NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 DS90LV049H High Temperature 3V LVDS Dual Line Driver and Receiver Pair Check for Samples: DS90LV049H FEATURES DESCRIPTION • • • • • The DS90LV049H is a dual CMOS flow-through differential line driver-receiver pair designed for applications requiring ultra low power dissipation, exceptional noise immunity, and high data throughput. The device is designed to support data rates in excess of 400 Mbps utilizing Low Voltage Differential Signaling (LVDS) technology. 1 2 • • • • • • • High Temperature +125°C Operating Range Up to 400 Mbps Switching Rates Flow-Through Pinout Simplifies PCB Layout 50 ps Typical Driver Channel-to-Channel Skew 50 ps Typical Receiver Channel-to-Channel Skew 3.3 V Single Power Supply Design TRI-STATE Output Control Internal Fail-Safe Biasing of Receiver Inputs Low Power Dissipation (70 mW at 3.3 V Static) High Impedance on LVDS Outputs on Power Down Conforms to TIA/EIA-644-A LVDS Standard Available in Low Profile 16 Pin TSSOP Package The DS90LV049H drivers accept LVTTL/LVCMOS signals and translate them to LVDS signals. The receivers accept LVDS signals and translate them to 3 V CMOS signals. The LVDS input buffers have internal failsafe biasing that places the outputs to a known H (high) state for floating receiver inputs. In addition, the DS90LV049H supports a TRI-STATE function for a low idle power state when the device is not in use. The EN and EN inputs are ANDed together and control the TRI-STATE outputs. The enables are common to all four gates. CONNECTION DIAGRAM Dual-In-Line RIN1- 1 16 EN RIN1+ 2 15 ROUT1 RIN2+ 3 14 ROUT2 RIN2- 4 13 GND DOUT2- 5 12 VDD DOUT2+ 6 11 DIN2 DOUT1+ 7 10 DIN1 DOUT1- 8 9 EN Order Number DS90LV049HMT Order Number DS90LV049HMTX (Tape and Reel) PW0016A Package 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2005–2013, Texas Instruments Incorporated NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com FUNCTIONAL DIAGRAM RIN1RIN1+ RIN2+ RIN2DOUT2DOUT2+ DOUT1+ DOUT1- R1 ROUT1 R2 ROUT2 D2 DIN2 D1 DIN1 EN AND EN Table 1. TRUTH TABLE EN EN LVDS Out LVCMOS Out L or Open L or Open OFF OFF H L or Open ON ON L or Open H OFF OFF H H OFF OFF These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 2 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 ABSOLUTE MAXIMUM RATINGS (1) (2) −0.3 V to +4 V Supply Voltage (VDD) −0.3 V to (VDD + 0.3 V) LVCMOS Input Voltage (DIN) LVDS Input Voltage (RIN+, RIN-) −0.3 V to +3.9 V Enable Input Voltage (EN, EN) −0.3 V to (VDD + 0.3 V) LVCMOS Output Voltage (ROUT) −0.3 V to (VDD + 0.3 V) −0.3 V to +3.9 V LVDS Output Voltage (DOUT+, DOUT-) LVCMOS Output Short Circuit Current (ROUT) 100 mA LVDS Output Short Circuit Current (DOUT+, DOUT−) 24 mA LVDS Output Short Circuit Current Duration (DOUT+, DOUT−) Continuous −65°C to +150°C Storage Temperature Range Lead Temperature Range Soldering (4 sec.) +260°C Maximum Junction Temperature +150°C Maximum Package Power Dissipation @ +25°C PW0016A Package 866 mW Derate PW0016A Package 6.9 mW/°C above +25°C ESD Rating ≥ 7 kV (HBM, 1.5 kΩ, 100 pF) (MM, 0 Ω, 200 pF) (1) (2) ≥ 250 V “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be specified. They are not meant to imply that the devices should be operated at these limits. ELECTRICAL CHARACTERISTICS specifies conditions of device operation. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications. RECOMMENDED OPERATING CONDITIONS Min Typ Max Units Supply Voltage (VDD) +3.0 +3.3 +3.6 V Operating Free Air Temperature (TA) −40 +25 +125 °C ELECTRICAL CHARACTERISTICS Over supply voltage and operating temperature ranges, unless otherwise specified. (1) (2) (3) Symbol Parameter Conditions Pin Min Typ Max Units V LVCMOS Input DC Specifications (Driver Inputs, ENABLE Pins) VIH Input High Voltage 2.0 VDD VIL Input Low Voltage GND 0.8 V IIH Input High Current VIN = VDD IIL Input Low Current VIN = GND VCL Input Clamp Voltage ICL = −18 mA DIN EN EN −10 1 +10 μA −10 −0.1 +10 μA −1.5 −0.6 V LVDS Output DC Specifications (Driver Outputs) (1) (2) (3) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except: VTH, VTL, VOD and ΔVOD. All typical values are given for: VDD = +3.3 V, TA = +25°C. The DS90LV049H's drivers are current mode devices and only function within datasheet specifications when a resistive load is applied to their outputs. The typical range of the resistor values is 90 Ω to 110 Ω. Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 3 NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com ELECTRICAL CHARACTERISTICS (continued) Over supply voltage and operating temperature ranges, unless otherwise specified.(1)(2)(3) Symbol Parameter Conditions Pin Min Typ Max Units 250 350 450 mV 1 35 |mV| 1.23 1.375 V 1 25 |mV| −5.8 −9.0 mA −5.8 −9.0 mA | VOD | Differential Output Voltage ΔVOD Change in Magnitude of VOD for Complementary Output States VOS Offset Voltage ΔVOS Change in Magnitude of VOS for Complementary Output States IOS Output Short Circuit Current (4) IOSD Differential Output Short Circuit Current (4) IOFF Power-off Leakage VOUT = 0 V or 3.6 V VDD = 0 V or Open −20 ±1 +20 μA IOZ Output TRI-STATE Current EN = 0 V and EN = VDD VOUT = 0 V or VDD −10 ±1 +10 μA −15 35 mV RL = 100 Ω (Figure 1) ENABLED, DIN = VDD, DOUT+ = 0 V or DIN = GND, DOUT− = 0 V 1.125 DOUT− DOUT+ ENABLED, VOD = 0 V LVDS Input DC Specifications (Receiver Inputs) VTH Differential Input High Threshold VTL Differential Input Low Threshold VCMR Common-Mode Voltage Range IIN Input Current VCM = 1.2 V, 0.05 V, 2.35 V VID = 100 mV, VDD=3.3 V VDD=3.6 V VIN =0 V or 2.8 V -100 RIN+ RIN- VDD=0 V VIN =0 V or 2.8 V or 3.6 V −15 0.05 mV 3 V −12 ±4 +12 μA −10 ±1 +10 μA 2.7 3.3 LVCMOS Output DC Specifications (Receiver Outputs) VOH Output High Voltage IOH = -0.4 mA, VID= 200 mV VOL Output Low Voltage IOL = 2 mA, VID = 200 mV IOZ Output TRI-STATE Current Disabled, VOUT =0 V or VDD ROUT -10 V 0.05 0.25 V ±1 +10 μA 21 35 mA 15 25 mA General DC Specifications IDD Power Supply Current (5) EN = 3.3 V IDDZ TRI-State Supply Current EN = 0 V (4) (5) 4 VDD Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. Both driver and receiver inputs are static. All LVDS outputs have 100 Ω load. All LVCMOS outputs are floating. None of the outputs have any lumped capacitive load. Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 SWITCHING CHARACTERISTICS VDD = +3.3V ± 10%, TA = −40°C to +125°C (1) Symbol (2) Parameter Conditions Min Typ Max Units LVDS Outputs (Driver Outputs) tPHLD Differential Propagation Delay High to Low 0.7 2 ns tPLHD Differential Propagation Delay Low to High 0.7 2 ns tSKD1 Differential Pulse Skew |tPHLD − tPLHD| (3) (4) 0 0.05 0.4 ns tSKD2 Differential Channel-to-Channel Skew (3) (5) 0 0.05 0.5 ns tSKD3 Differential Part-to-Part Skew (3) (6) 1.0 ns tTLH Rise Time (3) RL = 100 Ω (Figure 2 and Figure 3) 0 (3) 0.2 0.4 1 ns 0.2 tTHL Fall Time 0.4 1 ns tPHZ Disable Time High to Z 1.5 3 ns tPLZ Disable Time Low to Z 1.5 3 ns tPZH Enable Time Z to High 1 3 6 ns tPZL Enable Time Z to Low 1 3 6 fMAX Maximum Operating Frequency (7) 200 250 RL = 100 Ω (Figure 4 and Figure 5) ns MHz LVCMOS Outputs (Receiver Outputs) tPHL Propagation Delay High to Low 0.5 2 3.5 ns tPLH Propagation Delay Low to High 0.5 2 3.5 ns tSK1 Pulse Skew |tPHL − tPLH| (8) 0 0.05 0.4 ns 0 0.05 0.5 ns 1.0 ns tSK2 Channel-to-Channel Skew tSK3 Part-to-Part Skew (10) tTLH Rise Time (3) (9) (Figure 6 and Figure 7) 0 (3) 0.3 0.9 1.4 ns tTHL Fall Time 0.3 0.75 1.4 ns tPHZ Disable Time High to Z 3 5.6 8 ns tPLZ Disable Time Low to Z 3 5.4 8 ns tPZH Enable Time Z to High 2.5 4.6 7 ns tPZL Enable Time Z to Low 2.5 4.6 7 fMAX Maximum Operating Frequency (11) 200 250 (Figure 8 and Figure 9) ns MHz (1) (2) (3) All typical values are given for: VDD = +3.3 V, TA = +25°C. Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50 Ω, tr ≤ 1 ns, and tf ≤ 1 ns. These parameters are specified by design. The limits are based on statistical analysis of the device performance over PVT (process, voltage, temperature) ranges. (4) tSKD1 or differential pulse skew is defined as |tPHLD − tPLHD|. It is the magnitude difference in the differential propagation delays between the positive going edge and the negative going edge of the same driver channel. (5) tSKD2 or differential channel-to-channel skew is defined as the magnitude difference in the differential propagation delays between two driver channels on the same device. (6) tSKD3 or differential part-to-part skew is defined as |tPLHD Max − tPLHD Min| or |tPHLD Max − tPHLD Min|. It is the difference between the minimum and maximum specified differential propagation delays. This specification applies to devices at the same VDD and within 5°C of each other within the operating temperature range. (7) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, 0 V to 3 V. Output Criteria: duty cycle = 45%/55%, VOD > 250 mV, all channels switching. (8) tSK1 or pulse skew is defined as |tPHL − tPLH|. It is the magnitude difference in the propagation delays between the positive going edge and the negative going edge of the same receiver channel. (9) tSK2 or channel-to-channel skew is defined as the magnitude difference in the propagation delays between two receiver channels on the same device. (10) tSK3 or part-to-part skew is defined as |tPLH Max − tPLH Min| or |tPHL Max − tPHL Min|. It is the difference between the minimum and maximum specified propagation delays. This specification applies to devices at the same VDD and within 5°C of each other within the operating temperature range. (11) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, VID = 200 mV, VCM = 1.2 V . Output Criteria: duty cycle = 45%/55%, VOH > 2.7 V, VOL < 0.25 V, all channels switching. Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 5 NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION Power Supply VDD EN DOUT+ SMU DIN D SMU 100 : SMU DOUT- Figure 1. Driver VOD and VOS Test Circuit Power Supply Oscilloscope Z0 = 50 : C = 15 pF Distributed Signal Generator VDD EN DOUT+ DIN Transmission Line 50 : D Transmission Line DC Block Transmission Line DC Block 100 : DOUT- 50 : Z0 = 50 : C = 15 pF Distributed 50 : Figure 2. Driver Propagation Delay and Transition Time Test Circuit Figure 3. Driver Propagation Delay and Transition Time Waveforms 6 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 PARAMETER MEASUREMENT INFORMATION (continued) Power Supplies 2.4 V Oscilloscope VDD 1 k: DOUT+ 3.3 V DIN 950 : Transmission Line D 100 : 50 : Transmission Line DOUT- 1 k: EN 950 : 2.4 V Z0 = 50 : C = 15 pF Distributed Signal Generator 50 : Z0 = 50 : C = 15 pF Distributed 50 : Transmission Line Figure 4. Driver TRI-STATE Delay Test Circuit Figure 5. Driver TRI-STATE Delay Waveform Power Supply Z0 = 50 : C = 15 pF Distributed RIN+ ROUT Transmission Line Signal Generator Oscilloscope VDD R 100 : Transmission Line 950 : Transmission Line 50 : Z0 = 50 : C = 15 pF Distributed RINEN Power Supply Figure 6. Receiver Propagation Delay and Transition Time Test Circuit Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 7 NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION (continued) Figure 7. Receiver Propagation Delay and Transition Time Waveforms Power Supplies VDD 1 k: Oscilloscope 2.5 V RIN+ ROUT 1.4 V 100 : 950 : R Transmission Line 1.0 V 50 : RIN- Z0 = 50 : C = 15 pF Distributed Signal Generator Z0 = 50 : C = 15 pF Distributed EN 50 : Transmission Line Figure 8. Receiver TRI-STATE Delay Test Circuit 8 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 PARAMETER MEASUREMENT INFORMATION (continued) 3V EN 1.5 V 1.5 V 0V 3V 1.5 V 1.5 V 0V EN tPHZ tPZH OUT VOH 0.5 V 50% VDD / 2 tPZL VDD / 2 tPLZ 50% 0.5 V OUT VOL Figure 9. Receiver TRI-STATE Delay Waveforms TYPICAL APPLICATION Figure 10. Point-to-Point Application Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 9 NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com APPLICATION INFORMATION General application guidelines and hints for LVDS drivers and receivers may be found in the following application notes: LVDS Owner's Manual (lit #550062-003), AN-808 (SNLA028), AN-977 (SNLA166), AN-971 (SNLA165), AN-916 (SNLA219), AN-805 (SNOA233), AN-903 (SNLA034). LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 10. This configuration provides a clean signaling environment for the fast edge rates of the drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic differential impedance of the media is in the range of 100 Ω. A termination resistor of 100 Ω (selected to match the media), and is located as close to the receiver input pins as possible. The termination resistor converts the driver output current (current mode) into a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account. The TRI-STATE function allows the device outputs to be disabled, thus obtaining an even lower power state when the transmission of data is not required. The DS90LV049H has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side. POWER DECOUPLING RECOMMENDATIONS Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended) 0.1 μF and 0.001 μF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling. Multiple vias should be used to connect the decoupling capacitors to the power planes. A 10 μF (35 V) or greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board between the supply and ground. PC BOARD CONSIDERATIONS Use at least 4 PCB layers (top to bottom); LVDS signals, ground, power, TTL signals. Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. It is best to put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s). Keep drivers and receivers as close to the (LVDS port side) connectors as possible. DIFFERENTIAL TRACES Use controlled impedance traces which match the differential impedance of your transmission medium (that is, cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the IC (stubs should be < 10 mm long). This will help eliminate reflections and ensure noise is coupled as common-mode. In fact, we have seen that differential signals which are 1 mm apart radiate far less noise than traces 3 mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver. Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result. (Note the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997 mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match differential impedance and provide isolation for the differential lines. Minimize the number or vias and other discontinuities on the line. Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels. Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid discontinuities in differential impedance. Minor violations at connection points are allowable. 10 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 TERMINATION Use a termination resistor which best matches the differential impedance or your transmission line. The resistor should be between 90 Ω and 130 Ω. Remember that the current mode outputs need the termination resistor to generate the differential voltage. LVDS will not work without resistor termination. Typically, connecting a single resistor across the pair at the receiver end will suffice. Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination to the receiver inputs should be minimized. The distance between the termination resistor and the receiver should be < 10 mm (12 mm MAX). PROBING LVDS TRANSMISSION LINES Always use high impedance (> 100 kΩ), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz) scope. Improper probing will give deceiving results. CABLES AND CONNECTORS, GENERAL COMMENTS When choosing cable and connectors for LVDS it is important to remember: Use controlled impedance media. The cables and connectors you use should have a matched differential impedance of about 100 Ω. They should not introduce major impedance discontinuities. Balanced cables (for example, twisted pair) are usually better than unbalanced cables (ribbon cable, simple coax.) for noise reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling effects and also tend to pick up electromagnetic radiation a common-mode (not differential mode) noise which is rejected by the receiver. FAIL-SAFE FEATURE An LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20 mV) to CMOS logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from appearing as a valid signal. The receiver's internal fail-safe circuitry is designed to source/sink a small amount of current, providing fail-safe protection (a stable known state of HIGH output voltage) for floating receiver inputs. The DS90LV049H has two receivers, and if an application requires a single receiver, the unused receiver inputs should be left OPEN. Do not tie unused receiver inputs to ground or any other voltages. The input is biased by internal high value pull up and pull down current sources to set the output to a HIGH state. This internal circuitry will ensure a HIGH, stable output state for open inputs. External lower value pull up and pull down resistors (for a stronger bias) may be used to boost fail-safe in the presence of higher noise levels. The pull up and pull down resistors should be in the 5 kΩ to 15 kΩ range to minimize loading and waveform distortion to the driver. The common-mode bias point should be set to approximately 1.2 V (less than 1.75 V) to be compatible with the internal circuitry. For more information on failsafe biasing of LVDS interfaces please refer to AN-1194. PIN DESCRIPTIONS Pin No. Name Description 10, 11 DIN 6, 7 DOUT+ Driver input pins, LVCMOS levels. There is a pull-down current source present. Non-inverting driver output pins, LVDS levels. 5, 8 DOUT− Inverting driver output pins, LVDS levels. 2, 3 RIN+ Non-inverting receiver input pins, LVDS levels. There is a pull-up current source present. 1, 4 RIN- Inverting receiver input pins, LVDS levels. There is a pull-down current source present. 14, 15 ROUT 9, 16 EN, EN Receiver output pins, LVCMOS levels. Enable and Disable pins. There are pull-down current sources present at both pins. 12 VDD Power supply pin. 13 GND Ground pin. Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 11 NRND DS90LV049H SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 www.ti.com TYPICAL PERFORMANCE CURVES Differential Output Voltage vs Load Resistor Power Supply Current vs Frequency 90 VDD = 3.3 V TA = 25o C Power Supply Current - IDD [mA] Differential Output Voltage - VOD [V] 0.45 0.40 0.35 0.30 0.25 40 60 80 100 120 140 160 75 60 VDD = 3.3 V TA = 25o C RL = 100 : CL = 15 pF VID = 0.4 V VIN = 3.3 V 45 Single Receiver Switching 30 Single Driver Switching 15 0 0.1 Resistor Load - RL [:] 12 All Switching 1 10 100 1000 Frequency - f [MHz] Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H NRND DS90LV049H www.ti.com SNLS200A – SEPTEMBER 2005 – REVISED APRIL 2013 REVISION HISTORY Changes from Original (April 2013) to Revision A • Page Changed layout of National Data Sheet to TI format .......................................................................................................... 12 Submit Documentation Feedback Copyright © 2005–2013, Texas Instruments Incorporated Product Folder Links: DS90LV049H 13 PACKAGE OPTION ADDENDUM www.ti.com 30-Oct-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) DS90LV049HMT/NOPB NRND TSSOP PW 16 92 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 90LV049 HMT DS90LV049HMTX/NOPB NRND TSSOP PW 16 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 90LV049 HMT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 30-Oct-2013 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 6-Nov-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing DS90LV049HMTX/NOPB TSSOP PW 16 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2500 330.0 12.4 Pack Materials-Page 1 6.95 B0 (mm) K0 (mm) P1 (mm) 5.6 1.6 8.0 W Pin1 (mm) Quadrant 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 6-Nov-2015 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DS90LV049HMTX/NOPB TSSOP PW 16 2500 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated