CXA2581N RF Signal Processor for CD Players Description The CXA2581N is an RF signal processing IC for compact disc players. 30 pin SSOP (Plastic) Features • Wide band RF signal processing • RF system VCA circuit • RF system equalizer (supports CAV mode) • Supports pickups with built-in RF summing amplifier • Low current consumption mode (EQ Pass mode) • RW/ROM switching mode • Center error amplifier • Output DC level shift circuit • TE balance adjustment function Absolute Maximum Ratings • Supply voltage VCC 7 • Storage temperature Tstg –65 to +150 • Allowable power dissipation PD 620 Functions • RF AC summing amplifier, equalizer, VCA • RF DC summing amplifier • Focus error amplifier • Tracking error amplifier • Center error amplifier • Automatic power control • VC buffer amplifier (analog block, digital block) V °C mW Operating Conditions • Operating supply voltage range VCC – GND 3.4 to 5.5 V (0V ≤ Vcc – DVcc < 2V) Note) Care should be taken for the operating voltage. See page 18. • Operating temperature Topr –30 to +85 °C DC_OFST RFDCI RFDCO VC RFC VFC BST RFG VCC CEI CE TE_BAL TE FEI FE 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 LD PD EQ_IN AC_SUM GND A B C D E F SW DVCC DVC RFAC Pin Configuration Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98739A97-PS CXA2581N RFG BST 3 23 24 26 25 AC SUM AC VCA EQ VFC EQ_IN 4 RFC AC_SUM Block Diagram 15 RFAC EQ_ON/OFF RW/ROM 30 DC_OFST DVCC VC 29 RFDCI 28 RFDCO RW/ROM DVC A 6 B 7 C 8 D DVCC 17 FEI 16 FE VOFST RW/ROM VC 9 DVC 19 TE_BAL RW/ROM VC F 10 gm E 11 gm VOFST RW/ROM DVCC 18 TE VOFST VC RW/ROM B DVC C A D SW 12 APC 20 CE VC RW/ROM APC-OFF (Hi-Z) DVC RW/ROM VC (H/L) VCC VOFST VC VC 1 DVC 22 5 27 14 VC DVC VCC GND LD 2 21 CEI DVC VCC PD DVCC –2– 13 DVCC CXA2581N Pin Description Pin No. Symbol I/O Description 1 LD O APC amplifier output. 2 PD I APC amplifier input. 3 EQ_IN I RFAC system VCA block and EQ block input. 4 AC_SUM O RFAC system RF SUM output. 5 GND I GND. 6 A I A signal input. 7 B I B signal input. 8 C I C signal input. 9 D I D signal input. 10 E I E signal input. 11 F I F signal input. 12 SW I Mode switching signal input. 13 DVCC I DVCC. 14 DVC O DVC output. 15 RFAC O RFAC signal output. 16 FE O Focus error signal output. 17 FEI I FE amplifier virtual ground. 18 TE O Tracking error signal output. 19 TE_BAL I TE balance adjustment. 20 CE O Center error signal output. 21 CEI I CE amplifier virtual ground. 22 VCC I VCC. 23 RFG I RFAC system VCA block low frequency gain adjustment. 24 BST I EQ boost level adjustment. 25 VFC I EQ cut-off frequency adjustment. 26 RFC I EQ cut-off frequency adjustment. 27 VC O VC voltage output. 28 RFDCO O RFDC signal output. 29 RFDCI I RFDC amplifier virtual ground. 30 DC_OFST I RFDC signal output offset adjustment. –3– CXA2581N Pin Description Pin No. Symbol I/O Equivalent circuit Description 10k 1 LD O 2 PD I 1 APC amplifier output. 1k 55k APC amplifier input. 20k 2 20k 1.1k 3 EQ_IN I 3 1.1k Equalizer circuit input. 1.2k 5k 5k VC VC 1.6k 1.6k 4 AC_SUM O 4 5 GND — — –4– RFAC summing amplifier output. GND. CXA2581N Pin No. 6 Symbol A I/O Equivalent circuit Description I 15k 6 100µA 7 B I 7 100µA RF summing amplifier and focus error amplifier input. 