Microsemi A3PE1500-1FGG100YPP Proasic3e flash family fpgas with optional soft arm support Datasheet

Revision 13
ProASIC3E Flash Family FPGAs
with Optional Soft ARM Support
Features and Benefits
Pro (Professional) I/O
•
•
•
•
High Capacity
• 600 k to 3 Million System Gates
• 108 to 504 kbits of True Dual-Port SRAM
• Up to 620 User I/Os
Reprogrammable Flash Technology
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS
Process
• Instant On Level 0 Support
• Single-Chip Solution
• Retains Programmed Design when Powered Off
On-Chip User Nonvolatile Memory
• 1 kbit of FlashROM with Synchronous Interfacing
High Performance
• 350 MHz System Performance
• 3.3 V, 66 MHz 64-Bit PCI
In-System Programming (ISP) and Security
• ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption via JTAG (IEEE 1532–compliant)
• FlashLock® Designed to Secure FPGA Contents
Low Power
• Core Voltage for Low Power
• Support for 1.5-V-Only Systems
• Low-Impedance Flash Switches
•
•
•
•
•
•
•
•
•
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks, Each with an Integrated PLL
• Configurable Phase-Shift, Multiply/Divide, Delay Capabilities
and External Feedback
• Wide Input Frequency Range (1.5 MHz to 350 MHz)
SRAMs and FIFOs
• Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizations available)
• True Dual-Port SRAM (except ×18)
• 24 SRAM and FIFO Configurations with Synchronous Operation
up to 350 MHz
High-Performance Routing Hierarchy
•
•
•
•
•
•
700 Mbps DDR, LVDS-Capable I/Os
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
Bank-Selectable I/O Voltages—up to 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS
2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold Sparing I/Os
Programmable Output Slew Rate and Drive Strength
Programmable Input Delay
Schmitt Trigger Option on Single-Ended Inputs
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the ProASIC®3E Family
Segmented, Hierarchical Routing and Clock Structure
Ultra-Fast Local and Long-Line Network
Enhanced High-Speed, Very-Long-Line Network
High-Performance, Low-Skew Global Network
Architecture Supports Ultra-High Utilization
ARM® Processor Support in ProASIC3E FPGAs
• M1 ProASIC3E Devices—Cortex-M1 Soft Processor Available
with or without Debug
Table 1-1 • ProASIC3E Product Family
ProASIC3E Devices
A3PE600
Cortex-M1 Devices 1
A3PE1500
A3PE3000
M1A3PE1500
M1A3PE3000
System Gates
600,000
1,500,000
3,000,000
VersaTiles (D-flip-flops)
13,824
38,400
75,264
RAM Kbits (1,024 bits)
108
270
504
4,608-Bit Blocks
24
60
112
FlashROM Kbits
1
1
1
Secure (AES) ISP
Yes
Yes
Yes
CCCs with Integrated PLLs2
6
6
6
VersaNet Globals3
18
18
18
I/O Banks
Maximum User I/Os
Package Pins
PQFP
FBGA
8
8
8
270
444
620
PQ208
FG256, FG484
PQ208
FG484, FG676
PQ208
FG324, FG484, FG896
Notes:
1. Refer to the Cortex-M1 product brief for more information.
2. The PQ208 package supports six CCCs and two PLLs.
3. Six chip (main) and three quadrant global networks are available.
4. For devices supporting lower densities, refer to the ProASIC3 Flash Family FPGAs datasheet.
January 2013
© 2013 Microsemi Corporation
I
ProASIC3E Flash Family FPGAs
I/Os Per Package1
ProASIC3E Devices
A3PE1500 3
A3PE3000 3
M1A3PE1500
M1A3PE3000
A3PE600
Cortex-M1 Devices 2
Package
Single-Ended I/O1
Differential I/O Pairs
Single-Ended I/O1
Differential I/O Pairs
Single-Ended I/O1
Differential I/O Pairs
I/O Types
PQ208
147
65
147
65
147
65
FG256
165
79
–
–
–
–
FG324
–
–
–
–
221
110
FG484
270
135
280
139
341
168
FG676
–
–
444
222
–
–
FG896
–
–
–
–
620
310
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User’s
Guide to ensure compliance with design and board migration requirements.
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
4. FG256 and FG484 are footprint-compatible packages.
5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per
minibank (group of I/Os).
6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G"
in the part number.
Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions
Package
PQ208
FG256
FG324
FG484
FG676
FG896
28 × 28
17 × 17
19 × 19
23 × 23
27 × 27
31 × 31
784
289
361
529
729
961
Pitch (mm)
0.5
1.0
1.0
1.0
1.0
1.0
Height (mm)
3.40
1.60
1.63
2.23
2.23
2.23
Length × Width (mm\mm)
Nominal Area
(mm2)
ProASIC3E Device Status
ProASIC3E Devices
Status
M1 ProASIC3E Devices
Status
Production
M1A3PE1500
Production
Production
M1A3PE3000
Production
A3PE600
Production
A3PE1500
A3PE3000
II
R evis i o n 13
ProASIC3E Flash Family FPGAs
ProASIC3E Ordering Information
A3PE3000 _
1
FG
G
896
Y
I
Application (Temperature Range)
Blank = Commercial (0°C to +70°C Ambient Temperature)
I = Industrial (–40°C to +85°C Ambient Temperature)
PP = Pre-Production
ES = Engineering Sample (Room Temperature Only)
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Blank = Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS-Compliant (Green) Packaging
Package Type
PQ = Plastic Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Speed Grade
1 = 15% Faster than Standard
2 = 25% Faster than Standard
Part Number
ProASIC3E Devices
A3PE600 = 600,000 System Gates
A3PE1500 = 1,500,000 System Gates
A3PE3000 = 3,000,000 System Gates
ProASIC3E Devices with Cortex-M1
M1A3PE1500 = 1,500,000 System Gates
M1A3PE3000 = 3,000,000 System Gates
R ev i si o n 1 3
III
ProASIC3E Flash Family FPGAs
Temperature Grade Offerings
Package
A3PE600
Cortex-M1 Devices
A3PE1500
A3PE3000
M1A3PE1500
M1A3PE3000
PQ208
C, I
C, I
C, I
FG256
C, I
–
–
FG324
–
–
C, I
FG484
C, I
C, I
C, I
FG676
–
C, I
–
FG896
–
–
C, I
Note: C = Commercial temperature range: 0°C to 70°C ambient temperature
I = Industrial temperature range: –40°C to 85°C ambient temperature
Speed Grade and Temperature Grade Matrix
Temperature Grade
C
1
I2
Std.
–1
–2






Notes:
1. C = Commercial temperature range: 0°C to 70°C ambient temperature
2. I = Industrial temperature range: –40°C to 85°C ambient temperature
References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with
M1 (Cortex-M1).
Contact your local Microsemi SoC Products Group representative for device availability:
http://www.microsemi.com/soc/contact/default.aspx.
IV
Revision 13
ProASIC3E Flash Family FPGAs
Table of Contents
ProASIC3E Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
ProASIC3E DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82
Pin Descriptions and Packaging
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
3-2
3-3
3-4
3-4
3-4
Package Pin Assignments
PQ208
FG256
FG324
FG484
FG676
FG896
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
R ev i si o n 1 3
V
1 – ProASIC3E Device Family Overview
General Description
ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and
features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3E
devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is
reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable
designers to create high-density systems using existing ASIC or FPGA design flows and tools.
ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as
clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have
up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620
user I/Os.
Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have
Microsemi ordering numbers that begin with M1A3PE.
Flash Advantages
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the
industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC
migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement
solution, especially for applications in the consumer, networking/ communications, computing, and
avionics markets.
Security
The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides
a unique combination of reprogrammability and design security without external overhead, advantages
that only an FPGA with nonvolatile flash programming can offer.
ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed intellectual property and configuration data. In
addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the
National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard.
ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them
the most comprehensive programmable logic device security solution available today. ProASIC3E
devices with AES-based security provide a high level of protection for secure, remote field updates over
public networks such as the Internet, and ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves.
Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been used
to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is
unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected
with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best
available security for programmable logic designs.
R ev i si o n 1 3
1 -1
ProASIC3E Device Family Overview
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs
do not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
Instant On
Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature
helps in system component initialization, execution of critical tasks before the processor wakes up, setup
and configuration of memory blocks, clock generation, and bus activity management. The Instant On
feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total
system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these
purposes in a system. In addition, glitches and brownouts in system power will not corrupt the
ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be
reloaded when system power is restored. This enables the reduction or complete removal of the
configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from
the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and
design risk while increasing system reliability and improving system initialization time.
Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based
FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.
Low Power
Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal
choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current
surge and no high-current transition period, both of which occur on many FPGAs.
ProASIC3E devices also have low dynamic power consumption to further maximize power savings.
Advanced Flash Technology
The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
1- 2
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Advanced Architecture
The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The
ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on
page 3):
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory
•
Extensive CCCs and PLLs
•
Pro I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT)
equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile
capability is unique to the ProASIC family of third-generation architecture Flash FPGAs. VersaTiles are
connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the
device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is
possible for virtually any design.
CCC
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Pro I/Os
VersaTile
ISP AES Decryption
Figure 1-1 •
User Nonvolatile
FlashROM
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Charge Pumps
ProASIC3E Device Architecture Overview
R ev i si o n 1 3
1 -3
ProASIC3E Device Family Overview
VersaTiles
The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core
tiles. The ProASIC3E VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-2 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
D-Flip-Flop with Clear or Set
Y
Data
CLK
CLR
Enable D-Flip-Flop with Clear or Set
Data
Y
CLK
D-FF
Y
D-FF
Enable
CLR
Figure 1-2 •
VersaTile Configurations
User Nonvolatile FlashROM
ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can
be used in diverse system applications:
•
Internet protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The
core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored in the FlashROM for a
user design.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
The ProASIC3E development software solutions, Libero® System-on-Chip (SoC) and Designer, have
extensive support for the FlashROM. One such feature is auto-generation of sequential programming
files for applications requiring a unique serial number in each part. Another feature allows the inclusion of
static data for system version control. Data for the FlashROM can be generated quickly and easily using
Libero SoC and Designer software tools. Comprehensive programming file support is also included to
allow for easy programming of large numbers of parts with differing FlashROM contents.
1- 4
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
SRAM and FIFO
ProASIC3E devices have embedded SRAM blocks along their north and south sides. Each variableaspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be
configured with different bit widths on each port. For example, data can be sent through a 4-bit port and
read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port
(ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control
unit contains the counters necessary for generation of the read and write address pointers. The
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
ProASIC3E devices provide designers with very flexible clock conditioning capabilities. Each member of
the ProASIC3E family contains six CCCs, each with an integrated PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides.
To maximize user I/Os, only the center east and west PLLs are available in devices using the PQ208
package. However, all six CCC blocks are still usable; the four corner CCCs allow simple clock delay
operations as well as clock spine access.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz
•
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration.
•
Output duty cycle = 50% ± 1.5% or better
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global
network used
•
Maximum acquisition time = 300 µs
•
Low power consumption of 5 mW
•
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz /
fOUT_CCC)
Global Clocking
ProASIC3E devices have extensive support for multiple clocking domains. In addition to the CCC and
PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high fanout nets.
R ev i si o n 1 3
1 -5
ProASIC3E Device Family Overview
Pro I/Os with Advanced I/O Standards
The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V,
1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended,
differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two
per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is
subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8
to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given
VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that
reference voltage.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
•
Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II)
ProASIC3E banks support M-LVDS with 20 multi-drop points.
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card
in a powered-up system.
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed
when the system is powered up, while the component itself is powered down, or when power supplies
are floating.
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States During
Programming dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-3 on page 1-7).
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings:
1 – I/O is set to drive out logic High
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming
Z -Tri-State: I/O is tristated
1- 6
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Figure 1-3 •
I/O States During Programming Window
6. Click OK to return to the FlashPoint – Programming File Generator window.
I/O States during programming are saved to the ADB and resulting programming files after
completing programming file generation.
R ev i si o n 1 3
1 -7
2 – ProASIC3E DC and Switching Characteristics
General Specifications
DC and switching characteristics for –F speed grade targets are based only on simulation.
The characteristics provided for the –F speed grade are subject to change after establishing FPGA
specifications. Some restrictions might be added and will be reflected in future revisions of this
document. The –F speed grade is only supported in the commercial temperature range.
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any
other conditions beyond those listed under the Recommended Operating Conditions specified in
Table 2-2 on page 2-2 is not implied.
Table 2-1 • Absolute Maximum Ratings
Symbol
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
–0.3 to 1.65
V
DC I/O output buffer supply voltage
–0.3 to 3.75
V
VMV 2
DC I/O input buffer supply voltage
–0.3 to 3.75
V
VI
I/O input voltage
VCCPLL Analog power supply (PLL)
VCCI
2
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
V
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
TSTG 3
Storage temperature
–65 to +150
°C
TJ 3
Junction temperature
+125
°C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2.
2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on
page 3-1 for further information.
3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
R ev i si o n 1 3
2 -1
ProASIC3E DC and Switching Characteristics
Table 2-2 • Recommended Operating Conditions 1
Symbol
Parameter
Commercial
Industrial
Units
TA
Ambient temperature
0 to +70
–40 to +85
°C
TJ
Junction temperature
0 to +85
–40 to +100
°C
VCC
1.5 V DC core supply voltage
1.425 to 1.575
1.425 to 1.575
V
VJTAG
JTAG DC voltage
1.4 to 3.6
1.4 to 3.6
V
3.15 to 3.45
3.15 to 3.45
V
0 to 3.6
0 to 3.6
V
Analog power supply (PLL)
1.425 to 1.575
1.425 to 1.575
V
1.5 V DC supply voltage
1.425 to 1.575
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
2.3 to 2.7
V
3.3 V DC supply voltage
3.0 to 3.6
3.0 to 3.6
V
2.7 to 3.6
2.7 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
VPUMP
Programming voltage
Programming Mode
2
Operation3
VCCPLL
VCCI and VMV
4
3.0 V DC supply voltage
5
LVDS/B-LVDS/M-LVDS differential I/O
LVPECL differential I/O
Notes:
1.
2.
3.
4.
All parameters representing voltages are measured with respect to GND unless otherwise specified.
The programming temperature range supported is Tambient = 0°C to 85°C.
VPUMP can be left floating during normal operation (not programming mode).
The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-13 on page 2-16. VMV and VCCI should be at the same voltage within a given I/O bank.
VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on
page 3-1 for further information.
5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.
6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.
Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1
Product Grade
Commercial
Industrial
Programming Program Retention
Maximum Storage
Cycles
(biased/unbiased) Temperature TSTG (°C) 2
500
20 years
110
500
20 years
110
Maximum Operating Junction
Temperature TJ (°C) 2
100
100
Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating
conditions and absolute limits.
2- 2
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-4 • Overshoot and Undershoot Limits 1
Average VCCI–GND Overshoot or
Undershoot Duration
as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot2
2.7 V or less
10%
1.4 V
5%
1.49 V
3V
10%
1.1 V
5%
1.19 V
10%
0.79 V
5%
0.88 V
10%
0.45 V
5%
0.54 V
VCCI and VMV
3.3 V
3.6 V
Notes:
1. Based on reliability requirements at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the
maximum overshoot/undershoot has to be reduced by 0.15 V.
3. This table does not provide PCI overshoot/undershoot limits.
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every ProASIC®3E device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1
on page 2-4.
There are five regions to consider during power-up.
ProASIC3E I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
R ev i si o n 1 3
2 -3
ProASIC3E DC and Switching Characteristics
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper
power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed
brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on
page 2-4 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25
V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down
Behavior of Low Power Flash Devices" chapter of the ProASIC3E FPGA Fabric User’s Guide for
information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Figure 2-1 •
2- 4
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
I/O State as a Function of VCCI and VCC Voltage Levels
R ev isio n 1 3
VCCI
ProASIC3E Flash Family FPGAs
Thermal Characteristics
Introduction
The temperature variable in Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the
chip junction to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
EQ 1
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5.
P = Power dissipation
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is
ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction
temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation
allowed for an 896-pin FBGA package at commercial temperature and in still air.
110C – 70C- = 5.88 W
Max. junction temp. (C) – Max. ambient temp. (C) = ---------------------------------Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------13.6C/W
 ja (C/W)
EQ 2
Table 2-5 • Package Thermal Resistivities
ja
Pin Count
jc
Still Air
200 ft./min.
500 ft./min.
Units
Plastic Quad Flat Package (PQFP)
208
8.0
26.1
22.5
20.8
C/W
Plastic Quad Flat Package (PQFP) with
embedded heat spreader
208
3.8
16.2
13.3
11.9
C/W
Fine Pitch Ball Grid Array (FBGA)
256
3.8
26.9
22.8
21.5
C/W
484
3.2
20.5
17.0
15.9
C/W
676
3.2
16.4
13.0
12.0
C/W
896
2.4
13.6
10.4
9.4
C/W
Package Type
Temperature and Voltage Derating Factors
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, VCC = 1.425 V)
Junction Temperature (°C)
Array Voltage
VCC (V)
–40°C
0°C
25°C
70°C
85°C
100°C
1.425
0.87
0.92
0.95
1.00
1.02
1.04
1.500
0.83
0.88
0.90
0.95
0.97
0.98
1.575
0.80
0.85
0.87
0.92
0.93
0.95
R ev i si o n 1 3
2 -5
ProASIC3E DC and Switching Characteristics
Calculating Power Dissipation
Quiescent Supply Current
Table 2-7 • Quiescent Supply Current Characteristics
A3PE600
A3PE1500
A3PE3000
5 mA
12 mA
25 mA
Typical (25°C)
Maximum (Commercial)
30 mA
70 mA
150 mA
Maximum (Industrial)
45 mA
105 mA
225 mA
Notes:
1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in
Table 2-8 and Table 2-9 on page 2-7.
2. –F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O
leakage.
Power per I/O Pin
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
VMV
(V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3
–
17.39
3.3
–
25.51
3.3
–
16.34
3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger3
3.3
–
24.49
2.5 V LVCMOS
2.5
–
5.76
2.5 V LVCMOS – Schmitt trigger
2.5
–
7.16
1.8 V LVCMOS
1.8
–
2.72
1.8 V LVCMOS – Schmitt trigger
1.8
–
2.80
1.5 V LVCMOS (JESD8-11)
1.5
–
2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger
1.5
–
2.00
3.3 V PCI
3.3
–
18.82
3.3 V PCI – Schmitt trigger
3.3
–
20.12
3.3 V PCI-X
3.3
–
18.82
3.3 V PCI-X – Schmitt trigger
3.3
–
20.12
3.3 V GTL
3.3
2.90
8.23
2.5 V GTL
2.5
2.13
4.78
3.3 V GTL+
3.3
2.81
4.14
2.5 V GTL+
2.5
2.57
3.71
Single-Ended
3.3 V LVTTL/LVCMOS
3.3 V LVTTL/LVCMOS – Schmitt trigger
3.3 V LVTTL/LVCMOS Wide
Range3
Voltage-Referenced
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.
2- 6
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued)
VMV
(V)
Static Power
PDC2 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
HSTL (I)
1.5
0.17
2.03
HSTL (II)
1.5
0.17
2.03
SSTL2 (I)
2.5
1.38
4.48
SSTL2 (II)
2.5
1.38
4.48
SSTL3 (I)
3.3
3.21
9.26
SSTL3 (II)
3.3
3.21
9.26
LVDS/B-LVDS/M-LVDS
2.5
2.26
1.50
LVPECL
3.3
5.71
2.17
Differential
Notes:
1. PDC2 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
CLOAD
(pF)
VCCI
(V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
35
3.3
–
474.70
Single-Ended
3.3 V LVTTL/LVCMOS
4
35
3.3
–
474.70
2.5 V LVCMOS
35
2.5
–
270.73
1.8 V LVCMOS
35
1.8
–
151.78
1.5 V LVCMOS (JESD8-11)
35
1.5
–
104.55
3.3 V LVTTL/LVCMOS Wide Range
3.3 V PCI
10
3.3
–
204.61
3.3 V PCI-X
10
3.3
–
204.61
10
3.3
–
24.08
Voltage-Referenced
3.3 V GTL
2.5 V GTL
10
2.5
–
13.52
3.3 V GTL+
10
3.3
–
24.10
2.5 V GTL+
10
2.5
–
13.54
HSTL (I)
20
1.5
7.08
26.22
HSTL (II)
20
1.5
13.88
27.22
SSTL2 (I)
30
2.5
16.69
105.56
SSTL2 (II)
30
2.5
25.91
116.60
Notes:
1.
2.
3.
4.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC3 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCC and VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
R ev i si o n 1 3
2 -7
ProASIC3E DC and Switching Characteristics
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued)
CLOAD
(pF)
VCCI
(V)
Static Power
PDC3 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
SSTL3 (I)
30
3.3
26.02
114.87
SSTL3 (II)
30
3.3
42.21
131.76
LVDS/B-LVDS/M-LVDS
–
2.5
7.70
89.62
LVPECL
–
3.3
19.42
168.02
Differential
Notes:
1.
2.
3.
4.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC3 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCC and VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
Power Consumption of Various Internal Resources
Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices
Device-Specific Dynamic Contributions
(µW/MHz)
Parameter
Definition
A3PE600
A3PE1500
A3PE3000
PAC1
Clock contribution of a Global Rib
12.77
16.21
19.7
PAC2
Clock contribution of a Global Spine
1.85
3.06
4.16
PAC3
Clock contribution of a VersaTile row
0.88
PAC4
Clock contribution of a VersaTile used as a sequential
module
0.12
PAC5
First contribution of a VersaTile used as a sequential
module
0.07
PAC6
Second contribution of a VersaTile used as a sequential
module
0.29
PAC7
Contribution of a VersaTile used as a combinatorial
module
0.29
PAC8
Average contribution of a routing net
0.70
PAC9
Contribution of an I/O input pin (standard-dependent)
See Table 2-8 on page 2-6.
PAC10
Contribution of an I/O output pin (standard-dependent)
See Table 2-9 on page 2-7
PAC11
Average contribution of a RAM block during a read
operation
25.00
PAC12
Average contribution of a RAM block during a write
operation
30.00
PAC13
Static PLL contribution
PAC14
Dynamic contribution for PLL
2.55 mW
2.60
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
calculator or SmartPower in Libero SoC.
2- 8
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on
page 2-11.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on
page 2-11.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-12 on page 2-11. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric
User's Guide.
NROW is the number of VersaTile rows used in the design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric
User's Guide.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on
page 2-11.
FCLK is the global clock signal frequency.
R ev i si o n 1 3
2 -9
ProASIC3E DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on
page 2-11.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on
page 2-11.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-11.
1 is the I/O buffer enable rate—guidelines are provided in Table 2-12 on page 2-11.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2
is the RAM enable rate for read operations—guidelines are provided in Table 2-12 on
page 2-11.
FWRITE-CLOCK is the memory write clock frequency.
3 is the
RAM enable rate for write operations—guidelines are provided in Table 2-12 on
page 2-11.
PLL Contribution—PPLL
PPLL = PAC13 + PAC14 * FCLKOUT
FCLKOUT is the output clock frequency.1
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output
clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.
2- 10
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
•
The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock
frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation
Component
1
2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation
Component
1
2
3
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
R ev i si o n 1 3
2- 11
ProASIC3E DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
Y
tPD = 0.56 ns
LVPECL
tPD = 0.49 ns
tDP = 1.36 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
tDP = 2.74 ns
tPD = 0.87 ns
Combinational Cell
LVTTL/LVCMOS
Output drive strength = 12 mA
High slew rate
I/O Module
(Non-Registered)
Y
I/O Module
(Registered)
tPY = 1.22 ns
tDP = 2.39 ns
LVTTL/LVCMOS
Output drive strength = 24 mA
High slew rate
tPD = 0.51 ns
LVPECL
D
Q
Combinational Cell
I/O Module
(Non-Registered)
Y
tICLKQ = 0.24 ns
tISUD = 0.26 ns
tDP = 3.30 ns
tPD = 0.47 ns
LVCMOS 1.5V
Output drive strength = 12 mA
High slew
Input LVTTL/LVCMOS
Clock
Register Cell
tPY = 0.90 ns
D
Combinational Cell
Y
Q
I/O Module
(Non-Registered)
tPY = 1.36 ns
2- 12
Q
Input LVTTL/LVCMOS
Clock
D
Q
GTL+ 3.3V
tDP = 1.53 ns
tCLKQ = 0.55 ns
tSUD = 0.43 ns
tPY = 0.90 ns
Figure 2-2 •
D
tPD = 0.47 ns
tCLKQ = 0.55 ns
tSUD = 0.43 ns
LVDS,
BLVDS,
M-LVDS
I/O Module
(Registered)
Register Cell
tCLKQ = 0.59 ns
tSUD = 0.31 ns
Input LVTTL/LVCMOS
Clock
tPY = 0.90 ns
Timing Model
Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case
VCC = 1.425 V
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
To Array
I/O Interface
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
VIH
Vtrip
Vtrip
PAD
VIL
VCC
50%
50%
Y
GND
tPY
tPY
(R)
(F)
tPYS
tPYS
(R)
(F)
VCC
50%
DIN
GND
Figure 2-3 •
50%
tDIN
tDIN
(R)
(F)
Input Buffer Timing Model and Delays (example)
R ev i si o n 1 3
2- 13
ProASIC3E DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
(R)
D
50%
tDOUT
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-4 •
2- 14
Output Buffer Model and Delays (example)
R ev i sio n 1 3
tDP
(F)
ProASIC3E Flash Family FPGAs
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
tEOUT (F)
50%
E
tEOUT (R)
VCC
50%
EOUT
tZL
PAD
50%
50%
tHZ
Vtrip
tZH
50%
tLZ
VCCI
90% VCCI
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
tEOUT (R)
50%
tEOUT (F)
VCC
EOUT
PAD
50%
tZLS
VOH
Vtrip
Figure 2-5 •
50%
50%
tZHS
Vtrip
VOL
Tristate Output Buffer Timing Model and Delays (example)
R ev i si o n 1 3
2- 15
ProASIC3E DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions
Equivalent
Software
Default
Drive
Drive
Strength Slew Min.
I/O Standard Strength Option1 Rate V
VIL
VIH
VOL
VOH
IOL3 IOH3
mA mA
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2.4
3.3 V LVTTL /
3.3 V
LVCMOS
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
3.3 V
LVCMOS
Wide Range
100 µA
12 mA
High –0.3
0.8
2
3.6
0.2
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
3.6
0.7
1.8 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6
0.45
1.5 V
LVCMOS
12 mA
12 mA
High –0.3 0.30 * VCCI
3.3 V PCI
0.7 * VCCI
12
12
VCCI – 0.2 0.1
0.1
1.7
12
12
VCCI – 0.45 12
12
3.6 0.25 * VCCI 0.75 * VCCI 12
12
Per PCI Specification
3.3 V PCI-X
Per PCI-X Specification
3.3 V GTL
20 mA2
20 mA2
High –0.3 VREF – 0.05 VREF + 0.05 3.6
2.5 V GTL
20
mA2
mA2
High –0.3 VREF – 0.05 VREF + 0.05 3.6
0.4
–
20
20
3.3 V GTL+
35 mA
35 mA
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.6
–
35
35
2.5 V GTL+
33 mA
33 mA
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.6
–
33
33
20
0.4
–
20
20
HSTL (I)
8 mA
8 mA
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.4
VCCI – 0.4
8
8
HSTL (II)
15 mA2
15 mA2
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.4
VCCI – 0.4
15
15
SSTL2 (I)
15 mA
15 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.54
VCCI – 0.62 15
15
SSTL2 (II)
18 mA
18 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.35
VCCI – 0.43 18
18
SSTL3 (I)
14 mA
14 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.7
VCCI – 1.1
14
14
SSTL3 (II)
21 mA
21 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.5
VCCI – 0.9
21
21
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Output drive strength is below JEDEC specification.
3. Currents are measured at 85°C junction temperature.
4. Output Slew Rates can be extracted from IBIS Models, located at
http://www.microsemi.com/soc/download/ibis/default.aspx.
2- 16
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-14 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
Commercial1
Industrial2
IIL3
IIH4
IIL3
IIH4
DC I/O Standards
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
3.3 V LVCMOS Wide Range
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
1.5 V LVCMOS
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
3.3 V GTL
10
10
15
15
2.5 V GTL
10
10
15
15
3.3 V GTL+
10
10
15
15
2.5 V GTL+
10
10
15
15
HSTL (I)
10
10
15
15
HSTL (II)
10
10
15
15
SSTL2 (I)
10
10
15
15
SSTL2 (II)
10
10
15
15
SSTL3 (I)
10
10
15
15
SSTL3 (II)
10
10
15
15
Notes:
1. Commercial range (0°C < TA < 70°C)
2. Industrial range (–40°C < TA < 85°C)
3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN <
VIL.
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI.
Input current is larger when operating outside recommended ranges.
R ev i si o n 1 3
2- 17
ProASIC3E DC and Switching Characteristics
Summary of I/O Timing Characteristics – Default I/O Software
Settings
Table 2-15 • Summary of AC Measuring Points
Input Reference Voltage Board Termination Measuring Trip Point
(VREF_TYP)
Voltage (VTT_REF)
(Vtrip)
Standard
3.3 V LVTTL
LVCMOS
/
3.3
V
–
–
1.4 V
3.3 V LVCMOS Wide Range
–
–
1.4 V
2.5 V LVCMOS
–
–
1.2 V
1.8 V LVCMOS
–
–
0.90 V
1.5 V LVCMOS
–
–
0.75 V
3.3 V PCI
–
–
0.285 * VCCI (RR)
0.615 * VCCI (FF))
3.3 V PCI-X
–
–
0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V GTL
0.8 V
1.2 V
VREF
2.5 V GTL
0.8 V
1.2 V
VREF
3.3 V GTL+
1.0 V
1.5 V
VREF
2.5 V GTL+
1.0 V
1.5 V
VREF
HSTL (I)
0.75 V
0.75 V
VREF
HSTL (II)
0.75 V
0.75 V
VREF
SSTL2 (I)
1.25 V
1.25 V
VREF
SSTL2 (II)
1.25 V
1.25 V
VREF
SSTL3 (I)
1.5 V
1.485 V
VREF
SSTL3 (II)
1.5 V
1.485 V
VREF
LVDS
–
–
Cross point
LVPECL
–
–
Cross point
Table 2-16 • I/O AC Parameter Definitions
Parameter
2- 18
Definition
tDP
Data to Pad delay through the Output Buffer
tPY
Pad to Data delay through the Input Buffer with Schmitt trigger disabled
tDOUT
Data to Output Buffer delay through the I/O interface
tEOUT
Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer to Data delay through the I/O interface
tPYS
Pad to Data delay through the Input Buffer with Schmitt trigger enabled
tHZ
Enable to Pad delay through the Output Buffer—High to Z
tZH
Enable to Pad delay through the Output Buffer—Z to High
tLZ
Enable to Pad delay through the Output Buffer—Low to Z
tZL
Enable to Pad delay through the Output Buffer—Z to Low
tZHS
Enable to Pad delay through the Output Buffer with delayed enable—Z to High
tZLS
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
2.5 V LVCMOS
12
12
High 35
–
0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28
1.8 V LVCMOS
12
12
High 35
–
0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98
1.5 V LVCMOS
12
12
High 35
–
3.3 V PCI
tZHS (ns)
0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79
tZLS (ns)
–
tHZ (ns)
High 35
tLZ (ns)
12
tZH (ns)
100 µA
tZL (ns)
3.3 V LVCMOS
Wide Range2
tEOUT (ns)
0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81
tPYS (ns)
–
tPY (ns)
High 35
tDIN (ns)
12
tDP (ns)
12
tDOUT (ns)
External Resistor ()
3.3 V LVTTL /
3.3 V LVCMOS
I/O Standard
Equivalent
Software
Drive
Default
Strength
Drive
(mA)
Strength
Option)1
Slew Rate
Capacitive Load (pF)
Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings
–2 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37
3
0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16
Per PCI
spec
–
High 10
25
Per PCI-X
spec
–
High 10
253 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16
3.3 V GTL
20 4
–
High 10
25
0.45 1.55 0.03 2.19
– 0.32 1.52 1.55
–
– 3.19 3.22
2.5 V GTL
20 4
–
High 10
25
0.45 1.59 0.03 1.83
– 0.32 1.61 1.59
–
– 3.28 3.26
3.3 V GTL+
35
–
High 10
25
0.45 1.53 0.03 1.19
– 0.32 1.56 1.53
–
– 3.23 3.20
2.5 V GTL+
33
–
High 10
25
0.45 1.65 0.03 1.13
– 0.32 1.68 1.57
–
– 3.35 3.24
HSTL (I)
8
–
High 20
50
0.49 2.37 0.03 1.59
– 0.32 2.42 2.35
–
– 4.09 4.02
HSTL (II)
15 4
–
High 20
25
0.49 2.26 0.03 1.59
– 0.32 2.30 2.03
–
– 3.97 3.70
SSTL2 (I)
15
–
High 30
50
0.49 1.59 0.03 1.00
– 0.32 1.62 1.38
–
– 3.29 3.05
SSTL2 (II)
18
–
High 30
25
0.49 1.62 0.03 1.00
– 0.32 1.65 1.32
–
– 3.32 2.99
SSTL3 (I)
14
–
High 30
50
0.49 1.72 0.03 0.93
– 0.32 1.75 1.37
–
– 3.42 3.04
SSTL3 (II)
21
–
High 30
25
0.49 1.54 0.03 0.93
– 0.32 1.57 1.25
–
– 3.24 2.92
LVDS/B-LVDS/
M-LVDS
24
–
High
–
–
0.49 1.40 0.03 1.36
–
–
–
–
–
–
–
–
LVPECL
24
–
High
–
–
0.49 1.36 0.03 1.22
–
–
–
–
–
–
–
–
3.3 V PCI-X
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8b specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-37 for
connectivity. This resistor is not required during normal operation.
4. Output drive strength is below JEDEC specification.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5..
R ev i si o n 1 3
2- 19
ProASIC3E DC and Switching Characteristics
Detailed I/O DC Characteristics
Table 2-18 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
Table 2-19 • I/O Output Buffer Maximum Resistances1
Standard
3.3 V LVTTL / 3.3 V LVCMOS
Drive Strength
RPULL-DOWN ()2
RPULL-UP ()3
4 mA
100
300
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
100 µA
Same as regular
3.3 V LVCMOS
Same as regular
3.3 V LVCMOS
4 mA
100
200
8 mA
50
100
12 mA
25
50
16 mA
20
40
24 mA
11
22
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
12 mA
20
22
16 mA
20
22
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
Per PCI/PCI-X
specification
25
75
3.3 V GTL
20 mA 4
11
–
2.5 V GTL
mA 4
14
–
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
20
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design
considerations and detailed output buffer resistances, use the corresponding IBIS models located on the
Microsemi SoC Products Group website at www.microsemi.com/soc/techdocs/models/ibis.html.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
4. Output drive strength is below JEDEC specification.
2- 20
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-19 • I/O Output Buffer Maximum Resistances1 (continued)
Drive Strength
RPULL-DOWN ()2
RPULL-UP ()3
3.3 V GTL+
35 mA
12
–
2.5 V GTL+
33 mA
15
–
HSTL (I)
8 mA
50
50
25
25
Standard
HSTL (II)
15
mA 4
SSTL2 (I)
15 mA
27
31
SSTL2 (II)
18 mA
13
15
SSTL3 (I)
14 mA
44
69
SSTL3 (II)
21 mA
18
32
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design
considerations and detailed output buffer resistances, use the corresponding IBIS models located on the
Microsemi SoC Products Group website at www.microsemi.com/soc/techdocs/models/ibis.html.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
4. Output drive strength is below JEDEC specification.
Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R((WEAK PULL-UP)1
()
R(WEAK PULL-DOWN)2
()
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 k
45 k
10 k
45 k
3.3 V (Wide
Range I/Os)
10 k
45 k
10 k
45 k
2.5 V
11 k
55 k
12 k
74 k
1.8 V
18 k
70 k
17 k
110 k
1.5 V
19 k
90 k
19 k
140 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)
R ev i si o n 1 3
2- 21
ProASIC3E DC and Switching Characteristics
Table 2-21 • I/O Short Currents IOSH/IOSL
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
Drive Strength
IOSH (mA)*
IOSL (mA)*
4 mA
25
27
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 µA
Same as regular
3.3 V LVCMOS
Same as regular
3.3 V LVCMOS
4 mA
16
18
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
Notes:
1. TJ = 100°C
2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength
selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide
range as specified in the JESD8b specification.
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.
Table 2-22 • Duration of Short Circuit Event Before Failure
Temperature
2- 22
Time before Failure
–40°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-23 • Schmitt Trigger Input Hysteresis
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers
Input Buffer Configuration
Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)
240 mV
2.5 V LVCMOS (Schmitt trigger mode)
140 mV
1.8 V LVCMOS (Schmitt trigger mode)
80 mV
1.5 V LVCMOS (Schmitt trigger mode)
60 mV
Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*
Input Rise/Fall Time
(min.)
Input Rise/Fall Time (max.)
Reliability
LVTTL/LVCMOS
(Schmitt trigger disabled)
No requirement
10 ns *
20 years
(110°C)
LVTTL/LVCMOS
(Schmitt trigger enabled)
No requirement
No requirement, but input noise
voltage cannot exceed Schmitt
hysteresis.
20 years
(110°C)
HSTL/SSTL/GTL
No requirement
10 ns *
10 years
(100°C)
LVDS/B-LVDS/M-LVDS/
LVPECL
No requirement
10 ns *
10 years
(100°C)
Input Buffer
Note: *For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin
Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User’s Guide. The maximum input
rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the
rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends
signal integrity evaluation/characterization of the system to ensure that there is no excessive noise
coupling into input signals.
R ev i si o n 1 3
2- 23
ProASIC3E DC and Switching Characteristics
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is
supported as part of the 3.3 V LVTTL support.
Table 2-25 • Minimum and Maximum DC Input and Output Levels
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.,
V
Max.
V
Max.
V
Min.
V
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
27
25
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
127
132
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
181
268
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-6 •
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
3.3
1.4
–
35
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
2- 24
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-27 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
7.88
0.04
1.20
1.57
0.43
8.03
6.70
2.69
2.59
10.26
8.94
ns
–1
0.56
6.71
0.04
1.02
1.33
0.36
6.83
5.70
2.29
2.20
8.73
7.60
ns
–2
0.49
5.89
0.03
0.90
1.17
0.32
6.00
5.01
2.01
1.93
7.67
6.67
ns
Std.
0.66
5.08
0.04
1.20
1.57
0.43
5.17
4.14
3.05
3.21
7.41
6.38
ns
–1
0.56
4.32
0.04
1.02
1.33
0.36
4.40
3.52
2.59
2.73
6.30
5.43
ns
–2
0.49
3.79
0.03
0.90
1.17
0.32
3.86
3.09
2.28
2.40
5.53
4.76
ns
Std.
0.66
3.67
0.04
1.20
1.57
0.43
3.74
2.87
3.28
3.61
5.97
5.11
ns
–1
0.56
3.12
0.04
1.02
1.33
0.36
3.18
2.44
2.79
3.07
5.08
4.34
ns
–2
0.49
2.74
0.03
0.90
1.17
0.32
2.79
2.14
2.45
2.70
4.46
3.81
ns
Std.
0.66
3.46
0.04
1.20
1.57
0.43
3.53
2.61
3.33
3.72
5.76
4.84
ns
–1
0.56
2.95
0.04
1.02
1.33
0.36
3.00
2.22
2.83
3.17
4.90
4.12
ns
–2
0.49
2.59
0.03
0.90
1.17
0.32
2.63
1.95
2.49
2.78
4.30
3.62
ns
Std.
0.66
3.21
0.04
1.20
1.57
0.43
3.27
2.16
3.39
4.13
5.50
4.39
ns
–1
0.56
2.73
0.04
1.02
1.33
0.36
2.78
1.83
2.88
3.51
4.68
3.74
ns
–2
0.49
2.39
0.03
0.90
1.17
0.32
2.44
1.61
2.53
3.08
4.11
3.28
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
11.01
0.04 1.20 1.57
0.43
11.21
9.05
2.69 2.44
13.45
11.29
ns
–1
0.56
9.36
0.04 1.02 1.33
0.36
9.54
7.70
2.29 2.08
11.44
9.60
ns
–2
0.49
8.22
0.03 0.90 1.17
0.32
8.37
6.76
2.01 1.82
10.04
8.43
ns
Std.
0.66
7.86
0.04 1.20 1.57
0.43
8.01
6.44
3.04 3.06
10.24
8.68
ns
–1
0.56
6.69
0.04 1.02 1.33
0.36
6.81
5.48
2.58 2.61
8.71
7.38
ns
–2
0.49
5.87
0.03 0.90 1.17
0.32
5.98
4.81
2.27 2.29
7.65
6.48
ns
Std.
0.66
6.03
0.04 1.20 1.57
0.43
6.14
5.02
3.28 3.47
8.37
7.26
ns
–1
0.56
5.13
0.04 1.02 1.33
0.36
5.22
4.27
2.79 2.95
7.12
6.17
ns
–2
0.49
4.50
0.03 0.90 1.17
0.32
4.58
3.75
2.45 2.59
6.25
5.42
ns
Std.
0.66
5.62
0.04 1.20 1.57
0.43
5.72
4.72
3.32 3.58
7.96
6.96
ns
–1
0.56
4.78
0.04 1.02 1.33
0.36
4.87
4.02
2.83 3.04
6.77
5.92
ns
–2
0.49
4.20
0.03 0.90 1.17
0.32
4.27
3.53
2.48 2.67
5.94
5.20
ns
Std.
0.66
5.24
0.04 1.20 1.57
0.43
5.34
4.69
3.39 3.96
7.58
6.93
ns
–1
0.56
4.46
0.04 1.02 1.33
0.36
4.54
3.99
2.88 3.37
6.44
5.89
ns
–2
0.49
3.92
0.03 0.90 1.17
0.32
3.99
3.50
2.53 2.96
5.66
5.17
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 25
ProASIC3E DC and Switching Characteristics
3.3 V LVCMOS Wide Range
Table 2-29 • Minimum and Maximum DC Input and Output Levels
3.3 V
LVCMOS
Wide
Range
Equivalent
Software
Default
Drive
Strength
Option1
Min.
V
Max.
V
Min.
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
0.8
100 µA
6 mA
–0.3
100 µA
8 mA
100 µA
100 µA
100 µA
Drive
Strength
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Max.
V
Max.
V
Min.
V
µA µA
Max.
mA4
Max.
mA4
µA5 µA5
2
3.6
0.2
VDD – 0.2 100 100
27
25
10
10
2
3.6
0.2
VDD – 0.2 100 100
27
25
10
10
0.8
2
3.6
0.2
VDD – 0.2 100 100
54
51
10
10
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
54
51
10
10
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
109
103
10
10
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
127
132
10
10
24 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
181
268
10
10
VIL
VIH
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is
larger when operating outside recommended ranges.
4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-7 •
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
3.3
1.4
–
35
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
2- 26
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-31 • 3.3 V LVCMOS Wide Range High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Equivalent
Software
Default
Drive
Speed
Drive
Strength
Grade tDOUT
Strength Option1
100 µA
100 µA
100 µA
100 µA
100 µA
4 mA
8 mA
12 mA
16 mA
24 mA
tDP
tDIN
tPY tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
Std.
0.66
12.19 0.04 1.83 2.38 0.43 12.19 10.17 4.16 4.00 15.58 13.57
ns
–1
0.56
10.37 0.04 1.55 2.02 0.36 10.37 8.66 3.54 3.41 13.26 11.54
ns
–2
0.49
9.10
0.03 1.36 1.78 0.32
9.10
7.60 3.11 2.99 11.64 10.13
ns
Std.
0.66
7.85
0.04 1.83 2.38 0.43
7.85
6.29 4.71 4.97 11.24 9.68
ns
–1
0.56
6.68
0.04 1.55 2.02 0.36
6.68
5.35 4.01 4.22 9.57
8.24
ns
–2
0.49
5.86
0.03 1.36 1.78 0.32
5.86
4.70 3.52 3.71 8.40
7.23
ns
Std.
0.66
5.67
0.04 1.83 2.38 0.43
5.67
4.36 5.06 5.59 9.07
7.75
ns
–1
0.56
4.82
0.04 1.55 2.02 0.36
4.82
3.71 4.31 4.75 7.71
6.59
ns
–2
0.49
4.24
0.03 1.36 1.78 0.32
4.24
3.25 3.78 4.17 6.77
5.79
ns
Std.
0.66
5.35
0.04 1.83 2.38 0.43
5.35
3.96 5.15 5.76 8.75
7.35
ns
–1
0.56
4.55
0.04 1.55 2.02 0.36
4.55
3.36 4.38 4.90 7.44
6.25
ns
–2
0.49
4.00
0.03 1.36 1.78 0.32
4.00
2.95 3.85 4.30 6.53
5.49
ns
Std.
0.66
4.96
0.04 1.83 2.38 0.43
4.96
3.27 5.23 6.38 8.35
6.67
ns
–1
0.56
4.22
0.04 1.55 2.02 0.36
4.22
2.78 4.45 5.43 7.11
5.67
ns
–2
0.49
3.70
0.03 1.36 1.78 0.32
3.70
2.44 3.91 4.76 6.24
4.98
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Software default selection highlighted in gray.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 27
ProASIC3E DC and Switching Characteristics
Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Equivalent
Software
Default
Drive
Speed
Drive
Strength
Grade tDOUT
Strength Option1
100 µA
100 µA
100µA
100 µA
100 µA
4 mA
8 mA
12 mA
16 mA
24 mA
tDP
tDIN
tPY tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
Std.
0.66
17.02 0.04 1.83 2.38 0.43 17.02 13.74 4.16 3.78 20.42 17.14
ns
–1
0.56
14.48 0.04 1.55 2.02 0.36 14.48 11.69 3.54 3.21 17.37 14.58
ns
–2
0.49
12.71 0.03 1.36 1.78 0.32 12.71 10.26 3.11 2.82 15.25 12.80
ns
Std.
0.66
12.16 0.04 1.83 2.38 0.43 12.16 9.78 4.70 4.74 15.55 13.17
ns
–1
0.56
10.34 0.04 1.55 2.02 0.36 10.34 8.32 4.00 4.03 13.23 11.20
ns
–2
0.49
9.08
0.03 1.36 1.78 0.32
9.08
7.30 3.51 3.54 11.61 9.84
ns
Std.
0.66
9.32
0.04 1.83 2.38 0.43
9.32
7.62 5.06 5.36 12.71 11.02
ns
–1
0.56
7.93
0.04 1.55 2.02 0.36
7.93
6.48 4.31 4.56 10.81 9.37
ns
–2
0.49
6.96
0.03 1.36 1.78 0.32
6.96
5.69 3.78 4.00 9.49
8.23
ns
Std.
0.66
8.69
0.04 1.83 2.38 0.43
8.69
7.17 5.14 5.53 12.08 10.57
ns
–1
0.56
7.39
0.04 1.55 2.02 0.36
7.39
6.10 4.37 4.71 10.28 8.99
ns
–2
0.49
6.49
0.03 1.36 1.78 0.32
6.49
5.36 3.83 4.13 9.02
7.89
ns
Std.
0.66
8.11
0.04 1.83 2.38 0.43
8.11
7.13 5.23 6.13 11.50 10.52
ns
–1
0.56
6.90
0.04 1.55 2.02 0.36
6.90
6.06 4.45 5.21 9.78
8.95
ns
–2
0.49
6.05
0.03 1.36 1.78 0.32
6.05
5.32 3.91 4.57 8.59
7.86
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. Software default selection highlighted in gray.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 28
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications.
Table 2-33 • Minimum and Maximum DC Input and Output Levels
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.,
V
Min.
V
4 mA
–0.3
0.7
1.7
3.6
0.7
1.7
4
4
18
16
10
10
8 mA
–0.3
0.7
1.7
3.6
0.7
1.7
8
8
37
32
10
10
12 mA
–0.3
0.7
1.7
3.6
0.7
1.7
12
12
74
65
10
10
16 mA
–0.3
0.7
1.7
3.6
0.7
1.7
16
16
87
83
10
10
24 mA
–0.3
0.7
1.7
3.6
0.7
1.7
24
24
124
169
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-8 •
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
2.5
1.2
–
35
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
R ev i si o n 1 3
2- 29
ProASIC3E DC and Switching Characteristics
Timing Characteristics
Table 2-35 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
8.82
0.04
1.51
1.66
0.43
8.13
8.82
2.72
2.29
10.37
11.05
ns
–1
0.56
7.50
0.04
1.29
1.41
0.36
6.92
7.50
2.31
1.95
8.82
9.40
ns
–2
0.49
6.58
0.03
1.13
1.24
0.32
6.07
6.58
2.03
1.71
7.74
8.25
ns
Std.
0.66
5.27
0.04
1.51
1.66
0.43
5.27
5.27
3.10
3.03
7.50
7.51
ns
–1
0.56
4.48
0.04
1.29
1.41
0.36
4.48
4.48
2.64
2.58
6.38
6.38
ns
–2
0.49
3.94
0.03
1.13
1.24
0.32
3.93
3.94
2.32
2.26
5.60
5.61
ns
Std.
0.66
3.74
0.04
1.51
1.66
0.43
3.81
3.49
3.37
3.49
6.05
5.73
ns
–1
0.56
3.18
0.04
1.29
1.41
0.36
3.24
2.97
2.86
2.97
5.15
4.87
ns
–2
0.49
2.80
0.03
1.13
1.24
0.32
2.85
2.61
2.51
2.61
4.52
4.28
ns
Std.
0.66
3.53
0.04
1.51
1.66
0.43
3.59
3.12
3.42
3.62
5.83
5.35
ns
–1
0.56
3.00
0.04
1.29
1.41
0.36
3.06
2.65
2.91
3.08
4.96
4.55
ns
–2
0.49
2.63
0.03
1.13
1.24
0.32
2.68
2.33
2.56
2.71
4.35
4.00
ns
Std.
0.66
3.26
0.04
1.51
1.66
0.43
3.32
2.48
3.49
4.11
5.56
4.72
ns
–1
0.56
2.77
0.04
1.29
1.41
0.36
2.83
2.11
2.97
3.49
4.73
4.01
ns
–2
0.49
2.44
0.03
1.13
1.24
0.32
2.48
1.85
2.61
3.07
4.15
3.52
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 30
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-36 • 2.5 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
12.00
0.04 1.51 1.66
0.43
12.23
11.61
2.72 2.20
14.46
13.85
ns
–1
0.56
10.21
0.04 1.29 1.41
0.36
10.40
9.88
2.31 1.87
12.30
11.78
ns
–2
0.49
8.96
0.03 1.13 1.24
0.32
9.13
8.67
2.03 1.64
10.80
10.34
ns
Std.
0.66
8.73
0.04 1.51 1.66
0.43
8.89
8.01
3.10 2.93
11.13
10.25
ns
–1
0.56
7.43
0.04 1.29 1.41
0.36
7.57
6.82
2.64 2.49
9.47
8.72
ns
–2
0.49
6.52
0.03 1.13 1.24
0.32
6.64
5.98
2.32 2.19
8.31
7.65
ns
Std.
0.66
6.77
0.04 1.51 1.66
0.43
6.90
6.11
3.37 3.39
9.14
8.34
ns
–1
0.56
5.76
0.04 1.29 1.41
0.36
5.87
5.20
2.86 2.89
7.77
7.10
ns
–2
0.49
5.06
0.03 1.13 1.24
0.32
5.15
4.56
2.51 2.53
6.82
6.23
ns
Std.
0.66
6.31
0.04 1.51 1.66
0.43
6.42
5.73
3.42 3.52
8.66
7.96
ns
–1
0.56
5.37
0.04 1.29 1.41
0.36
5.46
4.87
2.91 3.00
7.37
6.77
ns
–2
0.49
4.71
0.03 1.13 1.24
0.32
4.80
4.28
2.56 2.63
6.47
5.95
ns
Std.
0.66
5.93
0.04 1.51 1.66
0.43
6.04
5.70
3.49 4.00
8.28
7.94
ns
–1
0.56
5.05
0.04 1.29 1.41
0.36
5.14
4.85
2.97 3.40
7.04
6.75
ns
–2
0.49
4.43
0.03 1.13 1.24
0.32
4.51
4.26
2.61 2.99
6.18
5.93
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 31
ProASIC3E DC and Switching Characteristics
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-37 • Minimum and Maximum DC Input and Output Levels
1.8 V
LVCMOS
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
2
2
11
9
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
22
17
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
6
6
44
35
10 10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
8
8
51
45
10 10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 12
12
74
91
10 10
16 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 16
16
74
91
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-9 •
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
AC Loading
Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
1.8
0.9
–
35
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
2- 32
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-39 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade tDOUT
Std.
0.66
tDP
tDIN
tPY
12.10
tPYS tEOUT
0.04 1.45 1.91 0.43
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
9.59
12.10 2.78 1.64
11.83
14.34
ns
–1
0.56
10.30
0.04 1.23 1.62
0.36
8.16
10.30 2.37 1.39
10.06
12.20
ns
–2
0.49
9.04
0.03 1.08 1.42
0.32
7.16
9.04
2.08 1.22
8.83
10.71
ns
Std.
0.66
7.05
0.04 1.45 1.91
0.43
6.20
7.05
3.25 2.86
8.44
9.29
ns
–1
0.56
6.00
0.04 1.23 1.62
0.36
5.28
6.00
2.76 2.44
7.18
7.90
ns
–2
0.49
5.27
0.03 1.08 1.42
0.32
4.63
5.27
2.43 2.14
6.30
6.94
ns
Std.
0.66
4.52
0.04 1.45 1.91
0.43
4.47
4.52
3.57 3.47
6.70
6.76
ns
–1
0.56
3.85
0.04 1.23 1.62
0.36
3.80
3.85
3.04 2.95
5.70
5.75
ns
–2
0.49
3.38
0.03 1.08 1.42
0.32
3.33
3.38
2.66 2.59
5.00
5.05
ns
Std.
0.66
4.12
0.04 1.45 1.91
0.43
4.20
3.99
3.63 3.62
6.43
6.23
ns
–1
0.56
3.51
0.04 1.23 1.62
0.36
3.57
3.40
3.09 3.08
5.47
5.30
ns
–2
0.49
3.08
0.03 1.08 1.42
0.32
3.14
2.98
2.71 2.71
4.81
4.65
ns
Std.
0.66
3.80
0.04 1.45 1.91
0.43
3.87
3.09
3.73 4.24
6.10
5.32
ns
–1
0.56
3.23
0.04 1.23 1.62
0.36
3.29
2.63
3.18 3.60
5.19
4.53
ns
–2
0.49
2.83
0.03 1.08 1.42
0.32
2.89
2.31
2.79 3.16
4.56
3.98
ns
Std.
0.66
3.80
0.04 1.45 1.91
0.43
3.87
3.09
3.73 4.24
6.10
5.32
ns
–1
0.56
3.23
0.04 1.23 1.62
0.36
3.29
2.63
3.18 3.60
5.19
4.53
ns
–2
0.49
2.83
0.03 1.08 1.42
0.32
2.89
2.31
2.79 3.16
4.56
3.98
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 33
ProASIC3E DC and Switching Characteristics
Table 2-40 • 1.8 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
15.84
0.04 1.45 1.91
0.43
15.65
15.84
2.78 1.58
17.89
18.07
ns
–1
0.56
13.47
0.04 1.23 1.62
0.36
13.31
13.47
2.37 1.35
15.22
15.37
ns
–2
0.49
11.83
0.03 1.08 1.42
0.32
11.69
11.83
2.08 1.18
13.36
13.50
ns
Std.
0.66
11.39
0.04 1.45 1.91
0.43
11.60
10.76
3.26 2.77
13.84
12.99
ns
–1
0.56
9.69
0.04 1.23 1.62
0.36
9.87
9.15
2.77 2.36
11.77
11.05
ns
–2
0.49
8.51
0.03 1.08 1.42
0.32
8.66
8.03
2.43 2.07
10.33
9.70
ns
Std.
0.66
8.97
0.04 1.45 1.91
0.43
9.14
8.10
3.57 3.36
11.37
10.33
ns
–1
0.56
7.63
0.04 1.23 1.62
0.36
7.77
6.89
3.04 2.86
9.67
8.79
ns
–2
0.49
6.70
0.03 1.08 1.42
0.32
6.82
6.05
2.66 2.51
8.49
7.72
ns
Std.
0.66
8.35
0.04 1.45 1.91
0.43
8.50
7.59
3.64 3.52
10.74
9.82
ns
–1
0.56
7.10
0.04 1.23 1.62
0.36
7.23
6.45
3.10 3.00
9.14
8.35
ns
–2
0.49
6.24
0.03 1.08 1.42
0.32
6.35
5.66
2.72 2.63
8.02
7.33
ns
Std.
0.66
7.94
0.04 1.45 1.91
0.43
8.09
7.56
3.74
4.11
10.32
9.80
ns
–1
0.56
6.75
0.04 1.23 1.62
0.36
6.88
6.43
3.18 3.49
8.78
8.33
ns
–2
0.49
5.93
0.03 1.08 1.42
0.32
6.04
5.65
2.79 3.07
7.71
7.32
ns
Std.
0.66
7.94
0.04 1.45 1.91
0.43
8.09
7.56
3.74
4.11
10.32
9.80
ns
–1
0.56
6.75
0.04 1.23 1.62
0.36
6.88
6.43
3.18 3.49
8.78
8.33
ns
–2
0.49
5.93
0.03 1.08 1.42
0.32
6.04
5.65
2.79 3.07
7.71
7.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 34
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-41 • Minimum and Maximum DC Input and Output Levels
1.5 V
LVCMOS
VIL
VOL
VOH
IOL IOH IOSL
IOSH IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
2 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
2
2
16
13
10 10
4 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
4
4
33
25
10 10
6 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
6
6
39
32
10 10
8 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
8
8
55
66
10 10
12 mA
–0.3
0.30 * VCCI 0.7 * VCCI
3.6
0.25 * VCCI
0.75 * VCCI
12
12
55
66
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
Figure 2-10 • AC Loading
Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
1.5
0.75
–
35
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
R ev i si o n 1 3
2- 35
ProASIC3E DC and Switching Characteristics
Timing Characteristics
Table 2-43 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
8.53
0.04
1.70
2.14
0.43
7.26
8.53
3.39
2.79
9.50
10.77
ns
–1
0.56
7.26
0.04
1.44
1.82
0.36
6.18
7.26
2.89
2.37
8.08
9.16
ns
–2
0.49
6.37
0.03
1.27
1.60
0.32
5.42
6.37
2.53
2.08
7.09
8.04
ns
Std.
0.66
5.41
0.04
1.70
2.14
0.43
5.22
5.41
3.75
3.48
7.45
7.65
ns
–1
0.56
4.60
0.04
1.44
1.82
0.36
4.44
4.60
3.19
2.96
6.34
6.50
ns
–2
0.49
4.04
0.03
1.27
1.60
0.32
3.89
4.04
2.80
2.60
5.56
5.71
ns
Std.
0.66
4.80
0.04
1.70
2.14
0.43
4.89
4.75
3.83
3.67
7.13
6.98
ns
–1
0.56
4.09
0.04
1.44
1.82
0.36
4.16
4.04
3.26
3.12
6.06
5.94
ns
–2
0.49
3.59
0.03
1.27
1.60
0.32
3.65
3.54
2.86
2.74
5.32
5.21
ns
Std.
0.66
4.42
0.04
1.70
2.14
0.43
4.50
3.62
3.96
4.37
6.74
5.86
ns
–1
0.56
3.76
0.04
1.44
1.82
0.36
3.83
3.08
3.37
3.72
5.73
4.98
ns
–2
0.49
3.30
0.03
1.27
1.60
0.32
3.36
2.70
2.96
3.27
5.03
4.37
ns
Std.
0.66
4.42
0.04
1.70
2.14
0.43
4.50
3.62
3.96
4.37
6.74
5.86
ns
–1
0.56
3.76
0.04
1.44
1.82
0.36
3.83
3.08
3.37
3.72
5.73
4.98
ns
–2
0.49
3.30
0.03
1.27
1.60
0.32
3.36
2.70
2.96
3.27
5.03
4.37
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
Table 2-44 • 1.5 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
14.11
0.04 1.70 2.14
0.43
14.37
13.14
3.40 2.68
16.61
15.37
ns
–1
0.56
12.00
0.04 1.44 1.82
0.36
12.22
11.17
2.90 2.28
14.13
13.08
ns
–2
0.49
10.54
0.03 1.27 1.60
0.32
10.73
9.81
2.54 2.00
12.40
11.48
ns
Std.
0.66
11.23
0.04 1.70 2.14
0.43
11.44
9.87
3.77 3.36
13.68
12.10
ns
–1
0.56
9.55
0.04 1.44 1.82
0.36
9.73
8.39
3.21 2.86
11.63
10.29
ns
–2
0.49
8.39
0.03 1.27 1.60
0.32
8.54
7.37
2.81 2.51
10.21
9.04
ns
Std.
0.66
10.45
0.04 1.70 2.14
0.43
10.65
9.24
3.84 3.55
12.88
11.48
ns
–1
0.56
8.89
0.04 1.44 1.82
0.36
9.06
7.86
3.27 3.02
10.96
9.76
ns
–2
0.49
7.81
0.03 1.27 1.60
0.32
7.95
6.90
2.87 2.65
9.62
8.57
ns
Std.
0.66
10.02
0.04 1.70 2.14
0.43
10.20
9.23
3.97 4.22
12.44
11.47
ns
–1
0.56
8.52
0.04 1.44 1.82
0.36
8.68
7.85
3.38 3.59
10.58
9.75
ns
–2
0.49
7.48
0.03 1.27 1.60
0.32
7.62
6.89
2.97 3.15
9.29
8.56
ns
Std.
0.66
10.02
0.04 1.70 2.14
0.43
10.20
9.23
3.97 4.22
12.44
11.47
ns
–1
0.56
8.52
0.04 1.44 1.82
0.36
8.68
7.85
3.38 3.59
10.58
9.75
ns
–2
0.49
7.48
0.03 1.27 1.60
0.32
7.62
6.89
2.97 3.15
9.29
8.56
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 36
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus
applications.
Table 2-45 • Minimum and Maximum DC Input and Output Levels
3.3 V PCI/PCI-X
Drive Strength
VIL
Min.
V
VOL
VOH IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Min.
V
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Max.
V
Min.
V
Max.
V
Per PCI specification
mA mA
Per PCI curves
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
4. Currents are measured at 85°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-11.
R = 25
Test Point
Datapath
R to VCCI for tDP (F)
R to GND for tDP (R)
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
R=1k
Test Point
Enable Path
10 pF for tZH / tZHS / tZL / tZLS
10 pF for tHZ / tLZ
Figure 2-11 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is
described in Table 2-46.
Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
CLOAD (pF)
3.3
0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
–
10
0
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-47 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.66
2.81
0.04
1.05
1.67
0.43
2.86
2.00
3.28
3.61
5.09
4.23
ns
–1
0.56
2.39
0.04
0.89
1.42
0.36
2.43
1.70
2.79
3.07
4.33
3.60
ns
–2
0.49
2.09
0.03
0.78
1.25
0.32
2.13
1.49
2.45
2.70
3.80
3.16
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 37
ProASIC3E DC and Switching Characteristics
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-48 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL
VIL
Drive
Strength
Min.
V
20 mA3
–0.3
VIH
Max.
V
Min.
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.4
–
20 20
181
268
VREF – 0.05 VREF + 0.05
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-12 • AC Loading
Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-50 • 3.3 V GTL
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.60
2.08
0.04
2.93
0.43
2.04
–1
0.51
1.77
0.04
2.50
0.36
–2
0.45
1.55
0.03
2.19
0.32
tLZ
tHZ
tZLS
tZHS
Units
2.08
4.27
4.31
ns
1.73
1.77
3.63
3.67
ns
1.52
1.55
3.19
3.22
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 38
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-51 • Minimum and Maximum DC Input and Output Levels
2.5 GTL
VIL
Drive
Strength
Min.,
V
20 mA3
–0.3
VIH
Max.
V
Min.
V
VREF – 0.05 VREF + 0.05
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.4
–
20 20
124
169
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-13 • AC Loading
Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-53 • 2.5 V GTL
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.60
2.13
0.04
2.46
0.43
2.16
–1
0.51
1.81
0.04
2.09
0.36
–2
0.45
1.59
0.03
1.83
0.32
tLZ
tHZ
tZLS
tZHS
Units
2.13
4.40
4.36
ns
1.84
1.81
3.74
3.71
ns
1.61
1.59
3.28
3.26
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 39
ProASIC3E DC and Switching Characteristics
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-54 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+
VIL
Drive
Strength
Min.
V
35 mA
–0.3
VIH
Max.
V
Min.
V
VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.6
–
35 35
181
268
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-14 • AC Loading
Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-56 • 3.3 V GTL+
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.0 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.60
2.06
0.04
1.59
0.43
2.09
–1
0.51
1.75
0.04
1.35
0.36
–2
0.45
1.53
0.03
1.19
0.32
tLZ
tHZ
tZLS
tZHS
Units
2.06
4.33
4.29
ns
1.78
1.75
3.68
3.65
ns
1.56
1.53
3.23
3.20
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 40
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-57 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
33 mA
–0.3 VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.6
–
33 33
124
169
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-15 • AC Loading
Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-59 • 2.5 V GTL+
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.0 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.60
2.21
0.04
1.51
0.43
2.25
–1
0.51
1.88
0.04
1.29
0.36
–2
0.45
1.65
0.03
1.13
0.32
tLZ
tHZ
tZLS
tZHS
Units
2.10
4.48
4.34
ns
1.91
1.79
3.81
3.69
ns
1.68
1.57
3.35
3.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 41
ProASIC3E DC and Switching Characteristics
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-60 • Minimum and Maximum DC Input and Output Levels
HSTL Class I
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
8 mA
–0.3 VREF – 0.1 VREF + 0.1
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.4
VCCI – 0.4
39
32
8
8
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
HSTL
Class I
50
Test Point
20 pF
Figure 2-16 • AC Loading
Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring Point*
(V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-62 • HSTL Class I
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = .4 V, VREF = 0.75 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.66
3.18
0.04
2.12
0.43
3.24
–1
0.56
2.70
0.04
1.81
0.36
–2
0.49
2.37
0.03
1.59
0.32
tLZ
tHZ
tZLS
tZHS
Units
3.14
5.47
5.38
ns
2.75
2.67
4.66
4.58
ns
2.42
2.35
4.09
4.02
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 42
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-63 • Minimum and Maximum DC Input and Output Levels
HSTL Class II
VIL
Drive
Strength
Min.
V
15 mA3
–0.3
VIH
Max.
V
Min.
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.,
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.4
55
66
VREF – 0.1 VREF + 0.1
VCCI – 0.4 15 15
10
10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
HSTL
Class II
25
Test Point
20 pF
Figure 2-17 • AC Loading
Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-65 • HSTL Class II
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V, VREF = 0.75 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.66
3.02
0.04
2.12
0.43
3.08
–1
0.56
2.57
0.04
1.81
0.36
–2
0.49
2.26
0.03
1.59
0.32
tLZ
tHZ
tZLS
tZHS
Units
2.71
5.32
4.95
ns
2.62
2.31
4.52
4.21
ns
2.30
2.03
3.97
3.70
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 43
ProASIC3E DC and Switching Characteristics
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-66 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class I
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
15 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.54
87
83
10 10
VCCI – 0.62 15
15
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
SSTL2
Class I
50
Test Point
25
30 pF
Figure 2-18 • AC Loading
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-68 • SSTL 2 Class I
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.66
2.13
0.04
1.33
0.43
2.17
–1
0.56
1.81
0.04
1.14
0.36
–2
0.49
1.59
0.03
1.00
0.32
tLZ
tHZ
tZLS
tZHS
Units
1.85
4.40
4.08
ns
1.84
1.57
3.74
3.47
ns
1.62
1.38
3.29
3.05
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 44
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-69 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
18 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.35
VCCI – 0.43 18 18
124
169
10 10
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
SSTL2
Class II
25
Test Point
25
30 pF
Figure 2-19 • AC Loading
Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-71 • SSTL 2 Class II
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
Std.
0.66
0.66
2.17
0.04
1.33
0.43
2.21
–1
0.56
0.56
1.84
0.04
1.14
0.36
–2
0.49
0.49
1.62
0.03
1.00
0.32
tHZ
tZLS
tZHS
Units
1.77
4.44
ns
1.88
1.51
3.78
ns
1.65
1.32
3.32
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 45
ProASIC3E DC and Switching Characteristics
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-72 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
14 mA
–0.3 VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.7
54
51
10 10
VCCI – 1.1 14
14
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
SSTL3
Class I
50
Test Point
25
30 pF
Figure 2-20 • AC Loading
Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-74 • SSTL3 Class I
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.66
2.31
0.04
1.25
0.43
2.35
–1
0.56
1.96
0.04
1.06
0.36
–2
0.49
1.72
0.03
0.93
0.32
tLZ
tHZ
tZLS
tZHS
Units
1.84
4.59
4.07
ns
2.00
1.56
3.90
3.46
ns
1.75
1.37
3.42
3.04
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 46
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-75 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class II
VIL
Drive
Strength
Min.
V
21 mA
–0.3
VIH
Max.
V
Min.
V
VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSL
IOSH
IIL IIH
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
3.6
0.5
109
103
10 10
VCCI – 0.9 21
21
Notes:
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
SSTL3
Class II
25
Test Point
25
30 pF
Figure 2-21 • AC Loading
Table 2-76 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-77 • SSTL3 Class II
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
Std.
0.66
2.07
0.04
1.25
0.43
2.10
–1
0.56
1.76
0.04
1.06
0.36
–2
0.49
1.54
0.03
0.93
0.32
tLZ
tHZ
tZLS
tZHS
Units
1.67
4.34
3.91
ns
1.79
1.42
3.69
3.32
ns
1.57
1.25
3.24
2.92
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 47
ProASIC3E DC and Switching Characteristics
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by the Designer software when the user
instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional
I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 
Z0 = 50 
140 
N
165 
Z0 = 50 
Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation
2- 48
P
R ev i sio n 1 3
FPGA
+
–
100 
N
INBUF_LVDS
ProASIC3E Flash Family FPGAs
Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
VCCI
Supply Voltage
VOL
Output Low Voltage
0.9
1.075
1.25
V
VOH
Output High Voltage
1.25
1.425
1.6
V
IOL
Output Lower Current
0.65
0.91
1.16
mA
IOH1
Output High Current
0.65
0.91
1.16
mA
VI
Input Voltage
2.925
V
1
0
2
IIH
Input High Leakage Current
10
µA
IIL2
Input Low Leakage Current
10
µA
VODIFF
Differential Output Voltage
VOCM
VICM
VIDIFF
250
350
450
mV
Output Common Mode Voltage
1.125
1.25
1.375
V
Input Common Mode Voltage
0.05
1.25
2.35
V
100
350
Input Differential Voltage
2
mV
Notes:
1. IOL/ IOH defined by VODIFF/(Resistor Network).
2. Currents are measured at 85°C junction temperature.
Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.075
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
1.325
Cross point
–
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
R ev i si o n 1 3
2- 49
ProASIC3E DC and Switching Characteristics
Timing Characteristics
Table 2-80 • LVDS
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case
VCCI = 2.3 V
Speed Grade
tDP
tDOUT
tDIN
tPY
Units
Std.
0.66
1.87
0.04
1.82
ns
–1
0.56
1.59
0.04
1.55
ns
–2
0.49
1.40
0.03
1.36
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for
derating values.
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in
the LVDS section in Table 2-80.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").
Receiver
Transceiver
EN
R
+
RS
Zstub
Z0
RT Z
0
D
EN
T
-
+
RS
Zstub
Driver
RS
Zstub
-
Zstub
RS
Zstub
EN
Transceiver
EN
R
-
+
RS
Receiver
+
RS
RS
Zstub
Zstub
EN
T
-
+
RS
Zstub
RS
RS
...
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
2- 50
BIBUF_LVDS
-
R ev i sio n 1 3
RT
ProASIC3E Flash Family FPGAs
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVDS implementation because the output standard
specifications are different.
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 
Z0 = 50 
100 
FPGA
INBUF_LVPECL
+
–
100 
187 W
N
P
Z0 = 50 
N
Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-81 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
3.0
Max.
Min.
3.3
Max.
Units
VCCI
Supply Voltage
3.6
VOL
Output Low Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output High Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input Low, Input High Voltages
0
3.6
0
3.6
0
3.6
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
300
V
300
mV
Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
VREF (typ.) (V)
1.94
Cross point
–
1.64
Note: *Measuring point = Vtrip. See Table 2-15 on page 2-18 for a complete table of trip points.
Timing Characteristics
Table 2-83 • LVPECL
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.66
1.83
0.04
1.63
ns
–1
0.56
1.55
0.04
1.39
ns
–2
0.49
1.36
0.03
1.22
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 51
ProASIC3E DC and Switching Characteristics
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
INBUF
Preset
L
DOUT
Data_out
E
Y
F
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
E
E
EOUT
B
H
I
A
J
K
INBUF
INBUF
D_Enable
CLK
CLKBUF
Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
2- 52
R ev i sio n 1 3
Pad Out
D
ProASIC3E Flash Family FPGAs
Table 2-84 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
H, DOUT
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
L, DOUT
H, EOUT
I, EOUT
Note: *See Figure 2-25 on page 2-52 for more information.
R ev i si o n 1 3
2- 53
ProASIC3E DC and Switching Characteristics
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
D
CC
Q
DFN1E1C1
EE
Data_out FF
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Core
Array
Pad Out
DOUT
Y
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
D
Q
DFN1E1C1
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
2- 54
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Table 2-85 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
HH, DOUT
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
LL, DOUT
HH, EOUT
Note: *See Figure 2-26 on page 2-54 for more information.
R ev i si o n 1 3
2- 55
ProASIC3E DC and Switching Characteristics
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIWPRE
50%
tIRECPRE
tIREMPRE
50%
50%
tIHE
Preset
tISUE
50%
tIWCLR
50%
Clear
tIRECCLR
tIREMCLR
50%
50%
tIPRE2Q
50%
Out_1
50%
tICLR2Q
50%
tICLKQ
Figure 2-27 • Input Register Timing Diagram
Timing Characteristics
Table 2-86 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.24 0.27 0.32
ns
tISUD
Data Setup Time for the Input Data Register
0.26 0.30 0.35
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.37 0.42 0.50
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.45 0.52 0.61
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.45 0.52 0.61
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.22 0.25 0.30
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.22 0.25 0.30
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.22 0.25 0.30
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.22 0.25 0.30
ns
tICKMPWH
Clock Minimum Pulse Width High for the Input Data Register
0.36 0.41 0.48
ns
tICKMPWL
Clock Minimum Pulse Width Low for the Input Data Register
0.32 0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 56
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
tOREMCLR
tORECCLR
50%
50%
tOPRE2Q
50%
DOUT
50%
tOCLR2Q
50%
tOCLKQ
Figure 2-28 • Output Register Timing Diagram
Timing Characteristics
Table 2-87 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.59 0.67 0.79
ns
tOSUD
Data Setup Time for the Output Data Register
0.31 0.36 0.42
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.44 0.50 0.59
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.80 0.91 1.07
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.80 0.91 1.07
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.22 0.25 0.30
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.22 0.25 0.30
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.22 0.25 0.30
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.22 0.25 0.30
ns
tOCKMPWH
Clock Minimum Pulse Width High for the Output Data Register
0.36 0.41 0.48
ns
tOCKMPWL
Clock Minimum Pulse Width Low for the Output Data Register
0.32 0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 57
ProASIC3E DC and Switching Characteristics
Output Enable Register
tOECKMPWH tOECKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOEWPRE
50%
tOESUEtOEHE
tOEREMPRE
tOERECPRE
50%
50%
tOEWCLR
50%
Clear
tOEPRE2Q
EOUT
50%
50%
tOEREMCLR
tOERECCLR
50%
50%
tOECLR2Q
50%
tOECLKQ
Figure 2-29 • Output Enable Register Timing Diagram
Timing Characteristics
Table 2-88 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.59 0.67 0.79
ns
tOESUD
Data Setup Time for the Output Enable Register
0.31 0.36 0.42
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.44 0.50 0.58
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.67 0.76 0.89
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.67 0.76 0.89
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.22 0.25 0.30
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.22 0.25 0.30
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.22 0.25 0.30
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.22 0.25 0.30
ns
tOECKMPWH
Clock Minimum Pulse Width High for the Output Enable Register
0.36 0.41 0.48
ns
tOECKMPWL
Clock Minimum Pulse Width Low for the Output Enable Register
0.32 0.37 0.43
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 58
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-30 • Input DDR Timing Model
Table 2-89 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR input
A, B
tDDRIHD
Data Hold Time of DDR input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
R ev i si o n 1 3
2- 59
ProASIC3E DC and Switching Characteristics
CLK
tDDRISUD
Data
1
2
3
4
5
6
tDDRIHD
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
7
5
Figure 2-31 • Input DDR Timing Diagram
Timing Characteristics
Table 2-90 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.39
0.44
0.52
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.27
0.31
0.37
ns
tDDRISUD
Data Setup for Input DDR
0.28
0.32
0.38
ns
tDDRIHD
Data Hold for Input DDR
0.00
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear to Out Out_QR for Input DDR
0.57
0.65
0.76
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.46
0.53
0.62
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.22
0.25
0.30
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.22
0.25
0.30
ns
tDDRICKMPWH
Clock Minimum Pulse Width High for Input DDR
0.36
0.41
0.48
ns
tDDRICKMPWL
Clock Minimum Pulse Width Low for Input DDR
0.32
0.37
0.43
ns
FDDRIMAX
Maximum Frequency for Input DDR
1404
1232
1048
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 60
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Output DDR Module
Output DDR
A
Data_F
(from core)
X
FF1
B
CLK
CLKBUF
E
X
C
X
D
Data_R
(from core)
Out
0
X
1
X
OUTBUF
FF2
B
X
CLR
INBUF
C
X
DDR_OUT
Figure 2-32 • Output DDR Timing Model
Table 2-91 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
R ev i si o n 1 3
2- 61
ProASIC3E DC and Switching Characteristics
CLK
tDDROSUD2 tDDROHD2
1
Data_F
2
tDDROREMCLR
Data_R 6
4
3
5
tDDROHD1
7
8
9
10
11
tDDRORECCLR
tDDROREMCLR
CLR
tDDROCLR2Q
Out
tDDROCLKQ
7
2
8
3
4
9
10
Figure 2-33 • Output DDR Timing Diagram
Timing Characteristics
Table 2-92 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
–2
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
Description
0.70
0.80
0.94
ns
tDDROSUD1
Data_F Data Setup for Output DDR
0.38
0.43
0.51
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.38
0.43
0.51
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.80
0.91
1.07
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.22
0.25
0.30
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.22
0.25
0.30
ns
tDDROCKMPWH
Clock Minimum Pulse Width High for the Output DDR
0.36
0.41
0.48
ns
tDDROCKMPWL
Clock Minimum Pulse Width Low for the Output DDR
0.32
0.37
0.43
ns
FDDOMAX
Maximum Frequency for the Output DDR
1404 1232 1048
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 62
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO®/e,
and ProASIC3/E Macro Library Guide.
A
A
B
A
OR2
Y
AND2
A
Y
B
B
B
XOR2
A
B
C
Y
A
A
B
C
NOR2
B
A
A
Y
INV
NAND3
A
MAJ3
B
Y
NAND2
XOR3
Y
Y
0
MUX2
B
Y
Y
1
C
S
Figure 2-34 • Sample of Combinatorial Cells
R ev i si o n 1 3
2- 63
ProASIC3E DC and Switching Characteristics
tPD
A
NAND2 or
Any Combinatorial
Logic
B
Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR))
where edges are applicable for the particular
combinatorial cell
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
OUT
tPD
(FR)
50%
tPD
(RF)
GND
Figure 2-35 • Timing Model and Waveforms
2- 64
R ev i sio n 1 3
50%
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-93 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
–2
–1
Std.
Units
Y = !A
tPD
0.40
0.46
0.54
ns
Y=A·B
tPD
0.47
0.54
0.63
ns
Y = !(A · B)
tPD
0.47
0.54
0.63
ns
Y=A+B
tPD
0.49
0.55
0.65
ns
NOR2
Y = !(A + B)
tPD
0.49
0.55
0.65
ns
XOR2
Y = A B
tPD
0.74
0.84
0.99
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.70
0.79
0.93
ns
XOR3
Y = A  B C
tPD
0.87
1.00
1.17
ns
MUX2
Y = A !S + B S
tPD
0.51
0.58
0.68
ns
AND3
Y=A·B·C
tPD
0.56
0.64
0.75
ns
INV
AND2
NAND2
OR2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
VersaTile Specifications as a Sequential Module
The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has
a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for
a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E
Macro Library Guide.
Data
D
Q
Out
Data
En
DFN1
D
Out
Q
DFN1E1
CLK
CLK
PRE
Data
D
Q
Out
Data
En
DFN1C1
D
Q
Out
DFI1E1P1
CLK
CLK
CLR
Figure 2-36 • Sample of Sequential Cells
R ev i si o n 1 3
2- 65
ProASIC3E DC and Switching Characteristics
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
EN
PRE
50%
tRECPRE
tREMPRE
50%
50%
50%
CLR
tPRE2Q
50%
tREMCLR
tRECCLR
tWCLR
Out
50%
50%
0
tWPRE
tHE
50%
50%
tHD
50%
tSUE
50%
50%
50%
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-37 • Timing Model and Waveforms
Timing Characteristics
Table 2-94 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tCLKQ
Clock-to-Q of the Core Register
0.55 0.63 0.74
ns
tSUD
Data Setup Time for the Core Register
0.43 0.49 0.57
ns
tHD
Data Hold Time for the Core Register
0.00 0.00 0.00
ns
tSUE
Enable Setup Time for the Core Register
0.45 0.52 0.61
ns
tHE
Enable Hold Time for the Core Register
0.00 0.00 0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.40 0.45 0.53
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.40 0.45 0.53
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00 0.00 0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.22 0.25 0.30
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00 0.00 0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.22 0.25 0.30
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.22 0.25 0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.22 0.25 0.30
ns
tCKMPWH
Clock Minimum Pulse Width High for the Core Register
0.32 0.37 0.43
ns
tCKMPWL
Clock Minimum Pulse Width Low for the Core Register
0.36 0.41 0.48
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 66
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Global Resource Characteristics
A3PE600 Clock Tree Topology
Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device.
It is used to drive all D-flip-flops in the device.
Central
Global Rib
VersaTile
Rows
CCC
Global Spine
Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-69. Table 2-95 on page 2-68, Table 2-96 on
page 2-68, and Table 2-97 on page 2-68 present minimum and maximum global clock delays within the
device. Minimum and maximum delays are measured with minimum and maximum loading.
R ev i si o n 1 3
2- 67
ProASIC3E DC and Switching Characteristics
Timing Characteristics
Table 2-95 • A3PE600 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–2
Parameter
1
–1
Max.
2
Description
Min.
tRCKL
Input Low Delay for Global Clock
0.83
1.04
1.06
Min.
1
Std.
Max.
2
0.94
1.18
0.93
1.21
Min.1 Max.2 Units
1.11
1.39
1.09
1.42
ns
tRCKH
Input High Delay for Global Clock
0.81
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.85
1.00
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
0.96
1.13
ns
tRCKSW
Maximum Skew for Global Clock
0.25
0.28
0.33
ns
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
Table 2-96 • A3PE1500 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–2
–1
Description
Min.
Max.2
tRCKL
Input Low Delay for Global Clock
1.07
1.29
1.32
Parameter
1
Std.
Min.1
Max.2
1.22
1.47
1.21
1.50
Min.1 Max.2 Units
1.43
1.72
1.42
1.76
ns
tRCKH
Input High Delay for Global Clock
1.06
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.85
1.00
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
0.96
1.13
ns
tRCKSW
Maximum Skew for Global Clock
0.26
0.29
0.34
ns
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
Table 2-97 • A3PE3000 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
–2
Parameter
Description
–1
Std.
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units
tRCKL
Input Low Delay for Global Clock
1.41
1.62
1.60
1.85
1.88
2.17
ns
tRCKH
Input High Delay for Global Clock
1.40
1.66
1.59
1.89
1.87
2.22
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
0.75
0.85
1.00
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
0.85
0.96
1.13
ns
tRCKSW
Maximum Skew for Global Clock
0.26
0.29
0.35
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 68
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-98 • ProASIC3E CCC/PLL Specification
Parameter
Minimum
Clock Conditioning Circuitry Input Frequency fIN_CCC
1.5
Clock Conditioning Circuitry Output Frequency fOUT_CCC
0.75
Delay Increments in Programmable Delay Blocks
Serial Clock (SCLK) for Dynamic
1, 2
Typical
Maximum
Units
350
MHz
350
MHz
3
160
PLL4
ps
125
Number of Programmable Values in Each
Programmable Delay Block
32
Input Period Jitter
1.5
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
3 Global
Networks Used
0.75 MHz to 24 MHz
0.50%
0.70%
24 MHz to 100 MHz
1.00%
1.20%
100 MHz to 250 MHz
1.75%
2.00%
250 MHz to 350 MHz
2.50%
5.60%
Tracking Jitter 5
ns
Max Peak-to-Peak Period Jitter
1 Global
Network Used
Acquisition Time
MHz
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
1.6
ns
LockControl = 1
0.8
ns
Output Duty Cycle
48.5
51.5
%
Delay Range in Block: Programmable Delay 1 1, 2
0.6
5.56
ns
Delay Range in Block: Programmable Delay 2 1,2
0.025
5.56
ns
Delay Range in Block: Fixed
Delay1,4
2.2
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-5 for deratings
2. TJ = 25°C, VCC = 1.5 V.
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help for more information.
4. Maximum value obtained for a –2 speed-grade device in worst-case commercial conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock
edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter
parameter.
R ev i si o n 1 3
2- 69
ProASIC3E DC and Switching Characteristics
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-39 • Peak-to-Peak Jitter Definition
2- 70
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Embedded SRAM and FIFO Characteristics
SRAM
RAM512X18
RAM4K9
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
PIPE
REN
RCLK
ADDRB11
ADDRB10
DOUTB8
DOUTB7
ADDRB0
DOUTB0
DINB8
DINB7
WADDR8
WADDR7
WADDR0
WD17
WD16
WD0
DINB0
WW1
WW0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
WEN
WCLK
RESET
RESET
Figure 2-40 • RAM Models
R ev i si o n 1 3
2- 71
ProASIC3E DC and Switching Characteristics
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADDR
A1
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tCKQ1
DOUT|RD
Dn
D0
D1
D2
tDOH1
Figure 2-41 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A1
A0
[R|W]ADDR
A2
tBKS
tBKH
BLK
tENH
tENS
WEN
tCKQ2
DOUT|RD
Dn
D0
D1
tDOH2
Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.
2- 72
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADDR
A1
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tDS
DI0
DIN|WD
tDH
DI1
D2
Dn
DOUT|RD
Figure 2-43 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADDR
A1
A2
tBKS
tBKH
BLK
tENS
WEN
tDS
DI0
DIN
DOUT
(pass-through)
DOUT
(pipelined)
tDH
DI1
Dn
DI2
DI0
DI1
DI0
Dn
DI1
Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only.
R ev i si o n 1 3
2- 73
ProASIC3E DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
RESET
tRSTBQ
DOUT|RD
Dm
Dn
Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
2- 74
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-99 • RAM4K9
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tAS
Address setup time
0.25 0.28 0.33
ns
tAH
Address hold time
0.00 0.00 0.00
ns
tENS
REN, WEN setup time
0.14 0.16 0.19
ns
tENH
REN, WEN hold time
0.10 0.11 0.13
ns
tBKS
BLK setup time
0.23 0.27 0.31
ns
tBKH
BLK hold time
0.02 0.02 0.02
ns
tDS
Input data (DIN) setup time
0.18 0.21 0.25
ns
tDH
Input data (DIN) hold time
0.00 0.00 0.00
ns
tCKQ1
Clock High to new data valid on DOUT (output retained, WMODE = 0)
1.79 2.03 2.39
ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1)
2.36 2.68 3.15
ns
Clock High to new data valid on DOUT (pipelined)
tCKQ2
0.89 1.02 1.20
ns
1
Address collision clk-to-clk delay for reliable write after write on same 0.33 0.28 0.25
address—Applicable to Closing Edge
ns
tC2CWWH1
Address collision clk-to-clk delay for reliable write after write on same 0.30 0.26 0.23
address—Applicable to Rising Edge
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same 0.45 0.38 0.34
address—Applicable to Opening Edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.49 0.42 0.37
address— Applicable to Opening Edge
ns
tRSTBQ
RESET Low to data out Low on DO (flow-through)
0.92 1.05 1.23
ns
RESET Low to Data Out Low on DO (pipelined)
0.92 1.05 1.23
ns
tREMRSTB
RESET removal
0.29 0.33 0.38
ns
tRECRSTB
RESET recovery
1.50 1.71 2.01
ns
tMPWRSTB
RESET minimum pulse width
0.21 0.24 0.29
ns
tCYC
Clock cycle time
3.23 3.68 4.32
ns
FMAX
Maximum frequency
310
tC2CWWL
272
231
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 75
ProASIC3E DC and Switching Characteristics
Table 2-100 • RAM512X18
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
–2
–1
Std. Units
tAS
Address setup time
0.25 0.28 0.33
ns
tAH
Address hold time
0.00 0.00 0.00
ns
tENS
REN, WEN setup time
0.18 0.20 0.24
ns
tENH
REN, WEN hold time
0.06 0.07 0.08
ns
tDS
Input data (WD) setup time
0.18 0.21 0.25
ns
tDH
Input data (WD) hold time
0.00 0.00 0.00
ns
tCKQ1
Clock High to new data valid on RD (output retained)
2.16 2.46 2.89
ns
Clock High to new data valid on RD (pipelined)
0.90 1.02 1.20
ns
1
Address collision clk-to-clk delay for reliable read access after write on same 0.50 0.43 0.38
address—Applicable to Opening Edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same 0.59 0.50 0.44
address— Applicable to Opening Edge
ns
tRSTBQ
RESET Low to data out Low on RD (flow-through)
0.92 1.05 1.23
ns
RESET Low to data out Low on RD (pipelined)
0.92 1.05 1.23
ns
tREMRSTB
RESET removal
0.29 0.33 0.38
ns
tRECRSTB
RESET recovery
1.50 1.71 2.01
ns
tMPWRSTB
RESET minimum pulse width
0.21 0.24 0.29
ns
tCYC
Clock cycle time
3.23 3.68 4.32
ns
FMAX
Maximum frequency
310
tCKQ2
tC2CRWH
272
231
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 76
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-46 • FIFO Model
R ev i si o n 1 3
2- 77
ProASIC3E DC and Switching Characteristics
Timing Waveforms
tCYC
RCLK
tENH
tENS
REN
tBKH
tBKS
RBLK
tCKQ1
RD
(flow-through)
Dn
D0
D1
D2
D0
D1
tCKQ2
RD
(pipelined)
Dn
Figure 2-47 • FIFO Read
tCYC
WCLK
tENS
tENH
WEN
WBLK
tBKS
tBKH
tDS
WD
DI0
tDH
DI1
Figure 2-48 • FIFO Write
2- 78
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-49 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter) NO MATCH
NO MATCH
Dist = AEF_TH
MATCH (EMPTY)
Figure 2-50 • FIFO EMPTY Flag and AEMPTY Flag Assertion
R ev i si o n 1 3
2- 79
ProASIC3E DC and Switching Characteristics
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-51 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA MATCH
(Address Counter) (EMPTY)
RCLK
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA
(Address Counter)
WCLK
MATCH (FULL)
NO MATCH
1st Rising
Edge
After 1st
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-53 • FIFO FULL Flag and AFULL Flag Deassertion
2- 80
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Timing Characteristics
Table 2-101 • FIFO
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
–2
–1
Std.
Units
tENS
REN, WEN Setup Time
1.38
1.57
1.84
ns
tENH
REN, WEN Hold Time
0.02
0.02
0.02
ns
tBKS
BLK Setup Time
0.19
0.22
0.26
ns
tBKH
BLK Hold Time
0.00
0.00
0.00
ns
tDS
Input Data (WD) Setup Time
0.18
0.21
0.25
ns
tDH
Input Data (WD) Hold Time
0.00
0.00
0.00
ns
tCKQ1
Clock High to New Data Valid on RD (pass-through)
2.36
2.68
3.15
ns
tCKQ2
Clock High to New Data Valid on RD (pipelined)
0.89
1.02
1.20
ns
tRCKEF
RCLK High to Empty Flag Valid
1.72
1.96
2.30
ns
tWCKFF
WCLK High to Full Flag Valid
1.63
1.86
2.18
ns
tCKAF
Clock High to Almost Empty/Full Flag Valid
6.19
7.05
8.29
ns
tRSTFG
RESET Low to Empty/Full Flag Valid
1.69
1.93
2.27
ns
tRSTAF
RESET Low to Almost Empty/Full Flag Valid
6.13
6.98
8.20
ns
tRSTBQ
RESET Low to Data Out Low on RD (pass-through)
0.92
1.05
1.23
ns
RESET Low to Data Out Low on RD (pipelined)
0.92
1.05
1.23
ns
tREMRSTB
RESET Removal
0.29
0.33
0.38
ns
tRECRSTB
RESET Recovery
1.50
1.71
2.01
ns
tMPWRSTB
RESET Minimum Pulse Width
0.21
0.24
0.29
ns
tCYC
Clock Cycle Time
3.23
3.68
4.32
ns
FMAX
Maximum Frequency
310
272
231
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
R ev i si o n 1 3
2- 81
ProASIC3E DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU
CLK
tSU
tHOLD
Address
tSU
tHOLD
tHOLD
A0
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-54 • Timing Diagram
Timing Characteristics
Table 2-102 • Embedded FlashROM Access Time
Parameter
Description
–2
–1
Std.
Units
0.53
0.61
0.71
ns
tSU
Address Setup Time
tHOLD
Address Hold Time
0.00
0.00
0.00
ns
tCK2Q
Clock to Out
16.23
18.48
21.73
ns
FMAX
Maximum Clock Frequency
15
15
15
MHz
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-12 for more details.
Timing Characteristics
Table 2-103 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
–2
–1
Std.
Units
0.50
0.57
0.67
ns
tDISU
Test Data Input Setup Time
tDIHD
Test Data Input Hold Time
1.00
1.13
1.33
ns
tTMSSU
Test Mode Select Setup Time
0.50
0.57
0.67
ns
tTMDHD
Test Mode Select Hold Time
1.00
1.13
1.33
ns
tTCK2Q
Clock to Q (data out)
6.00
6.80
8.00
ns
tRSTB2Q
Reset to Q (data out)
20.00 22.67
26.67
ns
FTCKMAX
TCK Maximum Frequency
25.00 22.00
19.00
MHz
tTRSTREM
ResetB Removal Time
0.00
0.00
0.00
ns
tTRSTREC
ResetB Recovery Time
0.20
0.23
0.27
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
TBD
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-5 for derating values.
2- 82
R ev i sio n 1 3
3 – Pin Descriptions and Packaging
Supply Pins
GND
Ground
Ground supply voltage to the core, I/O outputs, and I/O logic.
GNDQ
Ground (quiet)
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always
be connected to GND on the board.
VCC
Core Supply Voltage
Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine
in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices,
both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.
VCCIBx
I/O Supply Voltage
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V,
1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied
to GND.
VMVx
I/O Supply Voltage (quiet)
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within
the package and improves input signal integrity. Each bank must have at least one VMV connection, and
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or
3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV
and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to
the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).
VCCPLA/B/C/D/E/F
PLL Supply Voltage
Supply voltage to analog PLL, nominally 1.5 V.
When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower
power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi
recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the
PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low
Power Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide
for a complete board solution for the PLL analog power supply and ground.
There are six VCCPLX pins on ProASIC3E devices.
VCOMPLA/B/C/D/E/F
PLL Ground
Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool
automatically disables the unused PLLs to lower power consumption. The user should tie unused
VCCPLx and VCOMPLx pins to ground.
There are six VCOMPL pins (PLL ground) on ProASIC3E devices.
VJTAG
JTAG Supply Voltage
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run
at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is
R ev i si o n 1 3
3 -1
Pin Descriptions and Packaging
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals
will not be able to transition the device, even in bypass mode.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
VPUMP
Programming Supply Voltage
For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming
power supply voltage (VPUMP) range is listed in the datasheet.
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
User-Defined Supply Pins
VREF
I/O Voltage Reference
Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any
I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards
require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One
VREF pin can support the number of I/Os available in its minibank.
User Pins
I/O
User Input/Output
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected.
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os are instantly configured to the desired user configuration.
Unused I/Os are configured as follows:
GL
•
Output buffer is disabled (with tristate value of high impedance)
•
Input buffer is disabled (with tristate value of high impedance)
•
Weak pull-up is programmed
Globals
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power
Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide. All
inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an
input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled
GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals.
The inputs to the global network are multiplexed, and only one input can be used as a global input.
Refer to the I/O Structure section of the ProASIC3E FPGA Fabric User’s Guide for an explanation of the
naming of global pins.
3- 2
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
JTAG Pins
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST
pin could be tied to GND.
TCK
Test Clock
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all VJTAG voltages, 500 W to 1 k will satisfy the requirements. Refer to
Table 3-1 for more information.
Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins
VJTAG
Tie-Off Resistance
VJTAG at 3.3 V
200  to 1 k
VJTAG at 2.5 V
200  to 1 k
VJTAG at 1.8 V
500  to 1 k
VJTAG at 1.5 V
500  to 1 k
Notes:
1. Equivalent parallel resistance if more than one device is on the JTAG chain
2. The TCK pin can be pulled up/down.
3. The TRST pin is pulled down.
TDI
Test Data Input
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.
TDO
Test Data Output
Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin.
TRST
Boundary Scan Reset Pin
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor
values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The
values in Table 3-1 correspond to the resistor recommended when a single device is used, and the
equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA
pin.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.
R ev i si o n 1 3
3 -3
Pin Descriptions and Packaging
Special Function Pins
NC
No Connect
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
DC
Do Not Connect
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
Packaging
Semiconductor technology is constantly shrinking in size while growing in capability and functional
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved
to provide improved performance and flexibility.
Microsemi consistently delivers packages that provide the necessary mechanical and environmental
protection to ensure consistent reliability and performance. Microsemi IC packaging technology
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,
Microsemi offers a variety of packages designed to meet your most demanding application and economic
requirements for today's embedded and mobile systems.
Related Documents
User’s Guides
ProASIC3E FPGA Fabric User’s Guide
http://www.microsemi.com/soc/documents/PA3E_UG.pdf
Packaging
The following documents provide packaging information and device selection for low power flash
devices.
Product Catalog
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf
Lists devices currently recommended for new designs and the packages available for each member of
the family. Use this document or the datasheet tables to determine the best package for your design, and
which package drawing to use.
Package Mechanical Drawings
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf
This document contains the package mechanical drawings for all packages currently or previously
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.
Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
3- 4
R ev isio n 1 3
4 – Package Pin Assignments
PQ208
1
208
208-Pin PQFP
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 1 3
4 -1
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
1
GND
37
IO112PDB6V1
72
VCCIB5
2
GNDQ
38
IO112NDB6V1
73
IO85NPB5V0
3
VMV7
39
IO108PSB6V0
74
IO84NPB5V0
4
GAB2/IO133PSB7V1
40
VCCIB6
75
IO85PPB5V0
5
GAA2/IO134PDB7V1
41
GND
76
IO84PPB5V0
6
IO134NDB7V1
42
IO106PDB6V0
77
IO83NPB5V0
7
GAC2/IO132PDB7V1
43
IO106NDB6V0
78
IO82NPB5V0
8
IO132NDB7V1
44
GEC1/IO104PDB6V0
79
IO83PPB5V0
9
IO130PDB7V1
45
80
IO82PPB5V0
10
IO130NDB7V1
GEC0/IO104NDB6V
0
81
GND
46
GEB1/IO103PPB6V0
82
IO80NDB4V1
47
GEA1/IO102PPB6V0
83
IO80PDB4V1
48
GEB0/IO103NPB6V0
84
IO79NPB4V1
49
GEA0/IO102NPB6V0
85
IO78NPB4V1
50
VMV6
86
IO79PPB4V1
51
GNDQ
87
IO78PPB4V1
52
GND
88
VCC
53
VMV5
89
VCCIB4
54
GNDQ
90
IO76NDB4V1
55
IO101NDB5V2
91
IO76PDB4V1
56
GEA2/IO101PDB5V2
92
IO72NDB4V0
57
IO100NDB5V2
93
IO72PDB4V0
58
GEB2/IO100PDB5V2
94
IO70NDB4V0
59
IO99NDB5V2
95
GDC2/IO70PDB4V0
60
GEC2/IO99PDB5V2
96
IO68NDB4V0
61
IO98PSB5V2
97
GND
62
VCCIB5
98
GDA2/IO68PDB4V0
63
IO96PSB5V2
99
GDB2/IO69PSB4V0
64
IO94NDB5V1
100
GNDQ
65
GND
101
TCK
66
IO94PDB5V1
102
TDI
67
IO92NDB5V1
103
TMS
68
IO92PDB5V1
104
VMV4
69
IO88NDB5V0
105
GND
70
IO88PDB5V0
106
VPUMP
71
VCC
107
GNDQ
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
4- 2
IO127PDB7V1
IO127NDB7V1
IO126PDB7V0
IO126NDB7V0
IO124PSB7V0
VCC
GND
VCCIB7
IO122PPB7V0
IO121PSB7V0
IO122NPB7V0
GFC1/IO120PSB7V0
GFB1/IO119PDB7V0
GFB0/IO119NDB7V0
VCOMPLF
GFA0/IO118NPB6V1
VCCPLF
GFA1/IO118PPB6V1
GND
GFA2/IO117PDB6V1
IO117NDB6V1
GFB2/IO116PPB6V1
GFC2/IO115PPB6V1
IO116NPB6V1
IO115NPB6V1
VCC
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
PQ208
PQ208
PQ208
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
108
TDO
144
IO47PDB2V1
180
IO19NPB0V2
109
TRST
145
IO44NDB2V1
181
IO18NPB0V2
110
VJTAG
146
IO44PDB2V1
182
IO17PPB0V2
111
VMV3
147
IO43NDB2V0
183
IO16PPB0V2
112
GDA0/IO67NPB3V1
148
IO43PDB2V0
184
IO17NPB0V2
113
GDB0/IO66NPB3V1
149
IO40NDB2V0
185
IO16NPB0V2
114
GDA1/IO67PPB3V1
150
IO40PDB2V0
186
VCCIB0
115
GDB1/IO66PPB3V1
151
GBC2/IO38PSB2V0
187
VCC
116
GDC0/IO65NDB3V1
152
GBA2/IO36PSB2V0
188
IO15PDB0V2
117
GDC1/IO65PDB3V1
153
GBB2/IO37PSB2V0
189
IO15NDB0V2
118
IO62NDB3V1
154
VMV2
190
IO13PDB0V2
119
IO62PDB3V1
155
GNDQ
191
IO13NDB0V2
120
IO58NDB3V0
156
GND
192
IO11PSB0V1
121
IO58PDB3V0
157
VMV1
193
IO09PDB0V1
122
GND
158
GNDQ
194
IO09NDB0V1
123
VCCIB3
159
GBA1/IO35PDB1V1
195
GND
124
GCC2/IO55PSB3V0
160
GBA0/IO35NDB1V1
196
IO07PDB0V1
125
GCB2/IO54PSB3V0
161
GBB1/IO34PDB1V1
197
IO07NDB0V1
126
NC
162
GND
198
IO05PDB0V0
127
IO53NDB3V0
163
GBB0/IO34NDB1V1
199
IO05NDB0V0
128
GCA2/IO53PDB3V0
164
GBC1/IO33PDB1V1
200
VCCIB0
129
GCA1/IO52PPB3V0
165
GBC0/IO33NDB1V1
201
GAC1/IO02PDB0V0
130
GND
166
IO31PDB1V1
202
GAC0/IO02NDB0V0
131
VCCPLC
167
IO31NDB1V1
203
GAB1/IO01PDB0V0
132
GCA0/IO52NPB3V0
168
IO27PDB1V0
204
GAB0/IO01NDB0V0
133
VCOMPLC
169
IO27NDB1V0
205
GAA1/IO00PDB0V0
134
GCB0/IO51NDB2V1
170
VCCIB1
206
GAA0/IO00NDB0V0
135
GCB1/IO51PDB2V1
171
VCC
207
GNDQ
136
GCC1/IO50PSB2V1
172
IO23PPB1V0
208
VMV0
137
IO49NDB2V1
173
IO22PSB1V0
138
IO49PDB2V1
174
IO23NPB1V0
139
IO48PSB2V1
175
IO21PDB1V0
140
VCCIB2
176
IO21NDB1V0
141
GND
177
IO19PPB0V2
142
VCC
178
GND
143
IO47NDB2V1
179
IO18PPB0V2
R ev i si o n 1 3
4 -3
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 4
1
GND
37
IO184PDB6V2
73
IO145NDB5V1
2
GNDQ
38
IO184NDB6V2
74
IO145PDB5V1
3
VMV7
39
IO180PSB6V1
75
IO143NDB5V1
4
GAB2/IO220PSB7V3
40
VCCIB6
76
IO143PDB5V1
5
GAA2/IO221PDB7V3
41
GND
77
IO137NDB5V0
6
IO221NDB7V3
42
IO176PDB6V1
78
IO137PDB5V0
7
GAC2/IO219PDB7V3
43
IO176NDB6V1
79
IO135NDB5V0
8
IO219NDB7V3
44
GEC1/IO169PDB6V0
80
IO135PDB5V0
9
IO215PDB7V3
45
GEC0/IO169NDB6V0
81
GND
10
IO215NDB7V3
46
GEB1/IO168PPB6V0
82
IO131NDB4V2
11
IO212PDB7V2
47
GEA1/IO167PPB6V0
83
IO131PDB4V2
12
IO212NDB7V2
48
GEB0/IO168NPB6V0
84
IO129NDB4V2
13
IO208PDB7V2
49
GEA0/IO167NPB6V0
85
IO129PDB4V2
14
IO208NDB7V2
50
VMV6
86
IO127NDB4V2
15
IO204PSB7V1
51
GNDQ
87
IO127PDB4V2
16
VCC
52
GND
88
VCC
17
GND
53
VMV5
89
VCCIB4
18
VCCIB7
54
GNDQ
90
IO121NDB4V1
19
IO200PDB7V1
55
IO166NDB5V3
91
IO121PDB4V1
20
IO200NDB7V1
56
GEA2/IO166PDB5V3
92
IO119NDB4V1
21
IO196PSB7V0
57
IO165NDB5V3
93
IO119PDB4V1
22
GFC1/IO192PSB7V0
58
GEB2/IO165PDB5V3
94
IO113NDB4V0
23
GFB1/IO191PDB7V0
59
IO164NDB5V3
95
GDC2/IO113PDB4V0
24
GFB0/IO191NDB7V0
60
GEC2/IO164PDB5V3
96
IO112NDB4V0
25
VCOMPLF
61
IO163PSB5V3
97
GND
26
GFA0/IO190NPB6V2
62
VCCIB5
98
GDB2/IO112PDB4V0
27
VCCPLF
63
IO161PSB5V3
99
GDA2/IO111PSB4V0
28
GFA1/IO190PPB6V2
64
IO157NDB5V2
100
GNDQ
29
GND
65
GND
101
TCK
30
GFA2/IO189PDB6V2
66
IO157PDB5V2
102
TDI
31
IO189NDB6V2
67
IO153NDB5V2
103
TMS
32
GFB2/IO188PPB6V2
68
IO153PDB5V2
104
VMV4
33
GFC2/IO187PPB6V2
69
IO149NDB5V1
105
GND
34
IO188NPB6V2
70
IO149PDB5V1
106
VPUMP
35
IO187NPB6V2
71
VCC
107
GNDQ
36
VCC
72
VCCIB5
108
TDO
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
PQ208
PQ208
PQ208
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
109
TRST
145
IO71NDB2V2
181
IO29NDB0V3
110
VJTAG
146
IO71PDB2V2
182
IO27PDB0V3
111
VMV3
147
IO67NDB2V1
183
IO27NDB0V3
112
GDA0/IO110NPB3V2
148
IO67PDB2V1
184
IO23PDB0V2
113
GDB0/IO109NPB3V2
149
IO65NDB2V1
185
IO23NDB0V2
114
GDA1/IO110PPB3V2
150
IO65PDB2V1
186
VCCIB0
115
GDB1/IO109PPB3V2
151
GBC2/IO60PSB2V0
187
VCC
116
GDC0/IO108NDB3V2
152
GBA2/IO58PSB2V0
188
IO18PDB0V2
117
GDC1/IO108PDB3V2
153
GBB2/IO59PSB2V0
189
IO18NDB0V2
118
IO105NDB3V2
154
VMV2
190
IO15PDB0V1
119
IO105PDB3V2
155
GNDQ
191
IO15NDB0V1
120
IO101NDB3V1
156
GND
192
IO12PSB0V1
121
IO101PDB3V1
157
VMV1
193
IO11PDB0V1
122
GND
158
GNDQ
194
IO11NDB0V1
123
VCCIB3
159
GBA1/IO57PDB1V3
195
GND
124
GCC2/IO90PSB3V0
160
GBA0/IO57NDB1V3
196
IO08PDB0V1
125
GCB2/IO89PSB3V0
161
GBB1/IO56PDB1V3
197
IO08NDB0V1
126
NC
162
GND
198
IO05PDB0V0
127
IO88NDB3V0
163
GBB0/IO56NDB1V3
199
IO05NDB0V0
128
GCA2/IO88PDB3V0
164
GBC1/IO55PDB1V3
200
VCCIB0
129
GCA1/IO87PPB3V0
165
GBC0/IO55NDB1V3
201
GAC1/IO02PDB0V0
130
GND
166
IO51PDB1V2
202
GAC0/IO02NDB0V0
131
VCCPLC
167
IO51NDB1V2
203
GAB1/IO01PDB0V0
132
GCA0/IO87NPB3V0
168
IO47PDB1V1
204
GAB0/IO01NDB0V0
133
VCOMPLC
169
IO47NDB1V1
205
GAA1/IO00PDB0V0
134
GCB0/IO86NDB2V3
170
VCCIB1
206
GAA0/IO00NDB0V0
135
GCB1/IO86PDB2V3
171
VCC
207
GNDQ
136
GCC1/IO85PSB2V3
172
IO43PSB1V1
208
VMV0
137
IO83NDB2V3
173
IO41PDB1V1
138
IO83PDB2V3
174
IO41NDB1V1
139
IO81PSB2V3
175
IO35PDB1V0
140
VCCIB2
176
IO35NDB1V0
141
GND
177
IO31PDB0V3
142
VCC
178
GND
143
IO73NDB2V2
179
IO31NDB0V3
144
IO73PDB2V2
180
IO29PDB0V3
R ev i si o n 1 3
4 -5
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 6
1
GND
40
VCCIB6
79
IO194NDB5V0
2
GNDQ
41
GND
80
IO194PDB5V0
3
VMV7
42
IO244PDB6V1
81
GND
4
GAB2/IO308PSB7V4
43
IO244NDB6V1
82
IO184NDB4V3
5
GAA2/IO309PDB7V4
44
GEC1/IO236PDB6V0
83
IO184PDB4V3
6
IO309NDB7V4
45
GEC0/IO236NDB6V0
84
IO180NDB4V3
7
GAC2/IO307PDB7V4
46
GEB1/IO235PPB6V0
85
IO180PDB4V3
8
IO307NDB7V4
47
GEA1/IO234PPB6V0
86
IO176NDB4V2
9
IO303PDB7V3
48
GEB0/IO235NPB6V0
87
IO176PDB4V2
10
IO303NDB7V3
49
GEA0/IO234NPB6V0
88
VCC
11
IO299PDB7V3
50
VMV6
89
VCCIB4
12
IO299NDB7V3
51
GNDQ
90
IO170NDB4V2
13
IO295PDB7V2
52
GND
91
IO170PDB4V2
14
IO295NDB7V2
53
VMV5
92
IO166NDB4V1
15
IO291PSB7V2
54
GNDQ
93
IO166PDB4V1
16
VCC
55
IO233NDB5V4
94
IO156NDB4V0
17
GND
56
GEA2/IO233PDB5V4
95
GDC2/IO156PDB4V0
18
VCCIB7
57
IO232NDB5V4
96
IO154NPB4V0
19
IO285PDB7V1
58
GEB2/IO232PDB5V4
97
GND
20
IO285NDB7V1
59
IO231NDB5V4
98
GDB2/IO155PSB4V0
21
IO279PSB7V0
60
GEC2/IO231PDB5V4
99
GDA2/IO154PPB4V0
22
GFC1/IO275PSB7V0
61
IO230PSB5V4
100
GNDQ
23
GFB1/IO274PDB7V0
62
VCCIB5
101
TCK
24
GFB0/IO274NDB7V0
63
IO218NDB5V3
102
TDI
25
VCOMPLF
64
IO218PDB5V3
103
TMS
26
GFA0/IO273NPB6V4
65
GND
104
VMV4
27
VCCPLF
66
IO214PSB5V2
105
GND
28
GFA1/IO273PPB6V4
67
IO212NDB5V2
106
VPUMP
29
GND
68
IO212PDB5V2
107
GNDQ
30
GFA2/IO272PDB6V4
69
IO208NDB5V1
108
TDO
31
IO272NDB6V4
70
IO208PDB5V1
109
TRST
32
GFB2/IO271PPB6V4
71
VCC
110
VJTAG
33
GFC2/IO270PPB6V4
72
VCCIB5
111
VMV3
34
IO271NPB6V4
73
IO202NDB5V1
112
GDA0/IO153NPB3V4
35
IO270NPB6V4
74
IO202PDB5V1
113
GDB0/IO152NPB3V4
36
VCC
75
IO198NDB5V0
114
GDA1/IO153PPB3V4
37
IO252PDB6V2
76
IO198PDB5V0
115
GDB1/IO152PPB3V4
38
IO252NDB6V2
77
IO197NDB5V0
116
GDC0/IO151NDB3V4
39
IO248PSB6V1
78
IO197PDB5V0
117
GDC1/IO151PDB3V4
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
PQ208
PQ208
PQ208
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
118
IO134NDB3V2
157
VMV1
196
IO11PDB0V1
119
IO134PDB3V2
158
GNDQ
197
IO11NDB0V1
120
IO132NDB3V2
159
GBA1/IO81PDB1V4
198
IO08PDB0V0
121
IO132PDB3V2
160
GBA0/IO81NDB1V4
199
IO08NDB0V0
122
GND
161
GBB1/IO80PDB1V4
200
VCCIB0
123
VCCIB3
162
GND
201
GAC1/IO02PDB0V0
124
GCC2/IO117PSB3V0
163
GBB0/IO80NDB1V4
202
GAC0/IO02NDB0V0
125
GCB2/IO116PSB3V0
164
GBC1/IO79PDB1V4
203
GAB1/IO01PDB0V0
126
NC
165
GBC0/IO79NDB1V4
204
GAB0/IO01NDB0V0
127
IO115NDB3V0
166
IO74PDB1V4
205
GAA1/IO00PDB0V0
128
GCA2/IO115PDB3V0
167
IO74NDB1V4
206
GAA0/IO00NDB0V0
129
GCA1/IO114PPB3V0
168
IO70PDB1V3
207
GNDQ
130
GND
169
IO70NDB1V3
208
VMV0
131
VCCPLC
170
VCCIB1
132
GCA0/IO114NPB3V0
171
VCC
133
VCOMPLC
172
IO56PSB1V1
134
GCB0/IO113NDB2V3
173
IO55PDB1V1
135
GCB1/IO113PDB2V3
174
IO55NDB1V1
136
GCC1/IO112PSB2V3
175
IO54PDB1V1
137
IO110NDB2V3
176
IO54NDB1V1
138
IO110PDB2V3
177
IO40PDB0V4
139
IO106PSB2V3
178
GND
140
VCCIB2
179
IO40NDB0V4
141
GND
180
IO37PDB0V4
142
VCC
181
IO37NDB0V4
143
IO99NDB2V2
182
IO35PDB0V4
144
IO99PDB2V2
183
IO35NDB0V4
145
IO96NDB2V1
184
IO32PDB0V3
146
IO96PDB2V1
185
IO32NDB0V3
147
IO91NDB2V1
186
VCCIB0
148
IO91PDB2V1
187
VCC
149
IO88NDB2V0
188
IO28PDB0V3
150
IO88PDB2V0
189
IO28NDB0V3
151
GBC2/IO84PSB2V0
190
IO24PDB0V2
152
GBA2/IO82PSB2V0
191
IO24NDB0V2
153
GBB2/IO83PSB2V0
192
IO21PSB0V2
154
VMV2
193
IO16PDB0V1
155
GNDQ
194
IO16NDB0V1
156
GND
195
GND
R ev i si o n 1 3
4 -7
Package Pin Assignments
FG256
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 8
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
FG256
FG256
FG256
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
A1
GND
C5
GAC0/IO02NDB0V0
E9
IO21NDB1V0
A2
GAA0/IO00NDB0V0
C6
GAC1/IO02PDB0V0
E10
VCCIB1
A3
GAA1/IO00PDB0V0
C7
IO15NDB0V2
E11
VCCIB1
A4
GAB0/IO01NDB0V0
C8
IO15PDB0V2
E12
VMV1
A5
IO05PDB0V0
C9
IO20PDB1V0
E13
GBC2/IO38PDB2V0
A6
IO10PDB0V1
C10
IO25NDB1V0
E14
IO37NDB2V0
A7
IO12PDB0V2
C11
IO27PDB1V0
E15
IO41NDB2V0
A8
IO16NDB0V2
C12
GBC0/IO33NDB1V1
E16
IO41PDB2V0
A9
IO23NDB1V0
C13
VCCPLB
F1
IO124PDB7V0
A10
IO23PDB1V0
C14
VMV2
F2
IO125PDB7V0
A11
IO28NDB1V1
C15
IO36NDB2V0
F3
IO126PDB7V0
A12
IO28PDB1V1
C16
IO42PDB2V0
F4
IO130NDB7V1
A13
GBB1/IO34PDB1V1
D1
IO128PDB7V1
F5
VCCIB7
A14
GBA0/IO35NDB1V1
D2
IO129PDB7V1
F6
GND
A15
GBA1/IO35PDB1V1
D3
GAC2/IO132PDB7V1
F7
VCC
A16
GND
D4
VCOMPLA
F8
VCC
B1
GAB2/IO133PDB7V1
D5
GNDQ
F9
VCC
B2
GAA2/IO134PDB7V1
D6
IO09NDB0V1
F10
VCC
B3
GNDQ
D7
IO09PDB0V1
F11
GND
B4
GAB1/IO01PDB0V0
D8
IO13PDB0V2
F12
VCCIB2
B5
IO05NDB0V0
D9
IO21PDB1V0
F13
IO38NDB2V0
B6
IO10NDB0V1
D10
IO25PDB1V0
F14
IO40NDB2V0
B7
IO12NDB0V2
D11
IO27NDB1V0
F15
IO40PDB2V0
B8
IO16PDB0V2
D12
GNDQ
F16
IO45PSB2V1
B9
IO20NDB1V0
D13
VCOMPLB
G1
IO124NDB7V0
B10
IO24NDB1V0
D14
GBB2/IO37PDB2V0
G2
IO125NDB7V0
B11
IO24PDB1V0
D15
IO39PDB2V0
G3
IO126NDB7V0
B12
GBC1/IO33PDB1V1
D16
IO39NDB2V0
G4
GFC1/IO120PPB7V0
B13
GBB0/IO34NDB1V1
E1
IO128NDB7V1
G5
VCCIB7
B14
GNDQ
E2
IO129NDB7V1
G6
VCC
B15
GBA2/IO36PDB2V0
E3
IO132NDB7V1
G7
GND
B16
IO42NDB2V0
E4
IO130PDB7V1
G8
GND
C1
IO133NDB7V1
E5
VMV0
G9
GND
C2
IO134NDB7V1
E6
VCCIB0
G10
GND
C3
VMV7
E7
VCCIB0
G11
VCC
C4
VCCPLA
E8
IO13NDB0V2
G12
VCCIB2
R ev i si o n 1 3
4 -9
Package Pin Assignments
FG256
FG256
FG256
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
G13
GCC1/IO50PPB2V1
K1
GFC2/IO115PSB6V1
M5
VMV5
G14
IO44NDB2V1
K2
IO113PPB6V1
M6
VCCIB5
G15
IO44PDB2V1
K3
IO112PDB6V1
M7
VCCIB5
G16
IO49NSB2V1
K4
IO112NDB6V1
M8
IO84NDB5V0
H1
GFB0/IO119NPB7V0
K5
VCCIB6
M9
IO84PDB5V0
H2
GFA0/IO118NDB6V1
K6
VCC
M10
VCCIB4
H3
GFB1/IO119PPB7V0
K7
GND
M11
VCCIB4
H4
VCOMPLF
K8
GND
M12
VMV3
H5
GFC0/IO120NPB7V0
K9
GND
M13
VCCPLD
H6
VCC
K10
GND
M14
GDB1/IO66PPB3V1
H7
GND
K11
VCC
M15
GDC1/IO65PDB3V1
H8
GND
K12
VCCIB3
M16
IO61NDB3V1
H9
GND
K13
IO54NPB3V0
N1
IO105PDB6V0
H10
GND
K14
IO57NPB3V0
N2
IO105NDB6V0
H11
VCC
K15
IO55NPB3V0
N3
GEC1/IO104PPB6V0
H12
GCC0/IO50NPB2V1
K16
IO57PPB3V0
N4
VCOMPLE
H13
GCB1/IO51PPB2V1
L1
IO113NPB6V1
N5
GNDQ
H14
GCA0/IO52NPB3V0
L2
IO109PPB6V0
N6
GEA2/IO101PPB5V2
H15
VCOMPLC
L3
IO108PDB6V0
N7
IO92NDB5V1
H16
GCB0/IO51NPB2V1
L4
IO108NDB6V0
N8
IO90NDB5V1
J1
GFA2/IO117PSB6V1
L5
VCCIB6
N9
IO82NDB5V0
J2
GFA1/IO118PDB6V1
L6
GND
N10
IO74NDB4V1
J3
VCCPLF
L7
VCC
N11
IO74PDB4V1
J4
IO116NDB6V1
L8
VCC
N12
GNDQ
J5
GFB2/IO116PDB6V1
L9
VCC
N13
VCOMPLD
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO65NDB3V1
J8
GND
L12
VCCIB3
N16
GDA1/IO67PDB3V1
J9
GND
L13
GDB0/IO66NPB3V1
P1
GEB1/IO103PDB6V0
J10
GND
L14
IO60NDB3V1
P2
GEB0/IO103NDB6V0
J11
VCC
L15
IO60PDB3V1
P3
VMV6
J12
GCB2/IO54PPB3V0
L16
IO61PDB3V1
P4
VCCPLE
J13
GCA1/IO52PPB3V0
M1
IO109NPB6V0
P5
IO101NPB5V2
J14
GCC2/IO55PPB3V0
M2
IO106NDB6V0
P6
IO95PPB5V1
J15
VCCPLC
M3
IO106PDB6V0
P7
IO92PDB5V1
J16
GCA2/IO53PSB3V0
M4
GEC0/IO104NPB6V0
P8
IO90PDB5V1
4- 10
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG256
FG256
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
P9
IO82PDB5V0
T13
IO68NDB4V0
P10
IO76NDB4V1
T14
GDA2/IO68PDB4V0
P11
IO76PDB4V1
T15
TMS
P12
VMV4
T16
GND
P13
TCK
P14
VPUMP
P15
TRST
P16
GDA0/IO67NDB3V1
R1
GEA1/IO102PDB6V0
R2
GEA0/IO102NDB6V0
R3
GNDQ
R4
GEC2/IO99PDB5V2
R5
IO95NPB5V1
R6
IO91NDB5V1
R7
IO91PDB5V1
R8
IO83NDB5V0
R9
IO83PDB5V0
R10
IO77NDB4V1
R11
IO77PDB4V1
R12
IO69NDB4V0
R13
GDB2/IO69PDB4V0
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO100NDB5V2
T3
GEB2/IO100PDB5V2
T4
IO99NDB5V2
T5
IO88NDB5V0
T6
IO88PDB5V0
T7
IO89NSB5V0
T8
IO80NSB4V1
T9
IO81NDB4V1
T10
IO81PDB4V1
T11
IO70NDB4V0
T12
GDC2/IO70PDB4V0
R ev i si o n 1 3
4- 11
Package Pin Assignments
FG324
A1 Ball Pad Corner
18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 12
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG324
FG324
FG324
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
A1
GND
C1
IO305NDB7V3
E1
IO303NDB7V3
A2
IO08NDB0V0
C2
IO308NDB7V4
E2
GNDQ
A3
IO08PDB0V0
C3
GAA2/IO309PPB7V4
E3
VMV7
A4
IO10NDB0V1
C4
GAA1/IO00PPB0V0
E4
IO307NPB7V4
A5
IO10PDB0V1
C5
VMV0
E5
VCCPLA
A6
IO12PDB0V1
C6
IO14NDB0V1
E6
GAB0/IO01NPB0V0
A7
GND
C7
IO18PDB0V2
E7
VCCIB0
A8
IO32NDB0V3
C8
IO40NDB0V4
E8
GND
A9
IO32PDB0V3
C9
IO40PDB0V4
E9
IO28NDB0V3
A10
IO42PPB1V0
C10
IO44PDB1V0
E10
IO48PDB1V0
A11
IO52NPB1V1
C11
IO56NDB1V1
E11
GND
A12
GND
C12
IO64NDB1V2
E12
VCCIB1
A13
IO66NDB1V3
C13
IO64PDB1V2
E13
IO60NPB1V2
A14
IO72NDB1V3
C14
VMV1
E14
VCCPLB
A15
IO72PDB1V3
C15
GBC0/IO79NDB1V4
E15
IO82NDB2V0
A16
IO74NDB1V4
C16
GBC1/IO79PDB1V4
E16
VMV2
A17
IO74PDB1V4
C17
GBB2/IO83PPB2V0
E17
GNDQ
A18
GND
C18
IO88NDB2V0
E18
IO90NDB2V1
B1
IO305PDB7V3
D1
IO303PDB7V3
F1
IO299NDB7V3
B2
GAB2/IO308PDB7V4
D2
VCCIB7
F2
IO299PDB7V3
B3
GAA0/IO00NPB0V0
D3
GAC2/IO307PPB7V4
F3
IO295PDB7V2
B4
VCCIB0
D4
IO309NPB7V4
F4
IO295NDB7V2
B5
GNDQ
D5
GAB1/IO01PPB0V0
F5
VCOMPLA
B6
IO12NDB0V1
D6
IO14PDB0V1
F6
IO291PPB7V2
B7
IO18NDB0V2
D7
IO24NDB0V2
F7
GAC0/IO02NDB0V0
B8
VCCIB0
D8
IO24PDB0V2
F8
GAC1/IO02PDB0V0
B9
IO42NPB1V0
D9
IO28PDB0V3
F9
IO26PDB0V3
B10
IO44NDB1V0
D10
IO48NDB1V0
F10
IO34PDB0V4
B11
VCCIB1
D11
IO56PDB1V1
F11
IO58NDB1V2
B12
IO52PPB1V1
D12
IO60PPB1V2
F12
IO58PDB1V2
B13
IO66PDB1V3
D13
GBB0/IO80NDB1V4
F13
IO94PPB2V1
B14
GNDQ
D14
GBB1/IO80PDB1V4
F14
VCOMPLB
B15
VCCIB1
D15
GBA2/IO82PDB2V0
F15
GBC2/IO84PDB2V0
B16
GBA0/IO81NDB1V4
D16
IO83NPB2V0
F16
IO84NDB2V0
B17
GBA1/IO81PDB1V4
D17
VCCIB2
F17
IO92NDB2V1
B18
IO88PDB2V0
D18
IO90PDB2V1
F18
IO92PDB2V1
R ev i si o n 1 3
4- 13
Package Pin Assignments
FG324
FG324
FG324
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
G1
GND
J1
IO267NDB6V4
L1
IO263NDB6V3
G2
IO287PDB7V1
J2
GFA0/IO273NDB6V4
L2
VCCIB6
G3
IO287NDB7V1
J3
VCOMPLF
L3
IO259PDB6V3
G4
IO283PPB7V1
J4
GFA2/IO272PDB6V4
L4
IO259NDB6V3
G5
VCCIB7
J5
GFB0/IO274NPB7V0
L5
GND
G6
IO279PDB7V0
J6
GFC0/IO275NDB7V0
L6
IO270NPB6V4
G7
IO291NPB7V2
J7
GFC1/IO275PDB7V0
L7
VCC
G8
VCC
J8
GND
L8
VCC
G9
IO26NDB0V3
J9
GND
L9
GND
G10
IO34NDB0V4
J10
GND
L10
GND
G11
VCC
J11
GND
L11
VCC
G12
IO94NPB2V1
J12
GCA2/IO115PDB3V0
L12
VCC
G13
IO98PDB2V2
J13
GCA1/IO114PDB3V0
L13
IO132PDB3V2
G14
VCCIB2
J14
GCA0/IO114NDB3V0
L14
GND
G15
GCC0/IO112NPB2V3
J15
GCB0/IO113NDB2V3
L15
IO117NDB3V0
G16
IO104PDB2V2
J16
VCOMPLC
L16
IO128NPB3V1
G17
IO104NDB2V2
J17
IO120NPB3V0
L17
VCCIB3
G18
GND
J18
IO108NDB2V3
L18
IO124PPB3V1
H1
IO267PDB6V4
K1
IO263PDB6V3
M1
GND
H2
VCCIB7
K2
GFA1/IO273PDB6V4
M2
IO255PDB6V2
H3
IO283NPB7V1
K3
VCCPLF
M3
IO255NDB6V2
H4
GFB1/IO274PPB7V0
K4
IO272NDB6V4
M4
IO251PPB6V2
H5
GND
K5
GFC2/IO270PPB6V4
M5
VCCIB6
H6
IO279NDB7V0
K6
GFB2/IO271PDB6V4
M6
GEB0/IO235NDB6V0
H7
VCC
K7
IO271NDB6V4
M7
GEB1/IO235PDB6V0
H8
VCC
K8
GND
M8
VCC
H9
GND
K9
GND
M9
IO192PPB4V4
H10
GND
K10
GND
M10
IO154NPB4V0
H11
VCC
K11
GND
M11
VCC
H12
VCC
K12
IO115NDB3V0
M12
GDA0/IO153NPB3V4
H13
IO98NDB2V2
K13
GCB2/IO116PDB3V0
M13
IO132NDB3V2
H14
GND
K14
IO116NDB3V0
M14
VCCIB3
H15
GCB1/IO113PDB2V3
K15
GCC2/IO117PDB3V0
M15
IO134NDB3V2
H16
GCC1/IO112PPB2V3
K16
VCCPLC
M16
IO134PDB3V2
H17
VCCIB2
K17
IO124NPB3V1
M17
IO128PPB3V1
H18
IO108PDB2V3
K18
IO120PPB3V0
M18
GND
4- 14
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG324
FG324
FG324
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
Pin Number
A3PE3000 FBGA
N1
IO247NDB6V1
R1
IO245NDB6V1
U1
IO241NDB6V0
N2
IO247PDB6V1
R2
VCCIB6
U2
GEA2/IO233PPB5V4
N3
IO251NPB6V2
R3
GEA1/IO234PPB6V0
U3
GEC2/IO231PPB5V4
N4
GEC0/IO236NDB6V0
R4
IO232NDB5V4
U4
VCCIB5
N5
VCOMPLE
R5
GEB2/IO232PDB5V4
U5
GNDQ
N6
IO212NDB5V2
R6
IO214NDB5V2
U6
IO208PDB5V1
N7
IO212PDB5V2
R7
IO202PDB5V1
U7
IO198PPB5V0
N8
IO192NPB4V4
R8
IO194PDB5V0
U8
VCCIB5
N9
IO174PDB4V2
R9
IO186PDB4V4
U9
IO182NPB4V3
N10
IO170PDB4V2
R10
IO178PDB4V3
U10
IO180NPB4V3
N11
GDA2/IO154PPB4V0
R11
IO168NSB4V1
U11
VCCIB4
N12
GDB2/IO155PPB4V0
R12
IO164PDB4V1
U12
IO166PPB4V1
N13
GDA1/IO153PPB3V4
R13
GDC2/IO156PDB4V0
U13
IO162PDB4V1
N14
VCOMPLD
R14
TCK
U14
GNDQ
N15
GDB0/IO152NDB3V4
R15
VPUMP
U15
VCCIB4
N16
GDB1/IO152PDB3V4
R16
TRST
U16
TMS
N17
IO138NDB3V3
R17
VCCIB3
U17
VMV3
N18
IO138PDB3V3
R18
IO142NDB3V3
U18
IO146NDB3V4
P1
IO245PDB6V1
T1
IO241PDB6V0
V1
GND
P2
GNDQ
T2
GEA0/IO234NPB6V0
V2
IO218NDB5V3
P3
VMV6
T3
IO233NPB5V4
V3
IO218PDB5V3
P4
GEC1/IO236PDB6V0
T4
IO231NPB5V4
V4
IO206NDB5V1
P5
VCCPLE
T5
VMV5
V5
IO206PDB5V1
P6
IO214PDB5V2
T6
IO208NDB5V1
V6
IO198NPB5V0
P7
VCCIB5
T7
IO202NDB5V1
V7
GND
P8
GND
T8
IO194NDB5V0
V8
IO190NDB4V4
P9
IO174NDB4V2
T9
IO186NDB4V4
V9
IO190PDB4V4
P10
IO170NDB4V2
T10
IO178NDB4V3
V10
IO182PPB4V3
P11
GND
T11
IO166NPB4V1
V11
IO180PPB4V3
P12
VCCIB4
T12
IO164NDB4V1
V12
GND
P13
IO155NPB4V0
T13
IO156NDB4V0
V13
IO162NDB4V1
P14
VCCPLD
T14
VMV4
V14
IO160NDB4V0
P15
VJTAG
T15
TDI
V15
IO160PDB4V0
P16
GDC0/IO151NDB3V4
T16
GNDQ
V16
IO158NDB4V0
P17
GDC1/IO151PDB3V4
T17
TDO
V17
IO158PDB4V0
P18
IO142PDB3V3
T18
IO146PDB3V4
V18
GND
R ev i si o n 1 3
4- 15
Package Pin Assignments
FG484
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 16
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
A1
GND
AA15
NC
B7
IO07PDB0V1
A2
GND
AA16
IO71NDB4V0
B8
IO11NDB0V1
A3
VCCIB0
AA17
IO71PDB4V0
B9
IO17NDB0V2
A4
IO06NDB0V1
AA18
NC
B10
IO14PDB0V2
A5
IO06PDB0V1
AA19
NC
B11
IO19PDB0V2
A6
IO08NDB0V1
AA20
NC
B12
IO22NDB1V0
A7
IO08PDB0V1
AA21
VCCIB3
B13
IO26NDB1V0
A8
IO11PDB0V1
AA22
GND
B14
NC
A9
IO17PDB0V2
AB1
GND
B15
NC
A10
IO18NDB0V2
AB2
GND
B16
IO30NDB1V1
A11
IO18PDB0V2
AB3
VCCIB5
B17
IO30PDB1V1
A12
IO22PDB1V0
AB4
IO97NDB5V2
B18
IO32PDB1V1
A13
IO26PDB1V0
AB5
IO97PDB5V2
B19
NC
A14
IO29NDB1V1
AB6
IO93NDB5V1
B20
NC
A15
IO29PDB1V1
AB7
IO93PDB5V1
B21
VCCIB2
A16
IO31NDB1V1
AB8
IO87NDB5V0
B22
GND
A17
IO31PDB1V1
AB9
IO87PDB5V0
C1
VCCIB7
A18
IO32NDB1V1
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB1
AB12
IO75NDB4V1
C4
NC
A21
GND
AB13
IO75PDB4V1
C5
GND
A22
GND
AB14
IO72NDB4V0
C6
IO04NDB0V0
AA1
GND
AB15
IO72PDB4V0
C7
IO04PDB0V0
AA2
VCCIB6
AB16
IO73NDB4V0
C8
VCC
AA3
NC
AB17
IO73PDB4V0
C9
VCC
AA4
IO98PDB5V2
AB18
NC
C10
IO14NDB0V2
AA5
IO96NDB5V2
AB19
NC
C11
IO19NDB0V2
AA6
IO96PDB5V2
AB20
VCCIB4
C12
NC
AA7
IO86NDB5V0
AB21
GND
C13
NC
AA8
IO86PDB5V0
AB22
GND
C14
VCC
AA9
IO85PDB5V0
B1
GND
C15
VCC
AA10
IO85NDB5V0
B2
VCCIB7
C16
NC
AA11
IO78PPB4V1
B3
NC
C17
NC
AA12
IO79NDB4V1
B4
IO03NDB0V0
C18
GND
AA13
IO79PDB4V1
B5
IO03PDB0V0
C19
NC
AA14
NC
B6
IO07NDB0V1
C20
NC
R ev i si o n 1 3
4- 17
Package Pin Assignments
FG484
FG484
FG484
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
C21
NC
E13
IO24NDB1V0
G5
IO129PDB7V1
C22
VCCIB2
E14
IO24PDB1V0
G6
GAC2/IO132PDB7V1
D1
NC
E15
GBC1/IO33PDB1V1
G7
VCOMPLA
D2
NC
E16
GBB0/IO34NDB1V1
G8
GNDQ
D3
NC
E17
GNDQ
G9
IO09NDB0V1
D4
GND
E18
GBA2/IO36PDB2V0
G10
IO09PDB0V1
D5
GAA0/IO00NDB0V0
E19
IO42NDB2V0
G11
IO13PDB0V2
D6
GAA1/IO00PDB0V0
E20
GND
G12
IO21PDB1V0
D7
GAB0/IO01NDB0V0
E21
NC
G13
IO25PDB1V0
D8
IO05PDB0V0
E22
NC
G14
IO27NDB1V0
D9
IO10PDB0V1
F1
NC
G15
GNDQ
D10
IO12PDB0V2
F2
IO131NDB7V1
G16
VCOMPLB
D11
IO16NDB0V2
F3
IO131PDB7V1
G17
GBB2/IO37PDB2V0
D12
IO23NDB1V0
F4
IO133NDB7V1
G18
IO39PDB2V0
D13
IO23PDB1V0
F5
IO134NDB7V1
G19
IO39NDB2V0
D14
IO28NDB1V1
F6
VMV7
G20
IO43PDB2V0
D15
IO28PDB1V1
F7
VCCPLA
G21
IO43NDB2V0
D16
GBB1/IO34PDB1V1
F8
GAC0/IO02NDB0V0
G22
NC
D17
GBA0/IO35NDB1V1
F9
GAC1/IO02PDB0V0
H1
NC
D18
GBA1/IO35PDB1V1
F10
IO15NDB0V2
H2
NC
D19
GND
F11
IO15PDB0V2
H3
VCC
D20
NC
F12
IO20PDB1V0
H4
IO128NDB7V1
D21
NC
F13
IO25NDB1V0
H5
IO129NDB7V1
D22
NC
F14
IO27PDB1V0
H6
IO132NDB7V1
E1
NC
F15
GBC0/IO33NDB1V1
H7
IO130PDB7V1
E2
NC
F16
VCCPLB
H8
VMV0
E3
GND
F17
VMV2
H9
VCCIB0
E4
GAB2/IO133PDB7V1
F18
IO36NDB2V0
H10
VCCIB0
E5
GAA2/IO134PDB7V1
F19
IO42PDB2V0
H11
IO13NDB0V2
E6
GNDQ
F20
NC
H12
IO21NDB1V0
E7
GAB1/IO01PDB0V0
F21
NC
H13
VCCIB1
E8
IO05NDB0V0
F22
NC
H14
VCCIB1
E9
IO10NDB0V1
G1
IO127NDB7V1
H15
VMV1
E10
IO12NDB0V2
G2
IO127PDB7V1
H16
GBC2/IO38PDB2V0
E11
IO16PDB0V2
G3
NC
H17
IO37NDB2V0
E12
IO20NDB1V0
G4
IO128PDB7V1
H18
IO41NDB2V0
4- 18
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
H19
IO41PDB2V0
K11
GND
M3
IO117NDB6V1
H20
VCC
K12
GND
M4
GFA2/IO117PDB6V1
H21
NC
K13
GND
M5
GFA1/IO118PDB6V1
H22
NC
K14
VCC
M6
VCCPLF
J1
IO123NDB7V0
K15
VCCIB2
M7
IO116NDB6V1
J2
IO123PDB7V0
K16
GCC1/IO50PPB2V1
M8
GFB2/IO116PDB6V1
J3
NC
K17
IO44NDB2V1
M9
VCC
J4
IO124PDB7V0
K18
IO44PDB2V1
M10
GND
J5
IO125PDB7V0
K19
IO49NPB2V1
M11
GND
J6
IO126PDB7V0
K20
IO45NPB2V1
M12
GND
J7
IO130NDB7V1
K21
IO48NDB2V1
M13
GND
J8
VCCIB7
K22
IO46NDB2V1
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO54PPB3V0
J10
VCC
L2
IO122PDB7V0
M16
GCA1/IO52PPB3V0
J11
VCC
L3
IO122NDB7V0
M17
GCC2/IO55PPB3V0
J12
VCC
L4
GFB0/IO119NPB7V0
M18
VCCPLC
J13
VCC
L5
GFA0/IO118NDB6V1
M19
GCA2/IO53PDB3V0
J14
GND
L6
GFB1/IO119PPB7V0
M20
IO53NDB3V0
J15
VCCIB2
L7
VCOMPLF
M21
IO56PDB3V0
J16
IO38NDB2V0
L8
GFC0/IO120NPB7V0
M22
NC
J17
IO40NDB2V0
L9
VCC
N1
IO114PPB6V1
J18
IO40PDB2V0
L10
GND
N2
IO111NDB6V1
J19
IO45PPB2V1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO115PPB6V1
J21
IO48PDB2V1
L13
GND
N5
IO113PPB6V1
J22
IO46PDB2V1
L14
VCC
N6
IO112PDB6V1
K1
IO121NDB7V0
L15
GCC0/IO50NPB2V1
N7
IO112NDB6V1
K2
IO121PDB7V0
L16
GCB1/IO51PPB2V1
N8
VCCIB6
K3
NC
L17
GCA0/IO52NPB3V0
N9
VCC
K4
IO124NDB7V0
L18
VCOMPLC
N10
GND
K5
IO125NDB7V0
L19
GCB0/IO51NPB2V1
N11
GND
K6
IO126NDB7V0
L20
IO49PPB2V1
N12
GND
K7
GFC1/IO120PPB7V0
L21
IO47NDB2V1
N13
GND
K8
VCCIB7
L22
IO47PDB2V1
N14
VCC
K9
VCC
M1
NC
N15
VCCIB3
K10
GND
M2
IO114NPB6V1
N16
IO54NPB3V0
R ev i si o n 1 3
4- 19
Package Pin Assignments
FG484
FG484
FG484
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
N17
IO57NPB3V0
R9
VCCIB5
U1
NC
N18
IO55NPB3V0
R10
VCCIB5
U2
IO107PDB6V0
N19
IO57PPB3V0
R11
IO84NDB5V0
U3
IO107NDB6V0
N20
NC
R12
IO84PDB5V0
U4
GEB1/IO103PDB6V0
N21
IO56NDB3V0
R13
VCCIB4
U5
GEB0/IO103NDB6V0
N22
IO58PDB3V0
R14
VCCIB4
U6
VMV6
P1
NC
R15
VMV3
U7
VCCPLE
P2
IO111PDB6V1
R16
VCCPLD
U8
IO101NPB5V2
P3
IO115NPB6V1
R17
GDB1/IO66PPB3V1
U9
IO95PPB5V1
P4
IO113NPB6V1
R18
GDC1/IO65PDB3V1
U10
IO92PDB5V1
P5
IO109PPB6V0
R19
IO61NDB3V1
U11
IO90PDB5V1
P6
IO108PDB6V0
R20
VCC
U12
IO82PDB5V0
P7
IO108NDB6V0
R21
IO59NDB3V0
U13
IO76NDB4V1
P8
VCCIB6
R22
IO62PDB3V1
U14
IO76PDB4V1
P9
GND
T1
NC
U15
VMV4
P10
VCC
T2
IO110NDB6V0
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO105PDB6V0
U18
TRST
P13
VCC
T5
IO105NDB6V0
U19
GDA0/IO67NDB3V1
P14
GND
T6
GEC1/IO104PPB6V0
U20
NC
P15
VCCIB3
T7
VCOMPLE
U21
IO64NDB3V1
P16
GDB0/IO66NPB3V1
T8
GNDQ
U22
IO63PDB3V1
P17
IO60NDB3V1
T9
GEA2/IO101PPB5V2
V1
NC
P18
IO60PDB3V1
T10
IO92NDB5V1
V2
NC
P19
IO61PDB3V1
T11
IO90NDB5V1
V3
GND
P20
NC
T12
IO82NDB5V0
V4
GEA1/IO102PDB6V0
P21
IO59PDB3V0
T13
IO74NDB4V1
V5
GEA0/IO102NDB6V0
P22
IO58NDB3V0
T14
IO74PDB4V1
V6
GNDQ
R1
NC
T15
GNDQ
V7
GEC2/IO99PDB5V2
R2
IO110PDB6V0
T16
VCOMPLD
V8
IO95NPB5V1
R3
VCC
T17
VJTAG
V9
IO91NDB5V1
R4
IO109NPB6V0
T18
GDC0/IO65NDB3V1
V10
IO91PDB5V1
R5
IO106NDB6V0
T19
GDA1/IO67PDB3V1
V11
IO83NDB5V0
R6
IO106PDB6V0
T20
NC
V12
IO83PDB5V0
R7
GEC0/IO104NPB6V0
T21
IO64PDB3V1
V13
IO77NDB4V1
R8
VMV5
T22
IO62NDB3V1
V14
IO77PDB4V1
4- 20
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
Pin Number
A3PE600 Function
Pin Number
A3PE600 Function
V15
IO69NDB4V0
Y7
IO94PDB5V1
V16
GDB2/IO69PDB4V0
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
IO89PDB5V0
V19
TDO
Y11
IO80PDB4V1
V20
GND
Y12
IO78NPB4V1
V21
NC
Y13
NC
V22
IO63NDB3V1
Y14
VCC
W1
NC
Y15
VCC
W2
NC
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO100NDB5V2
Y19
NC
W6
GEB2/IO100PDB5V2
Y20
NC
W7
IO99NDB5V2
Y21
NC
W8
IO88NDB5V0
Y22
VCCIB3
W9
IO88PDB5V0
W10
IO89NDB5V0
W11
IO80NDB4V1
W12
IO81NDB4V1
W13
IO81PDB4V1
W14
IO70NDB4V0
W15
GDC2/IO70PDB4V0
W16
IO68NDB4V0
W17
GDA2/IO68PDB4V0
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB6
Y2
NC
Y3
NC
Y4
IO98NDB5V2
Y5
GND
Y6
IO94NDB5V1
R ev i si o n 1 3
4- 21
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 22
A1
GND
AA15
NC
B7
IO10PDB0V1
A2
GND
AA16
IO117NDB4V0
B8
IO15NDB0V1
A3
VCCIB0
AA17
IO117PDB4V0
B9
IO17NDB0V2
A4
IO05NDB0V0
AA18
IO115NDB4V0
B10
IO20PDB0V2
A5
IO05PDB0V0
AA19
IO115PDB4V0
B11
IO29PDB0V3
A6
IO11NDB0V1
AA20
NC
B12
IO32NDB1V0
A7
IO11PDB0V1
AA21
VCCIB3
B13
IO43NDB1V1
A8
IO15PDB0V1
AA22
GND
B14
NC
A9
IO17PDB0V2
AB1
GND
B15
NC
A10
IO27NDB0V3
AB2
GND
B16
IO53NDB1V2
A11
IO27PDB0V3
AB3
VCCIB5
B17
IO53PDB1V2
A12
IO32PDB1V0
AB4
IO159NDB5V3
B18
IO54PDB1V3
A13
IO43PDB1V1
AB5
IO159PDB5V3
B19
NC
A14
IO47NDB1V1
AB6
IO149NDB5V1
B20
NC
A15
IO47PDB1V1
AB7
IO149PDB5V1
B21
VCCIB2
A16
IO51NDB1V2
AB8
IO138NDB5V0
B22
GND
A17
IO51PDB1V2
AB9
IO138PDB5V0
C1
VCCIB7
A18
IO54NDB1V3
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB1
AB12
IO127NDB4V2
C4
NC
A21
GND
AB13
IO127PDB4V2
C5
GND
A22
GND
AB14
IO125NDB4V1
C6
IO07NDB0V0
AA1
GND
AB15
IO125PDB4V1
C7
IO07PDB0V0
AA2
VCCIB6
AB16
IO122NDB4V1
C8
VCC
AA3
NC
AB17
IO122PDB4V1
C9
VCC
AA4
IO161PDB5V3
AB18
NC
C10
IO20NDB0V2
AA5
IO155NDB5V2
AB19
NC
C11
IO29NDB0V3
AA6
IO155PDB5V2
AB20
VCCIB4
C12
NC
AA7
IO154NDB5V2
AB21
GND
C13
NC
AA8
IO154PDB5V2
AB22
GND
C14
VCC
AA9
IO143PDB5V1
B1
GND
C15
VCC
AA10
IO143NDB5V1
B2
VCCIB7
C16
NC
AA11
IO131PPB4V2
B3
NC
C17
NC
AA12
IO129NDB4V2
B4
IO03NDB0V0
C18
GND
AA13
IO129PDB4V2
B5
IO03PDB0V0
C19
NC
AA14
NC
B6
IO10NDB0V1
C20
NC
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
C21
NC
E13
IO41NDB1V1
G5
IO217PDB7V3
C22
VCCIB2
E14
IO41PDB1V1
G6
GAC2/IO219PDB7V3
D1
NC
E15
GBC1/IO55PDB1V3
G7
VCOMPLA
D2
NC
E16
GBB0/IO56NDB1V3
G8
GNDQ
D3
NC
E17
GNDQ
G9
IO19NDB0V2
D4
GND
E18
GBA2/IO58PDB2V0
G10
IO19PDB0V2
D5
GAA0/IO00NDB0V0
E19
IO63NDB2V0
G11
IO25PDB0V3
D6
GAA1/IO00PDB0V0
E20
GND
G12
IO33PDB1V0
D7
GAB0/IO01NDB0V0
E21
IO69NDB2V1
G13
IO39PDB1V0
D8
IO09PDB0V1
E22
NC
G14
IO45NDB1V1
D9
IO13PDB0V1
F1
IO218NPB7V3
G15
GNDQ
D10
IO21PDB0V2
F2
IO216NDB7V3
G16
VCOMPLB
D11
IO31NDB0V3
F3
IO216PDB7V3
G17
GBB2/IO59PDB2V0
D12
IO37NDB1V0
F4
IO220NDB7V3
G18
IO62PDB2V0
D13
IO37PDB1V0
F5
IO221NDB7V3
G19
IO62NDB2V0
D14
IO49NDB1V2
F6
VMV7
G20
IO71PDB2V2
D15
IO49PDB1V2
F7
VCCPLA
G21
IO71NDB2V2
D16
GBB1/IO56PDB1V3
F8
GAC0/IO02NDB0V0
G22
NC
D17
GBA0/IO57NDB1V3
F9
GAC1/IO02PDB0V0
H1
IO209PSB7V2
D18
GBA1/IO57PDB1V3
F10
IO23NDB0V2
H2
NC
D19
GND
F11
IO23PDB0V2
H3
VCC
D20
NC
F12
IO35PDB1V0
H4
IO214NDB7V3
D21
IO69PDB2V1
F13
IO39NDB1V0
H5
IO217NDB7V3
D22
NC
F14
IO45PDB1V1
H6
IO219NDB7V3
E1
NC
F15
GBC0/IO55NDB1V3
H7
IO215PDB7V3
E2
IO218PPB7V3
F16
VCCPLB
H8
VMV0
E3
GND
F17
VMV2
H9
VCCIB0
E4
GAB2/IO220PDB7V3
F18
IO58NDB2V0
H10
VCCIB0
E5
GAA2/IO221PDB7V3
F19
IO63PDB2V0
H11
IO25NDB0V3
E6
GNDQ
F20
NC
H12
IO33NDB1V0
E7
GAB1/IO01PDB0V0
F21
NC
H13
VCCIB1
E8
IO09NDB0V1
F22
NC
H14
VCCIB1
E9
IO13NDB0V1
G1
IO211NDB7V2
H15
VMV1
E10
IO21NDB0V2
G2
IO211PDB7V2
H16
GBC2/IO60PDB2V0
E11
IO31PDB0V3
G3
NC
H17
IO59NDB2V0
E12
IO35NDB1V0
G4
IO214PDB7V3
H18
IO67NDB2V1
R ev i si o n 1 3
4- 23
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 24
H19
IO67PDB2V1
K11
GND
M3
IO189NDB6V2
H20
VCC
K12
GND
M4
GFA2/IO189PDB6V2
H21
VMV2
K13
GND
M5
GFA1/IO190PDB6V2
H22
IO74PSB2V2
K14
VCC
M6
VCCPLF
J1
IO212NDB7V2
K15
VCCIB2
M7
IO188NDB6V2
J2
IO212PDB7V2
K16
GCC1/IO85PPB2V3
M8
GFB2/IO188PDB6V2
J3
VMV7
K17
IO73NDB2V2
M9
VCC
J4
IO206PDB7V1
K18
IO73PDB2V2
M10
GND
J5
IO204PDB7V1
K19
IO81NPB2V3
M11
GND
J6
IO210PDB7V2
K20
IO75NPB2V2
M12
GND
J7
IO215NDB7V3
K21
IO77NDB2V2
M13
GND
J8
VCCIB7
K22
IO79NDB2V3
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO89PPB3V0
J10
VCC
L2
IO196PDB7V0
M16
GCA1/IO87PPB3V0
