FDM3300NZ Monolithic Common Drain N-Channel 2.5V Specified PowerTrench MOSFET General Description Features This dual N-Channel MOSFET has been designed using Fairchild Semiconductor’s advanced Power Trench process to optimize the RDS(ON) @ VGS = 2.5v on special MicroFET lead frame with all the drains on one side of the package. • 10 A, 20 V RDS(ON) = 23 mΩ @ VGS = 4.5 V RDS(ON) = 28 mΩ @ VGS = 2.5 V • > 2000v ESD Protection Applications • Low Profile – 1mm maximum – in the new package MicroFET 3.3x3.3 mm • Li-Ion Battery Pack D1 D1 D2 D2 D2 S1 G1 S2 G2 1 8 2 7 3 6 4 5 MicroFET Absolute Maximum Ratings Symbol VDSS VGSS ID TA=25oC unless otherwise noted Parameter Ratings PD Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous – Pulsed Power Dissipation (Steady State) TJ, TSTG Operating and Storage Junction Temperature Range (Note 1a) (Note 1a) (Note 1b) Thermal Characteristics RθJA RθJA RθJC Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case (Note 1a) (Note 1b) (Note 1) Package Marking and Ordering Information Device Marking 3300N 2003 Fairchild Semiconductor Corporation Device FDM3300NZ Reel Size 7’’ 20 ±12 10 40 2.5 1.2 –55 to +150 52 108 5 Tape width 12mm Units V V A W °C °C/W Quantity 3000 units FDM3300NZ Rev. E3 (W) FDM3300NZ February 2003 Symbol Parameter Off Characteristics BVDSS ∆BVDSS ∆TJ IDSS IGSS TA = 25°C unless otherwise noted Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, On Characteristics Test Conditions VGS = 0 V, ID = 250 µA Min 20 ID = 250 µA, Referenced to 25°C VDS = 16 V, VGS = ±12 V, Typ Max Units V 10.7 mV/°C 1 ±10 µA µA 0.9 –3 1.5 V mV/°C 16 20 22 23 28 31 mΩ VGS = 0 V VDS = 0 V (Note 2) VGS(th) ∆VGS(th) ∆TJ RDS(on) Gate Threshold Voltage Gate Threshold Voltage Temperature Coefficient Static Drain–Source On–Resistance ID(on) gFS On–State Drain Current Forward Transconductance VDS = VGS, ID = 250 µA ID = 250 µA, Referenced to 25°C VGS = 4.5 V, ID = 10A VGS = 2.5 V, ID = 9 A VGS = 4.5 V, ID = 10A, TJ=125°C VGS = 2.5 V, VDS = 5 V VDS = 5 V, ID =10 A 0.6 10 35 A S 1210 pF 330 pF 180 2.3 pF Ω Dynamic Characteristics Ciss Input Capacitance Output Capacitance VDS = 10 V, f = 1.0 MHz V GS = 0 V, Coss Crss RG Reverse Transfer Capacitance Gate Resistance V GS = 0 V, f = 1.0 MHz VDD = 10 V, VGS = 4.5 V, ID = 1 A, RGEN = 6 Ω Switching Characteristics td(on) Turn–On Delay Time tr Turn–On Rise Time td(off) Turn–Off Delay Time tf Turn–Off Fall Time Qg Total Gate Charge Qgs Gate–Source Charge Qgd Gate–Drain Charge (Note 2) VDS = 10 V, VGS = 4.5 V ID = 10 A, 10 20 ns 14 25 ns 26 42 ns 13 23 ns 12 17 nC 2 nC 4 nC Drain–Source Diode Characteristics and Maximum Ratings IS VSD trr Qrr Maximum Continuous Drain–Source Diode Forward Current Drain–Source Diode Forward VGS = 0 V, IS = 2 A Voltage IF = 10 A, Diode Reverse Recovery Time Diode Reverse Recovery Charge diF/dt = 100 A/µs (Note 2) 0.7 2 1.2 A V 20 nS 6 nC Notes: 1. RθJA is determined with the device mounted on a 1 in² 2 oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. RθJC are guaranteed by design while RθJA is determined by the user' s board design. (a). RθJA = 52°C/W when mounted on a 1in2 pad of 2 oz copper, 1.5” x 1.5” x 0.062” thick PCB (b). RθJA = 108°C/W when mounted on a minimum pad of 2 oz copper 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% FDM3300NZ Rev E3 (W) FDM3300NZ Electrical Characteristics FDM3300NZ Typical Characteristics VGS = 4.5V 2 3.0V RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 40 ID, DRAIN CURRENT (A) 3.5V 30 2.5V 20 2.0V 10 1.8 VGS = 2.0V 1.6 1.4 2.5V 1.2 3.0V 0 0.5 1 1.5 0 2 4 8 12 16 20 ID, DRAIN CURRENT (A) VDS, DRAIN-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. 0.047 1.6 ID = 5A ID = 10A VGS = 4.5V RDS(ON), ON-RESISTANCE (OHM) RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 4.5V 0.8 0 1.4 1.2 1 0.8 0.6 -50 -25 0 25 50 75 100 125 0.042 0.037 0.032 TA = 125oC 0.027 0.022 TA = 25oC 0.017 0.012 150 1 o 2 TJ, JUNCTION TEMPERATURE ( C) 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. 100 TA = -55oC VDS = 5V IS, REVERSE DRAIN CURRENT (A) 40 ID, DRAIN CURRENT (A) 3.5V 1 25oC 30 125oC 20 10 0 VGS = 0V 10 TA = 125oC 1 25oC 0.1 0.01 -55oC 0.001 0.0001 0.5 1 1.5 2 2.5 VGS, GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics. 3 0 0.2 0.4 0.6 0.8 1 1.2 VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. FDM3300NZ Rev E3 (W) FDM3300NZ Typical Characteristics 1800 ID = 10A VDS = 5V 4 1500 10V CAPACITANCE (pF) VGS, GATE-SOURCE VOLTAGE (V) 5 15V 3 2 1200 1 900 Coss 600 300 Crss 0 0 0 3 6 9 12 15 0 4 Qg, GATE CHARGE (nC) 8 16 20 Figure 8. Capacitance Characteristics. 50 RDS(ON) LIMIT P(pk), PEAK TRANSIENT POWER (W) 100 100us 1ms 10 10ms 100ms 1s 10s 1 DC VGS = 4.5V SINGLE PULSE RθJA = 108oC/W 0.1 TA = 25oC 0.01 0.1 1 10 100 SINGLE PULSE RθJA = 108°C/W TA = 25°C 40 30 20 10 0 0.001 0.01 0.1 1 10 100 1000 t1, TIME (sec) VDS, DRAIN-SOURCE VOLTAGE (V) Figure 9. Maximum Safe Operating Area. r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 12 VDS, DRAIN TO SOURCE VOLTAGE (V) Figure 7. Gate Charge Characteristics. ID, DRAIN CURRENT (A) f = 1MHz VGS = 0 V Ciss Figure 10. Single Pulse Maximum Power Dissipation. 1 D = 0.5 RθJA(t) = r(t) * RθJA RθJA =108 °C/W 0.2 0.1 0.1 0.05 0.01 P(pk) 0.02 0.01 t1 SINGLE PULSE 0.001 0.0001 0.001 t2 TJ - TA = P * RθJA(t) Duty Cycle, D = t1 / t2 0.01 0.1 1 10 100 1000 t1, TIME (sec) Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design. FDM3300NZ Rev E3 (W) .SUBCKT FDM3300NZ 2 1 3 *NOM TEMP=25 DEG C *FEB 26, 2003 CA 12 8 1E-9 CB 15 14 1.2E-9 CIN 6 8 10.8E-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 RSLC2 5 51 GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 8.3E-3 RGATE 9 20 4.2 RSLC1 5 51 RSLCMOD 1E-6 RSLC2 5 50 1E3 RSOURCE 8 7 RSOURCEMOD 3.9E-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 11 + RDRAIN 6 8 EVTHRES + 19 8 EVTEMP RGATE + 18 9 20 22 21 EBREAK 16 17 18 - DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN RLGATE 1 9 38.4 RLDRAIN 2 5 10 RLSOURCE 3 7 40 ESLC - + LGATE DBREAK 50 ESG RLDRAIN RSLC1 51 + LGATE 1 9 3.84E-9 LDRAIN 2 5 1.00E-9 LSOURCE 3 7 4E-9 5 10 EBREAK 11 7 17 18 23.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN DPLCAP 8 7 RSOURCE S1A 12 13 S2A S1B CA 17 18 S2B 13 RVTEMP CB 6 8 - 19 VBAT + IT 14 + + EGS RLSOURCE RBREAK 15 14 13 8 SOURC E 3 5 8 EDS - 8 22 RVTHRES S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1E-6*115),3))} .MODEL DBODYMOD D (IS=2E-12 RS=9.9E-3 N=0.90 TRS1=2.1E-3 TRS2=1.0E-6 CJO=4.5E-10 TT=1E-9 M=0.45 IKF=0.3 XTI=2.0) .MODEL DBREAKMOD D (RS=1E-1 TRS1=1.12E-3 TRS2=1.25E-6) .MODEL DPLCAPMOD D (CJO=45E-11 IS=1E-30 N=10 M=0.4) .MODEL MMEDMOD NMOS (VTO=1.05 KP=8 IS=1E-30 N=10 TOX=1 L=1U W=1U RG=4.2) .MODEL MSTROMOD NMOS (VTO=1.31 KP=82 IS=1E-30 N=10 TOX=1 L=1U W=1U) .MODEL MWEAKMOD NMOS (VTO=0.81 KP=0.05 IS=1E-30 N=10 TOX=1 L=1U W=1U RG=42 RS=.1) .MODEL RBREAKMOD RES (TC1=0.56E-3 TC2=1.00E-7) .MODEL RDRAINMOD RES (TC1=4.6E-3 TC2=10E-6) .MODEL RSLCMOD RES (TC1=2.5E-3 TC2=8E-6) .MODEL RSOURCEMOD RES (TC1=1.0E-3 TC2=1E-6) .MODEL RVTHRESMOD RES (TC1=-1.85E-3 TC2=-7E-6) .MODEL RVTEMPMOD RES (TC1=-0.7E-3 TC2=0.50E-6) .MODEL S1AMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-4 VOFF=-3) .MODEL S1BMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-3 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=-1.0 VOFF=0.6) .MODEL S2BMOD VSWITCH (RON=1E-5 ROFF=0.1 VON=0.6 VOFF=-1.0) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. FDM3300NZ Rev E3 (W) FDM3300NZ PSPICE Electrical Model N-Channel FDM3300NZ SPICE Thermal Model .SUBCKT FDM3300NZ_THERM TH TL *Thermal Model Subcircuit *Feb 26, 2003 th JUNCTION CTHERM1 TH 8 3 CTHERM2 8 7 5 RTHERM1 CTHERM3 7 6 7 CTHERM4 6 5 13.2 CTHERM1 8 RTHERM2 CTHERM2 CTHERM5 5 4 25.4 7 CTHERM6 4 3 36.21 CTHERM7 3 2 47.54 RTHERM3 CTHERM3 6 CTHERM8 2 TL 208.21 RTHERM4 RTHERM1 TH 8 0.04 CTHERM4 5 RTHERM2 8 7 0.05 RTHERM3 7 6 0.06 RTHERM5 4 RTHERM4 6 5 0.07 RTHERM5 5 4 0.085 RTHERM6 RTHERM7 RTHERM8 2 TL 0.35 .ENDS CTHERM6 3 RTHERM6 4 3 0.095 RTHERM7 3 2 0.25 CTHERM5 CTHERM7 2 RTHERM8 CTHERM8 tl AMBIENT FDM3300NZ Rev E3 (W) FDM3300NZ Dimensional Outline and Pad Layout FDM3300NZ Rev E3 (W) TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx FACT ActiveArray FACT Quiet Series Bottomless FASTâ CoolFET FASTr CROSSVOLT FRFET DOME GlobalOptoisolator EcoSPARK GTO E2CMOSTM HiSeC EnSignaTM I2C Across the board. Around the world. The Power Franchise Programmable Active Droop ImpliedDisconnect PACMAN POP ISOPLANAR Power247 LittleFET PowerTrenchâ MicroFET QFET MicroPak QS MICROWIRE QT Optoelectronics MSX Quiet Series MSXPro RapidConfigure OCX RapidConnect OCXPro SILENT SWITCHERâ OPTOLOGICâ SMART START OPTOPLANAR SPM Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogicâ TruTranslation UHC UltraFETâ VCX DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I2