CXA2571N RF Matrix Amplifier Description The CXA2571N is an IC developed for the RF signal processing of compact disc players. Features • Wide band RF signal processing • RF system VCA circuit • RF system equalizer (supports CAV mode) • Supports pickups with built-in RF summing amplifier • Low power consumption mode (EQ Pass mode) • RW/ROM switching mode • Center error amplifier • Output DC level shift circuit 30 pin SSOP (Plastic) Absolute Maximum ratings • Supply voltage Vcc • Operating temperature Topr • Storage temperature Tstg • Allowable power dissipation PD Functions • RFAC summing amplifier, equalizer, VCA • RFDC summing amplifier • Focus error amplifier • Tracking error amplifier • Automatic power control • VC buffer amplifier (analog system, digital system) 7 V –20 to +75 °C –65 to +150 °C 620 mW Operating Conditions • Supply voltage Vcc – GND 3.0 to 5.5 V • Operating temperature Topr –20 to +75 °C Applications CD-ROM/RW compatible systems Structure Bipolar silicon monolithic IC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98260A98-PS CXA2571N Connected Circuit Diagram VCC 0.1µ VCC <OP> ACSUM A AC SUM VC B A B C D C VC D RFAC RFAC EQ DVCC 5.1k RFDC DVC RW/ROM A B C D <DSP> RFDCI RW/ROM DC SUM VC BST Rfc Vfc AC VCA RF VC 5.1k ACG EQI RFDCO RW/ROM A B C D FEI DVCC 100k DVC FE FE VOFST VC RW/ROM RW/ROM F F E VC 10k VC VOFST F E DVCC TE TE 10k E DVC AVC RW/ROM VC RW/ROM A D VC Bottom Hold VOFST AVC DVCC CEP CE RW/ROM B C VC Bottom Hold SW PD APC APC-OFF (Hi-Z) RW/ROM (H/L) VCC AVC DVC r_adj CE CEM CET DVCC DVC VCC LD VCC VC GND VCC VCC GND –2– AVC DVC VC CXA2571N Pin Description Pin NO. Symbol I/O Description 1 LD Out 2 PD In APC amplifier input. 3 EQ_IN In RFAC system VCA block and EQ block input. 4 AC_SUM 5 GND In Ground. 6 A In A signal input. 7 B In B signal input. 8 C In C signal input. 9 D In D signal input. 10 E In E signal input. 11 F In F signal input. 12 SW In Mode switching signal input. 13 CET In CE system hold time constant adjustment. 14 CEP — CE amplifier non-inverted input. 15 DVCC In DVCC. 16 RFAC Out RFAC signal output. 17 DVC Out DVC output. 18 FE Out Focus error signal output. 19 FEI — FE amplifier virtual ground. 20 TE Out Tracking error signal output. 21 CE Out Center error signal output. 22 CEM — CE amplifier virtual ground. 23 VCC In VCC. 24 RFG In RFAC system VCA block low-frequency gain adjustment. 25 BST In EQ boost amount adjustment range. 26 VFC In EQ cut-off frequency adjustment. 27 RFC In EQ cut-off frequency adjustment. 28 VC Out VC voltage output. 29 RFDCO Out RFDC signal output. 30 RFDCI — Out APC amplifier output. RFAC system RF SUM output. RFDC amplifier virtual ground. –3– CXA2571N Pin Description and Equivalent Circuit Pin No. Symbol I/O Equivalent circuit Description 10k 1 LD O 2 PD I 1 APC amplifier output. 1k 55k 20k APC amplifier input. 2 20k 1.1k 3 EQ_IN I 3 5k 1.1k Equalizer circuit input. 