to +15V, all other bits to ground.
5.
Adjust amplifier #1 offset trimpot for OV :tlmV at
VOUT'
OLE
DIGITAL INPUT
1111111111
1000000001
1000000000
0111111111
GNO
NOTE:
lOGIC INPUTSOMITTED FOR CLARITY.
Figure 15. Unipolar Binary Operation (2-Quadrant
Multiplication)
-VREF (1 - 2-1°)
1 11
1 11
1000000001
VREF (1 - Z-9)
0000000000
VREF
= 2-9 VREF
-VREF
-L
11 1 1 1 111
VDD
+15V
.
an
"'0
15
14
1-CI
-,- 22DF
R4
20k
I
Your
-VREF (Z-1O)
0
0000000000
1 LSB
Bipolar (Offset Binary) Operation
-VREF (1/2 - 2-1°)
0000000001
NOTE:
-
-VREF (1/2 + 2-1°)
1000000000
01
-VREF (1 - 2-9)
0000000001
NOTE: 1 LSB
UOV
VREF
TE
ANALOG OUTPUT
VREF (2-9)
Table II. Code Table
1 1 11
+10V.
-VREF (2-9)
0
Your
ANALOG OUTPUT
= 2-10
VREF
NOTE:
lOGIC INPUTS OMITTEDFOR CLARITY.
Table I. Code Table - Unipolar Binary Operation
Figure 16. Bipolar Operation (4-Quadrant
Multiplication)
VOL. I, 9-158
can
As in unipolar operation, Al must be chosen for low Vas and
low lB' R3, R4 and R5 must be selected for matching and
tracking. Mismatch of 2R3 to R4 causes both offset and Full
Scale error. Mismatch of R5 to R4 or 2R3 causes Full Scale
error. Cl phase compensation (lOpF to 25pF) may be required for stability.
Amplifier Al should be selected or trimmed to provide Vas
< 10% of the voltage resolution at VOUT' Additionally, the
amplifier should exhibit a bias current which is low over the
temperature range of interest (bias current causes output offset at VOUT equal to lB times the DAC feedback resistance,
nominally 15kD.).
DIGITAL INPUT
Full scale trimming
be accomplished by adjusting the amplitude of VREF or by
varying the value of R5.
DIGITAL-TO-ANALOG CONVERTERS
Applications
10-BIT AND SIGN MULTIPLYING DAC
Figure 17 shows an alternative method of achieving bipolar
output. The circuit operates with sign plus magnitude code
and has the advantage that it gives lO-bit resolution in each
quadrant. The 10 magnitude bits provide digitally controlled
attenuation
ity control.
over switch.
error. Table
Figure 17.
of the reference while the sign bit provides polarThe AD7512 is a fully protected CMOS changeMismatch between R4 and R5 introduces a gain
III shows the Code Table for the circuit of
nov
BIPOLAR
ANALOG
INPUT
Binary Numbers in
DAC Register
11 11111111
Analog Output
+VIN' 1 - Z-10
0
00 0000 0000
0 Volts
1
00 0000 0000
0 Volts
1
1111111111
-VIN'
Sign Bit
0
OBS
Figure 17. 10-Bitand Sign Multiplying DAC
Table III. 10-Bit Plus Sign Magnitude Table
OLE
DIGITALLY PROGRAMMABLE LIMIT DETECTOR
TEST
VREF
+15V
INPUT
1 - 2-10
TE
The circuit of Figure 18 shows how the AD7520 is used to
implement a programmable limit detector. If the test input
does not meet the test limit set by the digital input, then the
pass/fail output will indicate a fail.
(OTO-VREF)
FAIL/PASS
TEST
Figure 18. Programmable Limit Detector
VOLTAGE MODE OPERATION
The AD7520 can also be used in the voltage-switching mode
and the circuit of Figure 19 shows how the DAC can be connected for voltage switching by reversing the roles of the
reference input and IOUTl. It is a single supply application
with the DAC and the CMOS operational amplifier both
powered from a single +15V supply. With a single supply
operational amplifier, offset is difficult to remove completely;
therefore, some offset may have to be tolerated usually
amounting to less than one-half LSB at 3.5V reference. The
voltage switching mode permits only a single polarity of input
(positive with respect to common).
+15V
+10V
AD584
VREF
= 3.5V MAX
+5V
0.1"F
14
AD7520
5k
+2.5V
n
DIGITAL
INPUT
Figure 19. Single Supply Voltage Mode Operation
.
DIGITAL INPUT
BIT 1
BIT 10
IMSBI
ILSBI
AN ALOG/DIGIT AL DIVISION
With the AD7520 connected in its normal multiplying configuration as shown in Figure 15, the transfer function is
Vo = -V IN
(
Al
21
+ A2
22
+ A3
23
+
. . . An
2n
)
4
5
VIN16
13
141--+15V
2
AD7520
15
where the coefficients Ax assume a value of 1 for an ON bit
and 0 for an OFF bit.
By connecting the DAC in the feedback of an operational
amplifier, as shown in Figure 20, the transfer function becomes
Your
-VIN
Vo =
Al
( 21
+ A2
22
+ A3
23
+
. . . An
2n
)
Figure 20. Analog/Digital Divider
This is division of an analog variable (VIN) by a digital word.
With all bits off, the amplifier saturates to its bound, since
division by zero isn't defined. With the LSB (Bit 10) ON, the
gain is 1024. With all bits ON, the gain is I (:tl LSB).
OBS
OLE
VOL. I, 9-160
DIGITAL-TO-ANALOG CONVERTERS
TE
Similar pages