SUNMATE BYW54 2.0a axial leaded silicon rectifier Datasheet

BYW52-BYW56
2.0A Axial Leaded Silicon Rectifier
Features
•
•
•
•
•
•
•
Controlled avalanche characteristics
Glass passivated junction
Hermetically sealed package
Low reverse current
High surge current loading
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
B
A
A
C
D
DO-15
Mechanical Data
· Case: DO-15 Sintered glass case
· Terminals: Plated axial leads, solderable per
MIL-STD-750, Method 2026
· Polarity: Color band denotes cathode end
· Mounting Position: Any
· Weight: approx. 369 mg
Parameter
Peak forward surge current
Min
Max
A
25.40
¾
B
5.50
7.62
C
0.686
0.889
D
2.60
3.60
All Dimensions in mm
Maximum Ratings and Electrical Characteristics
Reverse voltage = Repetitive
peak reverse voltage
Dim
Test condition
see electrical characteristics
@ TA = 25°C unless otherwise specified
Part
Symbol
Value
Unit
BYW52
VR = VRRM
200
V
BYW53
VR = VRRM
400
V
BYW54
VR = VRRM
600
V
BYW55
VR = VRRM
800
V
BYW56
VR = VRRM
1000
V
IFSM
50
A
tp = 10 ms, half sinewave
Repetitive peak forward current
IFRM
12
A
Average forward current
ϕ = 180 °
IFAV
2
A
Pulse avalanche peak power
tp = 20 µs half sine wave,
Tj = 175 °C
PR
1000
W
Typ.
Max
Forward voltage
Parameter
IF = 1 A
Test condition
Symbol
VF
0.9
1.0
V
Reverse current
VR = VRRM
IR
0.1
1
µA
VR = VRRM, Tj = 100 °C
IR
5
10
µA
Breakdown voltage
IR = 100 µA, tp/T = 0.01,
tp = 0.3 ms
V(BR)
1600
V
Diode capacitance
VR = 4 V, f = 1 MHz
CD
Reverse recovery time
IF = 0.5 A, IR = 1 A, iR = 0.25 A
trr
IF = 1 A, di/dt = 5 A/µs, VR = 50 V
trr
4
µs
Reverse recovery charge
IF = 1 A, di/dt = 5 A/µs
Qrr
200
nC
1 of 3
Min
18
Unit
pF
4
µs
120
l
l
10.000
– Forward Current (A)
100
80
TL= constant
60
Tj = 175 °C
20
0
0
5
10
15
20
25
0.010
0.001
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
30
l - Lead Length ( mm )
94 9101
V F – Forward Voltage ( V )
16350
Figure 1. Typ. Thermal Resistance vs. Lead Length
Figure 2. Forward Current vs. Forward Voltage
I FAV –Average Forward Current( A )
V R = VRRM
half sinewave
2.0
RthJA = 45 K/W
l = 10 mm
1.5
1.0
0.5
RthJA = 100 K/W
PCB: d = 25 mm
0.0
0
20
40
60
300
200
150
PR–Limit
@80 % VR
100
50
0
25
50
75
100
125
150
175
Tj – Junction Temperature ( °C )
Figure 5. Max. Reverse Power Dissipation vs. Junction
Temperature
1000
40
CD – Diode Capacitance ( pF )
V R = VRRM
I R – Reverse Current (A)
PR–Limit
@100 % VR
250
16353
Figure 3. Max. Average Forward Current vs. Ambient Temperature
100
10
1
25
V R = VRRM
350
80 100 120 140 160 180
Tamb – Ambient Temperature (°C )
16351
400
PR – Reverse Power Dissipation ( mW )
2.5
16352
Tj = 25 °C
0.100
F
40
1.000
I
RthJA Therm. Resist. Junction/Ambient (K/W)
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
50
75
100
125
150
16354
Figure 4. Reverse Current vs. Junction Temperature
f = 1 MHz
30
25
20
15
10
5
0
0.1
175
Tj – Junction Temperature (°C )
35
1.0
10.0
V R – Reverse Voltage ( V )
100.0
Figure 6. Diode Capacitance vs. Reverse Voltage
2of3
Zthp–Thermal Resistance for PulseCond.(K/W)
1000
VRRM = 1000 V, RthJA = 100K/W
100
94 9178
tp/T = 0.5
10
tp/T = 0.2
Tamb = 25°C
tp/T = 0.1
Tamb = 45°C
tp/T = 0.05
Tamb = 60 °C
tp/T = 0.02
Tamb = 70°C
tp/T = 0.01
1
10–5
10–4
Tamb = 100°C
10–3
10–2
10–1
10 0
10 1
tp – Pulse Length ( s )
Figure 7. Thermal Response
3of3
10 0
10 1
102
I FRM – Repetitive Peak
Forward Current ( A )
Similar pages