1.2k VC 5k VC 1.6k 1.6k 4 AC_SUM O 5 GND — 4 — –4– RFAC summing amplifier output. Ground. CXA2571N Pin No. 6 Symbol A I/O Equivalent circuit Description I 15k 6 7 B 100µA I 7 8 C I RF summing amplifier and focus error amplifier input. 30k 100µA 8 47k 100µA 9 47k 100µA 9 D I 10 E I VC 27k 27k Tracking error amplifier input. 10 11 F I 124 20 11 20 TE Tracking error amplifier output. O 200k CD-ROM/RW switching input. RW when connected to VCC, ROM when connected to GND. 200k 12 SW I 12 200k 15 VCC — 16 RFAC O Power supply. — 100 16 RFAC amplifier output. 17 (DVCC + GND)/2 voltage output. 2mA 17 DVC O 150k 25 150k –5– CXA2571N Pin No. 18 Symbol FE I/O Equivalent circuit Description Focus error amplifier output. O 124 50k 18 Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 18. VC 19 FEI I 13 CET I 124 19 76k Center error amplifier time constant adjustment. 124 13 4k 14 CEP I Center error amplifier noninverted input. 124 22 40k 21 CE 124 21 O Center error amplifier input. 40k 14 22 CEM I 23 VCC — 24 RFG I Center error amplifier inverted input. 124 VCC. (AVCC) — 20k 24 VC Sets the RFAC low-frequency gain. 100µA 50µA 25 BST I 20k 25 VC 20k 26 VFC I 26 VC 100µA –6– Input for adjusting the equalizer circuit boost amount. Input for adjusting the equalizer circuit boost frequency with the control voltage. CXA2571N Pin No. Symbol I/O Equivalent circuit Description 1.0V 124 27 28 RFC VC I 27 150k 25 O Input for adjusting the equalizer circuit boost frequency with external resistance. (VCC + GND)/2 voltage output. 28 150k 29 RFDC O 1mA 1.5k 30 RFDCI I RFDC amplifier output. This pin serves as the eye pattern check point. VC 29 124 124 30 –7– RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 29. Measurement No. –8– Icc_Aeqoff Icc_DVcc Icc_Slp ACSUM_Ofst Current consumption (Active, EQ Off) Current consumption (DVcc) Current consumption (Sleep) SUM offset voltage Low-frequency gain ROM_min Gac_ROM1 Gac_ROM2 Gac_ROM3 Gac_RW1 Low-frequency gain ROM_cnt Low-frequency gain ROM_max Low-frequency gain RW_min 12 13 27 26 25 24 23 22 21 20 19 18 17 16 15 O O Fac_MinL Fac_MinH Fac_ECoff Vac_H Vac_L DC_OfstROM DC_OfstRW Gdc_ROM Gdc_RW Frequency response Min_L Frequency response Min_H Frequency response EQ_OFF Maximum output voltage H Maximum output voltage L Offset voltage ROM Offset voltage RW Low-frequency gain ROM Low-frequency gain RW O O O O O O O Gac_EQoff Low-frequency gain EQ_off O Gac_RW3 Low-frequency gain RW_max O Gac_RW2 O O O Low-frequency gain RW_cnt O O O O AC_OfstRW Offset voltage RW 11 14 O AC_OfstROM Offset voltage ROM 10 Vsum_H Fsum O O O O O O O O O O O O O O O O O O O 16 16 16 0V 1.0V –1.0V 0.8Vp-p 100kHz 0.3Vp-p 100kHz 16 16 16 0V 1.0V 0V 75mVp-p 100kHz 0.8Vp-p 100kHz 0.4Vp-p 100kHz 16 –1.0V 25mVp-p 100kHz 0.1Vp-p 100kHz 29 29 29 29 16 0V 16 16 –2V 0V 0V 16 1.9V 0.2Vp-p 30MHz 0.8Vp-p 30MHz 16 –1.9V 0.2Vp-p 10MHz O O 16 0V 2V 4 –0.3V 16 4 0.3V 1.6Vp-p 100kHz 0.2Vp-p 100kHz O 4 23 15 23 23 Measurement pin 4 0V E5 0.1Vp-p 30MHz 1.9V 0V 1.9V 0V E4 4 0V E3 0.1Vp-p 100kHz O O O Hi-Z 0V 0V Bias conditions E2 Switch conditions 5 0.6 30 50 0 7.5 1.0 45 70 V mA mA mA mA –0.3 –0.3 – 0.9 – 0 0 0.3 0.3 –0.5 –0.3 1.25 V V V V –3.0 –1.5 –0.5 dB 14.0 16.0 18.0 dB –1.2 –0.6 3.5 0.2 15 30 Min. Typ. Max. Unit 6.0 6.0 2.0 8.5 8.5 5.0 dB dB dB 8.0 11.0 dB 12.0 15.0 dB 0.8 1.0 0 150 mV 150 mV V V 29.0 32.0 33.0 dB 16.5 19.5 22.5 dB –150 0 –1.0 –0.8 –0.6 0.6 Pin voltage 20 log (Vout/Vin) dB –2.0 –1.0 –0.5 dB 3.5 3.5 –1.0 5.0 9.0 –150 20 log (Vout/Vin) 5.0 8.0 11.0 dB 2.0 –11.0 –8.0 –5.0 dB 5.0 –1.0 Pin voltage Pin voltage – AC_OfstROM Pin voltage – AC_OfstROM 20 log (Vout/Vin) – Gac_EQoff 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) – Gac_RW2 20 log (Vout/Vin) – Gac_ROM2 20 log (Vout/Vin) 20 log (Vout/Vin) – Gac_ROM2 –11.0 –8.0 –5.0 dB Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) – Gsum 20 log (Vout/Vin) Pin voltage Pin current Pin current Pin current Pin current Measurement conditions (AVCC = 1.9V, AVEE = –1.9V, DVCC = 1.9V, DVEE = –1.9V) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 Vsum_L SUM maximum output voltage H SUM frequency response Gsum Icc_Aeqon Current consumption (Active, EQ On) SUM frequency gain Symbol Measurement item SUM maximum output voltage L RFDC 9 8 7 6 5 4 3 2 RFAC SUM RFAC EQ 1 Function Electrical Characteristics CXA2571N Measurement No. Vdc_H Vdc_L FE_OfstROM FE_OfstRW Gfe_ROM1 Gfe_ROM2 Gfe_RW1 Gfe_RW2 Maximum output voltage H Maximum output voltage L Offset voltage ROM Offset voltage RW Low-frequency gain ROM1 Low-frequency gain ROM2 Low-frequency gain RW1 Low-frequency gain RW2 Switch conditions –9– TE_OfstROM TE_OfstRW Gte_ROM1 Gte_ROM2 Gte_RW1 Gte_RW2 Offset voltage ROM Offset voltage RW Low-frequency gain ROM1 Low-frequency gain ROM2 Low-frequency gain RW1 Low-frequency gain RW2 Frequency response ROM2 Frequency response RW1 Frequency response RW2 Maximum output voltage H Maximum output voltage L 51 52 53 54 55 50 49 48 47 46 45 44 Frequency response ROM1 Vfe_L Maximum output voltage L Vte_L O O O O O O O O O Vte_H O O O O O O O O O O O O O O O O O O O Fte_RW2 Fte_RW1 Fte_ROM2 Fte_ROM1 O O Vfe_H Maximum output voltage H 43 42 O Ffe_RW2 Frequency response RW2 41 Ffe_RW1 Frequency response RW1 O O O O O O O 40 O O O O O O O O O O O O O O O O O O O 20 20 25mVp-p 200kHz 20 20 25mVp-p 200kHz –0.3V 20 0.3V 20 0.1Vp-p 200kHz 20 20 20 20 20 20 0.1Vp-p 200kHz 25mVp-p 10kHz 25mVp-p 10kHz 0.1Vp-p 10kHz 0.1Vp-p 10kHz 0V 18 18 25mVp-p 50kHz 18 18 25mVp-p 50kHz –0.3V 18 0.1Vp-p 100kHz 0.3V 18 0.1Vp-p 100kHz 18 18 18 18 18 18 0V 0 0 dB dB 150 mV 150 mV 1.5 1.5 dB dB –1.5 –1.1 V V – Pin voltage – 1.2 Pin voltage 1.7 –4.5 –2.0 –0.5 dB 20 log (Vout/Vin) – Gte_RW2 –4.5 –2.0 –0.5 dB 0 0 29.0 32.0 35.0 dB 29.0 32.0 35.0 dB 17.0 20.0 23.0 dB 20 log (Vout/Vin) – Gte_ROM2 –1.5 20 log (Vout/Vin) – Gte_RW1 0 0 V 17.0 20.0 23.0 dB –150 –150 20 log (Vout/Vin) – Gte_ROM1 –1.5 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage –1.5 –1.1 V – Pin voltage 1.8 1.2 Pin voltage 1.7 –4.0 –2.0 –0.5 dB 20 log (Vout/Vin) – Gfe_RW2 –4.0 –2.0 –0.5 dB 0 0 25.0 28.0 31.0 dB 25.0 28.0 31.0 dB 13.5 16.5 19.5 dB 20 log (Vout/Vin) – Gfe_ROM2 –3.0 –2.0 20 log (Vout/Vin) – Gfe_RW1 150 mV 150 mV V V 13.5 16.5 19.5 dB –150 –150 20 log (Vout/Vin) – Gfe_ROM1 –3.0 –2.0 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) Pin voltage Pin voltage –1.0 –0.6 – – Pin voltage 29 1.6 1.3 Pin voltage 29 20 log (Vout/Vin) – Gdc_ROM –3.0 –1.5 –0.5 dB –0.25V 29 Min. Typ. Max. Unit 0.25V 0V Measurement conditions –9.0 –7.0 –3.0 dB 0V Measurement pin 20 log (Vout/Vin) – Gdc_RW 0V 0V E5 29 0V E4 25mVp-p 10kHz 25mVp-p 10kHz 0.1Vp-p 10kHz 0.1Vp-p 10kHz 25mVp-p 10MHz 0.1Vp-p 10MHz E3 E2 Bias conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 Frequency response ROM2 Ffe_ROM2 Ffe_ROM1 Fdc_RW Frequency response RW Frequency response ROM1 Fdc_ROM Frequency response ROM Symbol 39 38 37 36 35 34 33 32 31 30 29 28 Function RFDC FE TE Measurement item CXA2571N Measurement No. – 10 – 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 Function CE APC DVC AVC Vapc1 Vapc2 Output voltage 1 Output voltage 2 O Iapc_max Maximum output current Output voltage VdVC Vavc O Vapc_off APC OFF voltage Output voltage O Vapc3 O O O O O O Hi-Z O O O O Vce_L Maximum output voltage L O O Vce_H Maximum output voltage H Output voltage 3 O O O Vce_RW3 I/O characteristics RW3 O Vce_RW2 I/O characteristics RW2 O O O Vce_RW1 O I/O characteristics RW1 O O O Vce_ROM3 50mVp-p 50mVp-p 50mVp-p 1 0V 1 0V 17 28 1 1 30mV 1 21 0.5V 21 21 21 21 21 21 21 21 0V Measurement pin 0.5V 0V 0V E5 21 –30mV 0V E4 E3 1MHz 25mV 1MHz 25mV 1MHz 25mV 0.2Vp-p 1MHz 0.1V 0.2Vp-p 1MHz 0.1V 0.2Vp-p 1MHz 0.1V I/O characteristics ROM3 O Vce_ROM2 I/O characteristics ROM2 O O Vce_ROM1 I/O characteristics ROM1 O 0V CE_OfstRW Offset voltage RW O 0V E2 Bias conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 Switch conditions CE_OfstROM Symbol Offset voltage ROM Measurement item 0 0 –0.1 0.3 0 0.1 0.65 1.0 0.3 0 0 –100 Pin voltage 0.6 100 mV 100 mV V 0 –0.2 –100 Pin voltage Pin voltage V 1.6 1.4 Pin voltage – V V 1.0 1.4 160 210 mV V 0.7 –1.7 –1.1 – V V V 110 1.7 – 0.1 1.1 0 0.65 1.0 –1.4 –1.0 –0.7 Pin voltage Pin voltage Input where output voltage = 0V Pin voltage Pin voltage Pin voltage – CE_OfstRW –0.1 Pin voltage – CE_OfstRW V V V V 200 mV 200 mV –1.0 –0.65 –0.3 –200 –200 Min. Typ. Max. Unit Pin voltage – CE_OfstRW –1.0 –0.65 –0.3 Pin voltage – CE_OfstROM Pin voltage – CE_OfstROM Pin voltage – CE_OfstROM Pin voltage Pin voltage Measurement conditions CXA2571N CXA2571N Electrical Characteristics Measurement Circuit VCC 1.9V VCC 10k 5.1k 28 25 F SW CET CEP DVCC 4 5 6 7 8 9 10 11 12 13 14 15 S1 S2 S3 10k E2 S4 VEE S5 –1.9V S6 S7 S8 0.8mA 10k 10k S9 S10 VEE V1 E1 – 11 – 20k 200k DVCC VEE VCC VCC DVC FEI S11 RFAC E 3 FE CEM D 2 TE VCC C 1 CE RFG B 16 BST 17 A 18 VFC 19 GND 20 RFC 21 10k AC_SUM 22 10k 100k VC 23 10k EQ_ IN 24 10k 200k RFDCO 26 E3 PD 27 E4 RFDCI 29 E5 5.1k LD 30 S12 CXA2571N Application Circuits CE OUT VCC 20k 20k VC 5.1k CEM D E F SW CET