D824 Series 1.0 Hz to 102.4 kHz 8-Bit Programmable 2" x 2" Differential Input 4-Pole Filters Description The D824 Series are digitally programmable low pass and high pass active filters with differential input that are tunable over a 256:1 frequency range. D824 filters are available with any one of five standard factory-set tuning ranges up to 102.4 kHz. These units contain 8 CMOS logic inputs . All D824 Series models are convenient, low profile, easy to use fully finished filters which require no external components or adjustments. They feature low harmonic distortion, and near theoretical phase and amplitude characteristics. D824 filters operate from non-critical ± 12 to ± 18 Vdc power supplies, have a 10 kW (min.) input impedance, a 10 W (max.) output. Features/Benefits: • Compact 2" x 2" design minimizes board space requirements. • Digitally programmable corner frequency allows selecting cut-off frequencies specific to each application. • Plug-in ready-to-use, reducing engineering design and manufacturing cycle time. • Factory-set tuning range, no external clocks or adjustments needed. • Broad range of transfer characteristics and corner frequencies to meet a wide range of applications. Applications • Anti-alias filtering • Data acquisition systems • Communication systems and electronics • Medical electronics equipment and research • Aerospace, navigation and sonar applications • Sound and vibration testing • Real and compressed time data analysis • Noise elimination • Signal reconstruction Programmable Specifications. . . . . . . . . . . . . . Page Digital Tuning & Control . . . . . . . . . . . . . . . . . . . . . . 2 Available Low-Pass Models: . . . . . . . . . . . . . . . . . . . D824L8B 4-pole Butterworth . . . . . . . . . . . . . . . . . 3 D824L8L 4-pole Bessel . . . . . . . . . . . . . . . . . . . . . 3 D824L8Y2 4-pole Cheby (0.2 dB Ripple) . . . . . . . . . 3 D824L8Y5 4-pole Cheby (0.5 dB Ripple) . . . . . . . . . 3 Available High-Pass Models: . . . . . . . . . . . . . . . . . . D824H8B 4-pole Butterworth . . . . . . . . . . . . . . . . . 4 D824H8Y2 4-pole Cheby (0.2 dB Ripple) . . . . . . . . . 4 D824H8Y5 4-pole Cheby (0.5 dB Ripple) . . . . . . . . . 4 General Specifications: Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin-out/package data. . . . . . . . . . . . . . . . . . . . . . . . . 5 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com D824 Series Digital Tuning & Control Characteristics 8-Bit Programmable Filters Digital Tuning Characteristics Pin-Out Key The digital tuning interface circuits are a parallel set of eight (8) 4053 CMOS switches which accept CMOS compatible inputs for the eight tuning bits (D0 - D7). IN OUT GND +Vs -Vs Os Filter tuning follows the tuning equation given below: fc = ( fmax/256 ) [ 1 + D7 x 27 + D6 x 26 + D5 x 25 + D4 x 24 + D3 D7 Tuning D6 Tuning D5 Tuning D4 Tuning D3 Tuning D2 Tuning D1 Tuning D0 Tuning Analog Input Signal Analog Output Signal Power and Signal Return Supply Voltage, Positive Supply Voltage, Negative Offset Adjustment x 23 + D2 x 22 + D1 x 21 + D0 x 20 ] where D1 - D7 = "0" or "1", and fmax = Maximum tuning frequency; fc = corner frequency; Minimum tunable frequency = fmax/256 (D0 thru D7 = 0); Minimum frequency step (Resolution) = fmax/256 7 (MSB) 6 5 4 3 2 1 0 (LSB) OUT +Vs -Vs D7 D6 D5 Data Input Specifications D4 GND 2.00 Input Data Levels Bit Bit Bit Bit Bit Bit Bit Bit (CMOS Logic) D3 Input Voltage (Vs = 15 Vdc) Low Level In 0 Vdc min. High Level In 11 Vdc min. 4 Vdc max. 15 Vdc max. Input Current High Level In Low Level In - 10 -5 mA typ. +10 -5 mA typ. -1 mA max.. +1 mA max. Input Capacitance 5 pF typ 7.5 pF max. Input Data Format Frequency Select Bits Positive Logic D2 D1 D0 +IN -IN Os 4 Bottom View Bit Weight MSB --- --- --- --- --- --- LSB Logic "1" = +Vs Logic "0" = Gnd 27 26 25 24 23 22 21 20 fc Bit Weighting D0 D7 (Binary-Coded) LSB (least significant bit) MSB (most significant bit) D7 D6 D5 D4 D3 D2 D1 D0 Corner Frequency 0 0 0 0 0 0 0 0 fmax/256 Frequency Range 256 : 1, Binary Weighted 0 0 0 0 0 0 0 1 fmax/128 0 0 0 0 0 0 1 1 fmax/64 0 0 0 0 0 1 1 1 fmax/32 0 0 0 0 1 1 1 1 fmax/16 0 0 0 1 1 1 1 1 fmax/8 0 0 1 1 1 1 1 1 fmax/4 0 1 1 1 1 1 1 1 fmax/2 1 1 1 1 1 1 1 1 fmax 2 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com D824 Series 4-Pole Low-Pass Filters 8-Bit Programmable Model D824L8B D824L8L D824L8Y2 D824L8Y5 Transfer Function 4-Pole, Butterworth 4-Pole, Bessel 4-Pole, Chebychev, 0.2 dB Ripple 4-Pole, Chebychev, 0.5 dB Ripple Size, Model 2 Model 3 thru 6 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” Range fc 1.0 Hz to 102.4 kHz 1.0 Hz to 102.4 kHz 1.0 Hz to 102.4 kHz 1.0 Hz to 102.4 kHz Theoretical Transfer Characteristics Appendix A Page 7 Appendix A Page 2 Appendix A Page 12 Appendix A Page 15 Passband Ripple 0.0 dB 0.0 dB 0.20 dB 0.50 dB 0 ± 0.1 dB max. 0 ± 0.05 dB typ. 0 ± 0.1 dB max. 0 ± 0.05 dB typ. 0 ± 0.1 dB max. 0 ± 0.05 dB typ. 0 ± 0.1 dB max. 0 ± 0.05 dB typ. Stopband Attenuation Rate 24 dB/octave 24 dB/octave 24 dB/octave 24 dB/octave Cutoff Frequency Stability Amplitude Phase fc ± 0.01% /°C -3 dB -180° Filter Attenuation 0.67 dB 3.01 dB 30.0 dB 40.0 dB Product Specifications (theoretical) DC Voltage Gain (non-inverting) (theoretical) Phase Match1 ± 2% max. 0.80 fc 1.00 fc 2.37 fc 3.16 fc 0 - fc 0 - 0.8 fc ± 0.2 dB max. ± 0.1 dB typ. 0.8 fc - 1.0 fc ± 0.3 dB max. ± 0.15 dB typ. 0 - fc Total Harmonic Distortion @ 1 kHz < - 100 dB typ. Wide Band Noise (theoretical) (5 Hz - 2 MHz) Narrow Band Noise (5 Hz - 100 kHz) ± 2% max. 1.86 dB 3.01 dB 30.0 dB 40.0 dB ± 2° max. ± 1° typ. 0.8 fc - 1.0 fc ± 3° max. ± 1.5° typ. Amplitude Accuracy 0 - 0.8 fc fc ± 0.01% /°C -3 dB -121° 0.80 fc 1.00 fc 3.50 fc 4.72 fc ± 2° max. ± 1° typ. ± 0.2 dB max. ± 0.1 dB typ. fc ± 0.01% /°C -3 dB -231° -0.20 dB 3.01 dB 30.0 dB 40.0 dB ± 2% max. 0.80 fc 1.00 fc 1.89 fc 2.46 fc 0 - 0.8 fc ± 2° max. ± 1° typ. 0.8 fc - 1.0 fc ± 3° max. ± 1.5° typ. 0 - 0.8 fc fc ± 0.01% /°C -3 dB -245° ± 2% max. -0.43 dB 3.01 dB 30.0 dB 40.0 dB 0 - 0.8 fc 0.8 fc - 1.0 fc 0.80 fc 1.00 fc 1.80 fc 2.33 fc ± 2° max. ± 1° typ. ± 3° max. ± 1.5° typ. ± 0.2 dB max. ± 0.1 dB typ. 0.8 fc - 1.0 fc ± 0.3 dB max. ± 0.15 dB typ. 0 - 0.8 fc < - 100 dB typ. < - 88 dB typ. < - 88 dB typ. 200 mVrms typ. 200 mVrms typ. 200 mVrms typ. 200 mVrms typ. 50 mVrms typ. 50 mVrms typ. 50 mVrms typ. 50 mVrms typ. 0.8 fc - 1.0 fc ± 0.2 dB max. ± 0.1 dB typ. ± 0.3 dB max. ± 0.15 dB typ. 1. Unit to unit match for the same transfer function, set to the same frequency and operating configuration, and from the same manufacturing lot. 3 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com D824 Series 4-Pole High-Pass Filters 8-Bit Programmable Model D824H8B D824H8Y2 D824H8Y5 Transfer Function 4-Pole, Butterworth 4-Pole,Chebychev, 0.2 dB Ripple 4-Pole, Chebychev, 0.5 dB Ripple Size, Model 2 Model 3 thru 6 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” 2.0” x 2.0” x 0.5” 2.0” x 2.0” x 0.4” Range fc 1.0 Hz to 102.4 kHz 1.0 Hz to 102.4 kHz 1.0 Hz to 102.4 kHz Theoretical Transfer Characteristics Appendix A Page 27 Appendix A Page 31 Appendix A Page 33 Passband Ripple 0.0 dB 0.20 dB 0.50 dB 0 ± 0.2 dB to 100 kHz 0 ± 0.5 dB to 120 kHz 0 ± 0.2 dB to 100 kHz 0 ± 0.5 dB to 120 kHz 0 ± 0.2 dB to 100 kHz 0 ± 0.5 dB to 120 kHz Power Bandwidth 120 kHz 120 kHz 120 kHz Small Signal Bandwidth (-6 dB) 1 MHz (-6 dB) 1 MHz (-6 dB) 1 MHz Stopband Attenuation Rate 24 dB/octave 24 dB/octave 24 dB/octave Cutoff Frequency Stability Amplitude Phase fc ± 0.01% /°C -3 dB -180° Filter Attenuation 40 dB 30 dB 3.01 dB 0.02 dB Product Specifications (theoretical) Voltage Gain (non-inverting) (theoretical) ± 2% max. 0.31 fc 0.42 fc 1.00 fc 2.00 fc fc ± 0.01% /°C -3 dB -231° ± 2% max. 40.0 dB 30.0 dB 3.01 dB -0.07 dB 0.41 fc 0.53 fc 1.00 fc 2.00 fc fc ± 0.01% /°C -3 dB -245° 40.0 dB 30.0 dB 3.01 dB -0.25 dB ± 2% max. 0.43 fc 0.56 fc 1.00 fc 2.00 fc Phase Match1 fc - 100 kHz ± 3° max. ± 1.5° typ. fc - 100 kHz ± 3° max. ± 1.5° typ. fc - 100 kHz ± 3° max. ± 1.5° typ. Amplitude Accuracy 1.0 - 1.25 fc ± 0.3 dB max. ± 0.15 dB typ. 1.25 fc-100 kHz ± 0.2 dB max. ± 0.1 dB typ. 1.00 - 1.25 fc ± 0.3 dB max. ± 0.15 dB typ. 1.25 fc-100 kHz ± 0.2 dB max. ± 0.1 dB typ. 1.00 - 1.25 fc ± 0.3 dB max. ± 0.15 dB typ. 1.25 fc-100 kHz± 0.2 dB max. ± 0.1 dB typ. Total Harmonic Distortion @ 1 kHz < - 100 dB typ. < - 88 dB typ. < - 88 dB typ. Wide Band Noise 400 mVrms typ. 400 mVrms typ. 400 mVrms typ. Narrow Band Noise 100 mVrms typ. 100 mVrms typ. 100 mVrms typ. (theoretical) (5 Hz - 100 kHz) 1. Unit to unit match for the same transfer function, set to the same frequency and operating configuration, and from the same manufacturing lot. 4 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com D824 Series Pin-Out and Package Data Ordering Information Specification (25°C and Vs ± 15 Vdc) Analog Input Characteristics1 Impedance Voltage Range Max. Safe Voltage Analog Output Characteristics Impedance (Closed Loop) Linear Operating Range Maximum Current2 Offset Voltage3 Offset Temp. Coeff. Power Supply (±V) Rated Voltage Operating Range Maximum Safe Voltage Quiescent Current 4-Pole Pin-Out & Package Data 10 kW min. ± 10 Vpeak ±Vs 2.00 G-5 0.5 0.4 11 W typ. 10 W max. ± 10V ± 2 mA 22 mV typ. 20 mV max. 50 mV/°C G-4 0.15 min. Side View 0.025 Dia. All dimensions are in inches All Case Dimensions ± 0.02" Grid Dimensions 0.1" x 0.1" OUT +Vs -Vs D7 D6 ± 15 Vdc ± 12 to ± 18 Vdc ± 18 Vdc D5 D4 GND 2.00 D3 ± 13 mA typ. ± 20 mA max. D2 D1 D0 Temperature Operating Storage -20 to +70°C -25 to +85°C +IN -IN Os 4 Bottom View Filter Mounting Assembly-See FMA-02A Notes: 1. Input and output signal voltage referenced to supply common. 2. Output is short circuit protected to common. DO NOT CONNECT TO ±Vs. 3. Adjustable to zero. 4. Units operate with or without offset pin connected. Ordering Information Filter Type Transfer Function L - Low Pass H - High Pass B - Butterworth L - Bessel Y2 - Chebychev (0.2 dB Ripple) Y5 - Chebychev (0.5 dB Ripple) DC Offset Adjustment ± Vs D824L8B-3 Do not connect if trim is not required. 20 k W (Cermet) Model Number OS e.g., Model Number 2 3 4 5 6 - Vs T uning Range (Hz) 1.0 to 256 10 to 2560 100 to 25.6k 200 to 51.2k 400 to 102.4k Minimum Step(Hz) 1.0 10 100 200 400 Case G-5 G-4 G-4 G-4 G-4 We hope the information given here will be helpful. The information is based on data and our best knowledge, and we consider the information to be true and accurate. Please read all statements, recommendations or suggestions herein in conjunction with our conditions of sale which apply to all goods supplied by us. We assume no responsibility for the use of these statements, recommendations or suggestions, nor do we intend them as a recommendation for any use which would infringe any patent or copyright. IN-00D824-00 5 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com Product Handling Procedure Programmable Filter Modules Power Sequence & ESD November 2000 Programmable Filters Modules 818, 824, 828, 828BP, 828BR, 854, 858, R854, R858 I. Scope The following precautions are necessary when handling and installing Frequency Devices programmable filter modules. II. Digital Circuit Description The digital input pins connect directly to 4000 series CMOS logic, such as the 4053 analog switch. The power supply (Vss) for the digital logic on the module comes directly from the +15 Volt pin on the module. This sets the threshold voltage at 11.0 V minimum to 15.0 V maximum for a "1" (High) level and 0.0 V minimum to 4.0 V maximum for a "0" (Low) level. Applying a voltage between 4.0 and 11.0 V will produce unpredictable operation. Connecting 5 Volt or 3.3 V logic devices directly to the filter module without using a voltage translator will result in erratic operation of the filter. III. (VERY IMPORTANT) Power-Up and Power-Down Sequence Do not plug-in or un-plug module while power is applied. It is imperative that power is supplied to the + 15 V pin on the filter module before or at the same instance that any digital pin is pulled High (> 0.0 V). Failure to do this will result in excessive current flowing through the digital input pin and through a protection diode internal to the 4000 logic, which will result in damage to the module. The proper power-up and power-down sequence is: 1. Connect filter module ground. 2. Connect filter module +15 V. 3. Connect filter module -15 V. 4. Connect the input signal. All four of the above steps can also occur simultaneously. Power-down should occur in the reverse order. IV. ESD Issues Like most modern electronic equipment, the modules can be damaged by electrostatic discharge (ESD). The modules are shipped from the factory in sealed, anti-static packaging and should be kept in the sealed package prior to mounting on a circuit board. The following additional rules should also be observed when handling the modules after they are removed from the factory packaging: 1. Only a person wearing a properly grounded wrist strap should handle the modules. 2. Any work surface that the modules are placed on must be properly ESD grounded. 3. Any insulating materials capable of generating static charge (such as paper) should be kept away from the modules. Static generating clothing should be covered with an ESD-protective smock. 1 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] • Web Address: http://www.freqdev.com Low-Pass 4-Pole Appendix A Bessel Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.00 0.00 0.00 .336 0.10 -0.028 -12.1 .336 0.20 -0.111 -24.2 .336 0.30 -0.251 -36.3 .336 0.40 -0.448 -48.4 .336 0.50 -0.705 -60.6 .336 0.60 -1.02 -72.7 .336 0.70 -1.41 -84.8 .336 0.80 -1.86 -96.8 .335 0.85 -2.11 -103 .334 0.90 -2.40 -109 .333 0.95 -2.69 -115 .332 1.00 -3.01 -121 .330 1.10 -3.71 -133 .325 1.20 -4.51 -144 .318 1.30 -5.39 -156 .308 -166 1.40 -6.37 .295 -177 1.50 -7.42 .280 -187 1.60 -8.54 .263 -195 1.70 -9.71 .246 -204 1.80 -10.9 .228 1.90 -12.2 -212 .211 2.00 -13.4 -219 .194 2.25 -16.5 -235 .158 2.50 -19.5 -248 .129 2.75 -22.4 -259 .107 -267 3.00 -25.1 .089 -275 3.25 -27.6 .076 -281 3.50 -30.0 .065 -291 4.00 -34.4 .049 -305 5.00 -41.9 .031 6.00 -315 .021 -48.1 7.00 -321 .016 -53.4 8.00 -326 .012 -58.0 9.00 -330 .009 -62.0 10.0 -333 .008 -65.7 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 1.0 2 3 4 5 6 7 10.0 Normalized Frequency(f/fc) Delay (Normalized) Delay (sec) 1.0 0.5 0.0 0.1 0.15 2 3 4 5 6 7 89 1.0 1.5 Normalized Time (1/f sec) Step Response (V/V) Step Response 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 1.2 1.0 0.8 0.6 0.4 0.2 -0.0 -0.2 0 1 2 3 4 Normalized Time (1/f sec) 2 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com 5 Low-Pass 4-Pole Appendix A Butterworth Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.00 0.00 0.00 .416 0.10 0.00 -15.0 .418 0.20 0.00 -30.1 .423 0.30 -0.00 -45.5 .433 0.40 -0.003 -61.4 .449 0.50 -0.017 -78.0 .474 0.60 -0.072 -95.7 .511 0.70 -0.243 -115 .558 0.80 -0.674 -136 .604 0.85 -1.047 -147 .619 0.90 -1.555 -158 .622 0.95 -2.21 -169 .612 1.00 -3.01 -180 .588 1.10 -4.97 -200 .513 1.20 -7.24 -217 .427 1.30 -9.62 -231 .350 1.40 -12.0 -242 .289 1.50 -14.3 -252 .241 1.60 -16.4 -260 .204 1.70 -18.5 -266 .175 1.80 -20.5 -272 .152 1.90 -22.3 -277 .134 2.00 -24.1 -282 .119 2.25 -28.2 -291 .091 2.50 -31.8 -299 .072 2.75 -35.1 -304 .059 3.00 -38.2 -309 .049 3.25 -41.0 -313 .041 3.50 -43.5 -317 .035 4.00 -48.2 -322 .027 5.00 -55.9 -330 .017 6.00 -62.3 -335 .012 7.00 -67.6 -339 .009 8.00 -72.2 -341 .007 9.00 -76.3 -343 .005 -80.0 10.0 -345 .004 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 1.0 2 3 4 5 6 7 10.0 Normalized Frequency(f/fc) Delay (Normalized) Delay (sec) 2.0 1.0 0.0 0.1 0.15 2 3 4 5 6 7 89 1.0 1.5 Normalized Frequency(f/fc) Step Response (V/V) Step Response 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 1.2 1.0 0.8 0.6 0.4 0.2 -0.0 0 1 2 3 4 Normalized Time (1/f sec) 7 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com 5 Low-Pass 4-Pole, 0.2 dB Ripple Appendix A Chebychev Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.00 0.000 0.00 .478 0.10 0.039 -17.3 .487 0.20 0.129 -35.2 .509 0.30 0.195 -54.0 .533 0.40 0.174 -73.4 .547 0.50 0.074 -93.2 .553 0.000 0.60 -113 .575 0.074 0.70 -135 .654 0.199 0.80 -162 .836 0.063 0.85 -178 .947 -0.443 0.90 -196 1.02 .989 0.95 -214 -1.47 .873 1.00 -231 -3.01 .583 1.10 -257 -6.89 .385 1.20 -274 -10.8 .271 1.30 -286 -14.5 1.40 -17.7 -294 .202 1.50 -20.7 -300 .158 1.60 -23.4 -306 .128 1.70 -25.8 -310 .107 1.80 -28.1 -313 .090 -30.2 1.90 -316 .078 -32.2 2.00 -319 .068 -36.7 -324 2.25 .051 -40.6 -328 2.50 .039 -44.1 -331 2.75 .032 3.00 -47.3 -334 .026 3.25 -50.2 -336 .022 3.50 -52.8 -338 .018 4.00 -57.6 -341 .014 5.00 -65.5 -345 .009 -71.9 6.00 -347 .006 -77.3 7.00 -349 .004 -82.0 8.00 -351 .003 -86.1 9.00 -352 .003 -89.8 10.0 -352 .002 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 1.0 2 3 4 5 6 7 810.0 Normalized Frequency(f/fc) Delay (Normalized) Delay (sec) 2.0 1.0 0.0 0.1 0.15 2 3 4 5 6 7 89 1.0 1.5 Normalized Time (1/f sec) Step Response (V/V) Step Response 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 1.2 1.0 0.8 0.6 0.4 0.2 -0.0 0 12 1 2 3 4 Normalized Time (1/f sec) 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com 5 Low-Pass 4-Pole, 0.5 dB Ripple Appendix A Chebychev Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.00 0.00 0.00 .476 0.10 0.087 -17.3 .492 0.20 0.295 -35.7 .533 0.30 0.474 -55.7 .577 0.40 0.463 -76.9 .596 0.50 0.248 -98.2 .583 0.60 0.025 -119 .578 0.70 0.072 -141 .647 0.80 0.432 -168 .881 0.85 0.482 -185 1.06 0.90 0.062 -205 1.18 0.95 -1.12 -226 1.13 1.00 -3.01 -245 .946 1.10 -7.61 -272 .559 1.20 -12.0 -288 .345 1.30 -15.9 -298 .235 1.40 -19.3 -305 .173 1.50 -22.4 -311 .134 1.60 -25.1 -315 .108 1.70 -27.6 -318 .089 1.80 -29.9 -321 .075 -32.1 1.90 -324 .065 -34.1 2.00 -326 .057 -38.6 2.25 -301 .042 -42.6 2.50 -334 .033 -46.1 2.75 -336 .026 3.00 -49.3 -339 .021 3.25 -52.2 -340 .018 3.50 -54.9 -342 .015 4.00 -59.7 -344 .011 5.00 -67.6 -347 .007 6.00 -74.0 -350 .005 7.00 -79.4 -351 .004 8.00 -84.1 -352 .003 9.00 -88.2 -353 .002 10.0 -91.9 -354 .002 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 2 3 4 5 6 78 1.0 10.0 Normalized Frequency(f/fc) Delay (Normalized) Delay (sec) 2.0 1.0 0.0 0.1 0.15 2 3 4 5 6 7 89 1.0 1.5 Normalized Time (1/f sec) Step Response (V/V) Step Response 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 1.2 1.0 0.8 0.6 0.4 0.2 -0.0 0 15 1 2 3 4 Normalized Time (1/f sec) 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com 5 High-Pass 4-Pole Appendix A Butterworth Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.10 -80.0 345 .418 -55.9 0.20 330 .423 -41.8 0.30 314 .433 -31.8 0.40 299 .449 -24.1 0.50 282 .474 0.60 -17.8 264 .511 0.70 -12.6 245 .558 0.80 -8.43 224 .604 0.85 -6.69 213 .619 202 0.90 -5.22 .622 0.95 -3.99 191 .612 1.00 -3.01 180 .588 1.20 -0.908 143 .427 .289 1.40 -0.285 118 .204 1.60 -0.100 100 1.80 -0.039 87.6 .152 2.00 -0.017 78.0 .119 61.4 2.50 -0.003 .072 -0.001 50.7 3.00 .049 0.00 37.8 4.00 .027 5.00 0.00 30.1 .017 6.00 0.00 25.1 .012 7.00 0.00 21.4 .009 0.00 8.00 18.8 .007 0.00 9.00 16.7 .005 10.0 0.00 15.0 .004 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 1.0 2 3 4 5 6 7 10.0 Normalized Frequency(f/fc) 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 27 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com High-Pass 4-Pole, 0.2 dB Ripple Appendix A Chebychev Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.10 -89.8 352 .212 -65.1 0.20 345 .218 -51.1 0.30 337 .228 -40.6 0.40 328 .245 -32.2 0.50 319 .272 -25.0 0.60 308 .314 -18.6 0.70 296 .383 -12.7 0.80 280 .500 -7.34 0.90 259 .686 -3.01 1.00 231 .873 .633 1.20 172 .140 .275 1.50 128 .031 .197 1.70 111 .003 .138 2.00 93.2 .074 .088 2.50 73.4 .174 3.00 .200 60.4 .060 4.00 .170 44.5 .033 5.00 .129 35.2 .020 .098 6.00 29.2 .014 7.00 .076 24.9 .010 .060 8.00 21.7 .008 .048 9.00 19.3 .006 .040 10.0 17.3 .005 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 1.0 2 3 4 5 6 7 8 10.0 Normalized Frequency(f/fc) 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 31 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com High-Pass 4-Pole, 0.5 dB Ripple Appendix A Chebychev Theoretical Transfer Characteristics 1 f/fc Amp Phase Delay (Hz) (dB) (deg) (sec) 0.10 -91.9 354 .174 -67.6 0.20 347 .179 -53.1 0.30 341 .188 -42.6 0.40 334 .203 -34.1 0.50 326 .226 -26.8 0.60 317 .263 -20.2 0.70 307 .326 -14.0 0.80 293 .440 -8.13 0.90 274 .651 -3.01 1.00 245 .946 .693 1.20 179 .500 .271 1.50 133 .014 .199 1.70 117 .043 .146 2.00 98.2 .249 .095 2.50 76.9 .469 3.00 .498 62.7 .065 4.00 .401 45.5 .035 5.00 .296 35.7 .021 .221 6.00 29.4 .014 7.00 .169 25.0 .010 .133 8.00 21.8 .008 .107 9.00 19.3 .006 .088 10.0 17.3 .005 Frequency Response Amp (dB) 0 -20 -40 -60 -80 -100 0.1 2 3 4 5 6 78 2 3 4 5 6 78 1.0 10.0 Normalized Frequency(f/fc) 1.Normalized Group Delay: The above delay data is normalized to a corner frequency of 1.0Hz.The actual delay is the normalized delay divided by the actual corner frequency (fc). Normalized Delay Actual Delay = Actual Corner Frequency (fc) in Hz 33 1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 • FAX: 815/434-8176 e-mail: [email protected] Web Address: http://www.freqdev.com