J11
VCC
L3
IO196NDB7V0
M17
GCC2/IO90PPB3V0
J12
VCC
L4
GFB0/IO191NPB7V0
M18
VCCPLC
J13
VCC
L5
GFA0/IO190NDB6V2
M19
GCA2/IO88PDB3V0
J14
GND
L6
GFB1/IO191PPB7V0
M20
IO88NDB3V0
J15
VCCIB2
L7
VCOMPLF
M21
IO93PDB3V0
J16
IO60NDB2V0
L8
GFC0/IO192NPB7V0
M22
NC
J17
IO65NDB2V1
L9
VCC
N1
IO185PPB6V2
J18
IO65PDB2V1
L10
GND
N2
IO183NDB6V2
J19
IO75PPB2V2
L11
GND
N3
VMV6
J20
GNDQ
L12
GND
N4
GFC2/IO187PPB6V2
J21
IO77PDB2V2
L13
GND
N5
IO184PPB6V2
J22
IO79PDB2V3
L14
VCC
N6
IO186PDB6V2
K1
IO200NDB7V1
L15
GCC0/IO85NPB2V3
N7
IO186NDB6V2
K2
IO200PDB7V1
L16
GCB1/IO86PPB2V3
N8
VCCIB6
K3
GNDQ
L17
GCA0/IO87NPB3V0
N9
VCC
K4
IO206NDB7V1
L18
VCOMPLC
N10
GND
K5
IO204NDB7V1
L19
GCB0/IO86NPB2V3
N11
GND
K6
IO210NDB7V2
L20
IO81PPB2V3
N12
GND
K7
GFC1/IO192PPB7V0
L21
IO83NDB2V3
N13
GND
K8
VCCIB7
L22
IO83PDB2V3
N14
VCC
K9
VCC
M1
GNDQ
N15
VCCIB3
K10
GND
M2
IO185NPB6V2
N16
IO89NPB3V0
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
N17
IO91NPB3V0
R9
VCCIB5
U1
IO175PPB6V1
N18
IO90NPB3V0
R10
VCCIB5
U2
IO173PDB6V0
N19
IO91PPB3V0
R11
IO135NDB5V0
U3
IO173NDB6V0
N20
GNDQ
R12
IO135PDB5V0
U4
GEB1/IO168PDB6V0
N21
IO93NDB3V0
R13
VCCIB4
U5
GEB0/IO168NDB6V0
N22
IO95PDB3V1
R14
VCCIB4
U6
VMV6
P1
NC
R15
VMV3
U7
VCCPLE
P2
IO183PDB6V2
R16
VCCPLD
U8
IO166NPB5V3
P3
IO187NPB6V2
R17
GDB1/IO109PPB3V2
U9
IO157PPB5V2
P4
IO184NPB6V2
R18
GDC1/IO108PDB3V2
U10
IO145PDB5V1
P5
IO176PPB6V1
R19
IO99NDB3V1
U11
IO141PDB5V0
P6
IO182PDB6V1
R20
VCC
U12
IO139PDB5V0
P7
IO182NDB6V1
R21
IO98NDB3V1
U13
IO121NDB4V1
P8
VCCIB6
R22
IO101PDB3V1
U14
IO121PDB4V1
P9
GND
T1
NC
U15
VMV4
P10
VCC
T2
IO177NDB6V1
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO171PDB6V0
U18
TRST
P13
VCC
T5
IO171NDB6V0
U19
GDA0/IO110NDB3V2
P14
GND
T6
GEC1/IO169PPB6V0
U20
NC
P15
VCCIB3
T7
VCOMPLE
U21
IO103NDB3V2
P16
GDB0/IO109NPB3V2
T8
GNDQ
U22
IO105PDB3V2
P17
IO97NDB3V1
T9
GEA2/IO166PPB5V3
V1
NC
P18
IO97PDB3V1
T10
IO145NDB5V1
V2
IO175NPB6V1
P19
IO99PDB3V1
T11
IO141NDB5V0
V3
GND
P20
VMV3
T12
IO139NDB5V0
V4
GEA1/IO167PDB6V0
P21
IO98PDB3V1
T13
IO119NDB4V1
V5
GEA0/IO167NDB6V0
P22
IO95NDB3V1
T14
IO119PDB4V1
V6
GNDQ
R1
NC
T15
GNDQ
V7
GEC2/IO164PDB5V3
R2
IO177PDB6V1
T16
VCOMPLD
V8
IO157NPB5V2
R3
VCC
T17
VJTAG
V9
IO151NDB5V2
R4
IO176NPB6V1
T18
GDC0/IO108NDB3V2
V10
IO151PDB5V2
R5
IO174NDB6V0
T19
GDA1/IO110PDB3V2
V11
IO137NDB5V0
R6
IO174PDB6V0
T20
NC
V12
IO137PDB5V0
R7
GEC0/IO169NPB6V0
T21
IO103PDB3V2
V13
IO123NDB4V1
R8
VMV5
T22
IO101NDB3V1
V14
IO123PDB4V1
R ev i si o n 1 3
4- 25
Package Pin Assignments
FG484
FG484
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 26
V15
IO112NDB4V0
Y7
IO163PDB5V3
V16
GDB2/IO112PDB4V0
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
IO147PDB5V1
V19
TDO
Y11
IO133PDB4V2
V20
GND
Y12
IO131NPB4V2
V21
NC
Y13
NC
V22
IO105NDB3V2
Y14
VCC
W1
NC
Y15
VCC
W2
NC
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO165NDB5V3
Y19
NC
W6
GEB2/IO165PDB5V3
Y20
NC
W7
IO164NDB5V3
Y21
NC
W8
IO153NDB5V2
Y22
VCCIB3
W9
IO153PDB5V2
W10
IO147NDB5V1
W11
IO133NDB4V2
W12
IO130NDB4V2
W13
IO130PDB4V2
W14
IO113NDB4V0
W15
GDC2/IO113PDB4V0
W16
IO111NDB4V0
W17
GDA2/IO111PDB4V0
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB6
Y2
NC
Y3
NC
Y4
IO161NDB5V3
Y5
GND
Y6
IO163NDB5V3
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
A1
GND
AA15
IO170PDB4V2
B7
IO14PDB0V1
A2
GND
AA16
IO166NDB4V1
B8
IO18NDB0V2
A3
VCCIB0
AA17
IO166PDB4V1
B9
IO24NDB0V2
A4
IO10NDB0V1
AA18
IO160NDB4V0
B10
IO34PDB0V4
A5
IO10PDB0V1
AA19
IO160PDB4V0
B11
IO40PDB0V4
A6
IO16NDB0V1
AA20
IO158NPB4V0
B12
IO46NDB1V0
A7
IO16PDB0V1
AA21
VCCIB3
B13
IO54NDB1V1
A8
IO18PDB0V2
AA22
GND
B14
IO62NDB1V2
A9
IO24PDB0V2
AB1
GND
B15
IO62PDB1V2
A10
IO28NDB0V3
AB2
GND
B16
IO68NDB1V3
A11
IO28PDB0V3
AB3
VCCIB5
B17
IO68PDB1V3
A12
IO46PDB1V0
AB4
IO216NDB5V2
B18
IO72PDB1V3
A13
IO54PDB1V1
AB5
IO216PDB5V2
B19
IO74PDB1V4
A14
IO56NDB1V1
AB6
IO210NDB5V2
B20
IO76NPB1V4
A15
IO56PDB1V1
AB7
IO210PDB5V2
B21
VCCIB2
A16
IO64NDB1V2
AB8
IO208NDB5V1
B22
GND
A17
IO64PDB1V2
AB9
IO208PDB5V1
C1
VCCIB7
A18
IO72NDB1V3
AB10
IO197NDB5V0
C2
IO303PDB7V3
A19
IO74NDB1V4
AB11
IO197PDB5V0
C3
IO305PDB7V3
A20
VCCIB1
AB12
IO174NDB4V2
C4
IO06NPB0V0
A21
GND
AB13
IO174PDB4V2
C5
GND
A22
GND
AB14
IO172NDB4V2
C6
IO12NDB0V1
AA1
GND
AB15
IO172PDB4V2
C7
IO12PDB0V1
AA2
VCCIB6
AB16
IO168NDB4V1
C8
VCC
AA3
IO228PDB5V4
AB17
IO168PDB4V1
C9
VCC
AA4
IO224PDB5V3
AB18
IO162NDB4V1
C10
IO34NDB0V4
AA5
IO218NDB5V3
AB19
IO162PDB4V1
C11
IO40NDB0V4
AA6
IO218PDB5V3
AB20
VCCIB4
C12
IO48NDB1V0
AA7
IO212NDB5V2
AB21
GND
C13
IO48PDB1V0
AA8
IO212PDB5V2
AB22
GND
C14
VCC
AA9
IO198PDB5V0
B1
GND
C15
VCC
AA10
IO198NDB5V0
B2
VCCIB7
C16
IO70NDB1V3
AA11
IO188PPB4V4
B3
IO06PPB0V0
C17
IO70PDB1V3
AA12
IO180NDB4V3
B4
IO08NDB0V0
C18
GND
AA13
IO180PDB4V3
B5
IO08PDB0V0
C19
IO76PPB1V4
AA14
IO170NDB4V2
B6
IO14NDB0V1
C20
IO88NDB2V0
R ev i si o n 1 3
4- 27
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 28
C21
IO94PPB2V1
E13
IO58NDB1V2
G5
IO297PDB7V2
C22
VCCIB2
E14
IO58PDB1V2
G6
GAC2/IO307PDB7V4
D1
IO293PDB7V2
E15
GBC1/IO79PDB1V4
G7
VCOMPLA
D2
IO303NDB7V3
E16
GBB0/IO80NDB1V4
G8
GNDQ
D3
IO305NDB7V3
E17
GNDQ
G9
IO26NDB0V3
D4
GND
E18
GBA2/IO82PDB2V0
G10
IO26PDB0V3
D5
GAA0/IO00NDB0V0
E19
IO86NDB2V0
G11
IO36PDB0V4
D6
GAA1/IO00PDB0V0
E20
GND
G12
IO42PDB1V0
D7
GAB0/IO01NDB0V0
E21
IO90NDB2V1
G13
IO50PDB1V1
D8
IO20PDB0V2
E22
IO98PDB2V2
G14
IO60NDB1V2
D9
IO22PDB0V2
F1
IO299NPB7V3
G15
GNDQ
D10
IO30PDB0V3
F2
IO301NDB7V3
G16
VCOMPLB
D11
IO38NDB0V4
F3
IO301PDB7V3
G17
GBB2/IO83PDB2V0
D12
IO52NDB1V1
F4
IO308NDB7V4
G18
IO92PDB2V1
D13
IO52PDB1V1
F5
IO309NDB7V4
G19
IO92NDB2V1
D14
IO66NDB1V3
F6
VMV7
G20
IO102PDB2V2
D15
IO66PDB1V3
F7
VCCPLA
G21
IO102NDB2V2
D16
GBB1/IO80PDB1V4
F8
GAC0/IO02NDB0V0
G22
IO105NDB2V2
D17
GBA0/IO81NDB1V4
F9
GAC1/IO02PDB0V0
H1
IO286PSB7V1
D18
GBA1/IO81PDB1V4
F10
IO32NDB0V3
H2
IO291NPB7V2
D19
GND
F11
IO32PDB0V3
H3
VCC
D20
IO88PDB2V0
F12
IO44PDB1V0
H4
IO295NDB7V2
D21
IO90PDB2V1
F13
IO50NDB1V1
H5
IO297NDB7V2
D22
IO94NPB2V1
F14
IO60PDB1V2
H6
IO307NDB7V4
E1
IO293NDB7V2
F15
GBC0/IO79NDB1V4
H7
IO287PDB7V1
E2
IO299PPB7V3
F16
VCCPLB
H8
VMV0
E3
GND
F17
VMV2
H9
VCCIB0
E4
GAB2/IO308PDB7V4
F18
IO82NDB2V0
H10
VCCIB0
E5
GAA2/IO309PDB7V4
F19
IO86PDB2V0
H11
IO36NDB0V4
E6
GNDQ
F20
IO96PDB2V1
H12
IO42NDB1V0
E7
GAB1/IO01PDB0V0
F21
IO96NDB2V1
H13
VCCIB1
E8
IO20NDB0V2
F22
IO98NDB2V2
H14
VCCIB1
E9
IO22NDB0V2
G1
IO289NDB7V1
H15
VMV1
E10
IO30NDB0V3
G2
IO289PDB7V1
H16
GBC2/IO84PDB2V0
E11
IO38PDB0V4
G3
IO291PPB7V2
H17
IO83NDB2V0
E12
IO44NDB1V0
G4
IO295PDB7V2
H18
IO100NDB2V2
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
FG484
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
H19
IO100PDB2V2
K11
GND
M3
IO272NDB6V4
H20
VCC
K12
GND
M4
GFA2/IO272PDB6V4
H21
VMV2
K13
GND
M5
GFA1/IO273PDB6V4
H22
IO105PDB2V2
K14
VCC
M6
VCCPLF
J1
IO285NDB7V1
K15
VCCIB2
M7
IO271NDB6V4
J2
IO285PDB7V1
K16
GCC1/IO112PPB2V3
M8
GFB2/IO271PDB6V4
J3
VMV7
K17
IO108NDB2V3
M9
VCC
J4
IO279PDB7V0
K18
IO108PDB2V3
M10
GND
J5
IO283PDB7V1
K19
IO110NPB2V3
M11
GND
J6
IO281PDB7V0
K20
IO106NPB2V3
M12
GND
J7
IO287NDB7V1
K21
IO109NDB2V3
M13
GND
J8
VCCIB7
K22
IO107NDB2V3
M14
VCC
J9
GND
L1
IO257PSB6V2
M15
GCB2/IO116PPB3V0
J10
VCC
L2
IO276PDB7V0
M16
GCA1/IO114PPB3V0
J11
VCC
L3
IO276NDB7V0
M17
GCC2/IO117PPB3V0
J12
VCC
L4
GFB0/IO274NPB7V0
M18
VCCPLC
J13
VCC
L5
GFA0/IO273NDB6V4
M19
GCA2/IO115PDB3V0
J14
GND
L6
GFB1/IO274PPB7V0
M20
IO115NDB3V0
J15
VCCIB2
L7
VCOMPLF
M21
IO126PDB3V1
J16
IO84NDB2V0
L8
GFC0/IO275NPB7V0
M22
IO124PSB3V1
J17
IO104NDB2V2
L9
VCC
N1
IO255PPB6V2
J18
IO104PDB2V2
L10
GND
N2
IO253NDB6V2
J19
IO106PPB2V3
L11
GND
N3
VMV6
J20
GNDQ
L12
GND
N4
GFC2/IO270PPB6V4
J21
IO109PDB2V3
L13
GND
N5
IO261PPB6V3
J22
IO107PDB2V3
L14
VCC
N6
IO263PDB6V3
K1
IO277NDB7V0
L15
GCC0/IO112NPB2V3
N7
IO263NDB6V3
K2
IO277PDB7V0
L16
GCB1/IO113PPB2V3
N8
VCCIB6
K3
GNDQ
L17
GCA0/IO114NPB3V0
N9
VCC
K4
IO279NDB7V0
L18
VCOMPLC
N10
GND
K5
IO283NDB7V1
L19
GCB0/IO113NPB2V3
N11
GND
K6
IO281NDB7V0
L20
IO110PPB2V3
N12
GND
K7
GFC1/IO275PPB7V0
L21
IO111NDB2V3
N13
GND
K8
VCCIB7
L22
IO111PDB2V3
N14
VCC
K9
VCC
M1
GNDQ
N15
VCCIB3
K10
GND
M2
IO255NPB6V2
N16
IO116NPB3V0
R ev i si o n 1 3
4- 29
Package Pin Assignments
FG484
FG484
FG484
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 30
N17
IO132NPB3V2
R9
VCCIB5
U1
IO240PPB6V0
N18
IO117NPB3V0
R10
VCCIB5
U2
IO238PDB6V0
N19
IO132PPB3V2
R11
IO196NDB5V0
U3
IO238NDB6V0
N20
GNDQ
R12
IO196PDB5V0
U4
GEB1/IO235PDB6V0
N21
IO126NDB3V1
R13
VCCIB4
U5
GEB0/IO235NDB6V0
N22
IO128PDB3V1
R14
VCCIB4
U6
VMV6
P1
IO247PDB6V1
R15
VMV3
U7
VCCPLE
P2
IO253PDB6V2
R16
VCCPLD
U8
IO233NPB5V4
P3
IO270NPB6V4
R17
GDB1/IO152PPB3V4
U9
IO222PPB5V3
P4
IO261NPB6V3
R18
GDC1/IO151PDB3V4
U10
IO206PDB5V1
P5
IO249PPB6V1
R19
IO138NDB3V3
U11
IO202PDB5V1
P6
IO259PDB6V3
R20
VCC
U12
IO194PDB5V0
P7
IO259NDB6V3
R21
IO130NDB3V2
U13
IO176NDB4V2
P8
VCCIB6
R22
IO134PDB3V2
U14
IO176PDB4V2
P9
GND
T1
IO243PPB6V1
U15
VMV4
P10
VCC
T2
IO245NDB6V1
U16
TCK
P11
VCC
T3
IO243NPB6V1
U17
VPUMP
P12
VCC
T4
IO241PDB6V0
U18
TRST
P13
VCC
T5
IO241NDB6V0
U19
GDA0/IO153NDB3V4
P14
GND
T6
GEC1/IO236PPB6V0
U20
IO144NDB3V3
P15
VCCIB3
T7
VCOMPLE
U21
IO140NDB3V3
P16
GDB0/IO152NPB3V4
T8
GNDQ
U22
IO142PDB3V3
P17
IO136NDB3V2
T9
GEA2/IO233PPB5V4
V1
IO239PDB6V0
P18
IO136PDB3V2
T10
IO206NDB5V1
V2
IO240NPB6V0
P19
IO138PDB3V3
T11
IO202NDB5V1
V3
GND
P20
VMV3
T12
IO194NDB5V0
V4
GEA1/IO234PDB6V0
P21
IO130PDB3V2
T13
IO186NDB4V4
V5
GEA0/IO234NDB6V0
P22
IO128NDB3V1
T14
IO186PDB4V4
V6
GNDQ
R1
IO247NDB6V1
T15
GNDQ
V7
GEC2/IO231PDB5V4
R2
IO245PDB6V1
T16
VCOMPLD
V8
IO222NPB5V3
R3
VCC
T17
VJTAG
V9
IO204NDB5V1
R4
IO249NPB6V1
T18
GDC0/IO151NDB3V4
V10
IO204PDB5V1
R5
IO251NDB6V2
T19
GDA1/IO153PDB3V4
V11
IO195NDB5V0
R6
IO251PDB6V2
T20
IO144PDB3V3
V12
IO195PDB5V0
R7
GEC0/IO236NPB6V0
T21
IO140PDB3V3
V13
IO178NDB4V3
R8
VMV5
T22
IO134NDB3V2
V14
IO178PDB4V3
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG484
FG484
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
V15
IO155NDB4V0
Y7
IO220PDB5V3
V16
GDB2/IO155PDB4V0
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
IO200PDB5V0
V19
TDO
Y11
IO192PDB4V4
V20
GND
Y12
IO188NPB4V4
V21
IO146PDB3V4
Y13
IO187PSB4V4
V22
IO142NDB3V3
Y14
VCC
W1
IO239NDB6V0
Y15
VCC
W2
IO237PDB6V0
Y16
IO164NDB4V1
W3
IO230PSB5V4
Y17
IO164PDB4V1
W4
GND
Y18
GND
W5
IO232NDB5V4
Y19
IO158PPB4V0
W6
GEB2/IO232PDB5V4
Y20
IO150PDB3V4
W7
IO231NDB5V4
Y21
IO148NPB3V4
W8
IO214NDB5V2
Y22
VCCIB3
W9
IO214PDB5V2
W10
IO200NDB5V0
W11
IO192NDB4V4
W12
IO184NDB4V3
W13
IO184PDB4V3
W14
IO156NDB4V0
W15
GDC2/IO156PDB4V0
W16
IO154NDB4V0
W17
GDA2/IO154PDB4V0
W18
TMS
W19
GND
W20
IO150NDB3V4
W21
IO146NDB3V4
W22
IO148PPB3V4
Y1
VCCIB6
Y2
IO237NDB6V0
Y3
IO228NDB5V4
Y4
IO224NDB5V3
Y5
GND
Y6
IO220NDB5V3
R ev i si o n 1 3
4- 31
Package Pin Assignments
FG676
A1 Ball Pad Corner
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
5 4
3
2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 32
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
A1
GND
AA11
IO153NDB5V2
AB21
TCK
A2
GND
AA12
IO147NDB5V1
AB22
TRST
A3
GAA0/IO00NDB0V0
AA13
IO139NDB5V0
AB23
GDC0/IO108NDB3V2
A4
GAA1/IO00PDB0V0
AA14
IO137NDB5V0
AB24
GDC1/IO108PDB3V2
A5
IO06NDB0V0
AA15
IO123NDB4V1
AB25
IO104NDB3V2
A6
IO09NDB0V1
AA16
IO123PDB4V1
AB26
IO104PDB3V2
A7
IO09PDB0V1
AA17
IO117NDB4V0
AC1
IO170PDB6V0
A8
IO14NDB0V1
AA18
IO117PDB4V0
AC2
GEB0/IO168NPB6V0
A9
IO14PDB0V1
AA19
GDB2/IO112PDB4V0
AC3
IO166NPB5V3
A10
IO22NDB0V2
AA20
GNDQ
AC4
GNDQ
A11
IO22PDB0V2
AA21
TDO
AC5
GND
A12
IO26NDB0V3
AA22
GND
AC6
IO160PDB5V3
A13
IO26PDB0V3
AA23
GND
AC7
IO161PDB5V3
A14
IO30NDB0V3
AA24
IO102NDB3V1
AC8
IO154PDB5V2
A15
IO30PDB0V3
AA25
IO102PDB3V1
AC9
GND
A16
IO34NDB1V0
AA26
IO98NDB3V1
AC10
IO150NDB5V1
A17
IO34PDB1V0
AB1
IO174NDB6V0
AC11
IO155NDB5V2
A18
IO38NDB1V0
AB2
IO171NDB6V0
AC12
IO142NDB5V0
A19
IO38PDB1V0
AB3
GEB1/IO168PPB6V0
AC13
IO138NDB5V0
A20
IO41PDB1V1
AB4
GEA0/IO167NPB6V0
AC14
IO138PDB5V0
A21
IO44PDB1V1
AB5
VCCPLE
AC15
IO132NDB4V2
A22
IO49PDB1V2
AB6
GND
AC16
IO129NDB4V2
A23
IO50PDB1V2
AB7
GND
AC17
IO121NDB4V1
A24
GBC1/IO55PDB1V3
AB8
IO156NDB5V2
AC18
IO119PDB4V1
A25
GND
AB9
IO156PDB5V2
AC19
IO118NDB4V0
A26
GND
AB10
IO150PDB5V1
AC20
IO118PDB4V0
AA1
IO174PDB6V0
AB11
IO155PDB5V2
AC21
IO114PPB4V0
AA2
IO171PDB6V0
AB12
IO142PDB5V0
AC22
TMS
AA3
GEA1/IO167PPB6V0
AB13
IO135NDB5V0
AC23
VJTAG
AA4
GEC0/IO169NPB6V0
AB14
IO135PDB5V0
AC24
VMV3
AA5
VCOMPLE
AB15
IO132PDB4V2
AC25
IO106NDB3V2
AA6
GND
AB16
IO129PDB4V2
AC26
IO106PDB3V2
AA7
IO165NDB5V3
AB17
IO121PDB4V1
AD1
IO170NDB6V0
AA8
GEB2/IO165PDB5V3
AB18
IO119NDB4V1
AD2
GEA2/IO166PPB5V3
AA9
IO163PDB5V3
AB19
IO112NDB4V0
AD3
VMV5
AA10
IO159NDB5V3
AB20
VMV4
AD4
GEC2/IO164PDB5V3
R ev i si o n 1 3
4- 33
Package Pin Assignments
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 34
AD5
IO162PDB5V3
AE15
IO134NDB4V2
AF25
GND
AD6
IO160NDB5V3
AE16
IO133NDB4V2
AF26
GND
AD7
IO161NDB5V3
AE17
IO127NDB4V2
B1
GND
AD8
IO154NDB5V2
AE18
IO130NDB4V2
B2
GND
AD9
IO148PDB5V1
AE19
IO126NDB4V1
B3
GND
AD10
IO151PDB5V2
AE20
IO124NDB4V1
B4
GND
AD11
IO144PDB5V1
AE21
IO120NDB4V1
B5
IO06PDB0V0
AD12
IO140PDB5V0
AE22
IO116PDB4V0
B6
IO04NDB0V0
AD13
IO143PDB5V1
AE23
GDC2/IO113PDB4V0
B7
IO07NDB0V0
AD14
IO141PDB5V0
AE24
GDA2/IO111PDB4V0
B8
IO11NDB0V1
AD15
IO134PDB4V2
AE25
GND
B9
IO10NDB0V1
AD16
IO133PDB4V2
AE26
GND
B10
IO16NDB0V2
AD17
IO127PDB4V2
AF1
GND
B11
IO20NDB0V2
AD18
IO130PDB4V2
AF2
GND
B12
IO24NDB0V3
AD19
IO126PDB4V1
AF3
GND
B13
IO23NDB0V2
AD20
IO124PDB4V1
AF4
GND
B14
IO28NDB0V3
AD21
IO120PDB4V1
AF5
IO158NPB5V2
B15
IO31NDB0V3
AD22
IO114NPB4V0
AF6
IO157NPB5V2
B16
IO32PDB1V0
AD23
TDI
AF7
IO152NPB5V2
B17
IO36PDB1V0
AD24
GNDQ
AF8
IO146NDB5V1
B18
IO37PDB1V0
AD25
GDA0/IO110NDB3V2
AF9
IO146PDB5V1
B19
IO42NPB1V1
AD26
GDA1/IO110PDB3V2
AF10
IO149NDB5V1
B20
IO41NDB1V1
AE1
GND
AF11
IO149PDB5V1
B21
IO44NDB1V1
AE2
GND
AF12
IO145NDB5V1
B22
IO49NDB1V2
AE3
GND
AF13
IO145PDB5V1
B23
IO50NDB1V2
AE4
IO164NDB5V3
AF14
IO136NDB5V0
B24
GBC0/IO55NDB1V3
AE5
IO162NDB5V3
AF15
IO136PDB5V0
B25
GND
AE6
IO158PPB5V2
AF16
IO131NDB4V2
B26
GND
AE7
IO157PPB5V2
AF17
IO131PDB4V2
C1
GND
AE8
IO152PPB5V2
AF18
IO128NDB4V2
C2
GND
AE9
IO148NDB5V1
AF19
IO128PDB4V2
C3
GND
AE10
IO151NDB5V2
AF20
IO122NDB4V1
C4
GND
AE11
IO144NDB5V1
AF21
IO122PDB4V1
C5
GAA2/IO221PDB7V3
AE12
IO140NDB5V0
AF22
IO116NDB4V0
C6
IO04PDB0V0
AE13
IO143NDB5V1
AF23
IO113NDB4V0
C7
IO07PDB0V0
AE14
IO141NDB5V0
AF24
IO111NDB4V0
C8
IO11PDB0V1
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
C9
IO10PDB0V1
D19
IO45PDB1V1
F3
IO213NDB7V2
C10
IO16PDB0V2
D20
IO46PPB1V1
F4
IO213PDB7V2
C11
IO20PDB0V2
D21
IO48PPB1V2
F5
GND
C12
IO24PDB0V3
D22
GBA0/IO57NPB1V3
F6
VCCPLA
C13
IO23PDB0V2
D23
GNDQ
F7
GAB0/IO01NDB0V0
C14
IO28PDB0V3
D24
GBB1/IO56PPB1V3
F8
GNDQ
C15
IO31PDB0V3
D25
GBB2/IO59PDB2V0
F9
IO03PDB0V0
C16
IO32NDB1V0
D26
IO59NDB2V0
F10
IO13PDB0V1
C17
IO36NDB1V0
E1
IO212PDB7V2
F11
IO15PDB0V1
C18
IO37NDB1V0
E2
IO211NDB7V2
F12
IO19PDB0V2
C19
IO45NDB1V1
E3
IO211PDB7V2
F13
IO21PDB0V2
C20
IO42PPB1V1
E4
IO220NPB7V3
F14
IO27NDB0V3
C21
IO46NPB1V1
E5
GNDQ
F15
IO35PDB1V0
C22
IO48NPB1V2
E6
GAB2/IO220PPB7V3
F16
IO39NDB1V0
C23
GBB0/IO56NPB1V3
E7
GAB1/IO01PDB0V0
F17
IO51PDB1V2
C24
VMV1
E8
IO05PDB0V0
F18
IO53PDB1V2
C25
GBC2/IO60PDB2V0
E9
IO08NDB0V1
F19
IO54PDB1V3
C26
IO60NDB2V0
E10
IO12PDB0V1
F20
VMV2
D1
IO218NDB7V3
E11
IO18PDB0V2
F21
VCOMPLB
D2
IO218PDB7V3
E12
IO17PDB0V2
F22
IO61PDB2V0
D3
GND
E13
IO25PDB0V3
F23
IO61NDB2V0
D4
VMV7
E14
IO29PDB0V3
F24
IO66PDB2V1
D5
IO221NDB7V3
E15
IO33PDB1V0
F25
IO66NDB2V1
D6
GAC0/IO02NDB0V0
E16
IO40NDB1V1
F26
IO68NDB2V1
D7
GAC1/IO02PDB0V0
E17
IO43PDB1V1
G1
IO203NPB7V1
D8
IO05NDB0V0
E18
IO47NDB1V1
G2
IO207NDB7V2
D9
IO08PDB0V1
E19
IO54NDB1V3
G3
IO207PDB7V2
D10
IO12NDB0V1
E20
IO52NDB1V2
G4
IO216NDB7V3
D11
IO18NDB0V2
E21
IO52PDB1V2
G5
IO216PDB7V3
D12
IO17NDB0V2
E22
VCCPLB
G6
VCOMPLA
D13
IO25NDB0V3
E23
GBA1/IO57PPB1V3
G7
VMV0
D14
IO29NDB0V3
E24
IO63PDB2V0
G8
VCC
D15
IO33NDB1V0
E25
IO63NDB2V0
G9
IO03NDB0V0
D16
IO40PDB1V1
E26
IO68PDB2V1
G10
IO13NDB0V1
D17
IO43NDB1V1
F1
IO212NDB7V2
G11
IO15NDB0V1
D18
IO47PDB1V1
F2
IO203PPB7V1
G12
IO19NDB0V2
R ev i si o n 1 3
4- 35
Package Pin Assignments
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 36
G13
IO21NDB0V2
H23
IO69PDB2V1
K7
IO217NDB7V3
G14
IO27PDB0V3
H24
IO76PDB2V2
K8
VCCIB7
G15
IO35NDB1V0
H25
IO76NDB2V2
K9
VCC
G16
IO39PDB1V0
H26
IO78NDB2V2
K10
GND
G17
IO51NDB1V2
J1
IO197NDB7V0
K11
GND
G18
IO53NDB1V2
J2
IO197PDB7V0
K12
GND
G19
VCCIB1
J3
VMV7
K13
GND
G20
GBA2/IO58PPB2V0
J4
IO215NDB7V3
K14
GND
G21
GNDQ
J5
IO215PDB7V3
K15
GND
G22
IO64NDB2V1
J6
IO214PDB7V3
K16
GND
G23
IO64PDB2V1
J7
IO214NDB7V3
K17
GND
G24
IO72PDB2V2
J8
VCCIB7
K18
VCC
G25
IO72NDB2V2
J9
VCC
K19
VCCIB2
G26
IO78PDB2V2
J10
VCC
K20
IO65PDB2V1
H1
IO208NDB7V2
J11
VCC
K21
IO65NDB2V1
H2
IO208PDB7V2
J12
VCC
K22
IO74PDB2V2
H3
IO209NDB7V2
J13
VCC
K23
IO74NDB2V2
H4
IO209PDB7V2
J14
VCC
K24
IO75PDB2V2
H5
IO219NDB7V3
J15
VCC
K25
IO75NDB2V2
H6
GAC2/IO219PDB7V3
J16
VCC
K26
IO84PDB2V3
H7
VCCIB7
J17
VCC
L1
IO195NDB7V0
H8
VCC
J18
VCC
L2
IO198PPB7V0
H9
VCCIB0
J19
VCCIB2
L3
GNDQ
H10
VCCIB0
J20
IO62PDB2V0
L4
IO201PDB7V1
H11
VCCIB0
J21
IO62NDB2V0
L5
IO201NDB7V1
H12
VCCIB0
J22
IO70NDB2V1
L6
IO210NDB7V2
H13
VCCIB0
J23
IO69NDB2V1
L7
IO210PDB7V2
H14
VCCIB1
J24
VMV2
L8
VCCIB7
H15
VCCIB1
J25
IO80PDB2V3
L9
VCC
H16
VCCIB1
J26
IO80NDB2V3
L10
GND
H17
VCCIB1
K1
IO195PDB7V0
L11
GND
H18
VCCIB1
K2
IO199NDB7V1
L12
GND
H19
VCC
K3
IO199PDB7V1
L13
GND
H20
VCC
K4
IO205NDB7V1
L14
GND
H21
IO58NPB2V0
K5
IO205PDB7V1
L15
GND
H22
IO70PDB2V1
K6
IO217PDB7V3
L16
GND
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
L17
GND
N1
GFB0/IO191NPB7V0
P11
GND
L18
VCC
N2
VCOMPLF
P12
GND
L19
VCCIB2
N3
GFB1/IO191PPB7V0
P13
GND
L20
IO67PDB2V1
N4
IO196PDB7V0
P14
GND
L21
IO67NDB2V1
N5
GFA0/IO190NDB6V2
P15
GND
L22
IO71PDB2V2
N6
IO200PDB7V1
P16
GND
L23
IO71NDB2V2
N7
IO200NDB7V1
P17
GND
L24
GNDQ
N8
VCCIB7
P18
VCC
L25
IO82PDB2V3
N9
VCC
P19
VCCIB3
L26
IO84NDB2V3
N10
GND
P20
GCC0/IO85NDB2V3
M1
IO198NPB7V0
N11
GND
P21
GCC1/IO85PDB2V3
M2
IO202PDB7V1
N12
GND
P22
GCB1/IO86PPB2V3
M3
IO202NDB7V1
N13
GND
P23
IO88NPB3V0
M4
IO206NDB7V1
N14
GND
P24
GCA1/IO87PDB3V0
M5
IO206PDB7V1
N15
GND
P25
VCCPLC
M6
IO204NDB7V1
N16
GND
P26
VCOMPLC
M7
IO204PDB7V1
N17
GND
R1
IO189NDB6V2
M8
VCCIB7
N18
VCC
R2
IO185PDB6V2
M9
VCC
N19
VCCIB2
R3
IO187NPB6V2
M10
GND
N20
IO79PDB2V3
R4
IO193NPB7V0
M11
GND
N21
IO79NDB2V3
R5
GFC2/IO187PPB6V2
M12
GND
N22
GCA2/IO88PPB3V0
R6
GFC1/IO192PDB7V0
M13
GND
N23
IO81NPB2V3
R7
GFC0/IO192NDB7V0
M14
GND
N24
GCA0/IO87NDB3V0
R8
VCCIB6
M15
GND
N25
GCB0/IO86NPB2V3
R9
VCC
M16
GND
N26
IO83NDB2V3
R10
GND
M17
GND
P1
GFA2/IO189PDB6V2
R11
GND
M18
VCC
P2
VCCPLF
R12
GND
M19
VCCIB2
P3
IO193PPB7V0
R13
GND
M20
IO73NDB2V2
P4
IO196NDB7V0
R14
GND
M21
IO73PDB2V2
P5
GFA1/IO190PDB6V2
R15
GND
M22
IO81PPB2V3
P6
IO194PDB7V0
R16
GND
M23
IO77PDB2V2
P7
IO194NDB7V0
R17
GND
M24
IO77NDB2V2
P8
VCCIB6
R18
VCC
M25
IO82NDB2V3
P9
VCC
R19
VCCIB3
M26
IO83PDB2V3
P10
GND
R20
NC
R ev i si o n 1 3
4- 37
Package Pin Assignments
FG676
FG676
FG676
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
Pin Number A3PE1500 Function
4- 38
R21
IO89NDB3V0
U5
IO182PDB6V1
V15
VCC
R22
GCB2/IO89PDB3V0
U6
IO178PDB6V1
V16
VCC
R23
IO90NDB3V0
U7
IO178NDB6V1
V17
VCC
R24
GCC2/IO90PDB3V0
U8
VCCIB6
V18
VCC
R25
IO91PDB3V0
U9
VCC
V19
VCCIB3
R26
IO91NDB3V0
U10
GND
V20
IO107PDB3V2
T1
IO186PDB6V2
U11
GND
V21
IO107NDB3V2
T2
IO185NDB6V2
U12
GND
V22
IO103NDB3V2
T3
GNDQ
U13
GND
V23
IO103PDB3V2
T4
IO180PDB6V1
U14
GND
V24
VMV3
T5
IO180NDB6V1
U15
GND
V25
IO95NDB3V1
T6
IO188NDB6V2
U16
GND
V26
IO94PDB3V0
T7
GFB2/IO188PDB6V2
U17
GND
W1
IO179NDB6V1
T8
VCCIB6
U18
VCC
W2
IO179PDB6V1
T9
VCC
U19
VCCIB3
W3
IO177NDB6V1
T10
GND
U20
NC
W4
IO177PDB6V1
T11
GND
U21
IO101NDB3V1
W5
IO172PDB6V0
T12
GND
U22
IO101PDB3V1
W6
IO172NDB6V0
T13
GND
U23
IO92NDB3V0
W7
VCC
T14
GND
U24
IO92PDB3V0
W8
VCC
T15
GND
U25
IO95PDB3V1
W9
VCCIB5
T16
GND
U26
IO93NPB3V0
W10
VCCIB5
T17
GND
V1
IO183PDB6V2
W11
VCCIB5
T18
VCC
V2
IO183NDB6V2
W12
VCCIB5
T19
VCCIB3
V3
VMV6
W13
VCCIB5
T20
IO99PDB3V1
V4
IO181PDB6V1
W14
VCCIB4
T21
IO99NDB3V1
V5
IO181NDB6V1
W15
VCCIB4
T22
IO97PDB3V1
V6
IO176PDB6V1
W16
VCCIB4
T23
IO97NDB3V1
V7
IO176NDB6V1
W17
VCCIB4
T24
GNDQ
V8
VCCIB6
W18
VCCIB4
T25
IO93PPB3V0
V9
VCC
W19
VCC
T26
NC
V10
VCC
W20
VCCIB3
U1
IO186NDB6V2
V11
VCC
W21
GDB0/IO109NDB3V2
U2
IO184NDB6V2
V12
VCC
W22
GDB1/IO109PDB3V2
U3
IO184PDB6V2
V13
VCC
W23
IO105NDB3V2
U4
IO182NDB6V1
V14
VCC
W24
IO105PDB3V2
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG676
Pin Number A3PE1500 Function
W25
IO96PDB3V1
W26
IO94NDB3V0
Y1
IO175NDB6V1
Y2
IO175PDB6V1
Y3
IO173NDB6V0
Y4
IO173PDB6V0
Y5
GEC1/IO169PPB6V0
Y6
GNDQ
Y7
VMV6
Y8
VCCIB5
Y9
IO163NDB5V3
Y10
IO159PDB5V3
Y11
IO153PDB5V2
Y12
IO147PDB5V1
Y13
IO139PDB5V0
Y14
IO137PDB5V0
Y15
IO125NDB4V1
Y16
IO125PDB4V1
Y17
IO115NDB4V0
Y18
IO115PDB4V0
Y19
VCC
Y20
VPUMP
Y21
VCOMPLD
Y22
VCCPLD
Y23
IO100NDB3V1
Y24
IO100PDB3V1
Y25
IO96NDB3V1
Y26
IO98PDB3V1
R ev i si o n 1 3
4- 39
Package Pin Assignments
FG896
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 40
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
A2
GND
AA9
GEB1/IO235PPB6V0
AB15
IO198PDB5V0
A3
GND
AA10
VCC
AB16
IO192NDB4V4
A4
IO14NPB0V1
AA11
IO226PPB5V4
AB17
IO192PDB4V4
A5
GND
AA12
VCCIB5
AB18
IO178NDB4V3
A6
IO07NPB0V0
AA13
VCCIB5
AB19
IO178PDB4V3
A7
GND
AA14
VCCIB5
AB20
IO174NDB4V2
A8
IO09NDB0V1
AA15
VCCIB5
AB21
IO162NPB4V1
A9
IO17NDB0V2
AA16
VCCIB4
AB22
VCC
A10
IO17PDB0V2
AA17
VCCIB4
AB23
VCCPLD
A11
IO21NDB0V2
AA18
VCCIB4
AB24
VCCIB3
A12
IO21PDB0V2
AA19
VCCIB4
AB25
IO150PDB3V4
A13
IO33NDB0V4
AA20
IO174PDB4V2
AB26
IO148PDB3V4
A14
IO33PDB0V4
AA21
VCC
AB27
IO147NDB3V4
A15
IO35NDB0V4
AA22
IO142NPB3V3
AB28
IO145PDB3V3
A16
IO35PDB0V4
AA23
IO144NDB3V3
AB29
IO143PDB3V3
A17
IO41NDB1V0
AA24
IO144PDB3V3
AB30
IO137PDB3V2
A18
IO43NDB1V0
AA25
IO146NDB3V4
AC1
IO254PDB6V2
A19
IO43PDB1V0
AA26
IO146PDB3V4
AC2
IO254NDB6V2
A20
IO45NDB1V0
AA27
IO147PDB3V4
AC3
IO240PDB6V0
A21
IO45PDB1V0
AA28
IO139NDB3V3
AC4
GEC1/IO236PDB6V0
A22
IO57NDB1V2
AA29
IO139PDB3V3
AC5
IO237PDB6V0
A23
IO57PDB1V2
AA30
IO133NDB3V2
AC6
IO237NDB6V0
A24
GND
AB1
IO256NDB6V2
AC7
VCOMPLE
A25
IO69PPB1V3
AB2
IO244PDB6V1
AC8
GND
A26
GND
AB3
IO244NDB6V1
AC9
IO226NPB5V4
A27
GBC1/IO79PPB1V4
AB4
IO241PDB6V0
AC10
IO222NDB5V3
A28
GND
AB5
IO241NDB6V0
AC11
IO216NPB5V2
A29
GND
AB6
IO243NPB6V1
AC12
IO210NPB5V2
AA1
IO256PDB6V2
AB7
VCCIB6
AC13
IO204NDB5V1
AA2
IO248PDB6V1
AB8
VCCPLE
AC14
IO204PDB5V1
AA3
IO248NDB6V1
AB9
VCC
AC15
IO194NDB5V0
AA4
IO246NDB6V1
AB10
IO222PDB5V3
AC16
IO188NDB4V4
AA5
GEA1/IO234PDB6V0
AB11
IO218PPB5V3
AC17
IO188PDB4V4
AA6
GEA0/IO234NDB6V0
AB12
IO206NDB5V1
AC18
IO182PPB4V3
AA7
IO243PPB6V1
AB13
IO206PDB5V1
AC19
IO170NPB4V2
AA8
IO245NDB6V1
AB14
IO198NDB5V0
AC20
IO164NDB4V1
R ev i si o n 1 3
4- 41
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 42
AC21
IO164PDB4V1
AD27
GDA0/IO153NDB3V4
AF3
VCCIB6
AC22
IO162PPB4V1
AD28
GDC0/IO151NDB3V4
AF4
IO220NPB5V3
AC23
GND
AD29
GDC1/IO151PDB3V4
AF5
VCC
AC24
VCOMPLD
AD30
GND
AF6
IO228NDB5V4
AC25
IO150NDB3V4
AE1
IO242PPB6V1
AF7
VCCIB5
AC26
IO148NDB3V4
AE2
VCC
AF8
IO230PDB5V4
AC27
GDA1/IO153PDB3V4
AE3
IO239PDB6V0
AF9
IO229NDB5V4
AC28
IO145NDB3V3
AE4
IO239NDB6V0
AF10
IO229PDB5V4
AC29
IO143NDB3V3
AE5
VMV6
AF11
IO214PPB5V2
AC30
IO137NDB3V2
AE6
GND
AF12
IO208NDB5V1
AD1
GND
AE7
GNDQ
AF13
IO208PDB5V1
AD2
IO242NPB6V1
AE8
IO230NDB5V4
AF14
IO200PDB5V0
AD3
IO240NDB6V0
AE9
IO224NPB5V3
AF15
IO196NDB5V0
AD4
GEC0/IO236NDB6V0
AE10
IO214NPB5V2
AF16
IO186NDB4V4
AD5
VCCIB6
AE11
IO212NDB5V2
AF17
IO186PDB4V4
AD6
GNDQ
AE12
IO212PDB5V2
AF18
IO180NDB4V3
AD7
VCC
AE13
IO202NPB5V1
AF19
IO180PDB4V3
AD8
VMV5
AE14
IO200NDB5V0
AF20
IO168NDB4V1
AD9
VCCIB5
AE15
IO196PDB5V0
AF21
IO168PDB4V1
AD10
IO224PPB5V3
AE16
IO190NDB4V4
AF22
IO160NDB4V0
AD11
IO218NPB5V3
AE17
IO184PDB4V3
AF23
IO158NPB4V0
AD12
IO216PPB5V2
AE18
IO184NDB4V3
AF24
VCCIB4
AD13
IO210PPB5V2
AE19
IO172PDB4V2
AF25
IO154NPB4V0
AD14
IO202PPB5V1
AE20
IO172NDB4V2
AF26
VCC
AD15
IO194PDB5V0
AE21
IO166NDB4V1
AF27
TDO
AD16
IO190PDB4V4
AE22
IO160PDB4V0
AF28
VCCIB3
AD17
IO182NPB4V3
AE23
GNDQ
AF29
GNDQ
AD18
IO176NDB4V2
AE24
VMV4
AF30
GND
AD19
IO176PDB4V2
AE25
GND
AG1
IO238NPB6V0
AD20
IO170PPB4V2
AE26
GDB0/IO152NDB3V4
AG2
VCC
AD21
IO166PDB4V1
AE27
GDB1/IO152PDB3V4
AG3
IO232NPB5V4
AD22
VCCIB4
AE28
VMV3
AG4
GND
AD23
TCK
AE29
VCC
AG5
IO220PPB5V3
AD24
VCC
AE30
IO149PDB3V4
AG6
IO228PDB5V4
AD25
TRST
AF1
GND
AG7
IO231NDB5V4
AD26
VCCIB3
AF2
IO238PPB6V0
AG8
GEC2/IO231PDB5V4
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
AG9
IO225NPB5V3
AH15
IO195NDB5V0
AJ21
IO173PDB4V2
AG10
IO223NPB5V3
AH16
IO185NDB4V3
AJ22
IO163NDB4V1
AG11
IO221PDB5V3
AH17
IO185PDB4V3
AJ23
IO163PDB4V1
AG12
IO221NDB5V3
AH18
IO181PDB4V3
AJ24
IO167NPB4V1
AG13
IO205NPB5V1
AH19
IO177NDB4V2
AJ25
VCC
AG14
IO199NDB5V0
AH20
IO171NPB4V2
AJ26
IO156NPB4V0
AG15
IO199PDB5V0
AH21
IO165PPB4V1
AJ27
VCC
AG16
IO187NDB4V4
AH22
IO161PPB4V0
AJ28
TMS
AG17
IO187PDB4V4
AH23
IO157NDB4V0
AJ29
GND
AG18
IO181NDB4V3
AH24
IO157PDB4V0
AJ30
GND
AG19
IO171PPB4V2
AH25
IO155NDB4V0
AK2
GND
AG20
IO165NPB4V1
AH26
VCCIB4
AK3
GND
AG21
IO161NPB4V0
AH27
TDI
AK4
IO217PPB5V2
AG22
IO159NDB4V0
AH28
VCC
AK5
GND
AG23
IO159PDB4V0
AH29
VPUMP
AK6
IO215PPB5V2
AG24
IO158PPB4V0
AH30
GND
AK7
GND
AG25
GDB2/IO155PDB4V0
AJ1
GND
AK8
IO207NDB5V1
AG26
GDA2/IO154PPB4V0
AJ2
GND
AK9
IO207PDB5V1
AG27
GND
AJ3
GEA2/IO233PPB5V4
AK10
IO201NDB5V0
AG28
VJTAG
AJ4
VCC
AK11
IO201PDB5V0
AG29
VCC
AJ5
IO217NPB5V2
AK12
IO193NDB4V4
AG30
IO149NDB3V4
AJ6
VCC
AK13
IO193PDB4V4
AH1
GND
AJ7
IO215NPB5V2
AK14
IO197PDB5V0
AH2
IO233NPB5V4
AJ8
IO213NDB5V2
AK15
IO191NDB4V4
AH3
VCC
AJ9
IO213PDB5V2
AK16
IO191PDB4V4
AH4
GEB2/IO232PPB5V4
AJ10
IO209NDB5V1
AK17
IO189NDB4V4
AH5
VCCIB5
AJ11
IO209PDB5V1
AK18
IO189PDB4V4
AH6
IO219NDB5V3
AJ12
IO203NDB5V1
AK19
IO179PPB4V3
AH7
IO219PDB5V3
AJ13
IO203PDB5V1
AK20
IO175NDB4V2
AH8
IO227NDB5V4
AJ14
IO197NDB5V0
AK21
IO175PDB4V2
AH9
IO227PDB5V4
AJ15
IO195PDB5V0
AK22
IO169NDB4V1
AH10
IO225PPB5V3
AJ16
IO183NDB4V3
AK23
IO169PDB4V1
AH11
IO223PPB5V3
AJ17
IO183PDB4V3
AK24
GND
AH12
IO211NDB5V2
AJ18
IO179NPB4V3
AK25
IO167PPB4V1
AH13
IO211PDB5V2
AJ19
IO177PDB4V2
AK26
GND
AH14
IO205PPB5V1
AJ20
IO173NDB4V2
AK27
GDC2/IO156PPB4V0
R ev i si o n 1 3
4- 43
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 44
AK28
GND
C5
VCCIB0
D11
IO11PDB0V1
AK29
GND
C6
IO03PDB0V0
D12
IO23NDB0V2
B1
GND
C7
IO03NDB0V0
D13
IO23PDB0V2
B2
GND
C8
GAB1/IO01PDB0V0
D14
IO27PDB0V3
B3
GAA2/IO309PPB7V4
C9
IO05PDB0V0
D15
IO40PDB0V4
B4
VCC
C10
IO15NPB0V1
D16
IO47NDB1V0
B5
IO14PPB0V1
C11
IO25NDB0V3
D17
IO47PDB1V0
B6
VCC
C12
IO25PDB0V3
D18
IO55NPB1V1
B7
IO07PPB0V0
C13
IO31NPB0V3
D19
IO65NDB1V3
B8
IO09PDB0V1
C14
IO27NDB0V3
D20
IO65PDB1V3
B9
IO15PPB0V1
C15
IO39NDB0V4
D21
IO71NDB1V3
B10
IO19NDB0V2
C16
IO39PDB0V4
D22
IO71PDB1V3
B11
IO19PDB0V2
C17
IO55PPB1V1
D23
IO73NDB1V4
B12
IO29NDB0V3
C18
IO51PDB1V1
D24
IO73PDB1V4
B13
IO29PDB0V3
C19
IO59NDB1V2
D25
IO74NDB1V4
B14
IO31PPB0V3
C20
IO63NDB1V2
D26
GBB0/IO80NPB1V4
B15
IO37NDB0V4
C21
IO63PDB1V2
D27
GND
B16
IO37PDB0V4
C22
IO67NDB1V3
D28
GBA0/IO81NPB1V4
B17
IO41PDB1V0
C23
IO67PDB1V3
D29
VCC
B18
IO51NDB1V1
C24
IO75NDB1V4
D30
GBA2/IO82PPB2V0
B19
IO59PDB1V2
C25
IO75PDB1V4
E1
GND
B20
IO53PDB1V1
C26
VCCIB1
E2
IO303NPB7V3
B21
IO53NDB1V1
C27
IO64PPB1V2
E3
VCCIB7
B22
IO61NDB1V2
C28
VCC
E4
IO305PPB7V3
B23
IO61PDB1V2
C29
GBA1/IO81PPB1V4
E5
VCC
B24
IO69NPB1V3
C30
GND
E6
GAC0/IO02NDB0V0
B25
VCC
D1
IO303PPB7V3
E7
VCCIB0
B26
GBC0/IO79NPB1V4
D2
VCC
E8
IO06PPB0V0
B27
VCC
D3
IO305NPB7V3
E9
IO24NDB0V2
B28
IO64NPB1V2
D4
GND
E10
IO24PDB0V2
B29
GND
D5
GAA1/IO00PPB0V0
E11
IO13NDB0V1
B30
GND
D6
GAC1/IO02PDB0V0
E12
IO13PDB0V1
C1
GND
D7
IO06NPB0V0
E13
IO34NDB0V4
C2
IO309NPB7V4
D8
GAB0/IO01NDB0V0
E14
IO34PDB0V4
C3
VCC
D9
IO05NDB0V0
E15
IO40NDB0V4
C4
GAA0/IO00NPB0V0
D10
IO11NDB0V1
E16
IO49NDB1V1
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
E17
IO49PDB1V1
F23
IO72PDB1V3
G29
IO100PPB2V2
E18
IO50PDB1V1
F24
GNDQ
G30
GND
E19
IO58PDB1V2
F25
GND
H1
IO294PDB7V2
E20
IO60NDB1V2
F26
VMV2
H2
IO294NDB7V2
E21
IO77PDB1V4
F27
IO86PDB2V0
H3
IO300NDB7V3
E22
IO68NDB1V3
F28
IO92PDB2V1
H4
IO300PDB7V3
E23
IO68PDB1V3
F29
VCC
H5
IO295PDB7V2
E24
VCCIB1
F30
IO100NPB2V2
H6
IO299PDB7V3
E25
IO74PDB1V4
G1
GND
H7
VCOMPLA
E26
VCC
G2
IO296NPB7V2
H8
GND
E27
GBB1/IO80PPB1V4
G3
IO306NDB7V4
H9
IO08NDB0V0
E28
VCCIB2
G4
IO297NDB7V2
H10
IO08PDB0V0
E29
IO82NPB2V0
G5
VCCIB7
H11
IO18PDB0V2
E30
GND
G6
GNDQ
H12
IO26NPB0V3
F1
IO296PPB7V2
G7
VCC
H13
IO28NDB0V3
F2
VCC
G8
VMV0
H14
IO28PDB0V3
F3
IO306PDB7V4
G9
VCCIB0
H15
IO38PPB0V4
F4
IO297PDB7V2
G10
IO10NDB0V1
H16
IO42NDB1V0
F5
VMV7
G11
IO16NDB0V1
H17
IO52NDB1V1
F6
GND
G12
IO22PDB0V2
H18
IO52PDB1V1
F7
GNDQ
G13
IO26PPB0V3
H19
IO62NDB1V2
F8
IO12NDB0V1
G14
IO38NPB0V4
H20
IO62PDB1V2
F9
IO12PDB0V1
G15
IO36NDB0V4
H21
IO70NDB1V3
F10
IO10PDB0V1
G16
IO46NDB1V0
H22
IO70PDB1V3
F11
IO16PDB0V1
G17
IO46PDB1V0
H23
GND
F12
IO22NDB0V2
G18
IO56NDB1V1
H24
VCOMPLB
F13
IO30NDB0V3
G19
IO56PDB1V1
H25
GBC2/IO84PDB2V0
F14
IO30PDB0V3
G20
IO66NDB1V3
H26
IO84NDB2V0
F15
IO36PDB0V4
G21
IO66PDB1V3
H27
IO96PDB2V1
F16
IO48NDB1V0
G22
VCCIB1
H28
IO96NDB2V1
F17
IO48PDB1V0
G23
VMV1
H29
IO89PDB2V0
F18
IO50NDB1V1
G24
VCC
H30
IO89NDB2V0
F19
IO58NDB1V2
G25
GNDQ
J1
IO290NDB7V2
F20
IO60PDB1V2
G26
VCCIB2
J2
IO290PDB7V2
F21
IO77NDB1V4
G27
IO86NDB2V0
J3
IO302NDB7V3
F22
IO72NDB1V3
G28
IO92NDB2V1
J4
IO302PDB7V3
R ev i si o n 1 3
4- 45
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 46
J5
IO295NDB7V2
K11
IO04PPB0V0
L17
VCC
J6
IO299NDB7V3
K12
VCCIB0
L18
VCC
J7
VCCIB7
K13
VCCIB0
L19
VCC
J8
VCCPLA
K14
VCCIB0
L20
VCC
J9
VCC
K15
VCCIB0
L21
IO78NPB1V4
J10
IO04NPB0V0
K16
VCCIB1
L22
IO104NPB2V2
J11
IO18NDB0V2
K17
VCCIB1
L23
IO98NDB2V2
J12
IO20NDB0V2
K18
VCCIB1
L24
IO98PDB2V2
J13
IO20PDB0V2
K19
VCCIB1
L25
IO87PDB2V0
J14
IO32NDB0V3
K20
IO76PPB1V4
L26
IO87NDB2V0
J15
IO32PDB0V3
K21
VCC
L27
IO97PDB2V1
J16
IO42PDB1V0
K22
IO78PPB1V4
L28
IO101PDB2V2
J17
IO44NDB1V0
K23
IO88NDB2V0
L29
IO103PDB2V2
J18
IO44PDB1V0
K24
IO88PDB2V0
L30
IO119NDB3V0
J19
IO54NDB1V1
K25
IO94PDB2V1
M1
IO282NDB7V1
J20
IO54PDB1V1
K26
IO94NDB2V1
M2
IO282PDB7V1
J21
IO76NPB1V4
K27
IO85PDB2V0
M3
IO292NDB7V2
J22
VCC
K28
IO85NDB2V0
M4
IO292PDB7V2
J23
VCCPLB
K29
IO93PDB2V1
M5
IO283NDB7V1
J24
VCCIB2
K30
IO93NDB2V1
M6
IO285PDB7V1
J25
IO90PDB2V1
L1
IO286NDB7V1
M7
IO287PDB7V1
J26
IO90NDB2V1
L2
IO286PDB7V1
M8
IO289PDB7V1
J27
GBB2/IO83PDB2V0
L3
IO298NDB7V3
M9
IO289NDB7V1
J28
IO83NDB2V0
L4
IO298PDB7V3
M10
VCCIB7
J29
IO91PDB2V1
L5
IO283PDB7V1
M11
VCC
J30
IO91NDB2V1
L6
IO291NDB7V2
M12
GND
K1
IO288NDB7V1
L7
IO291PDB7V2
M13
GND
K2
IO288PDB7V1
L8
IO293PDB7V2
M14
GND
K3
IO304NDB7V3
L9
IO293NDB7V2
M15
GND
K4
IO304PDB7V3
L10
IO307NPB7V4
M16
GND
K5
GAB2/IO308PDB7V4
L11
VCC
M17
GND
K6
IO308NDB7V4
L12
VCC
M18
GND
K7
IO301PDB7V3
L13
VCC
M19
GND
K8
IO301NDB7V3
L14
VCC
M20
VCC
K9
GAC2/IO307PPB7V4
L15
VCC
M21
VCCIB2
K10
VCC
L16
VCC
M22
NC
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
M23
IO104PPB2V2
N29
IO107PDB2V3
R5
GFB0/IO274NPB7V0
M24
IO102PDB2V2
N30
IO107NDB2V3
R6
IO271NDB6V4
M25
IO102NDB2V2
P1
IO276NDB7V0
R7
GFB2/IO271PDB6V4
M26
IO95PDB2V1
P2
IO278NDB7V0
R8
IO269PDB6V4
M27
IO97NDB2V1
P3
IO280NDB7V0
R9
IO269NDB6V4
M28
IO101NDB2V2
P4
IO284NDB7V1
R10
VCCIB7
M29
IO103NDB2V2
P5
IO279NDB7V0
R11
VCC
M30
IO119PDB3V0
P6
GFC1/IO275PDB7V0
R12
GND
N1
IO276PDB7V0
P7
GFC0/IO275NDB7V0
R13
GND
N2
IO278PDB7V0
P8
IO277PDB7V0
R14
GND
N3
IO280PDB7V0
P9
IO277NDB7V0
R15
GND
N4
IO284PDB7V1
P10
VCCIB7
R16
GND
N5
IO279PDB7V0
P11
VCC
R17
GND
N6
IO285NDB7V1
P12
GND
R18
GND
N7
IO287NDB7V1
P13
GND
R19
GND
N8
IO281NDB7V0
P14
GND
R20
VCC
N9
IO281PDB7V0
P15
GND
R21
VCCIB2
N10
VCCIB7
P16
GND
R22
GCC0/IO112NDB2V3
N11
VCC
P17
GND
R23
GCB2/IO116PDB3V0
N12
GND
P18
GND
R24
IO118PDB3V0
N13
GND
P19
GND
R25
IO111PPB2V3
N14
GND
P20
VCC
R26
IO122PPB3V1
N15
GND
P21
VCCIB2
R27
GCA0/IO114NPB3V0
N16
GND
P22
GCC1/IO112PDB2V3
R28
VCOMPLC
N17
GND
P23
IO110PDB2V3
R29
GCB1/IO113PPB2V3
N18
GND
P24
IO110NDB2V3
R30
IO115NPB3V0
N19
GND
P25
IO109PPB2V3
T1
IO270NDB6V4
N20
VCC
P26
IO111NPB2V3
T2
VCCPLF
N21
VCCIB2
P27
IO105PDB2V2
T3
GFA2/IO272PPB6V4
N22
IO106NDB2V3
P28
IO105NDB2V2
T4
GFA1/IO273PDB6V4
N23
IO106PDB2V3
P29
GCC2/IO117PDB3V0
T5
IO272NPB6V4
N24
IO108PDB2V3
P30
IO117NDB3V0
T6
IO267NDB6V4
N25
IO108NDB2V3
R1
GFC2/IO270PDB6V4
T7
IO267PDB6V4
N26
IO95NDB2V1
R2
GFB1/IO274PPB7V0
T8
IO265PDB6V3
N27
IO99NDB2V2
R3
VCOMPLF
T9
IO263PDB6V3
N28
IO99PDB2V2
R4
GFA0/IO273NDB6V4
T10
VCCIB6
R ev i si o n 1 3
4- 47
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
Pin Number A3PE3000 Function
4- 48
T11
VCC
U17
GND
V23
IO128NDB3V1
T12
GND
U18
GND
V24
IO132PDB3V2
T13
GND
U19
GND
V25
IO130PPB3V2
T14
GND
U20
VCC
V26
IO126NDB3V1
T15
GND
U21
VCCIB3
V27
IO129NDB3V1
T16
GND
U22
IO120PDB3V0
V28
IO127NDB3V1
T17
GND
U23
IO128PDB3V1
V29
IO125NDB3V1
T18
GND
U24
IO124PDB3V1
V30
IO123PDB3V1
T19
GND
U25
IO124NDB3V1
W1
IO266NDB6V4
T20
VCC
U26
IO126PDB3V1
W2
IO262NDB6V3
T21
VCCIB3
U27
IO129PDB3V1
W3
IO260NDB6V3
T22
IO109NPB2V3
U28
IO127PDB3V1
W4
IO252NDB6V2
T23
IO116NDB3V0
U29
IO125PDB3V1
W5
IO251NDB6V2
T24
IO118NDB3V0
U30
IO121NDB3V0
W6
IO251PDB6V2
T25
IO122NPB3V1
V1
IO268NDB6V4
W7
IO255NDB6V2
T26
GCA1/IO114PPB3V0
V2
IO262PDB6V3
W8
IO249PPB6V1
T27
GCB0/IO113NPB2V3
V3
IO260PDB6V3
W9
IO253PDB6V2
T28
GCA2/IO115PPB3V0
V4
IO252PDB6V2
W10
VCCIB6
T29
VCCPLC
V5
IO257NPB6V2
W11
VCC
T30
IO121PDB3V0
V6
IO261NPB6V3
W12
GND
U1
IO268PDB6V4
V7
IO255PDB6V2
W13
GND
U2
IO264NDB6V3
V8
IO259PDB6V3
W14
GND
U3
IO264PDB6V3
V9
IO259NDB6V3
W15
GND
U4
IO258PDB6V3
V10
VCCIB6
W16
GND
U5
IO258NDB6V3
V11
VCC
W17
GND
U6
IO257PPB6V2
V12
GND
W18
GND
U7
IO261PPB6V3
V13
GND
W19
GND
U8
IO265NDB6V3
V14
GND
W20
VCC
U9
IO263NDB6V3
V15
GND
W21
VCCIB3
U10
VCCIB6
V16
GND
W22
IO134PDB3V2
U11
VCC
V17
GND
W23
IO138PDB3V3
U12
GND
V18
GND
W24
IO132NDB3V2
U13
GND
V19
GND
W25
IO136NPB3V2
U14
GND
V20
VCC
W26
IO130NPB3V2
U15
GND
V21
VCCIB3
W27
IO141PDB3V3
U16
GND
V22
IO120NDB3V0
W28
IO135PDB3V2
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
FG896
Pin Number A3PE3000 Function
W29
IO131PDB3V2
W30
IO123NDB3V1
Y1
IO266PDB6V4
Y2
IO250PDB6V2
Y3
IO250NDB6V2
Y4
IO246PDB6V1
Y5
IO247NDB6V1
Y6
IO247PDB6V1
Y7
IO249NPB6V1
Y8
IO245PDB6V1
Y9
IO253NDB6V2
Y10
GEB0/IO235NPB6V0
Y11
VCC
Y12
VCC
Y13
VCC
Y14
VCC
Y15
VCC
Y16
VCC
Y17
VCC
Y18
VCC
Y19
VCC
Y20
VCC
Y21
IO142PPB3V3
Y22
IO134NDB3V2
Y23
IO138NDB3V3
Y24
IO140NDB3V3
Y25
IO140PDB3V3
Y26
IO136PPB3V2
Y27
IO141NDB3V3
Y28
IO135NDB3V2
Y29
IO131NDB3V2
Y30
IO133PDB3V2
R ev i si o n 1 3
4- 49
5 – Datasheet Information
List of Changes
The following table lists critical changes that were made in each revision of the ProASIC3E datasheet.
Revision
Revision 13
(January 2013)
Changes
Page
In the "Features and Benefits" section, updated the Clock Conditioning Circuit
(CCC) and PLL Wide Input Frequency Range from ’1.5 MHz to 200 MHz’ to
’1.5MHz to 350 MHz’ based on Table 2-98 • ProASIC3E CCC/PLL Specification
(SAR 22196).
1-I
The "ProASIC3E Ordering Information" section has been updated to mention "Y"
as "Blank" mentioning "Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43220).
1-III
Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 42716):
The programming temperature range supported is Tambient = 0°C to 85°C.
2-2
The note in Table 2-98 • ProASIC3E CCC/PLL Specification referring the reader
to SmartGen was revised to refer instead to the online help associated with the
core (SAR 42571).
2-69
Libero Integrated Design Environment (IDE) was changed to Libero System-onChip (SoC) throughout the document (SAR 40285).
NA
Live at Power-Up (LAPU) has been replaced with ’Instant On’.
Revision 12
(September 2012)
The "Security" section was modified to clarify that Microsemi does not support
read-back of programmed data.
1-1
Revision 11
(August 2012)
Added a Note stating "VMV pins must be connected to the corresponding VCCI pins.
See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further
information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2
2-1
2-2
• Recommended Operating Conditions 1 (SAR 38322).
The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was
changed from 25 mA to 20 mA in the following tables (SAR 31924):
Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels
Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings
Table 2-19 • I/O Output Buffer Maximum Resistances1
Table 2-48 • Minimum and Maximum DC Input and Output Levels (3.3 V GTL)
Table 2-51 • Minimum and Maximum DC Input and Output Levels (2.5 V GTL)
2-16
2-19
2-20
2-38
2-39
Also added note stating "Output drive strength is below JEDEC specification." for
Tables 2-17 and 2-19.
Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were
corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in
table Table 2-13 (SAR 39714).
Table 2-22 • Duration of Short Circuit Event Before Failure was revised to change
the maximum temperature from 110°C to 100°C, with an example of six months
instead of three months (SAR 37934).
2-22
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR
34796):
2-29
"It uses a 5 V–tolerant input buffer and push-pull output buffer." This change was
made in revision 10 and omitted from the change table in error.
R ev i si o n 1 3
5 -1
Datasheet Information
Revision
Revision 11
(continued)
Revision 10
(March 2012)
Changes
Page
Figure 2-11 • AC Loading was updated to match tables in the "Summary of I/O
Timing Characteristics – Default I/O Software Settings" section (SAR 34889).
2-37
In Table 2-81 • Minimum and Maximum DC Input and Output Levels, VIL and VIH
were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR
37222).
2-51
Figure 2-47 • FIFO Read and Figure 2-48 • FIFO Write are new (SAR 34848).
2-78
The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)"
section in the "Pin Descriptions and Packaging" chapter: "Within the package, the
VMV plane is decoupled from the simultaneous switching noise originating from
the output buffer VCCI domain" and replaced with “Within the package, the VMV
plane biases the input stage of the I/Os in the I/O banks” (SAR 38322). The
datasheet mentions that "VMV pins must be connected to the corresponding
VCCI pins" for an ESD enhancement.
3-1
The "In-System Programming (ISP) and Security" section and "Security" section
were revised to clarify that although no existing security measures can give an
absolute guarantee, Microsemi FPGAs implement the best security available in
the industry (SAR 34669).
I, 1-1
The Y security option and Licensed DPA Logo were added to the "ProASIC3E
Ordering Information" section. The trademarked Licensed DPA Logo identifies
that a product is covered by a DPA counter-measures license from Cryptography
Research (SAR 34727).
III
The following sentence was removed from the "Advanced Architecture" section:
1-3
"In addition, extensive on-chip programming circuitry allows for rapid, singlevoltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG
interface" (SAR 34689).
The "Specifying I/O States During Programming" section is new (SAR 34699).
1-6
VCCPLL in Table 2-2 • Recommended Operating Conditions 1 was corrected
from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851).
2-2
The TJ symbol was added to the table and notes regarding TA and TJ were
removed. The second of two parameters in the VCCI and VMV row, called "3.3 V
DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227).
The reference to guidelines for global spines and VersaTile rows, given in the
"Global Clock Contribution—PCLOCK" section, was corrected to the "Spine
Architecture" section of the Global Resources chapter in the ProASIC3E
FPGA Fabric User's Guide (SAR 34735).
2-9
tDOUT was corrected to tDIN in Figure 2-3 • Input Buffer Timing Model and Delays
(example) (SAR 37109).
2-13
The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17
• Summary of I/O Timing Characteristics—Software Default Settings was
corrected (SAR 37227).
2-19
The notes regarding drive strength in the "Summary of I/O Timing Characteristics 2-18, 2-26
– Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range"
section and tables were revised for clarification. They now state that the minimum
drive strength for the default software configuration when run in wide range is
±100 µA. The drive strength displayed in software is supported in normal range
only. For a detailed I/V curve, refer to the IBIS models (SAR 34763).
5- 2
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Revision
Revision 10
(continued)
Changes
Page
"TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum
Resistances1 and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by
"Same as regular 3.3 V LVCMOS" (SAR 33853).
2-20,
2-22
3.3 V LVCMOS Wide Range information was separated from regular 3.3 V
LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range".
Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC
Input and Output Levels (SAR 33853).
The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down
Resistances were corrected (SAR 34755).
2-21
The AC Loading figures in the "Single-Ended I/O Characteristics" section were
updated to match tables in the "Summary of I/O Timing Characteristics – Default
I/O Software Settings" section (SAR 34889).
2-24
The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew 2-27, 2-28
and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR
37227).
The following notes were removed from Table 2-78 • LVDS Minimum and
Maximum DC Input and Output Levels (SAR 34812):
2-49
±5%
Differential input voltage = ±350 mV
Minimum pulse width High and Low values were added to the tables in the
"Global Tree Timing Characteristics" section. The maximum frequency for global
clock parameter was removed from these tables because a frequency on the
global is only an indication of what the global network can do. There are other
limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to
determine the design frequency (SAR 36957).
2-67
A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating
that when the CCC/PLL core is generated by Microsemi core generator software,
not all delay values of the specified delay increments are available (SAR 34824).
2-69
The following figures were deleted. Reference was made to a new application
note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based
cSoCs and FPGAs, which covers these cases in detail (SAR 34872).
2-72,
2-75,
2-79,
2-81
Figure 2-44 • Write Access after Write onto Same Address
Figure 2-45 • Read Access after Write onto Same Address
Figure 2-46 • Write Access after Read onto Same Address
The port names in the SRAM "Timing Waveforms", SRAM "Timing
Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing
Characteristics" tables were revised to ensure consistency with the software
names (SAR 35750).
July 2010
The "Pin Descriptions and Packaging" chapter is new (SAR 34771).
3-1
Package names used in the "Package Pin Assignments" section were revised to
match standards given in Package Mechanical Drawings (SAR 34771).
4-1
Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs
30364, 31597, 26243).
4-9
The versioning system for datasheets has been changed. Datasheets are
assigned a revision number that increments each time the datasheet is revised.
The "ProASIC3E Device Status" table on page II indicates the status for each
device in the device family.
N/A
R ev i si o n 1 3
5 -3
Datasheet Information
Revision
Changes
Revision 9 (Aug 2009) All references to speed grade –F have been removed from this document.
Page
N/A
Product Brief v1.2
The "Pro I/Os with Advanced I/O Standards" section was revised to add
definitions of hot-swap and cold-sparing.
1-6
DC and Switching 3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the
Characteristics v1.3
datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V
LVCMOS data.
N/A
IIL and IIH input leakage current information was added to all "Minimum and
Maximum DC Input and Output Levels" tables.
N/A
–F was removed from the datasheet. The speed grade is no longer supported.
N/A
In the Table 2-2 • Recommended Operating Conditions 1 "3.0 V DC supply
voltage" and note 4 are new.
2-2
The Table 2-4 • Overshoot and Undershoot Limits 1 table was updated.
2-3
The Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
table was updated.
2-5
There are new parameters and data was updated in the Table 2-99 • RAM4K9
table.
2-75
There are new parameters and data was updated in the Table 2-100
• RAM512X18 table.
2-76
Revision 8 (Feb 2008) Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new.
1-II
Product Brief v1.1
Revision 7 (Jun 2008) The title of Table 2-4 • Overshoot and Undershoot Limits 1 was modified to
DC and Switching remove "as measured on quiet I/Os." Table note 2 was revised to remove
"estimated SSO density over cycles." Table note 3 was deleted.
Characteristics v1.2
2-3
Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was
updated.
2-49
Revision 6 (Jun 2008) The A3PE600 "FG484" table was missing G22. The pin and its function were
added to the table.
4-17
Revision 5 (Jun 2008) The naming conventions changed for the following pins in the "FG484" for the
A3PE600:
Packaging v1.4
4-17
Pin Number
New Function Name
J19
IO45PPB2V1
K20
IO45NPB2V1
M2
IO114NPB6V1
N1
IO114PPB6V1
N4
GFC2/IO115PPB6V1
P3
IO115NPB6V1
Revision 4 (Apr 2008) The product brief portion of the datasheet was divided into two sections and given
a version number, starting at v1.0. The first section of the document includes
Product Brief v1.0
features, benefits, ordering information, and temperature and speed grade
offerings. The second section is a device family overview.
N/A
Packaging v1.3
4-12
5- 4
The "FG324" package diagram was replaced.
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Revision
Changes
Revision 3 (Apr 2008) The following pins had duplicates and the extra pins were deleted from the
"PQ208" A3PE3000 table:
Packaging v1.2
Page
4-6
36, 62, 171
Note: There were no pin function changes in this update.
The following pins had duplicates and the extra pins were deleted from the
"FG324" table:
4-12
E2, E3, E16, E17, P2, P3, T16, U17
Note: There were no pin function changes in this update.
The "FG256" pin table was updated for the A3PE600 device because the old PAT
were based on the IFX die, and this is the final UMC die version.
4-9
The "FG484" was updated for the A3PE600 device because the old PAT were
based on the IFX die, and this is the final UMC die version.
4-17
The following pins had duplicates and the extra pins were deleted from the
"FG896" table:
4-41
AD6, AE5, AE28, AF29, F5, F26, G6, G25
Note: There were no pin function changes in this update.
Revision 2 (Mar 2008) The FG324 package was added to the "ProASIC3E Product Family" table, the
"I/Os Per Package1" table, and the "Temperature Grade Offerings" table for
Product Brief rev. 1
A3PE3000.
I, II, IV
Revision 1 (Feb 2008) In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating
DC and Switching Temperature 1, Maximum Operating Junction Temperature was changed from
110°C to 100°C for both commercial and industrial grades.
Characteristics v1.1
2-2
The "PLL Behavior at Brownout Condition" section is new.
2-4
In the "PLL Contribution—PPLL" section, the following was deleted:
2-10
FCLKIN is the input clock frequency.
In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note
was incorrect. It previously said TJ and it was corrected and changed to TA.
2-17
In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note
1 are new.
2-69
Table 2-103 • JTAG 1532 was populated with the parameter data, which was not
in the previous version of the document.
2-82
Revision 1 (cont’d)
The "PQ208" pin table for A3PE3000 was updated.
4-6
Packaging v1.1
The "FG324" pin table for A3PE3000 is new.
4-13
The "FG484" pin table for A3PE3000 is new.
4-27
The "FG896" pin table for A3PE3000 is new.
4-41
Revision 0 (Jan 2008) This document was previously in datasheet v2.1. As a result of moving to the
handbook format, Actel has restarted the version numbers. The new version
number is 51700098-001-0.
v2.1
(July 2007)
CoreMP7 information was removed from the "Features and Benefits" section.
The M1 device part numbers have been updated in Table 4 • ProASIC3E
Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed
Grade and Temperature Grade Matrix", and "Speed Grade and Temperature
Grade Matrix".
R ev i si o n 1 3
N/A
i
ii, iii,
iv, iv
5 -5
Datasheet Information
Revision
v2.1
(continued)
Changes
Page
The words "ambient temperature" were added to the temperature range in the
"Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix",
and "Speed Grade and Temperature Grade Matrix" sections.
iii, iv, iv
The "Clock Conditioning Circuit (CCC) and PLL" section was updated.
v2.0
(April 2007)
5- 6
i
The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3
VersaNet Global Network was changed to "Chip (main)."
2-9
The TJ parameter in Table 3-2 • Recommended Operating Conditions was
changed to TA, ambient temperature, and table notes 4–6 were added.
3-2
The "PLL Macro" section was updated to add information on the VCO and PLL
outputs during power-up.
2-15
In the "Temperature Grade Offerings" section, Ambient was deleted.
iii
Ambient was deleted from "Temperature Grade Offerings".
iii
Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".
iv
The "PLL Macro" section was updated to include power-up information.
2-15
Table 2-13 • ProASIC3E CCC/PLL Specification was updated.
2-30
Figure 2-19 • Peak-to-Peak Jitter Definition is new.
2-18
The "SRAM and FIFO" section was updated with operation and timing
requirement information.
2-21
The "RESET" section was updated with read and write information.
2-25
The "RESET" section was updated with read and write information.
2-25
The "Introduction" in the "Advanced I/Os" section was updated to include
information on input and output buffers being disabled.
2-28
In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance
descriptions were updated for levels 3 and 4.
2-34
Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E
Devices was updated.
2-64
Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5 V–
Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum
current was updated from 4 x 52.7 to 5 x 52.7.
2-40
The "VCCPLF PLL Supply Voltage" section was updated.
2-50
The "VPUMP Programming Supply Voltage" section was updated.
2-50
The "GL Globals" section was updated to include information about direct input
into quadrant clocks.
2-51
VJTAG was deleted from the "TCK Test Clock" section.
2-51
In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK
was changed to TCK in note 2. Note 3 was also updated.
2-51
Ambient was deleted from Table 3-2 • Recommended Operating Conditions.
VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".
3-2
Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on
quiet I/Os).
3-2
In EQ 3-2, 150 was changed to 110 and the result changed to 5.88.
3-5
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Revision
v2.0
(continued)
Changes
Page
Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was
updated.
3-5
Table 3-5 • Package Thermal Resistivities was updated.
3-5
Table 3-10 • Different Components Contributing to the Dynamic Power
Consumption in ProASIC3E Devices was updated.
3-8
tWRO and tCCKH were
3-95 • RAM512X18.
added
to
Table
3-94 • RAM4K9
and
Table
The note in Table 3-24 • I/O Input Rise Time, Fall Time, and Related I/O
Reliability was updated.
3-74 to
3-74
3-23
Figure 3-43 • Write Access After Write onto Same Address, Figure 3-44 • Read 3-71 to 3Access After Write onto Same Address, and Figure 3-45 • Write Access After
73
Read onto Same Address are new.
Figure 3-53 • Timing Diagram was updated.
3-80
Notes were added to the package diagrams identifying if they were top or bottom
view.
N/A
The A3PE1500 "208-Pin PQFP" table is new.
4-4
The A3PE1500 "484-Pin FBGA" table is new.
4-18
The A3PE1500 "A3PE1500 Function" table is new.
4-24
Advance v0.6
(January 2007)
In the "Packaging Tables" table, the number of I/Os for the A3PE1500 was
changed for the FG484 and FG676 packages.
Advance v0.5
(April 2006)
B-LVDS and M-LDVS are new I/O standards added to the datasheet.
N/A
The term flow-through was changed to pass-through.
N/A
Figure 2-8 • Very-Long-Line Resources was updated.
2-8
The footnotes in Figure 2-27 • CCC/PLL Macro were updated.
2-28
The Delay Increments in the Programmable Delay Blocks specification in Figure
2-24 • ProASIC3E CCC Options.
2-24
The "SRAM and FIFO" section was updated.
2-21
The "RESET" section was updated.
2-25
The "WCLK and RCLK" section was updated.
2-25
The "RESET" section was updated.
2-25
The "RESET" section was updated.
2-27
B-LVDS and M-LDVS are new I/O standards added to the datasheet.
N/A
The term flow-through was changed to pass-through.
N/A
Figure 2-8 • Very-Long-Line Resources was updated.
2-8
The footnotes in Figure 2-27 • CCC/PLL Macro were updated.
2-28
The Delay Increments in the Programmable Delay Blocks specification in Figure
2-24 • ProASIC3E CCC Options.
2-24
The "SRAM and FIFO" section was updated.
2-21
The "RESET" section was updated.
2-25
The "WCLK and RCLK" section was updated.
2-25
R ev i si o n 1 3
ii
5 -7
Datasheet Information
Revision
Advance v0.5
(continued)
5- 8
Changes
Page
The "RESET" section was updated.
2-25
The "RESET" section was updated.
2-27
The "Introduction" of the "Introduction" section was updated.
2-28
PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 211 • VCCI Voltages and Compatible Standards
2-29
Table 2-35 • ProASIC3E I/O Features was updated.
2-54
The "Double Data Rate (DDR) Support" section was updated to include
information concerning implementation of the feature.
2-32
The "Electrostatic Discharge (ESD) Protection" section was updated to include
testing information.
2-35
Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V
Input Tolerance Capabilities in ProASIC3 Devices.
2-64
The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in
ProASIC3E Devices were updated.
2-64
The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout"
section is new.
2-41
A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended
and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength
and high slew selected).
2-55
Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications
2-81
Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE)
Settings
2-85
The "x" was updated in the "Pin Descriptions" section.
2-50
The "VCC Core Supply Voltage" pin description was updated.
2-50
The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include
information concerning leaving the pin unconnected.
2-50
EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.
2-24
The CCC Output Peak-to-Peak Period Jitter FCCC_OUT was updated in Table
2-13 • ProASIC3E CCC/PLL Specification.
2-30
EXTFB was removed from Figure 2-27 • CCC/PLL Macro.
2-28
The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance
Capabilities in ProASIC3E Devices was updated.
2-64
Table 2-15 • Levels of Hot-Swap Support was updated.
2-34
The "Cold-Sparing Support" section was updated.
2-34
"Electrostatic Discharge (ESD) Protection" section was updated.
2-35
The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions"
section.
2-50
The "VJTAG JTAG Supply Voltage" pin description was updated.
2-50
The "VPUMP Programming Supply Voltage" pin description was updated to
include information on what happens when the pin is tied to ground.
2-50
R ev isio n 1 3
ProASIC3E Flash Family FPGAs
Revision
Advance v0.5
(continued)
Changes
Page
The "I/O User Input/Output" pin description was updated to include information on
what happens when the pin is unused.
2-50
The "JTAG Pins" section was updated to include information on what happens
when the pin is unused.
2-51
The "Programming" section was updated to include information concerning
serialization.
2-53
The "JTAG 1532" section was updated to include SAMPLE/PRELOAD
information.
2-54
The "DC and Switching Characteristics" chapter was updated with new
information.
Starting
on page
3-1
Table 3-6 was updated.
3-5
In Table 3-10, PAC4 was updated.
3-8
Table 3-19 was updated.
3-20
The note in Table 3-24 was updated.
3-23
All Timing Characteristics tables were updated from LVTTL to Register Delays
3-26 to
3-64
The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.
3-74 to
3-79
FTCKMAX was updated in Table 3-98.
3-80
Advance v0.4
(October 2005)
The "Packaging Tables" table was updated.
Advance v0.3
Figure 2-11 was updated.
2-9
The "Clock Resources (VersaNets)" section was updated.
2-9
The "VersaNet Global Networks and Spine Access" section was updated.
2-9
The "PLL Macro" section was updated.
2-15
Figure 2-27 was updated.
2-28
Figure 2-20 was updated.
2-19
Table 2-5 was updated.
2-25
Table 2-6 was updated.
2-25
The "FIFO Flag Usage Considerations" section was updated.
2-27
Table 2-33 was updated.
2-51
Figure 2-24 was updated.
2-31
The "Cold-Sparing Support" section is new.
2-34
Table 2-45 was updated.
2-64
Table 2-48 was updated.
2-81
Pin descriptions in the "JTAG Pins" section were updated.
2-51
The "Pin Descriptions" section was updated.
2-50
Table 3-7 was updated.
3-6
R ev i si o n 1 3
ii
5 -9
Datasheet Information
Revision
Advance v0.3
(continued)
5- 10
Changes
Page
The "Methodology" section was updated.
3-9
The A3PE3000 "208-Pin PQFP" pin table was updated.
4-6
R ev i sio n 1 3
ProASIC3E Flash Family FPGAs
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief,"
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Production
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
R ev i si o n 1 3
5- 11
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
51700097-13/01.13
Similar pages