CEP DVCC 8 9 10 11 12 13 14 15 A B C D 10k VCC 0.1µ 20k VCC 20k 20k E F CE OUT TE OUT 20 DVC FE 17 SW CET CEP DVCC 6 7 8 9 10 11 12 13 14 15 LD PD IN Drive 0.1µ A B C D 10k 10k E F MODE Control 20k RFAC F 5 DVC E 4 FE CEM D 3 FEI VCC C 2 TE RFG B 1 CE BST A 16 VFC 18 GND 19 RFC 21 AC_SUM 22 VC 23 DVC 100k EQ_ IN 24 RFAC OUT RFDCO 25 DVCC PD 26 20k FE OUT 200k 27 20k MODE Control RFDCI 28 10k RFAC VCC C 7 FEI RFG B 6 5.1k 29 16 LD 30 17 18 5 RF SUM RFDC OUT 19 4 0.1µ LD PD IN Drive 20 21 BST 22 A 23 VFC 24 GND 3 25 DVC 100k RFC EQ_ IN 2 26 RFAC OUT AC_SUM RFDCO PD 1 27 VC RFDCI LD 28 FE OUT 200k 5.1k 29 TE OUT TE VC 5.1k 30 VCC 0.1µ 20k CE RFDC OUT 20k DVCC Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 12 – CXA2571N Description of Functions • RFAC The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin. VCC A 6 B 7 C 8 AC SUM D 9 AC_SUM 25 0.1 26 27 RFC 4 3 RF 5.1k BST VFC EQ Amp EQ_IN 16 RFAC RFG 24 RW/ROM When BST = VCC Low-frequency gain AC_SUM: 16dB (both ROM/RW) VCA to RFAC ROM: 2dB RW: 14dB The EQ can be bypassed by connecting the BST control pin (Pin 25) to VCC. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode. The RF_SUM input dynamic range is VC ± 300mV (typ.). If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance. RW/ROM switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. The VCA low-frequency gain can be adjusted by the RFG pin (Pin 24) voltage. The control voltage vs. low-frequency gain characteristics are shown in the graph to the right. Gain [dB] VCA variable range 8 0 –8 Vcut [V] VC – 1 VC The RFAC pin (Pin 16) is an NPN transistor emitter follower output. The maximum drive current is approximately 2mA. If the load capacitance distorts the output waveform, increase the drive current. Connect resistance between Pin 16 and GND. – 13 – VC + 1 CXA2571N • EQ In Amp HPF LPF LPF fc Out Boost The diagram to the left shows the EQ internal block diagram. The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain. The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value. EQ CNT RFC 27 VFC 26 BST 25 VCC VC VC RFC resistance value: The cut-off frequency fo of each filter is adjusted by the Pin 27 external resistance value. The VFC voltage can be varied using this fo as the reference. VFC voltage: The boost gain can be adjusted by the BST pin control voltage. The control characteristics are shown in the graph below. fo can be changed by the voltage applied to Pin 26. The cut-off frequency control characteristics are shown in the graph below. Boost Gain [dB] fc [Hz] 8dB 1.5fo fo 0dB 0.5fo Vcut [V] VC – 1.0 VC Vcut [V] VC + 1.0 VC – 1.0 Pin 25 voltage VC VC + 1.0 Pin 26 voltage • APC (Automatic Power Control) When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function. VCC 56k PD 2 1 LD 10k 10k 55k 10k 1k 56k 1.25V – 14 – CXA2571N • Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset addition functions. VC 100k ROM RW 50k 30k FEI 19 200k 18 FE A 6 50k C 8 B 7 D 9 ROM 50k ROM DVC 50k VOFST RW 200k RW 200k FE = Gain { (B + D) – (A + C) } Low-frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 400kHz RW: 300kHz • Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching and offset addition functions. E 10k 27k 373k 10 F 10k 11 RW 387k RW 27k TE = Gain (F – E) Low-frequency gain ROM: 20dB RW: 32dB fc (typ.) ROM: 1MHz RW: 250kHz ROM 20 TE ROM 373k VC • VC Buffer • DVC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately ±3mA. Use this voltage as the analog system VC voltage. This outputs the 1/2 DVCC voltage. The maximum output current is approximately ±3mA. Use this voltage as the digital system DC voltage. The output DC voltage of each system is level shifted using the DVC voltage as the reference. VCC 25k DVCC 40k 25k 28 40k 17 40k 40k – 15 – CXA2571N • RFDC The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching and low-frequency gain adjustment are possible. R (OFST) 5.1k A 6 15k B 7 10k C 8 ROM RFDCI 30 29 RFDCO RW 40k 1.5k D 9 VC VC RFDC = Gain (A + B + C + D) Low-frequency gain ROM: 20dB (17MHz) RW: 32dB (5.5MHz) fc (Typ.) ROM: 12MHz RW: 5MHz The gain can be adjusted by the external resistance connected between Pins 29 and 30. The output voltage offset can be adjusted by the R (OFST) resistance. • Center Error The signals input to the A and D pins and the B and C pins are arithmetically amplified and the center error signal is output. RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible. The bottom hold time constant can be adjusted by the CET (Pin 13) external resistance value. 8k ROM 16k A 6 16k 32k VCC CEP 200k 14 RW D 9 VC 40p 40k CE 40k CEM 21 VC 40p 16k VC B 7 16k C 8 32k 8k 200k 22 RW ROM CET 20k 13 VCC The (B + C) – (A + D) signal is arithmetically amplified. Low-frequency gain ROM: 14dB RW: 26dB – 16 – DVC CXA2571N • Output Offset Shift The RFDC, FE, TE and CE output DC voltages are level shifted to the digital VC voltage (DVC). The reference voltage of this IC is the VC voltage, and only the output reference voltage changes. The maximum output voltage of each output signal should be kept to the digital VCC voltage (DVCC) or less in order to protect the DSP_IC. 40k The AVC and DVC voltages are arithmetically amplified and output as the VOFST voltage. The VOFST voltage serves as the level shift reference voltage, and is distributed to each system. 40k DVC AVC VOFST 40k 40k AVC • SW This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12). Active/Sleep 12 RSW (ofst) RW/ROM APC_ON/OFF The VC buffer is kept active even in sleep mode. In the function block, BGR and MODE_SW are always set to active mode. Item APC Active/Sleep RW/ROM VCC ON Active RW VC or Hi-Z OFF Sleep — GND ON Active ROM Control voltage – 17 – CXA2571N Notes on Operation [RFAC signal] Stabilizing the RFAC signal The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks. This is in order to support pickups with built-in RFSUM. Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate). In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc. The VCA gain is low in ROM mode, so the RFAC signal is stable. The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above. Proposed stabilization measures The board and other loop characteristics can be changed by adding external capacitance as noted below. This has a particularly large effect on the stabilization when using RFSUM. RF SUM 0.1µ VCA ACSUM EQ AMP EQI Add capacitance of 10pF to 20pF [Limiter circuit] This IC has a limiter circuit to protect the input range of the rear-end IC (DSP) during excessive voltage output for each signal (RFDC, FE, TE, CE). When the limiter circuit operates, the maximum output voltage is limited to the DVCC voltage or less. However, when limiting the excessive voltage output, the ON/OFF operation of the limiter circuit causes the maximum output side (clipped portion of the output waveform) to oscillate slightly. Example) AVcc = 5V, DVcc = 3V 3.0V 0V – 18 – CXA2571N Example of Representative Characteristics EQ Rfc resistance value – Frequency response EQ boost voltage – Frequency response 10 14 Rfc = 100kΩ Vboost = 1.0V Vbst = VC, Vfc = VC 9 12 Rfc = 20kΩ Rfc = 5.1kΩ 8 8 Rfc = 100kΩ Vboost = 0V 6 [dB] [dB] 6 5 4 4 2 3 0 2 –2 1 –4 1 0.1 10 100 Rfc = 100kΩ Vboost = 1.0V 0.1 10 EQ Vfc frequency response RF AC frequency response 20 Rfc = 20kΩ Vfc = 0V 9 8 Vbst = VC AC SUM 17 Rfc = 20kΩ Vfc = 1V 14 Rfc = 20kΩ Vfc = –1V 7 8 [dB] [dB] EQ_Pass RW mode 11 6 5 5 4 2 3 –1 2 –4 1 –7 1 0.1 10 100 EQ_Pass ROM mode 0.1 1 10 100 [MHz] [MHz] RF DC frequency response FE frequenxy response 38 34 35 31 RW 32 28 29 25 26 22 23 [dB] [dB] 100 [MHz] 10 ROM 19 20 16 17 13 14 10 11 7 8 Rfc = 5.1kΩ Vboost = 1.0V 1 [MHz] 0 Vfc = VC Rfc = 5.1kΩ Vboost = 0V 10 Rfc = 100kΩ 7 0 Rfc = 5.1kΩ Vboost = 1.0V 0.1 1 10 4 0.01 100 [MHz] RW ROM 0.1 1 [MHz] – 19 – 10 CXA2571N APC I/O characteristics TE frequency response 35 5.5 32 5.0 RW 4.5 VLD – Output voltage [V] 29 26 [dB] 23 20 ROM 17 16 4.0 VCC = 5.5V 3.5 3.0 2.5 2.0 VCC = 3.0V 13 1.5 10 1.0 0.01 0.1 1 0.5 0.05 10 [MHz] CE I/O characteristics (DC voltage input) 2.5 BC input, RW mode 2.5 2.0 BC input, ROM mode 2.0 Output voltage [dB] Output voltage [V] 0.25 CE frequency response 3.0 AVCC = 5V, DVCC = 3V 1.5 AD input, ROM mode 1.0 0 0.1 0.2 Input voltage [V] BC input 1.5 AD input 1.0 AD input, RW mode 0.5 0 0.1 0.15 0.2 VPD – Input voltage [V] AVCC = 5V, DVCC = 3V Input signal amplitude = 100mVp-p 0.3 0.5 0.4 – 20 – 0.1 1 10 Input frequency [MHz] 100 CXA2571N Package Outline Unit: mm 30PIN SSOP (PLASTIC) + 0.2 1.25 – 0.1 ∗9.7 ± 0.1 1 + 0.1 0.22 – 0.05 7.6 ± 0.2 16 ∗5.6 ± 0.1 30 0.10 A 15 + 0.05 0.15 – 0.02 0.65 0.13 M 0.5 ± 0.2 0.1 ± 0.1 0° to 10° NOTE: Dimension “∗” does not include mold protrusion. DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE SSOP-30P-L01 LEAD TREATMENT SOLDER/PALLADIUM PLATING EIAJ CODE SSOP030-P-0056 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.1g JEDEC CODE NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 21 –