AH420 4W High Linearity InGaP HBT Amplifier Product Features Functional Diagram Product Description • 400 – 2700 MHz The AH420 is a high dynamic range amplifier in a low-cost surface mount package. The InGaP/GaAs HBT is able to achieve high performance with -49 dBc ACLR and +35.7 dBm of compressed 1dB power, operating off of a single +5V supply. It is housed in a lead-free/green/RoHScompliant 4x5mm DFN package. All devices are 100% RF and DC tested. • +35.7 dBm P1dB • -49 dBc ACLR @ 26 dBm • 14 dB Gain @ 2140 MHz • 800 mA Quiescent Current • +5 V Single Supply The AH420 is targeted for use as a final stage amplifier in wireless infrastructure repeaters or as driver stages for high • Lead-free/green/RoHS-compliant power amplifiers where high performance is required. In addition, the amplifier can be used for a wide variety of 12-pin 4x5mm DFN Package other applications within the 400 to 2700 MHz frequency band. By operating off of a single +5V rail, other higher voltage rails are not necessarily needed thus saving system Applications costs. The amplifier also has the flexibility to operate at • Final stage amplifiers for Repeaters higher voltage levels to achieve higher compression if needed by the system. Function RFIN RFOUT IREF VBIAS NC • MTTF > 100 Years Pin No. 3,4,5,6 7,8,9,10 12 1 2,11 • High Power Amplifiers • Mobile Infrastructure • LTE / WCDMA / EDGE / CDMA Specifications Parameter Operational Bandwidth Test Frequency Output Channel Power Gain Input Return Loss Output Return Loss ACLR (2) Output P1dB Output IP3 (4) Quiescent Collector Current (3) Iref Vcc, Vbias Typical Performance Units Min MHz MHz dBm dB dB dB dBc dBm dBm mA mA V Typ 400 13 +46.5 710 2140 +26 14 12 7.4 -49 +35.7 +50 800 20 +5 Max Parameter 2700 Frequency Channel Power Gain Input Return Loss Output Return Loss ACLR (2) Output P1dB Noise Figure Output IP3 (4) Quiescent Collector Current (3) Iref Vcc, Vbias 16 900 1. Test conditions unless otherwise noted: 25ºC, +5V Vsupply, 2140 MHz, in tuned application circuit. 2. W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW 3. This corresponds to the quiescent current under small-signal conditions into pins 6, 7, and 8 when the current setting resistor, R4 connected to the Iref pin, is at 82 Ω. 4. OIP3 is measured with two tones at out an output power of +27 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule. Units MHz dBm dB dB dB dBc dBm dB dBm mA mA V Typical 940 +27 16 14 6.4 -46.5 +35.2 6.6 +50 1960 +27 14.1 19 7 -48 +35.6 5.3 +49 800 20 +5 2140 +26 14 12 7.4 -49 +35.7 5.6 +50 5. The amplifier has been tested for ruggedness to be capable of handling: 10:1 VSWR @ 5Vcc, 2140MHz, +35.2dBm CW Pout, 25 °C 10:1 VSWR @ 5Vcc, 940MHz, +28.5dBm IS-95A Pout, 25 °C 10:1 VSWR @ 5Vcc, 2140MHz, +26.5dBm WCDMA Pout, 25 °C Absolute Maximum Ratings Parameter Rating Storage Temperature Vcc, Vbias RF Input Power, CW, 50 Ω, T=25°C Reference Current, Iref Dissipated Power, Pmax Max Junction Temperature, TJ -65 to +150 °C +14 V Input P9dB 170 mA 7W Thermal Resistance, ΘJC 10.6 °C / W For 106 hours MTTF 158 °C Operation of this device above any of these parameters may cause permanent damage. Ordering Information Part No. Description AH420-EG AH420-EPCB900 AH420-EPCB1960 AH420-EPCB2140 4W High Linearity InGaP HBT Amplifier 920-960 MHz Evaluation Board 1930-1990 MHz Evaluation Board 2110-2170 MHz Evaluation Board Standard T/R size = 1000 pieces on a 7” reel. Specifications and information are subject to change without notice. TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 1 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier Baseplate Configuration Vcc GND Vpd GND Application Circuit PC Board Layout Circuit Board Material: 0.014” GETEK, single layer, 1 oz copper, εr = 4.2, Microstrip line details: width = .030”, marker spacing = .050” Notes: 1. Please note that for reliable operation, the evaluation board will have to be mounted to a much larger heat sink during operation and in laboratory environments to dissipate the power consumed by the device. The use of a convection fan is also recommended in laboratory environments. 2. The area around the module underneath the PCB should not contain any soldermask in order to maintain good RF grounding. Specifications and information are subject to change without notice. TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 2 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier Typical Device Data S-Parameters (VCC= +5 V, ICC = 800 mA, 25 °C, unmatched 50 ohm system) Swp Max 6GHz 0 2. 2. 0 6 0. 0.8 1.0 S22 S(2,2) AH420_EG Swp Max 6GHz 6 0. 0.8 1.0 S11 S(1,1) AH420_EG Gain / Maximum Stable Gain 60 0. 4 0. 4 40 0 3. 0 3. 0 4. 0 4. 5.0 5.0 0.2 10.0 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.4 0.2 10.0 0 10.0 5.0 4.0 3.0 2.0 1.0 0.8 0.6 0.4 0 0.2 10.0 0 -10.0 -5. 0 -4 .0 - 0 2. Swp Min 0.01GHz -1.0 -0 .6 - Swp Min 0.01GHz -1.0 -0.8 .4 -0.8 -0 0 2. .4 -0 .6 Frequency (GHz) .0 6 -3 4 .0 -0 2 -3 -40 0 2 -0. -4 .0 DB(|S(2,1)|) AH420_EG 0 DB(GMax()) AH420_EG -5. 2 -0. -20 -10.0 Gain (dB) 0.2 20 Notes: The gain for the unmatched device in 50 ohm system is shown as the trace in black color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the red line. S-Parameters (VCC = +5 V, ICQ = 800 mA, 25 °C, unmatched 50 ohm system, calibrated to device leads) Freq (MHz) 10 50 100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 S11 (dB) S11 (deg) S21 (dB) S21 (deg) S12 (dB) S12 (deg) S22 (dB) S22 (deg) -1.22 -0.44 -0.31 -0.28 -0.30 -0.40 -0.43 -0.50 -0.59 -0.74 -0.98 -1.40 -2.04 -2.78 -2.88 -2.04 -1.32 -0.95 -0.78 -0.69 -0.63 -0.61 -0.58 -0.54 -176.79 -177.23 -178.77 179.40 178.17 176.72 175.77 173.96 171.86 169.75 167.20 164.19 161.94 163.47 169.61 171.93 169.73 167.05 164.66 162.98 161.89 161.39 161.33 161.51 29.97 24.42 19.17 10.27 6.16 3.74 2.09 0.99 0.42 0.16 0.25 0.63 1.22 1.53 0.74 -1.59 -4.55 -7.58 -10.52 -13.08 -15.60 -17.79 -19.66 -21.87 155.67 117.15 103.73 90.61 84.91 79.16 74.69 69.01 62.55 55.48 46.05 34.50 18.13 -4.61 -32.66 -58.88 -77.51 -90.68 -100.04 -106.66 -112.19 -116.53 -121.50 -124.38 -52.77 -45.04 -44.01 -43.22 -43.10 -43.48 -41.72 -41.21 -40.35 -39.33 -38.86 -38.13 -36.71 -35.70 -36.03 -37.72 -39.74 -41.31 -42.50 -43.74 -42.73 -43.74 -43.35 -42.62 64.11 32.25 11.29 5.32 -0.42 36.07 5.11 -1.08 -4.63 -10.41 -20.47 -34.84 -51.74 -78.76 -114.19 -145.67 -179.01 163.85 141.73 129.82 112.53 105.15 107.61 97.03 -1.61 -1.05 -1.16 -0.94 -0.93 -1.02 -1.07 -1.11 -1.15 -1.21 -1.24 -1.24 -1.19 -0.95 -0.62 -0.52 -0.55 -0.68 -0.80 -0.87 -0.90 -0.92 -0.92 -0.97 -39.70 -122.90 -150.31 -169.59 -174.28 -177.33 -177.23 -178.10 -178.55 -179.14 -179.88 179.85 179.15 178.06 175.59 171.28 168.08 165.55 164.25 162.92 162.24 161.57 161.67 162.11 Device S-parameters are available for download off of the website at: http://www.tqs.com Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 3 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier 920-960 MHz Reference Design (AH420-EPCB900) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR P1dB Output IP3 920 940 960 Units +27 +27 +27 dBm 15.9 16 16.1 dB 17 14 11 dB 5.3 6.4 8.0 dB -47 -46.5 -46.5 dBc +35.2 +35.2 +35.2 dBm At 27dBm/tone, 1MHz spacing +51 +50 +49 dBm Noise Figure 6.5 6.6 800 +5 6.7 dB mA V Quiescent Current, Icq Vpd, Vcc C7 C8 C22 FB1 R3 D1 C5 C3 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1. 3. Components shown on the silkscreen but not on the schematic are not used. 4. Vpd used for device power down (low=RF off) 5. The edge of C13 is placed at 75mil from AH420 RFout pin. (3.9 o @ 940 MHz) 6. The edge of C15 is placed 145mil from the edge of C13. (7.5 o @ 940 MHz) 7. The edge of C14 is placed at 150mil from AH420 Rfin pin. (7.7 o @ 940 MHz) 8. The edge of C17 is placed against the edge of C14. 9. 0 Ω jumpers can be replaced with copper trace in target application. R4 R2 C6 L1 C4 C2 C14 C12 C15 R1 C13 C17 C1 T=25°C f=940 MHz T=25°C 0 55 -5 16 15 50 OIP3 (dBm) S11, S22 (dB) 17 Gain (dB) OIP3 vs. Output Power/Tone vs. Temperature Return Loss Gain vs. Frequency 18 -10 45 -15 40 -20 S11 14 0.90 0.92 0.94 0.96 0.98 0.92 Frequency (GHz) T=25°C 0.96 20 0.98 -40°C +85°C 22 24 26 Output Power (dBm) 28 30 P1dB vs. Frequency vs. Temperature T=25°C 52 W-CDMA 3GPP Test Model 1+64 DPCH PAR = 10.2 dB @ 0.01% Probability 3.84 MHz BW -40 0.94 Frequency (GHz) OIP3 vs. Output Power/Tone vs. Frequency ACLR vs. Output Average Power vs. Frequency -35 +25°C S22 35 -25 0.90 37 50 OIP3 (dBm) ACLR (dBc) -50 -55 P1dB (dBm) 36 -45 48 46 35 34 44 -60 920 MHz 940 MHz 960 MHz 920 MHz -65 +25°C 960 MHz 16 17 18 19 20 21 22 Output Power (dBm) 23 24 25 24 Current vs Output Average Power vs. Frequency 26 27 28 Output Power (dBm) 29 30 T=25°C 8 1050 NF (dB) 950 6 5 900 920 MHz 940 MHz 25 26 27 28 Output Power (dBm) 29 30 950 960 15 10 5 920 MHz 4 0.90 +85°C T=25°C 960 MHz 850 24 940 Frequency (MHz) 20 7 1000 930 -40°C Efficiency vs Output Average Power vs. Frequency Noise Figure vs. Frequency T=25°C 1100 25 33 920 Collector Efficiency (%) 15 Collector Current (mA) 940 MHz 42 940 MHz 960 MHz 0 0.92 0.94 0.96 0.98 24 Frequency (GHz) 25 26 27 28 Output Power (dBm) 29 30 Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 4 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier 1930-1990 MHz Reference Design (AH420-EPCB1960) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25°C Frequency (MHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR P1dB Output IP3 1930 1960 1990 +27 +27 +27 13.4 14.1 14.1 13 19 11 4.7 7 12 -49 -48 -47 +35.6 +35.6 +35.6 At 27dBm/tone, 1MHz spacing Noise Figure Quiescent Current, Icq Vpd, Vcc Units dBm dB dB dB dBc dBm +49 +49 +49 dBm 5.6 5.3 800 +5 5.3 dB mA V C7 C8 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1. 3. Components shown on the silkscreen but not on the schematic are not used. 4. Vpd used for device power down (low=RF off) 5. The edge of C13 is placed at 75mil from AH420 RFout pin. (8.0 o @ 1960 MHz) 6. The edge of C15 is placed 50mil from the edge of C13. (5.3 o @ 1960 MHz) 7. The edge of C16 is placed 345mil from the edge of C15. (37 o @ 1960 MHz) 8. The edge of C14 is placed at 160mil from AH420 Rfin pin. (17.2 o @ 1960 MHz) 9. The edge of C17 is placed 95mil from the edge of C14. (10.2 o @ 1960 MHz) 10. 0 Ω jumpers can be replaced with copper trace in target application. FB1 R3 D1 C5 C3 C9 C10 R4 R2 C11 C4 L1 C6 C2 C14 C12 C16 C15 C13 R1 C17 C1 T=25°C T=25°C 0 14 -40 12 ACLR (dBc) 13 -10 -15 -20 11 1.94 1.96 Frequency (GHz) 1.98 2.00 -25 1.92 Collector Current (mA) -50 S22 1930 MHz 1960 MHz 1990 MHz -60 1.94 1.96 Frequency (GHz) 1.98 2.00 24 25 26 27 Output Power (dBm) 28 29 Noise Figure vs. Frequency Current vs Output Average Power vs. Frequency T=25°C T=25°C 1050 -45 -55 S11 10 1.92 T=25°C -35 -5 S11, S22 (dB) Gain (dB) ACLR vs. Output Average Power vs. Frequency Return Loss Gain vs. Frequency 15 8 1000 NF (dB) 7 950 900 6 5 850 1930 MHz 1960 MHz 1990 MHz 800 24 25 26 27 Output Power (dBm) 28 29 4 1.90 1.92 1.94 1.96 1.98 2.00 Frequency (GHz) Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 5 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier 2010-2025 MHz Application Circuit Performance Plots TD-SCDMA 3 Carrier, PAR = 10 dB @ 0.01% Probability, 1.28 MHz BW Typical TD-SCDMA Performance at 25°C Frequency (MHz) 2010 2015 2025 Units Channel Power 24 24 24 dBm Power Gain 13.6 13.6 13.7 dB Input Return Loss 22 21 20 dB Output Return Loss 4.8 5 5.1 dB ACLR -50 -50 -50 dBc P1dB +34 +34 +34 dBm Output IP3 +56 +56 +55 dBm At +25 dBm/tone, 1MHz spacing Noise Figure Quiescent Current, Icq Vpd Vcc 5.5 5.5 800 +5 +5 5.5 dB mA V V FB1 R3 C23 R4 R2 L1 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Components shown on the silkscreen but not on the schematic are not used. 3. The edge of C13 is placed at 70 mil from AH420 RFout pin. (7.7o @ 2015 MHz) 4. The edge of C15 is placed nex to the edge of C13. 5. The edge of C16 is placed 30 mil from the edge of C15. (3.3 o @ 2015 MHz) 6. The edge of C14 is placed at 145 mil from AH420 RFin pin. (16o @ 2015 MHz) 7. The edge of C17 is placed 115 mil from the edge of C14. (12.7 o @ 2015 MHz) C16 C15 C13 C17 Gain vs. Frequency Current vs Output Average Power vs. Frequency Return Loss T=25°C T=25°C 15 T=25°C 875 0 -5 S11, S22 (dB) 14 Gain (dB) Collector Current (mA) 2010 MHz 13 12 11 -10 -15 -20 -25 S11 10 2.00 2.01 2.02 Frequency (GHz) 2.03 2.04 -30 2.00 2015 MHz 2025 MHz 850 825 S22 800 2.01 2.02 Frequency (GHz) 2.03 2.04 18 19 20 21 22 23 Output Power (dBm) 24 25 26 ACLR vs. Output Average Power vs. Frequency T=25°C -40 -42 2010 MHz -44 2015 MHz 2025 MHz ACLR (dBc) -46 -48 -50 -52 -54 -56 -58 -60 19 20 21 22 23 Output Power (dBm) 24 25 Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 6 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier 2110-2170 MHz Reference Design (AH420-EPCB2140) W-CDMA 3GPP Test Model 1+64 DPCH, PAR = 10.2 dB @ 0.01% Probability, 3.84 MHz BW Typical W-CDMA Performance at 25°C Frequency (GHz) Channel Power Power Gain Input Return Loss Output Return Loss ACLR P1dB Output IP3 2110 2140 2170 Units +26 +26 +26 dBm 13.3 14 14 dB 14 12 10 dB 5 7.4 9 dB -50 -49 -50 dBc +35.8 +35.7 +35.2 dBm At 27dBm/tone, 1MHz spacing +49 +50 +50 dBm 5.8 5.6 800 +5 5.5 dB mA V Noise Figure Quiescent Current, Icq Vpd, Vcc C7 C8 FB1 R3 D1 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd and Vcc or damage will occur to D1. 3. Components shown on the silkscreen but not on the schematic are not used. 4. Vpd used for device power down (low=RF off) 5. The edge of C13 is placed at 65mil from AH420 RFout pin. (7.6 o @ 2140 MHz) 6. The edge of C15 is placed 60mil from the edge of C13. (7.0 o @ 2140 MHz) 7. The edge of C16 is placed 340mil from the edge of C15. (39.9 o @ 2140 MHz) 8. The edge of C14 is placed at 155mil from AH420 RFin pin. (18.2 o @ 2140 MHz) 9. The edge of C17 is placed 205mil from the edge of C14. (24.0 o @ 2140 MHz) 10. 0 Ω jumpers can be replaced with copper trace in target application. C5 C3 R4 R2 C20 C21 C22 C6 L1 C4 C2 C15 C16 C14 C13 R1 C17 C1 C12 T=25°C T=25°C 0 14 -40 12 11 ACLR (dBc) 13 -10 -15 S11 2.12 2.14 2.16 2.18 -25 2.10 2.20 ACLR vs. Output Average Power vs. Temperature 2.12 2.14 2.16 Frequency (GHz) 2.18 -50 -55 2.20 50 50 45 25 26 Output Power (dBm) P1dB vs. Frequency vs. Temperature 2110 MHz 2170 MHz +25°C 24 26 28 Output Power / tone (dBm) 30 20 Collector Current (mA) 35 +25°C -40°C 2.14 2.16 Frequency (GHz) NF (dB) 900 28 30 2.18 2.20 T=25°C 6 5 2110 MHz 2.20 24 26 Output Power (dBm) 850 +85°C 2.18 +85°C 7 950 2140 MHz 2170 MHz 800 2.12 22 8 1000 36 -40°C Noise Figure vs. Frequency T=25°C 1050 37 34 2.10 22 Current vs Output Average Power vs. Frequency 38 29 35 20 28 28 40 +85°C 27 2170 MHz 45 35 24 2140 MHz 26 27 Output Power (dBm) f=2140 MHz 55 2140 MHz -65 25 OIP3 vs. Output Power/Tone vs. Temperature 55 40 -60 23 24 OIP3 (dBm) OIP3 (dBm) ACLR (dBc) -45 P1dB (dBm) 2110 MHz S22 OIP3 vs. Output Power / tone vs. Frequency -40 -40°C -50 -60 Frequency (GHz) +25°C -45 -55 -20 10 2.10 T=25°C -35 -5 S11, S22 (dB) Gain (dB) ACLR vs. Output Average Power vs. Frequency Return Loss Gain vs. Frequency 15 24 25 26 27 Output Power (dBm) 28 29 4 2.10 2.12 2.14 2.16 Frequency (GHz) Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 7 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier 2.3-2.4 GHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW Typical O-FDMA Performance at 25°C Frequency (GHz) 2.3 Channel Power +27 Gain 12.8 Input Return Loss 18 Output Return Loss 4 EVM 2 Operating Current, Icc 955 Collector Efficiency 10.4 Quiescent Current, Icq Vcc, Vpd 2.35 +27 13.2 16 5.2 1.9 920 11 800 +5 2.4 Units +27 dBm 13.6 dB 13 dB 7.3 dB 2 % 890 mA 11 % mA V C7 C8 FB1 R3 D1 C5 C3 R4 R2 Notes: 1. The primary RF microstrip line is 50 Ω. 2. Do not exceed 5.5V on Vpd or Vcc or damage to D1 will occur. 3. Components shown on the silkscreen but not on the schematic are not used. 4. C1 & C12 can be replaced with a copper trace. 5. 0 Ω jumpers can be replaced with copper trace in target application. 6. The edge of C17 is placed 55 mil from the AH420 RFin pin. (7.1o @ 2.35 GHz) 7. The edge of C14 is placed 70 mil from the edge of C17. (9.0o @ 2.35 GHz) 8. The edge of C13 is placed 55 mil from the AH420 RFout pin. (7.1o @ 2.35 GHz) 9. The edge of C15 is placed 70 mil from the edge of C13. (9.0o @ 2.35 GHz) C20 C21 C22 C6 L1 C4 C2 C13 C14 R1 C17 C1 C12 C15 Circuit Board Material: 0.014” GETEK, single layer, 1 oz copper, εr = 4.2, Microstrip line details: width = .030”, spacing = .030” Return Loss Gain vs. Frequency 2.3 GHz -5 12 11 4 -10 3 -15 2 1 S11 2.30 2.35 Frequency (GHz) 2.40 -30 2.25 2.45 Current vs Output Average Power vs. Frequency S22 0 2.30 2.35 Frequency (GHz) 2.40 2.35 GHz 22 2.3 GHz Collector Efficiency (%) -35 -40 ACLR (dBc) 1000 10 950 900 850 22 23 24 25 26 27 Output Power (dBm) 28 29 30 30 2.35 GHz 2.4 GHz -45 -50 5 2.3 GHz 2.35 GHz -55 2.4 GHz 0 800 28 W-CDMA 3GPP Test Model 1+64 DPCH, PAR=10.3 dB @ 0.01% Probability, 3.84 MHz BW 15 1050 26 T=25°C -30 2.4 GHz 1100 24 Output Power (dBm) ACLR vs. Output Average Power vs. Frequency T=25°C 20 2.3 GHz 20 2.45 Efficiency vs Output Average Power vs. Frequency T=25°C 1150 2.4 GHz -20 -25 10 2.25 2.35 GHz 802.16-2004 O-FDMA, 64QAM1/2, 1024-FFT, 20 symbols and 30 subchannels, 5 MHz Carrier BW EVM (%) S11, S22 (dB) 13 Collector Current (mA) T=25°C 5 0 14 Gain (dB) EVM vs. Output Average Power vs. Frequency T=25°C T=25°C 15 -60 20 22 24 26 Output Power (dBm) 28 30 20 22 24 26 28 30 Output Power (dBm) Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 8 of 9 July 2010 AH420 4W High Linearity InGaP HBT Amplifier Mechanical Information This package is lead-free/green/RoHS-compliant. The plating material on the backside metallization is Matte Tin. It is compatible with both lead-free (maximum 260 °C reflow temperature) and lead (maximum 245 °C reflow temperature) soldering processes. Outline Drawing Product Marking The AH420 will be marked with an “AH420G” designator with a lot code marked below the part designator. The “Y” represents the last digit of the year the part was manufactured, the “XXX” is an auto-generated number, and “Z” refers to a wafer number in a lot batch. AH420G YXXX-Z Tape and reel specifications for this part are located on the website in the “Application Notes” section. ESD / MSL Information Mounting Configuration / Land Pattern ESD Rating: Value: Test: Standard: Class 1A Passes 250V to <500V Human Body Model (HBM) JEDEC Standard JESD22-A114 ESD Rating: Value: Test: Standard: Class IV Passes ≥ 1000V min. Charged Device Model (CDM) JEDEC Standard JESD22-C101 MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020 Functional Pin Layout Notes: 1. A heatsink underneath the area of the PCB for the mounted device is recommended for proper thermal operation. Damage to the device can occur without the use of one. 2. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135”) diameter drill and have a final plated thru diameter of .25 mm (.010”). 3. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. 4. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink. 5. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink. 6. RF trace width depends upon the PC board material and construction. 7. Use 1 oz. Copper minimum. 8. All dimensions are in millimeters Pin 1 2, 11 3, 4, 5, 6 7, 8, 9, 10 12 Function VBIAS No Connect RF Input VCC / RF Output IREF Specifications and information are subject to change without notice TriQuint Semiconductor Inc • Phone 1-503-615-9000 • FAX: 503-615-8900 • e-mail: [email protected] • Web site: www.TriQuint.com Page 9 of 9 July 2010