DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix 1.5 On Resistance, ± 15 V / +12 V / ± 5 V, Quad SPST Switches DESCRIPTION FEATURES The DG1411E, DG1412E, DG1413E are ± 15 V precision monolithic quad single-pole single-throw (SPST) CMOS analog switches. Built on a new CMOS process, the Vishay Siliconix DG1411E, DG1412E, and DG1413E offer low on-resistance of 1.5 . The low and flat resistance over the full signal range ensures excellent linearity and low signal distortion. The new CMOS platform provides low power dissipation, minimized parasitic capacitance, and low charge injection. • • • • • • • • • • • The devices operate from either a single 4.5 V to 24 V power supply, or from dual ± 4.5 V to ± 15 V power supplies. The analog switches do not require a VL logic supply, while all digital inputs have 0.8 V and 2 V logic thresholds to ensure low voltage TTL / CMOS compatibility. The DG1411E, DG1412E, and DG1413E are bi-directional and support analog signals up to the supply voltage when on, and block them when off. The devices each feature four independently selectable SPST switches. The DG1411E is normally closed, while the DG1412E is normally open. The DG1413E has two normally open and two normally closed switches with guaranteed break-before-make operation. Combined with fast 70 ns switching time, low and flat switch resistance. The devices are ideal for signal switching and relay replacement in data acquisition, industrial control and automation, communication, and A/V systems, in addition to medical instrumentation and automated test equipment. The switches are available in RoHS-compliant, halogen-free TSSOP16 and QFN16 4 mm by 4 mm packages. 35 V supply max. rating On-resistance: 1.5 On-resistance flatness: 0.2 Channel to channel on-resistance match: 0.04 Supports single and dual supply operation Fully specified at ± 15 V, ± 5 V, and +12 V Integrated VL supply 3 V logic compatible Low parasitic capacitance: CS(OFF): 24 pF, CD(ON): 87 pF Rail to rail signal handling Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 BENEFITS • • • • Low insertion loss Low distortion Break-before-make switching Low charge injection over the full signal range APPLICATIONS • • • • • • • • • Medical and healthcare equipment Data acquisition system Industrial control and automation Test and measurement equipment Communication systems Battery powered systems Sample and hold circuits Audio and video signal switching Relay replacement S1 V- D1 IN1 IN2 D2 FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1411E 16 15 14 13 1 DG1411EEN QFN-16 (4 mm x 4 mm) S2 12 2 V+ 11 Top View 4 9 S3 5 6 7 8 D3 N.C. IN3 10 IN4 S4 3 D4 GND TRUTH TABLE - DG1411E LOGIC SWITCH 0 On 1 Off S17-0054-Rev. C, 23-Jan-17 DG1411EEQ TSSOP IN1 1 16 IN2 D1 2 15 D2 S1 3 14 S2 V- 4 13 V+ 12 N.C. GND 5 Top View S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 Notes • QFN exposed pad tied to V• N.C. = no connect • Switches shown for logic “0” input Document Number: 75104 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix D1 IN1 IN2 D2 FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1412E 16 15 14 13 DG1412EEN QFN-16 (4 mm x 4 mm) S1 1 12 S2 V- 2 11 V+ GND 3 10 N.C. Top View S4 4 5 6 7 8 D4 IN4 IN3 D3 9 S3 TRUTH TABLE - DG1412E LOGIC SWITCH 0 Off 1 On DG1412EEQ TSSOP IN1 1 16 IN2 D1 2 15 D2 S1 3 14 S2 V- 4 13 V+ GND 5 12 N.C. S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 Top View Notes • QFN exposed pad tied to V• N.C. = no connect • Switches shown for logic “0” input S1 1 V- 2 D1 IN1 IN2 D2 FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1413E 16 15 14 13 DG1413EEN QFN-16 (4 mm x 4 mm) 12 S2 11 V+ 10 N.C. 9 S3 Top View 5 6 7 8 IN3 D3 4 IN4 S4 3 D4 GND TRUTH TABLE - DG1413E LOGIC SWITCHES 1, 4 0 Off On 1 On Off S17-0054-Rev. C, 23-Jan-17 SWITCHES 2, 3 DG1413EEQ TSSOP IN1 1 16 IN2 D1 2 15 D2 S1 3 14 S2 V- 4 13 V+ Top View GND 5 12 N.C. S4 6 11 S3 D4 7 10 D3 IN4 8 9 IN3 Notes • QFN exposed pad tied to V• N.C. = no connect • Switches shown for logic “0” input Document Number: 75104 2 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix DEVICE OPTIONS SWITCH FUNCTION TEMPERATURE RANGE PACKAGE Quad SPST NC -40 °C to +125 °C QFN (4 mm x 4 mm) 16L (variation 2) Quad SPST NO -40 °C to +125 °C QFN (4 mm x 4 mm) 16L (variation 2) DG1413EEN-T1-GE4 Quad SPST NC / NO -40 °C to +125 °C QFN (4 mm x 4 mm) 16L (variation 2) DG1411EEQ-T1-GE4 Quad SPST NC -40 °C to +125 °C TSSOP-16 DG1412EEQ-T1-GE4 Quad SPST NO -40 °C to +125 °C TSSOP-16 DG1413EEQ-T1-GE4 Quad SPST NC / NO -40 °C to +125 °C TSSOP-16 PART NUMBER CONFIGURATION DG1411EEN-T1-GE4 DG1412EEN-T1-GE4 ABSOLUTE MAXIMUM RATINGS ELECTRICAL PARAMETER V+ CONDITIONS Reference to GND LIMITS -0.3 to +25 V- Reference to GND +0.3 to -25 V+ to V- +35 Analog inputs (S or D) Maximum pulse switch current Thermal resistance V (V-) - 0.3 to (V+) + 0.3 Digital inputs Maximum continuous switch current UNIT GND - 0.3 to (V+) + 0.3 TSSOP-16, TA = 25 °C 190 QFN (4 mm x 4 mm) 16L, TA = 25 °C 250 TSSOP-16, TA = 125 °C 90 QFN (4 mm x 4 mm) 16L, TA = 125 °C 100 Pulse at 1 ms, 10 % duty cycle 500 TSSOP-16 130 QFN (4 mm x 4 mm) 16L 32 mA °C/W Temperature Operating temperature -40 to +125 Max. operating junction temperature 150 Operating junction temperature 125 Storage temperature °C -65 to +150 Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. S17-0054-Rev. C, 23-Jan-17 Document Number: 75104 3 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix ELECTRICAL CHARACTERISTICS - ± 15 V supply PARAMETER SYMBOL TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 15 V, V- = -15 V VINH = 2 V, VINL = 0.8 V +25 °C -40 °C to +85 °C -40 °C to +125 °C TYP. / MAX. UNIT Analog Switch Analog signal range VANALOG 0 to V+ Drain-source on-resistance RDS(on) VS = ± 10 V, IS = -10 mA V+ = 13.5 V, V- = -13.5 V On-resistance flatness Rflat(on) VS = ± 10 V, IS = -10 mA On-resistance matching RDS(on) Switch off leakage current Channel on leakage current IS/Id(off) Id(on) V+ = 16.5 V, V- = -16.5 V VS = ± 10 V, VD = 10 V VS = VD = ± 10 V - V 1.5 - - Typ. 1.8 2 2.3 Max. 0.2 - - - 0.42 0.45 0.48 Max. 0.04 - - Typ. Max. 0.22 0.23 0.24 ± 0.01 - - Typ. ± 0.5 ±2 ± 12 Max. ± 0.05 - - Typ. ±1 ±3 ± 40 Max. nA Digital Control Input, high voltage VINH - - 2 Vmin. Input, low voltage VINL - - 0.8 Vmax. Input leakage IIN Digital input capacitance CIN VIN = VGND or V+ 0.001 - - Typ. - - ± 0.1 Max. 3.5 - - Typ. 24 - - Typ. - - 10 Min. 70 - - Typ. 110 130 140 Max. V μA pF Dynamic Characteristics Break-before-make time Turn-on time Turn-off time tOPEN tON tOFF VS1= VS2 = 10 V RL= 300 , CL = 35 pF VS = 10 V RL = 300 , CL = 35 pF 50 - - Typ. 90 100 110 Max. QINj CL = 1 nF, RGEN = 0 , VS = 0 V -41 - - Typ. Off isolation OIRR CL = 5 pF, RL = 50 , 100 kHz -78 - - Typ. Cross talk XTALK Charge injection Bandwidth, -3 dB pC CL = 5 pF, RL = 50 , 1 MHz -104 - - Typ. f = 1MHz, RL = 50 , CL = 5 pF -0.16 - - Typ. THD RL = 110 , 15 Vp-p, f = 20 Hz to 20 kHz 0.0039 - - Typ. % BW CL = 5 pF, RL = 50 150 - - Typ. MHz 24 - - Typ. 23 - - Typ. 87 - - Typ. Insertion loss Total harmonic distortion ns Source off capacitance CS(off) Drain off capacitance CD(off) Drain on capacitance CD(on) f = 1 MHz, VS = 0 V dB pF Power Requirements Power supply range GND = 0 V Digital inputs 0 or V+ V+ = 16.5 V, V- = -16.5 V I+ Power supply current IN1 = IN2 = IN3 = IN4 = 5 V I- S17-0054-Rev. C, 23-Jan-17 Digital inputs 0 or V+ ± 4.5 V min. / ± 16.5 max. 0.001 V - - Typ. Max. - - 1 113 - - Typ. - 260 290 Max. 0.001 - - Typ. - - 1 Max. μA Document Number: 75104 4 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix ELECTRICAL CHARACTERISTICS - Single 12 V supply PARAMETER SYMBOL TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 12 V, V- = -0 V VINH = 2 V, VINL = 0.8 V +25 °C -40 °C to +85 °C -40 °C to +125 °C TYP. / MAX. 2.5 - - Typ. 3.1 3.8 4.4 Max. UNIT Analog Switch Analog signal range VANALOG 0 to V+ Drain-source on-resistance RDS(on) VS = 0 V to 10 V, IS = -10 mA; V+ = 10.8 V, V- = 0 V On-resistance flatness Rflat(on) VS = 0 V to 10 V; IS = -10 mA On-resistance matching RDS(on) Switch off leakage current Channel on leakage current IS/Id(off) Id(on) V+ = 10.8 V, V- = 0 V VS = 1 V/10 V; VD = 10 V/1 V VS = VD = 3.2 V/10 V V 0.7 - - Typ. 0.9 1 1.1 Max. 0.04 - - Typ. Max. 0.19 0.22 0.25 ± 0.02 - - Typ. ± 0.55 ± 1.2 ± 10 Max. ± 0.01 - - Typ. ±1 ±2 ± 35 Max. nA Digital Control Input, high voltage VINH - - 2 Min. Input, low voltage VINL - - 0.8 Max. Input leakage IIN Digital input capacitance CIN VIN = VGND or V+ 0.001 - - Typ. - - ± 0.1 Max. 3.5 - - Typ. Typ. V μA pF Dynamic Characteristics Break-before-make time Turn-on time Turn-off time tOPEN tON tOFF VS1= VS2 = 8 V RL= 300 , CL = 35 pF VS = 8 V RL = 300 , CL = 35 pF 90 - - - - 50 Min. 150 - - Typ. 190 230 260 Max. 60 - - Typ. 100 110 120 Max. QINj CL = 1 nF, RGEN = 0 , VS = 6 V 6 - - Typ. Off isolation OIRR RL = 50 , CL = 5 pF, 100 kHz -78 - - Typ. Cross talk XTALK Charge injection Insertion loss Bandwidth, -3 dB BW Source off capacitance CS(off) Drain off capacitance CD(off) Drain on capacitance CD(on) RL = 50 , CL = 5 pF, 1 MHz -106 - - Typ. f = 1 MHz, RL = 50 , CL = 5 pF -0.23 - - Typ. RL = 50 , CL = 5 pF 150 - - Typ. 31 - - Typ. 29 - - Typ. 93 - - Typ. f = 1 MHz, VS = 6 V ns pC dB MHz pF Power Requirements Power supply range GND = 0 V, V- = 0 V Digital inputs 0 or V+ V+ = 13.2 V Power supply current I+ IN1 = IN2 = IN3 = IN4 = 5 V S17-0054-Rev. C, 23-Jan-17 ± 5 V min. / ± 16.5 max. V 0.001 - - Typ. - - 1 Max. 54 - - Typ. - 150 190 Max. μA Document Number: 75104 5 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix ELECTRICAL CHARACTERISTICS - ± 5 V supply PARAMETER SYMBOL TEST CONDITIONS UNLESS OTHERWISE SPECIFIED V+ = 5 V, V- = -5 V VINH = 2 V, VINL = 0.8 V +25 °C -40 °C to -40 °C to +85 °C +125 °C TYP. / MAX. UNIT Analog Switch Analog signal range Drain-source on-resistance VANALOG RDS(on) On-resistance flatness Rflat(on) On-resistance matching RDS(on) Switch off leakage current Channel on leakage current IS/Id(off) Id(on) 0 to V+ VS = ± 4.5 V, IS = -10 mA V+ = 4.5 V, V- = -4.5 V VS = ± 4.5 V, IS = -10 mA V+ = 5.5 V, V- = -5.5 V VS = ± 4.5 V, VD = 4.5 V VS = VD = ± 4.5 V V 3 - - Typ. Max. 3.3 4 4.7 0.7 - - Typ. 0.9 1 1.1 Max. 0.04 - - Typ. Max. 0.19 0.22 0.25 ± 0.004 - - Typ. ± 0.5 ± 1.5 ± 10 Max. ± 0.003 - - Typ. ± 0.5 ±2 ± 35 Max. nA Digital Control Input, high voltage VINH - - 2 Min. Input, low voltage VINL - - 0.8 Max. Input leakage IIN Digital input capacitance CIN VIN = VGND or V+ 0.001 - - Typ. - - ± 0.1 Max. 3.5 - - Typ. Typ. V μA pF Dynamic Characteristics Break-before-make time Turn-on time Turn-off time tOPEN tON tOFF VS1= VS2 = 3 V RL= 300 , CL = 35 pF VS = 3 V RL = 300 , CL = 35 pF 110 - - - - 65 Min. 280 - - Typ. 330 400 440 Max. 180 - - Typ. 220 260 280 Max. ns QINj CL = 1 nF, RGEN = 0 , VS = 0 V 7 - - Typ. Off isolation OIRR RL = 50 , CL = 5 pF, 100 kHz -78 - - Typ. Cross talk XTALK RL = 50 , CL = 5 pF, 1 MHz -106 - - Typ. f = 1 MHz, RL = 50 , CL = 5 pF -0.26 - - Typ. % RL = 50 , CL = 5 pF 160 - - Typ. MHz 34 - - Typ. 31 - - Typ. 94 - - Typ. Charge injection Insertion loss Bandwidth, -3 dB BW Source off capacitance CS(off) Drain off capacitance CD(off) Drain on capacitance CD(on) f = 1 MHz, VS = 0 V pC dB pF Power Requirements Power supply range GND = 0 V I+ Digital inputs 0 V or V+ V+ = 5.5 V, V- = -5.5 V Power supply current I- S17-0054-Rev. C, 23-Jan-17 Digital inputs = 0 V or V+ ± 4.5 V min. / ± 16.5 max. V 0.001 - - Typ. - - 1 Max. 0.001 - - Typ. - - 1 Max. μA Document Number: 75104 6 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise noted) Axis Title Axis Title 4.0 3 10000 V± = ± 4.5 V 10000 V± = ± 5 V 2.5 V± = ± 12 V V± = ± 10 V 2.0 1.5 1.0 100 V± = ± 15 V V± = ± 13.5 V +125 °C +85 °C 2 +25 °C -40 °C 1 V± = ± 16.5 V 0.5 IS = -10 mA 0.0 -18 -14 -10 -6 -2 2 6 10 14 18 100 V± = ± 15 V IS = -10 mA 0 10 1000 1st line 2nd line 1000 2nd line RON - On-Resistance (Ω) V± = ± 7 V 3.0 1st line 2nd line 2nd line RON - On-Resistance (Ω) 3.5 -15 -10 10 -5 0 5 10 15 VD - Analog Voltage (V) 2nd line VD - Analog Voltage (V) 2nd line On-Resistance vs. Analog Voltage On-Resistance vs. Temperature Axis Title Axis Title 10000 6 10000 4 V+ = +5 V +125 °C V+ = +12 V V+ = +13.2 V V+ = +15 V V+ = +18 V 3 2 100 V+ = +24 V 1 3 +85 °C 2 -40 °C 100 1 V+ = +12 V IS = -10 mA IS = -10 mA 0 10 0 5 10 15 0 10 0 20 1 2 3 4 6 7 8 9 10 11 12 VD - Analog Voltage (V) 2nd line On-Resistance vs. Analog Voltage On-Resistance vs. Temperature Axis Title Axis Title 5 10000 IS(OFF), VS = -10 V 10000 +125 °C 0 1000 1st line 2nd line IS(OFF), VS = 10 V -5 ID(OFF), VD = -10 V -10 100 ID(ON), VD = -10 V -15 4 +85 °C 1000 3 +25 °C -40 °C 2 100 1 -20 V± = ± 5 V IS = -10 mA V± = ± 15 V -25 10 -20 0 20 40 60 80 100 120 1st line 2nd line ID(ON), VD = 10 V 2nd line RON - On-Resistance (Ω) ID(OFF), VD = 10 V 5 2nd line Leakage Current (nA) 5 VD - Analog Voltage (V) 2nd line 10 -40 1000 +25 °C 1st line 2nd line 1000 2nd line RON - On-Resistance (Ω) V+ = +8 V V+ = +10.8 V 4 1st line 2nd line 2nd line RON - On-Resistance (Ω) 5 0 -5 -4 -3 10 -2 -1 0 1 2 3 4 Temperature (°C) 2nd line VD - Analog Voltage (V) 2nd line Leakage Current vs. Temperature On-Resistance vs. Temperature S17-0054-Rev. C, 23-Jan-17 5 Document Number: 75104 7 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise noted) Axis Title Axis Title IS(OFF), VS = 1 V ID(OFF), VD = 10 V 0 1st line 2nd line 1000 -5 I+ per logic input ID(OFF), VD = 1 V -10 ID(ON), VD = 10 V -15 ID(ON), VD = 1 V 100 V± = ± 16.5 V 200 150 V+ = +13.2 V V- = 0 V 100 100 V± = ± 5.5 V V+ = +12 V -25 10 -20 0 20 40 60 80 0 100 120 10 0 2 4 6 Leakage Current vs. Temperature I+ - Supply Current vs. Logic Level 250 0 1000 1st line 2nd line ID(OFF), VD = -4.5 V -5 ID(ON), VD = 4.5 V -10 100 ID(ON), VD = -4.5 V -15 -20 V± = ± 5 V -25 10 -20 0 20 40 60 80 10000 V+ = +12 V, VS = +8 V, tON 200 1000 150 V± = ± 15 V VS = +10 V, tON 100 V+ = +12 V, VS = +8 V, tOFF 100 50 V± = ± 15 V, VS = +10 V, tOFF 0 -40 100 120 1st line 2nd line IS(OFF), VS = 4.5 V 2nd line tON(EN), tOFF(EN) - Switching Time (ns) 10000 ID(OFF), VD = 4.5 V 5 -20 0 20 40 60 80 Temperature (°C) 2nd line Leakage Current vs. Temperature Switching Time vs. Temperature Axis Title Axis Title V± = ± 15 V V± = ± 5 V 1st line 2nd line 1000 0 -50 100 V+ = +12 V V- = GND -100 -150 10 -5 0 5 10 15 2nd line Loss, OIRR, XTALK (dB) 10000 150 -10 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 100K 10000 Loss 1000 OIRR XTALK 100 V± = ± 15 V 1M 10M 100M 10 1G VS - Analog Voltage (V) 2nd line Frequency (Hz) 2nd line Charge Injection vs. Analog Voltage BW, OIRR, XTALK vs. Frequency S17-0054-Rev. C, 23-Jan-17 10 100 120 Temperature (°C) 2nd line 100 14 Axis Title Axis Title -15 12 V IN (V) 2nd line IS(OFF), VS = -4.5 V 50 10 Temperature (°C) 2nd line 10 -40 8 1st line 2nd line -40 2nd line Leakage Current (nA) 1000 50 -20 2nd line QINJ - Charge Injection (pC) 10000 250 IS(OFF), VS = 10 V 2nd line I+ - Supply Current (μA) 5 2nd line Leakage Current (nA) 300 10000 1st line 2nd line 10 Document Number: 75104 8 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise noted) Axis Title Axis Title 10000 0.1 10000 0.1 V± = ± 5 V TA = 25 °C V± = ± 15 V TA = 25 °C 1000 1st line 2nd line VS = 20 Vp-p 0.01 2nd line THD + N (%) 1000 1st line 2nd line 2nd line THD + N (%) VS = 10 Vp-p 0.01 VS = 5 Vp-p 100 100 VS = 15 Vp-p VS = 2.5 Vp-p VS = 10 Vp-p 0.001 10 200 0.001 10 20K 2K 10 200 2K Frequency (Hz) 2nd line Frequency (Hz) 2nd line THD + N vs. Frequency THD + N vs. Frequency 10 20K Axis Title 10000 1.8 1000 1.6 1st line 2nd line 2nd line VT - Logic Threshold (V) 2.0 VIH VIL 1.4 100 1.2 1.0 10 4 6 8 10 12 14 16 V+ - Supply Voltage (V) 2nd line Logic Threshold vs. Supply Voltage S17-0054-Rev. C, 23-Jan-17 Document Number: 75104 9 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 DG1411E, DG1412E, DG1413E www.vishay.com Vishay Siliconix TEST CIRCUITS V+ VINH Logic Input VINL V+ S Switch Input tr < 5 ns tf < 5 ns 50 % Switch Output D VOUT 0.9 x VOUT IN Logic Input RL 300 Ω GND CL 35 pF Switch Output 0V tOFF tON Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense. CL (includes fixture and stray capacitance) V OUT = V D RL R L + R ON Fig. 1 - Switching Time V+ VOUT V+ Rgen D VOUT S VOUT + IN Vgen IN CL = 1 nF On On Off GND Q= VOUT x CL VIN = 0 - V+ IN depends on switch configuration: input polarity determined by sense of switch. Fig. 2 - Charge Injection V+ V+ 10 nF 10 nF V+ V+ S IN 0 V, 2.4 V D Meter D IN 0 V, 2.4 V RL GND S HP4192A Impedance Analyzer or Equivalent GND f = 1 MHz Analyzer Off Isolation = 20 log Fig. 3 - Off-Isolation VD VS Fig. 4 - Channel Off/On Capacitance Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75104. S17-0054-Rev. C, 23-Jan-17 Document Number: 75104 10 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix QFN 4x4-16L Case Outline (5) (4) VARIATION 1 MILLIMETERS(1) DIM VARIATION 2 MILLIMETERS(1) INCHES INCHES MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. A 0.75 0.85 0.95 0.029 0.033 0.037 0.75 0.85 0.95 0.029 0.033 0.037 A1 0 - 0.05 0 - 0.002 0 - 0.05 0 - 0.002 0.35 0.010 0.014 0.25 0.35 0.010 2.2 0.079 0.087 2.5 2.7 0.098 A3 b 0.20 ref. 0.25 D D2 0.30 0.008 ref. 4.00 BSC 2.0 2.1 0.012 0.20 ref. 0.157 BSC 0.083 0.30 4.00 BSC 2.6 e 0.65 BSC 0.026 BSC 0.65 BSC E 4.00 BSC 0.157 BSC 4.00 BSC E2 2.0 K L 2.1 2.2 0.079 0.20 min. 0.5 0.6 0.083 0.087 2.5 0.008 min. 0.7 0.020 0.024 0.008 ref. 2.6 0.3 0.4 0.014 0.157 BSC 0.102 0.106 0.026 BSC 0.157 BSC 2.7 0.098 0.20 min. 0.028 0.012 0.102 0.106 0.008 min. 0.5 0.012 0.016 N(3) 16 16 16 16 Nd(3) 4 4 4 4 Ne(3) 4 4 4 4 0.020 Notes (1) Use millimeters as the primary measurement. (2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994. (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively. (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip. (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body. (6) Package warpage max. 0.05 mm. ECN: S13-0893-Rev. B, 22-Apr-13 DWG: 5890 Revision: 22-Apr-13 Document Number: 71921 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information Vishay Siliconix TSSOP: 16-LEAD DIMENSIONS IN MILLIMETERS Symbols Min Nom Max A - 1.10 1.20 A1 0.05 0.10 0.15 A2 - 1.00 1.05 0.38 B 0.22 0.28 C - 0.127 - D 4.90 5.00 5.10 E 6.10 6.40 6.70 E1 4.30 4.40 4.50 e - 0.65 - L 0.50 0.60 0.70 L1 0.90 1.00 1.10 y - - 0.10 θ1 0° 3° 6° ECN: S-61920-Rev. D, 23-Oct-06 DWG: 5624 Document Number: 74417 23-Oct-06 www.vishay.com 1 PAD Pattern www.vishay.com Vishay Siliconix RECOMMENDED MINIMUM PAD FOR TSSOP-16 0.193 (4.90) 0.171 0.014 0.026 0.012 (0.35) (0.65) (0.30) (4.35) (7.15) 0.281 0.055 (1.40) Recommended Minimum Pads Dimensions in inches (mm) Revision: 02-Sep-11 1 Document Number: 63550 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Revision: 13-Jun-16 1 Document Number: 91000