TI1 CSD16415Q5 25v n-channel nexfet power mosfet Datasheet

Sample &
Buy
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
Reference
Design
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
CSD16415Q5 25-V N-Channel NexFET™ Power MOSFET
1 Features
•
•
•
•
•
•
•
1
Added text for spacing
Ultralow Qg and Qgd
Very Low On-Resistance
Low Thermal Resistance
Avalanche Rated
Pb-Free Terminal Plating
RoHS Compliant
Halogen-Free
Product Summary
TA = 25°C
VALUE
Drain-to-Source Voltage
25
V
Qg
Gate Charge, Total (4.5 V)
21
nC
Qgd
Gate Charge, Gate-to-Drain
RDS(on)
Drain-to-Source On
Resistance
VGS(th)
Threshold Voltage
2 Applications
•
•
This 25 V, 1.3 mΩ, 5 x 6 mm SON NexFET™ power
MOSFET has been designed to minimize losses in
power conversion applications.
Top View
8
1
D
0.99
mΩ
1.5
V
MEDIA
QTY
SHIP
CSD16415Q5
SON
5-mm × 6-mm
Plastic Package
13-inch
Reel
2500
Tape and
Reel
7
2
Absolute Maximum Ratings
TA = 25°C
VALUE
UNIT
VDS
Drain-to-Source Voltage
25
V
VGS
Gate-to-Source Voltage
–12 to 16
V
D
PD
D
6
3
5
4
D
Continuous Drain Current (Package
Limited)
100
Continuous Drain Current (Silicon
Limited), TC = 25°C (1)
261
Continuous Drain Current (1)
38
Pulsed Drain Current, TA = 25°C (2)
200
Power dissipation (1)
3.2
Power Dissipation, , TC = 25°C
156
TJ,
Tstg
Operating Junction and
Storage Temperature
EAS
Avalanche Energy, Single-Pulse
ID = 100 A, L = 0.1 mH, RG = 25 Ω
P0094-01
Added text for spacing
(1)
Added text for spacing
(2)
A
A
W
–55 to 150
°C
500
mJ
RθJA = 40°C/W on 1 in2 (6.45 cm2) Cu [2 oz. (0.071 mm
thick)] on 0.060 inch (1.52 mm) thick FR4 PCB.
Max RθJC = 0.8°C/W, pulse duration ≤100 μs, duty cycle ≤1%
RDS(ON) vs VGS
Gate Charge
12
5
TC = 25° C, I D = 40 A
TC = 125° C, I D = 40 A
4.5
VGS - Gate-to-Source Voltage (V)
RDS(on) - On-State Resistance (m:)
VGS = 10 V
PACKAGE
ID
D
G
mΩ
DEVICE
IDM
S
nC
1.5
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
3 Description
S
5.2
VGS = 4.5 V
Device Information(1)
Point-of-Load Synchronous Buck Converter for
Applications in Networking, Telecom, and
Computing Systems
Optimized for Synchronous FET Applications
S
UNIT
VDS
4
3.5
3
2.5
2
1.5
1
0.5
0
0
1
2
3
4
5
6
7
8
VGS - Gate-to-Source Voltage (V)
9
10
D007
ID = 40 A
VDS = 12.5 V
10
8
6
4
2
0
0
10
20
30
40
Qg - Gate Charge (nC)
50
60
D004
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
www.ti.com
Table of Contents
1
2
3
4
5
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Specifications.........................................................
1
1
1
2
3
5.1 Electrical Characteristics........................................... 3
5.2 Thermal Information .................................................. 3
5.3 Typical MOSFET Characteristics.............................. 4
6
Device and Documentation Support.................... 7
6.1
6.2
6.3
6.4
7
Community Resources..............................................
Trademarks ...............................................................
Electrostatic Discharge Caution ................................
Glossary ....................................................................
7
7
7
7
Mechanical, Packaging, and Orderable
Information ............................................................. 8
7.1 Q5 Package Dimensions .......................................... 8
7.2 Recommended PCB Pattern..................................... 9
7.3 Q5 Tape and Reel Information................................ 10
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (August 2014) to Revision A
Page
•
Added part number to title ..................................................................................................................................................... 1
•
Enhanced Description............................................................................................................................................................. 1
•
Added Device and Documentation Support section and Mechanical, Packaging, and Orderable Information section ......... 1
•
Updated pulsed current ......................................................................................................................................................... 1
•
Updated Figure 1 to a normalized RθJC curve ........................................................................................................................ 4
•
Updated the SOA in Figure 10 ............................................................................................................................................... 5
•
Deleted Package Marking Information section at the end of the data sheet........................................................................ 10
2
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
CSD16415Q5
www.ti.com
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
5 Specifications
5.1 Electrical Characteristics
TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
STATIC CHARACTERISTICS
BVDSS
Drain-to-Source Voltage
VGS = 0 V, ID = 250 μA
IDSS
Drain-to-Source Leakage Current
VGS = 0 V, VDS = 20 V
IGSS
Gate-to-Source Leakage Current
VDS = 0 V, VGS = –12 V to 16 V
VGS(th)
Gate-to-Source Threshold Voltage
VDS = VGS, ID = 250 μA
RDS(on)
Drain-to-Source On Resistance
gfs
Transconductance
25
1.2
V
1
μA
100
nA
1.5
1.9
V
VGS = 4.5 V, ID = 40 A
1.5
1.8
mΩ
VGS = 10 V, ID = 40 A
0.99
1.15
mΩ
VDS = 15 V, ID = 40 A
168
S
DYNAMIC CHARACTERISTICS
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
175
230
Rg
Series Gate Resistance
1.2
2.4
Ω
Qg
Gate Charge Total (4.5 V)
21
29
nC
Qgd
Gate Charge, Gate-to-Drain
Qgs
Gate Charge, Gate-to-Source
Qg(th)
Gate Charge at Vth
QOSS
Output Charge
td(on)
Turnon Delay Time
tr
Rise Time
td(off)
Turn Off Delay Time
tf
Fall Time
VGS = 0 V, VDS = 12.5 V, ƒ = 1 MHz
VDS = 12.5 V, ID = 40 A
VDS = 15 V, VGS = 0 V
VDS = 12.5 V, VGS = 4.5 V, ID = 40 A
RG = 2 Ω
3150 4100
pF
2530 3300
pF
pF
5.2
nC
8.3
nC
4.8
nC
55
nC
16.6
ns
30
ns
20
ns
12.7
ns
DIODE CHARACTERISTICS
VSD
Diode Forward Voltage
IS = 40 A, VGS = 0 V
0.85
1
V
Qrr
Reverse Recovery Charge
VDD = 15 V, IF = 40 A, di/dt = 300 A/μs
72
nC
trr
Reverse Tecovery Time
VDD = 15 V, IF = 40 A, di/dt = 300 A/μs
45
ns
5.2 Thermal Information
TA = 25°C (unless otherwise noted)
THERMAL METRIC
MIN
RθJC
Thermal resistance, junction-to-case (1)
RθJA
Thermal resistance, junction-to-ambient (1)
(1)
(2)
(2)
TYP
MAX
UNIT
0.8
°C/W
50
°C/W
RθJC is determined with the device mounted on a 1 inch (2.54 cm) square, 2 oz. (0.071 mm thick) Cu pad on a 1.5 inch × 1.5 inch (3.81
cm × 3.81 cm), 0.060 inch (1.52 mm) thick FR4 board. RθJC is specified by design, whereas RθJA is determined by the user’s board
design.
Device mounted on FR4 material with 1 inch2 (6.45 cm2) of 2 oz. (0.071 mm thick) Cu.
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
3
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
GATE
www.ti.com
GATE
Source
N-Chan 5x6 QFN TTA MIN Rev3
N-Chan 5x6 QFN TTA MAX Rev3
Max RθJA = 50°C/W
when mounted on 1
inch2 (6.45 cm2) of 2
oz. (0.071 mm thick)
Cu.