30k 8 C I 8 47k 100µA 47k 9 9 D VC I 100µA 10 E I 10 Tracking error amplifier input. 11 11 F VC I 200k 12 SW I CD-ROM/RW switching input. RW when connected to VCC, ROM when connected to GND. 200k 12 200k VC 13 DVCC — 14 DVC O — Digital power supply. 150k 14 150k 25 –5– (DVCC + GND)/2 voltage output. CXA2581N Pin No. 15 Symbol RFAC I/O Equivalent circuit O FE RFAC amplifier output. 15 2mA 16 Description 100 O Focus error amplifier output. 50k 124 16 VC 124 17 17 FEI I 18 TE O 18 Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 16. Tracking error amplifier output. 20k 19 20k 19 TE_BAL I Tracking error E and F gain balance adjustment. 20k VC 20 CE O Center error amplifier output. 50k 124 20 VC 124 21 21 CEI I –6– Center error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 20. CXA2581N Pin No. Symbol I/O Equivalent circuit — 22 VCC — 23 RFG I Description VCC. (AVCC) 20k Sets the RFAC low frequency gain. 23 VC 100µA 50µA 24 BST I 20k 24 VC Input for adjusting the equalizer circuit boost frequency with the control voltage. 20k 25 VFC I 25 VC 100µA 1.0V 124 26 RFC I 27 VC O 26 150k 27 150k 25 –7– Input for adjusting the equalizer circuit boost level. Input for adjusting the equalizer circuit boost frequency with external resistance. (VCC + GND)/2 voltage output. CXA2581N Pin No. 28 Symbol RFDC I/O Equivalent circuit Description RFDC amplifier output. O 1mA 2k 124 28 VC RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 28. 124 29 RFDCI I 29 30 124 30 DC_OFST 24k I RFDC amplifier offset control. VC 10k 15k –8– CXA2581N Description of Functions • RFAC The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin. A 6 B 7 C 8 D 9 AC_SUM VCC AC SUM BST VFC 24 25 26 RFC 4 3 RF 0.1µ 5.1k EQ Amp EQ_IN 15 RFAC RFG 23 RW/ROM BST = VCC Low frequency gain AC_SUM: 13dB (both ROM/RW) VCA to RFAC ROM: 0dB RW: 12dB The EQ can be bypassed by connecting the BST control pin (Pin 24) to VCC. In this case only the EQ block enters sleep mode and low power consumption mode (slim mode) is activated. The low frequency gain is the same value as for EQ ON mode. If RF (summing signal) is present at the pickup output pin, input the addition output signal to EQ_IN (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to EQ_IN (Pin 3) coupled by capacitance. RW/ROM switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. Gain [dB] The VCA low frequency gain can be adjusted by the RFG (Pin 23) voltage. The control voltage vs. low frequency gain characteristics are shown in the graph to the right. VCA variable range 8 0 –8 VC – 1 VC VC + 1 Vcnt [V] The RFAC pin (Pin 15) is an NPN transistor emitter follower output. The maximum drive current is approximately 2mA. If the load capacitance distorts the output waveform, connect resistance between Pin 15 and GND to increase the drive current. –9– CXA2581N • EQ HPF In The diagram to the left shows the EQ internal block diagram. The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain. The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value. Amp LPF LPF fc Out Boost EQ CNT RFC 26 VCC VFC 25 BST 24 VC VC RFC resistance value: The cut-off frequency fo of each filter is adjusted by the Pin 26 external resistance value. The VFC voltage can be varied using this fo as the reference. VFC voltage: fo can be changed by the voltage applied to Pin 25. The boost gain can be adjusted by the BST pin control voltage. The control characteristics are shown in the graph below. The cut-off frequency control characteristics are shown in the graph below. Boost Gain [dB] fc [Hz] 8dB 1.5fo fo 0dB 0.5fo VC – 1.0 VC VC + 1.0 Pin 24 (BST) voltage Vcnt [V] VC – 1.0 VC VC + 1.0 Pin 25 (VFC) voltage Vcnt [V] • APC (Automatic Power Control) When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photo diode output at a constant level. This control is performed by the APC function. VCC 56k PD 2 1 LD 10k 55k 10k 10k 1.25V – 10 – 1k 56k CXA2581N • Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has RW/ROM switching and offset addition functions. VC ROM 100k RW FEI 17 23.5k 124 A 6 30k C 8 16 FE 100k 124 50k 30k 30k B 7 ROM D 9 ROM VOFST RW 30k 47k 47k 200k DVC RW 200k FE = Gain { (B + D) – (A + C) } Low frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 300kHz RW: 300kHz • Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching and offset addition functions. TE_BAL 19 TE = Gain (F – E) ROM 63k 63k ROM 251k 10k 251k RW DVCC Low frequency gain VOFST 20k 10 20k 11 F E VC gm RW 20k 18 TE 20k gm VC TE balance adjustment F – E low frequency gain = ±6dB 10k 31.5k 125.5k ROM RW DVC External resistance value vs. Low frequency gain Low frequency gain [dB] 22 16 12.5 10k 20k – 11 – 30k ROM: 16dB RW: 28dB Resistance value [Ω] CXA2581N • VC Buffer • DVC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately ±3mA. Use this voltage as the analog block VC voltage. This outputs the 1/2 DVCC voltage. The maximum output current is approximately ±3mA. Use this voltage as the digital block VC voltage. The output DC voltage of each block is level shifted using the DVC voltage as the reference. VCC DVCC 40k VC 27 40k 25 40k DVC 14 25 40k • RFDC The signals input to the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching and low frequency gain adjustment are possible. VC 30 A 6 B 7 C 8 D 9 ROM VC RW ROM RW 24k 96k 15k 10k RFDCI 29 28 RFDCO ROM 15k 15k 5.1k 40k RW 124 124 2k 15k 2.4k DVC 3.3k RFDC = Gain (A + B + C + D) Low frequency gain ROM: 17.5dB RW: 29.5dB fc (Typ) ROM: 20MHz RW: 5MHz The gain can be adjusted by the external resistance connected between Pins 28 and 29. The output voltage offset can be adjusted by controlling the Pin 30 voltage. – 12 – CXA2581N • Center Error The signals input to the A and D pins and the B and C pins are arithmetically amplified and the center error signal is output. RW/ROM switching, low frequency gain adjustment and offset adjustment are possible. VC A 6 D 9 B 7 C 8 ROM VOFST RW ROM RW 12k 48k 200k CEI 21 30k 20 CE 50k 30k 30k ROM 30k 24k 24k 96k DVC RW 96k The (B + C) – (A + D) signal is arithmetically amplified. Low frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 200kHz RW: 200kHz • Output Offset Shift The RFDC, FE, TE and CE output DC voltages are level shifted to the digital VC voltage (DVC). The reference voltage of this IC is the VC voltage, and only the output reference voltage changes. The maximum output voltage of each output signal should be kept to the digital VCC voltage (DVCC) or less in order to protect the DSP_IC. 40k 40k DVC VC VOFST 40k 40k The VC and DVC voltages are arithmetically amplified and output as the VOFST voltage. The VOFST voltage serves as the level shift reference voltage, and is distributed to each block. VC • SW This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin. SW high/low condition High: VC + 1V to Vcc Low: VC – 1V to GND Active/Sleep SW 12 SW RW/ROM APC_ON/OFF The VC buffer is always in active mode even if it enters sleep mode. In the function block, MODE_SW is always set to active mode. Item APC Active/Sleep RW/ROM VCC ON Active RW VC or Hi-Z OFF Sleep — GND ON Active ROM Control voltage – 13 – Symbol O Offset voltage ROM 10 – 14 – O Gac_ROM2 Low frequency gain ROM_cnt Low frequency gain ROM_max Gac_ROM3 Low frequency gain RW_min O O O O O O Gac_EQoff Fac_MinL Frequency response EQ_OFF Fac_EQoff Vac_L Frequency response Min_L Frequency response Min_H Fac_MinH Vac_H Low frequency gain EQ_off Maximum output voltage H Maximum output voltage L 18 19 20 21 22 23 O O O Low frequency gain RW_max Gac_RW3 17 16 O Low frequency gain RW_cnt O Gac_ROM1 Low frequency gain ROM_min Gac_RW1 O AC_OfstRW Offset voltage RW Gac_RW2 15 14 13 12 11 AC_OfstROM O O O O SUM maximum output voltage L Vsum_L 9 O O O O 50kHz 0.3Vp-p 0.3Vp-p 0.3Vp-p 20MHz 30MHz 10MHz 0.8Vp-p 100kHz 75mVp-p 50kHz 0.2Vp-p 0.35Vp-p 50kHz 0.3Vp-p 100kHz 0.8Vp-p 100kHz 1.4Vp-p 100kHz –1.2V 1.2V 0V –0.4V 0.4V 0V E5 0V 1.7V 0V 1.0V 0V –1.0V 0V 1.7V 1.0V 0V –1.0V 1.0V 0V –1.0V Fsum SUM frequency response 10MHz 70mV Gsum SUM low frequency gain 0.1Vp-p ACSUM_Ofst SUM offset voltage O O O O Icc_Slp Current consumption (Sleep) 0.1Vp-p 100kHz 70mV 0V Icc_Dvcc 0V E4 Current consumption (DVCC) 0V E3 1.7V O O O O 0V 0V Hi-Z E2 Bias conditions V1 V1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 amplitude frequency E1 Switch conditions O O O O 8 RFAC EQ 0V E6 0V 15 15 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 22 13 22 22 MeasureE7 ment pin 45 mA 70 mA 5 8 mA 0.5 0.8 mA 30 50 11 13 15 dB –1.2 –0.7 –0.2 V 3 0.2 15 30 Min. Typ. Max. Unit 1.4 1.6 1.7 V 5 –3 9 5 5 0 8 12 –8 8 0 dB 8 8 2 dB dB dB 11 dB 15 dB –5 dB 11 dB 3 –5 dB V V 1.2 V Pin voltage – AC_OfstROM –1.1 –0.9 –0.7 V 1 –0.5 2.5 5.5 dB 2 2 –2 Pin voltage – AC_OfstROM 0.8 20 log (Vout/Vin) – EQoff 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_RW2– Gac_ROM2 5 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_RW2– Gac_ROM2 –11 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) –8 –0.8 –0.3 0.2 –0.8 –0.3 0.2 20 log (Vout/Vin) – Gac_ROM2 –11 Pin voltage Pin voltage Pin voltage –ACSUM_Ofst –0.5 –0.3 –0.1 V Pin voltage –ACSUM_Ofst 20 log (Vout/Vin) – Gsum –2.5 –0.5 0.5 dB 20 log (Vout/Vin) Pin voltage Pin current Pin current Pin current Pin current Measurement conditions (VCC = 1.7V, VEE = –1.7V, DVCC = 1.7V, DVEE = –1.7V) Current consumption (Active, EQ Off) Icc_Aeqoff Current consumption (Active, EQ On) Icc_Aeqon Measurement item SUM maximum output voltage H Vsum_H 7 6 5 4 3 2 1 RFAC SUM Measure- Funcment No. tion Electrical Characteristics CXA2581N – 15 – Frequency response RW1 Frequency response RW2 Maximum output voltage H Maximum output voltage L 41 42 43 44 Vfe_L Vfe_H Ffe_RW2 Ffe_RW1 Frequency response ROM2 Ffe_ROM2 40 Gfe_RW2 Low frequency gain RW2 Frequency response ROM1 Ffe_ROM1 Gfe_RW1 39 38 37 36 FE_OfstRW Low frequency gain RW1 Offset voltage RW 34 FE_OfstROM Gfe_ROM2 Offset voltage ROM 33 DC_Ofst1 Low frequency gain ROM2 Offset voltage 1 32 Vdc_L Gfe_ROM1 Maximum output voltage L 31 Vdc_H Fdc_RW Fdc_ROM Low frequency gain ROM1 Maximum output voltage H 30 35 Frequency response RW Frequency response ROM 12.5mVp-p 100kHz O O O O Gdc_RW Low frequency gain RW O O O O O O O O O O O O O O O O O O O O O O O O 0.3V 16 16 16 16 16 16 0V 28 28 28 28 28 0.3V 16 25mVp-p 300kHz 16 16 16 25mVp-p 300kHz 0 0 150 mV 150 mV 10 12 14 dB 14.5 17.5 20.5 dB –150 –150 Min. Typ. Max. Unit 0.8 1 V 0 0 150 mV 150 mV 10 10 12 12 14 dB 14 dB 12.5 15.5 18.5 dB 12.5 15.5 18.5 dB –150 –150 –0.7 –0.6 –0.5 V –1.7 –1.5 –1.3 V 0.6 Pin voltage Pin voltage 1.5 1.7 V –1.7 –1.5 –1.3 V 1.3 20 log (Vout/Vin) – Gfe_RW2– Gfe_ROM2 –5.5 –2.5 0.5 dB 20 log (Vout/Vin) – Gfe_RW1– Gfe_ROM1 –5.5 –2.5 0.5 dB 20 log (Vout/Vin) – Gfe_ROM2 –5.5 –2.5 0.5 dB 20 log (Vout/Vin) – Gfe_ROM1 –5.5 –2.5 0.5 dB 20 log (Vout/Vin) – Gfe_ROM2 20 log (Vout/Vin) – Gfe_ROM1 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) – Gdc_RW – Gdc_ROM –4.5 –1.5 –0.5 dB 20 log (Vout/Vin) – Gdc_ROM –3.5 –0.5 0.5 dB 20 log (Vout/Vin) – Gdc_ROM 20 log (Vout/Vin) Pin voltage 28 28 Pin voltage Measurement conditions 28 28 0V –0.5V 0V 16 0V E6 0.1Vp-p 300kHz 0V E5 16 1kHz 25mVp-p 0V 0V E4 MeasureE7 ment pin 0.1Vp-p 300kHz 1kHz 1kHz 0.1Vp-p 25mVp-p 1kHz 0.1Vp-p –0.3V O O O O 0V 0.3V O O O O O 12.5mVp-p O O O O 5MHz 50mVp-p 20MHz O O O O O O 50mVp-p 100kHz O O O O Gdc_ROM Low frequency gain ROM O DC_OfstRW Offset voltage RW 0V E3 E2 Bias conditions V1 V1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 amplitude frequency E1 Switch conditions DC_OfstROM Symbol Offset voltage ROM Measurement item 29 28 27 26 25 FE 24 RFDC Measure- Funcment No. tion CXA2581N TE_OfstRW Gte_ROM1 Gte_ROM2 Gte_RW1 Gte_RW2 Offset voltage RW Low frequency gain ROM1 Low frequency gain ROM2 Low frequency gain RW1 Low frequency gain RW2 – 16 – Frequency response RW1 Frequency response RW2 Maximum output voltage H Maximum output voltage L 68 69 70 Vce_L O O O Vce_H O O O O O O Fce_RW2 Fce_RW1 Frequency response ROM2 Fce_ROM2 Frequency response ROM1 Fce_ROM1 O O Gce_RW2 O O O O Low frequency gain RW2 O Gce_RW1 Low frequency gain RW1 O O Gce_ROM2 Low frequency gain ROM2 25mVp-p O 1kHz 1kHz 1kHz 1kHz 1kHz 25mVp-p 200kHz 25mVp-p 200kHz O O 0.1Vp-p 200kHz 0.1Vp-p 200kHz 25mVp-p O 0.1Vp-p 0.1Vp-p Gce_ROM1 Low frequency gain ROM1 O CE_OfstRW Offset voltage RW O CE_OfstROM Offset voltage ROM O Vte_L Maximum output voltage L O O Vte_H Maximum output voltage H 67 66 65 64 63 62 61 60 59 58 57 0.1Vp-p O O Gte2 25mVp-p 100kHz O O 1kHz 25mVp-p 100kHz O Balance gain 2 56 1kHz 0.1Vp-p 100kHz 0.1Vp-p Balance gain 1 55 Fte_RW2 O O 25mVp-p O O 1kHz 1kHz 1kHz 0.1Vp-p 100kHz 25mVp-p 0.1Vp-p O O 0.1Vp-p O O Frequency response RW2 54 Fte_RW1 O O O 0V E6 Measure- 0V –1.0V 1.0V 0V 18 18 18 18 18 18 18 18 18 18 18 18 18 E7 ment pin 0.5V 0.5V 20 20 20 20 20 20 20 20 20 20 20 20 0V E5 0V 0V E4 18 0V E3 0.6V 0.6V 0V 0V O E2 Bias conditions V1 V1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 amplitude frequency E1 Switch conditions Gte1 Frequency response RW1 Frequency response ROM2 Fte_ROM2 Frequency response ROM1 Fte_ROM1 TE_OfstROM Symbol Offset voltage ROM Measurement item 53 52 51 50 49 48 47 46 CE 45 TE Measure- Funcment No. tion 10 10 13 13 –500 –200 12 12 16 16 0 0 14 dB 14 dB 19 dB 19 dB 500 mV 200 mV Min. Typ. Max. Unit dB V –4 dB 8 1.5 1.7 –6 6 0 0 150 mV 150 mV 12 14 dB 14 dB Pin voltage Pin voltage –1.7 –1.5 –1.3 V 1.15 1.35 1.55 V 20 log (Vout/Vin) – Gce_RW2– Gce_ROM2 –3.8 –2.3 –0.8 dB 20 log (Vout/Vin) – Gce_RW1– Gce_ROM1 –3.8 –2.3 –0.8 dB 20 log (Vout/Vin) – Gce_ROM2 –3.8 –2.3 –0.8 dB 20 log (Vout/Vin) – Gce_ROM1 –3.8 –2.3 –0.8 dB 20 log (Vout/Vin) – Gce_ROM2 10 12 12.5 15.5 18.5 dB 12.5 15.5 18.5 dB –150 –150 –1.7 –1.5 –1.3 V 1.3 –8 4 20 log (Vout/Vin) – Gce_ROM1 10 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage Pin voltage Pin voltage E, F gain difference E, F gain difference 20 log (Vout/Vin) – Gte_RW2– Gte_ROM2 –3.5 –1.5 0.5 dB 20 log (Vout/Vin) – Gte_RW1– Gte_ROM1 –3.5 –1.5 0.5 dB 20 log (Vout/Vin) – Gte_ROM2 –3.2 –1.2 0.8 dB 20 log (Vout/Vin) – Gte_ROM1 –3.2 –1.2 0.8 dB 20 log (Vout/Vin) – Gte_ROM2 20 log (Vout/Vin) – Gte_ROM1 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage Measurement conditions CXA2581N 77 76 75 74 73 72 DVC AVC 71 APC Measure- Funcment No. tion Vapc_off Iapc_max O O APC OFF voltage Maximum output current Output voltage Vdvc Vavc Vapc3 Output voltage 3 O O O Vapc2 O Output voltage 2 Output voltage Switch conditions Hi-Z O 0V 0V Vapc1 + 20mV Vapc1 – 20mV 0V E2 0V E3 Bias conditions V1 V1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 amplitude frequency E1 Vapc1 Symbol Output voltage 1 Measurement item 0V E4 0V E5 0V E6 0V 14 27 1 1 1 1 1, 2 MeasureE7 ment pin Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage Input at which output voltage = 0V Measurement conditions V V –100 0 –100 0 100 mV 100 mV –0.55 –0.15 0.25 V 1.4 1.6 1.7 –1 –0.75 –0.5 V 1 150 300 mV 0.5 0.75 0 Min. Typ. Max. Unit CXA2581N – 17 – CXA2581N Notes on Supply Voltage 6.5 Vcc (Pin 22) [V] 6 5.5 5 4.5 4 2 2.5 3.5 3 DVcc (Pin 13) [V] VCC voltage value at which the waveform is clipped when DVCC is fixed The voltage difference between VCC (Pin 22) and DVCC (Pin 13) should be kept to the value shown in the graph above or less. Example) When DVCC = 2.5V From the graph, VCC = 4.5V Therefore, VCC should be from 3.4 to 4.5V. (3.4V is the minimum operating voltage for the IC.) Electrical Characteristics Measurement Circuit VCC VCC 10k 5.1k E6 DVCC DVC RFAC 5 6 7 8 9 10 11 12 13 14 15 S1 S2 S3 S4 10k VEE S5 S6 S7 S8 20k S9 S10 TE_BAL CEI 20k S11 10k DVCC E2 0.8mA 0.1µ VEE VCC VCC VEE V1 E1 – 18 – FE SW 4 FEI F 3 TE E 2 CE VCC D 1 VC RFG 16 C 17 BST 18 B 19 VFC 20 A 21 RFC 22 GND 23 AC_SUM 24 RFDCO 25 EQ_IN 26 10k RFDCI 27 E7 E3 PD 28 E4 DC_OFST 29 E5 10k 100k 10k 200k 5.1k LD 30 S12 CXA2581N RFDC OUT VC 0.1µ Application Circuits DVCC DVC RFAC 5 6 7 8 9 10 11 12 13 14 15 F TE CE 0.1µ LD PD IN A B C D E Drive RF SUM RF SUM inputs the signal when A, B, C and D are added by the front and PD. FE SW 4 FEI F 3 TE_BAL E 2 CEI VCC D 1 VC RFG 16 C 17 BST 18 B 19 VFC 20 A 21 RFC 22 GND 23 AC_SUM 24 RFDCO 25 EQ_IN 26 RFDCI 27 PD 28 FE OUT DC_OFST 29 TE OUT LD 30 CE OUT VCC DVCC DVC MODE RFAC Control OUT <CXA2581N> VCC 4 3 AC SUM A VC A B C D VFC BST RFC RFG AC_SUM <OP> 0.1µ EQ_IN 0.1µ VCC 23 24 26 25 AC VCA EQ <DSP> 15 RW/ROM VC 30 DVCC B D A A B B C C D D 29 28 RW/ROM VC VC VC RFAC EQ_ON/OFF RF C RFAC DC_OFST RFDCI RFDCO RFDC DVC 6 DVCC 7 17 16 8 VC FE FE DVC VOFST 9 FEI VC 19 TE_BAL RW/ROM VOFST F F F E E RW/ROM VC 10 gm 11 gm DVCC VC E 18 TE TE VC VOFST RW/ROM VC B DVC C A D SW 12 PD LD 2 APC DVCC 21 20 VC RW/ROM APC-OFF (Hi-Z) DVC RW/ROM VC (H/L) VCC DVC 1 CE CE VOFST VC VC CEI 13 DVCC VCC DVC VC GND VCC VC 22 VCC 5 27 GND 14 VC DVC Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 19 – CXA2581N Characteristics Graphs EQ boost voltage vs. Frequency response EQ Rfc resistance value vs. Frequency response 12 8 Vfc = VC Vbst = VC, Vfc = VC Rfc = 100kΩ Vboost = 1.0V Rfc = 20kΩ Rfc = 5.1kΩ 8 Rfc = 100kΩ 5 6 4 4 [dB] [dB] 6 3 0 1 –2 0 –4 –1 –6 10 1 100 Rfc = 100kΩ Vboost = 0V 2 2 –2 0.1 Rfc = 5.1kΩ Vboost = 1.0V 10 7 Rfc = 5.1kΩ Vboost = 0V Rfc = 100kΩ Vboost = –1.0V –8 0.1 10 1 100 [MHz] [MHz] EQ Vfc vs. frequency response RF AC frequency response 24 8 Vbst = VC Rfc = 20kΩ Vfc = 0V 7 6 21 Rfc = 20kΩ Vfc = 1V EQ_Pass RW mode 18 Rfc = 20kΩ Vfc = –1V 5 15 AC SUM 12 [dB] 4 [dB] Rfc = 5.1kΩ Vboost = –1.0V 3 9 2 6 1 3 0 0 –1 –3 –2 EQ_Pass ROM mode –6 0.1 1 10 100 0.1 1 [MHz] 10 100 [MHz] FE frequency response RF DC frequency response 38 34 35 31 32 28 RW 25 26 22 [dB] [dB] RW 29 23 20 19 16 ROM 17 13 14 10 11 7 8 0.1 1 10 100 4 0.01 ROM 0.1 1 [MHz] [MHz] – 20 – 10 CXA2581N TE frequency response APC I/O characteristics 35 5.5 32 5.0 RW 4.5 VLD – Output voltage [V] 29 26 [dB] 23 20 17 16 ROM Vcc = 5.5V 4.0 3.5 3.0 2.5 Vcc = 3.4V 2.0 13 1.5 10 1.0 7 0.01 0.1 1 10 [MHz] 0.5 0.05 0.1 0.15 VPD – Input voltage [V] CE frequency response 34 31 28 RW 25 [dB] 22 19 16 ROM 13 10 7 4 0.01 1 0.1 10 [MHz] – 21 – 0.2 0.25 CXA2581N Package Outline Unit: mm 30PIN SSOP (PLASTIC) + 0.2 1.25 – 0.1 ∗9.7 ± 0.1 1 + 0.1 0.22 – 0.05 7.6 ± 0.2 16 ∗5.6 ± 0.1 30 0.10 A 15 + 0.05 0.15 – 0.02 0.65 0.13 M 0.5 ± 0.2 0.1 ± 0.1 0° to 10° NOTE: Dimension “∗” does not include mold protrusion. DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE SSOP-30P-L01 LEAD TREATMENT SOLDER/PALLADIUM PLATING EIAJ CODE SSOP030-P-0056 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.1g JEDEC CODE NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 22 –