Source
Max RθJA = 125°C/W
when mounted on
minimum pad area of 2
oz. (0.071 mm thick)
Cu.
DRAIN
DRAIN
M0137-02
M0137-01
5.3 Typical MOSFET Characteristics
TA = 25°C (unless otherwise noted)
Figure 1. Transient Thermal Impedance
4
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
CSD16415Q5
www.ti.com
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
Typical MOSFET Characteristics (continued)
TA = 25°C (unless otherwise noted)
100
80
60
40
20
VGS = 4.5 V
VGS = 10 V
80
70
60
50
40
30
20
10
0
0
0.05
0.1
0.15
0.2
0.25
VDS - Drain-to-Source Voltage (V)
TC = 125° C
TC = 25° C
TC = -55° C
90
IDS - Drain-to-Source Current (A)
IDS - Drain-to-Source Current (A)
100
0
1.5
0.3
2
2.5
3
VGS - Gate-to-Source Voltage (V)
D002
Figure 2. Saturation Characteristics
Figure 3. Transfer Characteristics
10
Ciss = Cgd + Cgs
Coss = Cds + Cgd
Crss = Cgd
10000
C - Capacitance (pF)
VGS - Gate-to-Source Voltage (V)
D003
50000
12
8
6
4
1000
100
2
10
0
0
10
20
30
40
Qg - Gate Charge (nC)
ID = 40 A
50
0
60
5
D004
25
D005
Figure 5. Capacitance
2.1
RDS(on) - On-State Resistance (m:)
5
1.9
1.7
1.5
1.3
1.1
0.9
0.7
-75
10
15
20
VDS - Drain-to-Source Voltage (V)
VDS = 12.5 V
Figure 4. Gate Charge
VGS(th) - Threshold Voltage (V)
3.5
TC = 25° C, I D = 40 A
TC = 125° C, I D = 40 A
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
-50
-25
0
25
50
75 100
TC - Case Temperature (° C)
125
150
175
0
1
D006
2
3
4
5
6
7
8
VGS - Gate-to-Source Voltage (V)
9
10
D007
ID = 250 µA
Figure 6. Threshold Voltage vs Temperature
Figure 7. On-Resistance vs Gate Voltage
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
5
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
www.ti.com
Typical MOSFET Characteristics (continued)
TA = 25°C (unless otherwise noted)
100
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
-75
TC = 25° C
TC = 125° C
VGS = 10 V
ISD - Source-to-Drain Current (A)
Normalized On-State Resistance
1.6
10
1
0.1
0.01
0.001
0.0001
-50
-25
0
25
50
75 100
TC - Case Temperature (° C)
125
150
175
0
0.2
D008
0.4
0.6
0.8
VSD - Source-to-Drain Voltage (V)
1
D009
ID = 40 A
Figure 8. On-Resistance vs Temperature
Figure 9. Typical Diode Forward Voltage
1000
IAV - Peak Avalanche Current (A)
IDS - Drain-to-Source Current (A)
1000
100
10
1
100 ms
10 ms
0.1
0.1
1 ms
100 µs
1
10
VDS - Drain-to-Source Voltage (V)
100
TC = 25q C
TC = 125q C
100
10
1
0.001
0.01
D010
0.1
1
TAV - Time in Avalanche (ms)
10
100
D011
Single Pulse, Max RθJC = 0.8°C/W
Figure 10. Maximum Safe Operating Area
Figure 11. Single-Pulse Unclamped Inductive Switching
IDS - Drain-to-Source Current (A)
120
100
80
60
40
20
0
-50
-25
0
25
50
75
100 125
TC - Case Temperature (° C)
150
175
D012
Figure 12. Maximum Drain Current vs Temperature
6
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
CSD16415Q5
www.ti.com
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
6 Device and Documentation Support
6.1 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
6.2 Trademarks
NexFET, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
6.3 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
6.4 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
7
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
www.ti.com
7 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
7.1 Q5 Package Dimensions
K
L
L
c1
E1
E2
b
D2
4
4
5
5
e
3
6
3
6
E
D1
7
7
2
2
8
8
1
1
q
Top View
Bottom View
Side View
A
q
c
E1
Front View
M0140-01
DIM
MILLIMETERS
MIN
INCHES
MAX
MIN
TYP
MAX
A
0.950
1.050
0.037
0.039
b
0.360
0.460
0.014
0.018
c
0.150
0.250
0.006
0.010
c1
0.150
0.250
0.006
0.010
D1
4.900
5.100
0.193
0.201
D2
4.320
4.520
0.170
0.178
E
4.900
5.100
0.193
0.201
E1
5.900
6.100
0.232
0.240
E2
3.920
4.12
0.154
e
8
TYP
1.27
K
0.760
L
0.510
θ
0.00
0.162
0.050
0.030
0.710
0.020
Submit Documentation Feedback
0.028
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
CSD16415Q5
www.ti.com
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
7.2 Recommended PCB Pattern
F1
F7
8
F3
1
F2
F11
F5
F9
5
4
F6
F8
F4
F10
M0139-01
DIM
MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
F1
6.205
6.305
0.244
0.248
F2
4.460
4.560
0.176
0.180
F3
4.460
4.560
0.176
0.180
F4
0.650
0.700
0.026
0.028
F5
0.620
0.670
0.024
0.026
F6
0.630
0.680
0.025
0.027
F7
0.700
0.800
0.028
0.031
F8
0.650
0.700
0.026
0.028
F9
0.620
0.670
0.024
0.026
F10
4.900
5.000
0.193
0.197
F11
4.460
4.560
0.176
0.180
For recommended circuit layout for PCB designs, see Reducing Ringing Through PCB Layout Techniques
(SLPA005).
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
9
CSD16415Q5
SLPS259A – DECEMBER 2011 – REVISED SEPTEMBER 2015
www.ti.com
K0
4.00 ±0.10 (See Note 1)
0.30 ±0.05
2.00 ±0.05
+0.10
–0.00
12.00 ±0.30
Ø 1.50
1.75 ±0.10
7.3 Q5 Tape and Reel Information
5.50 ±0.05
B0
R 0.30 MAX
A0
8.00 ±0.10
Ø 1.50 MIN
R 0.30 TYP
A0 = 6.50 ±0.10
B0 = 5.30 ±0.10
K0 = 1.40 ±0.10
M0138-01
Notes:
1. 10 sprocket hole pitch cumulative tolerance ±0.2
2. Camber not to exceed 1 mm in 100 mm, noncumulative over 250 mm
3. Material: black, static-dissipative polystyrene
4. All dimensions are in mm (unless otherwise specified)
5. A0 and B0 measured on a plane 0.3 mm above the bottom of the pocket
6. MSL1 260°C (IR and Convection) PbF Reflow Compatible
10
Submit Documentation Feedback
Copyright © 2011–2015, Texas Instruments Incorporated
Product Folder Links: CSD16415Q5
PACKAGE OPTION ADDENDUM
www.ti.com
5-Apr-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
CSD16415Q5
ACTIVE
VSON-CLIP
DQH
8
2500
Pb-Free (RoHS
Exempt)
CU SN
Level-1-260C-UNLIM
-55 to 150
CSD16415
CSD16415Q5T
ACTIVE
VSON-CLIP
DQH
8
250
Pb-Free (RoHS
Exempt)
CU SN
Level-1-260C-UNLIM
-55 to 150
CSD16415
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
5-Apr-2016
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
7-Apr-2016
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CSD16415Q5
VSONCLIP
DQH
8
2500
330.0
12.4
6.3
5.3
1.2
8.0
12.0
Q1
CSD16415Q5T
VSONCLIP
DQH
8
250
178.0
12.4
6.3
5.3
1.2
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
7-Apr-2016
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CSD16415Q5
VSON-CLIP
DQH
8
2500
336.6
336.6
41.3
CSD16415Q5T
VSON-CLIP
DQH
8
250
210.0
210.0
52.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages