Microsemi AGL600V2-FGG484PP Igloo low power flash fpgas with flash*freeze technology Datasheet

Revision 23
IGLOO Low Power Flash FPGAs
with Flash*Freeze Technology
Features and Benefits
Low Power
•
•
•
•
•
1.2 V to 1.5 V Core Voltage Support for Low Power
Supports Single-Voltage System Operation
5 µW Power Consumption in Flash*Freeze Mode
Low Power Active FPGA Operation
Flash*Freeze Technology Enables Ultra-Low Power
Consumption while Maintaining FPGA Content
• Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode
High Capacity
• 15K to 1 Million System Gates
• Up to 144 Kbits of True Dual-Port SRAM
• Up to 300 User I/Os
Reprogrammable Flash Technology
•
•
•
•
•
130-nm, 7-Layer Metal, Flash-Based CMOS Process
Instant On Level 0 Support
Single-Chip Solution
Retains Programmed Design When Powered Off
250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System
Performance
In-System Programming (ISP) and Security
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip
• Single-Ended I/O Standards: LVTTL, LVCMOS
3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X†,
and LVCMOS 2.5 V / 5.0 V Input†
• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and MLVDS (AGL250 and above)
• Wide Range Power Supply Voltage Support per JESD8-B,
Allowing I/Os to Operate from 2.7 V to 3.6 V
• Wide Range Power Supply Voltage Support per JESD8-12,
Allowing I/Os to Operate from 1.14 V to 1.575 V
• I/O Registers on Input, Output, and Enable Paths
• Hot-Swappable and Cold-Sparing I/Os‡
• Programmable Output Slew Rate† and Drive Strength
• Weak Pull-Up/-Down
• IEEE 1149.1 (JTAG) Boundary Scan Test
• Pin-Compatible Packages across the IGLOO Family
†
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks, One with an Integrated PLL
• Configurable Phase Shift, Multiply/Divide, Delay Capabilities,
and External Feedback
• Wide Input Frequency Range (1.5 MHz up to 250 MHz)
• ISP Using On-Chip 128-Bit Advanced Encryption Standard
(AES) Decryption (except ARM®-enabled IGLOO® devices) via
JTAG (IEEE 1532–compliant)†
• FlashLock® Designed to Secure FPGA Contents
Embedded Memory
• Segmented, Hierarchical Routing and Clock Structure
ARM Processor Support in IGLOO FPGAs
High-Performance Routing Hierarchy
Advanced I/O
• 700 Mbps DDR, LVDS-Capable I/Os (AGL250 and above)
• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
IGLOO Devices
AGL0151
2
ARM-Enabled IGLOO Devices
System Gates
15,000
Typical Equivalent Macrocells
128
VersaTiles (D-flip-flops)
384
Flash*Freeze Mode (typical, µW)
5
RAM kbits (1,024 bits)
–
4,608-Bit Blocks
–
FlashROM Kbits (1,024 bits)
1
AES-Protected ISP 2
–
Integrated PLL in CCCs 3
–
6
VersaNet Globals 4
I/O Banks
2
Maximum User I/Os
49
Package Pins
UC/CS
QFN
VQFP
FBGA
QN68
AGL030
30,000
256
768
5
–
–
1
–
–
6
2
81
• 1 kbit of FlashROM User Nonvolatile Memory
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit† RAM
Blocks (×1, ×2, ×4, ×9, and ×18 organizations)
• True Dual-Port SRAM (except ×18)†
• M1 IGLOO Devices—Cortex™-M1 Soft Processor Available
with or without Debug
AGL060 AGL125
60,000
512
1,536
10
18
4
1
Yes
1
18
2
96
UC81
CS121 3
CS81
QN48, QN68, QN132
QN132
VQ100
VQ100
FG144 6
AGL400
125,000
1,024
3,072
16
36
8
1
Yes
1
18
2
133
AGL250
M1AGL250
250,000
2,048
6,144
24
36
8
1
Yes
1
18
4
143
CS196
CS81, CS196 5
QN132
VQ100
FG144
QN132 5,6
VQ100
FG144
400,000
–
9,216
32
54
12
1
Yes
1
18
4
194
AGL600
M1AGL600
600,000
–
13,824
36
108
24
1
Yes
1
18
4
235
AGL1000
M1AGL1000
1,000,000
–
24,576
53
144
32
1
Yes
1
18
4
300
CS196
CS281
CS281
FG144, FG256, FG144, FG256, FG144, FG256,
FG484
FG484
FG484
Notes:
1.
2.
3.
4.
5.
6.
7.
AGL015 is not recommended for new designs
AES is not available for ARM-enabled IGLOO devices.
AGL060 in CS121 does not support the PLL.
Six chip (main) and twelve quadrant global networks are available for AGL060 and above.
The M1AGL250 device does not support this package.
Device/package support TBD.
The IGLOOe datasheet and IGLOOe FPGA Fabric User’s Guide provide information on higher densities and additional features.
† AGL015 and AGL030 devices do not support this feature.
December 2012
© 2012 Microsemi Corporation
‡ Supported only by AGL015 and AGL030 devices.
I
IGLOO Low Power Flash FPGAs
I/Os Per Package1
IGLOO Devices
AGL0152 AGL030 AGL060
AGL125
ARM-Enabled
IGLOO Devices
AGL250
AGL400
M1AGL250
AGL600
AGL1000
M1AGL600
M1AGL1000
Single-Ended I/O
Single-Ended I/O
Single-Ended I/O
Single-Ended I/O
Single-Ended I/O 4
Differential I/O Pairs
Single-Ended I/O 4
Differential I/O Pairs
Single-Ended I/O 4
Differential I/O Pairs
Single-Ended I/O 4
Differential I/O Pairs
I/O Type3
QN48
–
34
–
–
–
–
–
–
–
–
–
–
QN68
49
49
–
–
–
–
–
–
–
–
–
–
UC81
–
66
–
–
–
–
–
–
–
–
–
–
CS81
–
66
–
–
60
7
–
–
–
–
–
–
CS121
–
–
96
96
–
–
–
–
–
–
–
–
VQ100
–
77
71
71
68
13
–
–
–
–
–
–
Package
5,6
19 5,6
QN132
–
81
80
84
87
–
–
–
–
–
–
CS196
–
–
–
133
143 5
35 5
143
35
–
–
–
–
FG144
–
–
96 7
97
97
24
97
25
97
25
97
25
FG256
–
–
–
–
–
–
178
38
177
43
177
44
CS281
–
–
–
–
–
–
–
–
215
53
215
53
FG4847
–
–
–
–
–
–
194
38
235
60
300
74
7
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO FPGA Fabric User’s Guide to
ensure compliance with design and board migration requirements.
2. AGL015 is not recommended for new designs.
3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.
4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
5. The M1AGL250 device does not support QN132 or CS196 packages.
6. Device/package support TBD.
7. FG256 and FG484 are footprint-compatible packages.
Table 1 • IGLOO FPGAs Package Sizes Dimensions
Package
UC81
CS81
CS121
QN48
QN68
QN132
CS196
Length × Width
(mm\mm)
4×4
5×5
6×6
6×6
8×8
8×8
8×8
Nominal Area
(mm2)
16
25
36
36
64
64
64
100
169
196
289
529
Pitch (mm)
0.4
0.5
0.5
0.4
0.4
0.5
0.5
0.5
1.0
0.5
1.0
1.0
Height (mm)
0.80
0.80
0.99
0.90
0.90
0.75
1.20
1.05
1.45
1.00
1.60
2.23
II
R evis i o n 23
CS281
FG144
VQ100
10 × 10 13 × 13 14 × 14
FG256
FG484
17 × 17 23 × 23
IGLOO Low Power Flash FPGAs
IGLOO Ordering Information
AGL1000
V2
_
FG
G
144
Y
I
Application (Temperature Range)
Blank = Commercial (0°C to +70°C Ambient Temperature)
I = Industrial (–40°C to +85°C Ambient Temperature)
PP = Pre-Production
ES = Engineering Sample (Room Temperature Only)
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Blank = Device Does Not Include License to Implement IP Based
on the Cryptography Research, Inc. (CRI) Patent Portfolio
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G= RoHS-Compliant Packaging (some packages also halogen-free)
Package Type
UC = Micro Chip Scale Package (0.4 mm pitch)
CS = Chip Scale Package (0.4 mm and 0.5 mm pitches)
QN = Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitch)
VQ = Very Thin Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Supply Voltage
2 = 1.2 V to 1.5 V
5 = 1.5 V only
Part Number
IGLOO Devices
AGL015 = 15,000 System Gates
AGL030 = 30,000 System Gates
AGL060 = 60,000 System Gates
AGL125 = 125,000 System Gates
AGL250 = 250,000 System Gates
AGL400 = 400,000 System Gates
AGL600 = 600,000 System Gates
AGL1000 = 1,000,000 System Gates
IGLOO Devices with Cortex-M1
M1AGL250 = 250,000 System Gates
M1AGL600 = 600,000 System Gates
M1AGL1000 = 1,000,000 System Gates
Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.
R ev i si o n 2 3
III
IGLOO Low Power Flash FPGAs
Temperature Grade Offerings
AGL015 1
AGL030
AGL060
AGL125
AGL250
AGL400
M1AGL250
Package
AGL600
AGL1000
M1AGL600 M1AGL1000
QN48
–
C, I
–
–
–
–
–
–
QN68
C, I
–
–
–
–
–
–
–
UC81
–
C, I
–
–
–
–
–
–
CS81
–
C, I
–
–
C, I
–
–
–
CS121
–
–
C, I
C, I
–
–
–
–
VQ100
–
C, I
C, I
C, I
C, I
–
–
–
–
–
–
QN132
–
C, I
CS196
–
–
C,
I2
–
C,
I2
C, I
C, I
2
C, I
C, I
C, I
–
–
C, I
C, I
C, I
C, I
C, I
FG144
–
–
FG256
–
–
–
–
–
C, I
C, I
C, I
CS281
–
–
–
–
–
–
C, I
C, I
FG484
–
–
–
–
–
C, I
C, I
C, I
Notes:
1. AGL015 is not recommended for new designs.
2. Device/package support TBD.
C = Commercial temperature range: 0°C to 70°C ambient temperature.
I = Industrial temperature range: –40°C to 85°C ambient temperature.
IGLOO Device Status
IGLOO Devices
Status
M1 IGLOO Devices
Status
M1AGL250
Production
AGL015
Not recommended for new designs.
AGL030
Production
AGL060
Production
AGL125
Production
AGL250
Production
AGL400
Production
AGL600
Production
M1AGL600
Production
AGL1000
Production
M1AGL1000
Production
References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1
(Cortex-M1).
Contact your local Microsemi SoC Products Group representative for device availability:
www.microsemi.com/soc/contact/default.aspx.
AGL015 and AGL030
The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.
Devices Not Recommended For New Designs
AGL015 is not recommended for new designs.
IV
R evis i o n 23
IGLOO Low Power Flash FPGAs
Table of Contents
IGLOO Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
IGLOO DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Power Calculation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-130
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131
Pin Descriptions
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
3-4
3-5
3-5
3-5
Package Pin Assignments
UC81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
CS81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
CS121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
CS196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
CS281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
QN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
QN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
QN132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
R ev i si o n 2 3
V
1 – IGLOO Device Family Overview
General Description
The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a
single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced
features.
The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power
mode that consumes as little as 5 µW while retaining SRAM and register data. Flash*Freeze technology
simplifies power management through I/O and clock management with rapid recovery to operation mode.
The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 µW) while
the IGLOO device is completely functional in the system. This allows the IGLOO device to control system
power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming
minimal power.
Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock
conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030
devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with
up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.
M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for
implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It
has a three-stage pipeline that offers a good balance between low power consumption and speed when
implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a
configurable nested interrupt controller, and can be implemented with or without the debug block. CortexM1 is available for free from Microsemi for use in M1 IGLOO FPGAs.
The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES
decryption.
Flash*Freeze Technology
The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low
power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks
while retaining the design information, SRAM content, and registers. Flash*Freeze technology is
combined with in-system programmability, which enables users to quickly and easily upgrade and update
their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to
support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus
achieving the lowest total system power.
When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and
inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is
retained.
The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage
solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for
portable electronics.
R ev i si o n 2 3
1 -1
IGLOO Device Family Overview
Flash Advantages
Low Power
Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current
surge and no high-current transition period, both of which occur on many FPGAs.
IGLOO devices also have low dynamic power consumption to further maximize power savings; power is
even further reduced by the use of a 1.2 V core voltage.
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze
technology, gives the IGLOO device the lowest total system power offered by any FPGA.
Security
Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external
bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique
combination of reprogrammability and design security without external overhead, advantages that only
an FPGA with nonvolatile flash programming can offer.
IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of
protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM
data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192)
bit block cipher encryption standard. AES was adopted by the National Institute of Standards and
Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES
decryption engine and a flash-based AES key that make them the most comprehensive programmable
logic device security solution available today. IGLOO devices with AES-based security provide a high
level of protection for remote field updates over public networks such as the Internet, and are designed to
ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.
Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique
in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with
industry-standard security, making remote ISP possible. An IGLOO device provides the best available
security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
Instant On
Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps
in system component initialization, execution of critical tasks before the processor wakes up, setup and
configuration of memory blocks, clock generation, and bus activity management. The Instant On feature
of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often
eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system
power will not corrupt the IGLOO device's flash configuration, and unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables the reduction or
complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock
generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and
reduce cost and design risk while increasing system reliability and improving system initialization time.
IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost
instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAMbased FPGAs the device does not need to reload configuration and design state from external memory
components; instead it retains all necessary information to resume operation immediately.
1- 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property cannot be compromised or copied. Secure ISP can be performed using the industrystandard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at
higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution,
especially for applications in the consumer, networking/communications, computing, and avionics
markets.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based
FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered
by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user
data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction
(EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes
of operation.
Advanced Architecture
The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO
device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and
Figure 1-2 on page 1-4):
•
Flash*Freeze technology
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory†
•
Extensive CCCs and PLLs†
•
Advanced I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile
capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs.
† The AGL015 and AGL030 do not support PLL or SRAM.
R ev i si o n 2 3
1 -3
IGLOO Device Family Overview
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
Bank 0
Bank 0
Bank 1
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block*
I/Os
ISP AES
Decryption*
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
Bank 0
Bank 1
VersaTile
Bank 1
Note: *Not supported by AGL015 and AGL030 devices
Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and
AGL125)
Bank 0
Bank 1
Bank 3
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
I/Os
Bank 1
Bank 3
VersaTile
ISP AES
Decryption*
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
(AGL600 and AGL1000)
Bank 2
Figure 1-2 •
1- 4
IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and
AGL1000)
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Flash*Freeze Technology
The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all
SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology
enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the
Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global
I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be
driven or can be toggling without impact on power consumption, and the device retains all core registers,
SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a
certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the
I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 µW in this mode.
Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power
management of the device.
The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide
when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if
Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power
static (as low as 12 µW) and dynamic capabilities of the IGLOO device. Refer to Figure 1-3 for an
illustration of entering/exiting Flash*Freeze mode.
IGLOO FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
Figure 1-3 •
IGLOO Flash*Freeze Mode
VersaTiles
The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core
tiles. The IGLOO VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-4 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
Y
D-Flip-Flop with Clear or Set
Data
CLK
CLR
Y
Enable D-Flip-Flop with Clear or Set
Data
CLK
D-FF
Y
D-FF
Enable
CLR
Figure 1-4 •
VersaTile Configurations
R ev i si o n 2 3
1 -5
IGLOO Device Family Overview
User Nonvolatile FlashROM
IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be
used in diverse system applications:
•
Internet protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core
can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in
security keys stored in the FlashROM for a user design.
The FlashROM can be programmed via the JTAG programming interface, and its contents can be read
back either through the JTAG programming interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte
basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks
and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
The Microsemi development software solutions, Libero® System-on-Chip (SoC) and Designer, have
extensive support for the FlashROM. One such feature is auto-generation of sequential programming
files for applications requiring a unique serial number in each part. Another feature allows the inclusion of
static data for system version control. Data for the FlashROM can be generated quickly and easily using
Libero SoC and Designer software tools. Comprehensive programming file support is also included to
allow for easy programming of large numbers of parts with differing FlashROM contents.
SRAM and FIFO
IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their
north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory
configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent
read and write ports that can be configured with different bit widths on each port. For example, data can
be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be
initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the
AGL015 and AGL030 devices).
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control
unit contains the counters necessary for generation of the read and write address pointers. The
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each
member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015
and AGL030 do not have a PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC
(center west side) has a PLL.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay
operations as well as clock spine access.
1- 6
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis (for PLL only)
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration (for PLL only).
•
Output duty cycle = 50% ± 1.5% or better (for PLL only)
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global
network used (for PLL only)
•
Maximum acquisition time is 300 µs (for PLL only)
•
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC (for PLL only)
Global Clocking
IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL
support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V,
1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—singleended and differential.
The I/Os are organized into banks, with two or four banks per device. The configuration of these banks
determines the I/O standards supported (Table 1-1).
Table 1-1 • I/O Standards Supported
I/O Standards Supported
I/O Bank Type
Device and Bank Location
LVTTL/
LVCMOS
PCI/PCI-X
LVPECL, LVDS,
B-LVDS, M-LVDS
Advanced
East and west banks of AGL250 and larger
devices



Standard Plus
North and south banks of AGL250 and
larger devices


Not supported

Not supported
Not supported
All banks of AGL060 and AGL125K
Standard
All banks of AGL015 and AGL030
R ev i si o n 2 3
1 -7
IGLOO Device Family Overview
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-Data-Rate applications
•
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications
IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS
and M-LVDS can support up to 20 loads.
Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card
in a powered-up system.
Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed
when the system is powered up, while the component itself is powered down, or when power supplies
are floating.
Wide Range I/O Support
IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the
JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to
3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.
Wider I/O range means designers can eliminate power supplies or power conditioning components from
the board or move to less costly components with greater tolerances. Wide range eases I/O bank
management and provides enhanced protection from system voltage spikes, while providing the flexibility
to easily run custom voltage applications.
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.
Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.
1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.
2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.
3. Click the Specify I/O States During Programming button to display the Specify I/O States During
Programming dialog box.
4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings:
1 – I/O is set to drive out logic High
0 – I/O is set to drive out logic Low
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming
Z -Tri-State: I/O is tristated
1- 8
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Figure 1-5 •
I/O States During Programming Window
6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States During programming are saved to the ADB and resulting programming files after
completing programming file generation.
R ev i si o n 2 3
1 -9
2 – IGLOO DC and Switching Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any
other conditions beyond those listed under the Recommended Operating Conditions specified in Table 22 on page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings
Parameter
Limits1
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL
Analog power supply (PLL)
–0.3 to 1.65
V
–0.3 to 3.75
V
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
V
VCCI and VMV 2 DC I/O buffer supply voltage
VI
I/O input voltage
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
TSTG 3
Storage Temperature
–65 to +150
°C
TJ 3
Junction Temperature
+125
°C
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
2. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA
Fabric User’s Guide for further information.
3. For flash programming and retention, maximum limits refer to Table 2-3 on page 2-2, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
R ev i si o n 2 3
2 -1
IGLOO DC and Switching Characteristics
Table 2-2 •
Recommended Operating Conditions 1
Symbol
Parameter
TA
Ambient Temperature
TJ
Junction Temperature
3
VCC
2
1.5 V DC core supply voltage
5
1.2 V–1.5 V wide range DC
core supply voltage 4,6
VJTAG
JTAG DC voltage
VPUMP
Programming voltage
Programming Mode
Operation 7
8
VCCPLL
Analog power supply (PLL)
1.5 V DC core supply voltage5
Commercial
Industrial
Units
0 to +70
–40 to +85
°C
0 to +85
–40 to +100
°C
1.425 to 1.575 1.425 to 1.575
V
1.14 to 1.575
V
1.14 to 1.575
1.4 to 3.6
1.4 to 3.6
V
3.15 to 3.45
3.15 to 3.45
V
0 to 3.6
0 to 3.6
1.425 to 1.575 1.425 to 1.575
V
V
1.2 V – 1.5 V DC core supply 1.14 to 1.575
voltage4,6
1.14 to 1.575
V
1.14 to 1.26
1.14 to 1.26
V
1.14 to 1.575
1.14 to 1.575
V
1.5 V DC supply voltage
1.425 to 1.575
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
2.3 to 2.7
V
2.7 to 3.6
2.7 to 3.6
V
VCCI and 1.2 V DC core supply voltage6
VMV 9
1.2 V DC wide range DC
supply voltage6
3.0 V DC supply
voltage 10
3.3 V DC supply voltage
LVDS differential I/O
LVPECL differential I/O
3.0 to 3.6
3.0 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
Notes:
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-25 on page 2-24. VCCI should be at the same voltage within a given I/O bank.
4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2
devices powered by 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
5. For IGLOO® V5 devices
6. For IGLOO V2 devices only, operating at VCCI  VCC.
7. VPUMP can be left floating during operation (not programming mode).
8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User’s Guide
for further information.
9. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA
Fabric User’s Guide for further information.
10. 3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation.
Table 2-3 •
Product
Grade
Flash Programming Limits – Retention, Storage, and Operating Temperature1
Programming
Cycles
Maximum Operating Junction
Program Retention
Maximum Storage
Temperature TJ (°C) 2
(biased/unbiased) Temperature TSTG (°C) 2
Commercial
500
20 years
110
100
Industrial
500
20 years
110
100
Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating
conditions and absolute limits.
2- 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-4 •
Overshoot and Undershoot Limits 1
Average VCCI–GND Overshoot or
Undershoot Duration
as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot2
2.7 V or less
10%
1.4 V
5%
1.49 V
3V
10%
1.1 V
5%
1.19 V
10%
0.79 V
5%
0.88 V
10%
0.45 V
5%
0.54 V
VCCI
3.3 V
3.6 V
Notes:
1. Based on reliability requirements at junction temperature at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the
maximum overshoot/undershoot has to be reduced by 0.15 V.
3. This table does not provide PCI overshoot/undershoot limits.
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1
on page 2-4 and Figure 2-2 on page 2-5.
There are five regions to consider during power-up.
IGLOO I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and
Figure 2-2 on page 2-5).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V
Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V
Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V
Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V
VCC Trip Point:
Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V
Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V
Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V
Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
R ev i si o n 2 3
2 -3
IGLOO DC and Switching Characteristics
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout
activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25
V for V5 devices, and 0.75 V ± 0.2 V for V2 devices), the PLL output lock signal goes low and/or the
output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low
Power Flash Devices" chapter of the ProASIC®3 and ProASIC3E FPGA fabric user’s guides for
information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation
To make sure the transition from input buffers to output buffers is clean, ensure that there is no path
longer than 100 ns from input buffer to output buffer in your design.
VCC
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
VCC = 1.425 V
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Figure 2-1 •
2- 4
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
R ev isio n 2 3
VCCI
IGLOO Low Power Flash FPGAs
VCC
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL , VOH / VOL , etc.
VCC = 1.14 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.2 V
Deactivation trip point:
Vd = 0.75 V ± 0.2 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.15 V
Deactivation trip point:
Vd = 0.8 V ± 0.15 V
Figure 2-2 •
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
VCCI
V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
Thermal Characteristics
Introduction
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the
chip junction to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
EQ 1
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5 on page 2-6.
P = Power dissipation
R ev i si o n 2 3
2 -5
IGLOO DC and Switching Characteristics
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is
ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction
temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation
allowed for the AGL1000-FG484 package at commercial temperature and in still air.
– 70Cjunction temp. (C) – Max. ambient temp. (C)- = 100C
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------= 1.28 W
Maximum Power Allowed = Max.
23.3°C/W
 ja (C/W)
EQ 2
Table 2-5 •
Package Thermal Resistivities
ja
Package Type
Device
Pin Count
jc
Still Air
1 m/s
2.5 m/s
Unit
Quad Flat No Lead (QN)
AGL030
132
13.1
21.4
16.8
15.3
C/W
AGL060
132
11.0
21.2
16.6
15.0
C/W
AGL125
132
9.2
21.1
16.5
14.9
C/W
AGL250
132
8.9
21.0
16.4
14.8
C/W
AGL030
68
13.4
68.4
45.8
43.1
C/W
100
10.0
35.3
29.4
27.1
C/W
AGL1000
281
6.0
28.0
22.8
21.5
C/W
AGL400
196
7.2
37.1
31.1
28.9
C/W
AGL250
196
7.6
38.3
32.2
30.0
C/W
AGL125
196
8.0
39.5
33.4
31.1
C/W
AGL030
81
12.4
32.8
28.5
27.2
C/W
AGL060
81
11.1
28.8
24.8
23.5
C/W
AGL250
81
10.4
26.9
22.3
20.9
C/W
Micro Chip Scale Package (UC)
AGL030
81
16.9
40.6
35.2
33.7
C/W
Fine Pitch Ball Grid Array (FG)
AGL060
144
18.6
55.2
49.4
47.2
C/W
AGL1000
144
6.3
31.6
26.2
24.2
C/W
AGL400
144
6.8
37.6
31.2
29.0
C/W
AGL250
256
12.0
38.6
34.7
33.0
C/W
AGL1000
256
6.6
28.1
24.4
22.7
C/W
AGL1000
484
8.0
23.3
19.0
16.7
C/W
Very Thin Quad Flat Pack (VQ)*
Chip Scale Package (CS)
Note: *Thermal resistances for other device-package combinations will be posted in a later revision.
Disclaimer:
The simulation for determining the junction-to-air thermal resistance is based on JEDEC standards
(JESD51) and assumptions made in building the model. Junction-to-case is based on SEMI G38-88.
JESD51 is only used for comparing one package to another package, provided the two tests uses the
same condition. They have little relevance in actual application and therefore should be used with a
degree of caution.
2- 6
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Temperature and Voltage Derating Factors
Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ =
70°C, VCC = 1.425 V)
For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage
Table 2-6 •
Junction Temperature (°C)
Array Voltage
VCC (V)
–40°C
0°C
25°C
70°C
85°C
100°C
1.425
0.934
0.953
0.971
1.000
1.007
1.013
1.500
0.855
0.874
0.891
0.917
0.924
0.929
1.575
0.799
0.816
0.832
0.857
0.864
0.868
Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ =
70°C, VCC = 1.14 V)
For IGLOO V2, 1.2 V DC Core Supply Voltage
Table 2-7 •
Array
Voltage VCC
(V)
Junction Temperature (°C)
–40°C
0°C
25°C
70°C
85°C
100°C
1.14
0.967
0.978
0.991
1.000
1.006
1.010
1.20
0.864
0.874
0.885
0.894
0.899
0.902
1.26
0.794
0.803
0.814
0.821
0.827
0.830
Calculating Power Dissipation
Quiescent Supply Current
Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages
(VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage.
Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to
evaluate the projected static and active power based on the user design, power mode usage, operating
voltage, and temperature.
Table 2-8 •
Power Supply State per Mode
Power Supply Configurations
Modes/power supplies
VCC
VCCPLL
VCCI
VJTAG
VPUMP
Flash*Freeze
On
On
On
On
On/off/floating
Sleep
Off
Off
On
Off
Off
Shutdown
Off
Off
Off
Off
Off
No Flash*Freeze
On
On
On
On
On/off/floating
Note: Off: Power supply level = 0 V
Table 2-9 •
Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*
Core
Voltage
Typical
(25°C)
AGL015 AGL030 AGL060 AGL125 AGL250
AGL400
AGL600
AGL1000
Units
1.2 V
4
4
8
13
20
27
30
44
µA
1.5 V
6
6
10
18
34
51
72
127
µA
Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution,
which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11
through Table 2-18 on page 2-12 (PDC6 and PDC7).
R ev i si o n 2 3
2 -7
IGLOO DC and Switching Characteristics
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*
Core
Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units
VCCI/ VJTAG = 1.2 V
(per bank) Typical
(25°C)
1.2 V
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
µA
VCCI/VJTAG = 1.5 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
µA
VCCI/VJTAG = 1.8 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
µA
VCCI/VJTAG = 2.5 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
µA
VCCI/VJTAG = 3.3 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
µA
Note: IDD = NBANKS × ICCI. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10
through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and
PDC7).
Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode
Typical (25°C)
2- 8
Core Voltage
AGL015
AGL030
Units
1.2 V / 1.5 V
0
0
µA
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1
Core
Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units
ICCA Current2
Typical (25°C)
1.2 V
5
6
10
13
18
25
28
42
µA
1.5 V
14
16
20
28
44
66
82
137
µA
VCCI/VJTAG = 1.2 V
(per bank) Typical
(25°C)
1.2 V
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
µA
VCCI/VJTAG = 1.5 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
µA
VCCI/VJTAG = 1.8 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
µA
VCCI/VJTAG = 2.5 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
µA
VCCI/VJTAG = 3.3 V
(per bank) Typical
(25°C)
1.2 V /
1.5 V
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
µA
3
ICCI or IJTAG Current
Notes:
1. IDD = NBANKS × ICCI + ICCA. JTAG counts as one bank when powered.
2. Includes VCC, VPUMP, and VCCPLL currents.
3. Values do not include I/O static contribution (PDC6 and PDC7).
R ev i si o n 2 3
2 -9
IGLOO DC and Switching Characteristics
Power per I/O Pin
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Advanced I/O Banks
VCCI (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.27
3
3.3
–
16.27
2.5
–
4.65
Single-Ended
3.3V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.8
–
1.61
1.5 V LVCMOS (JESD8-11)
1.5
–
0.96
1.2
–
0.58
1.2
–
0.58
1.2 V LVCMOS4
4
1.2 V LVCMOS Wide Range
3.3 V PCI
3.3
–
17.67
3.3 V PCI-X
3.3
–
17.67
LVDS
2.5
2.26
23.39
LVPECL
3.3
5.72
59.05
Differential
Notes:
1.
2.
3.
4.
PDC6 is the static power (where applicable) measured on VCCI.
PAC9 is the total dynamic power measured on VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Applicable for IGLOO V2 devices only
Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks
VCCI (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.41
3.3V LVCMOS Wide Range3
3.3
–
16.41
2.5 V LVCMOS
2.5
–
4.75
1.8 V LVCMOS
1.8
–
1.66
1.5 V LVCMOS (JESD8-11)
1.5
–
1.00
1.2 V LVCMOS4
1.2
–
0.61
1.2 V LVCMOS Wide Range
1.2
–
0.61
3.3 V PCI
3.3
–
17.78
3.3 V PCI-X
3.3
–
17.78
Single-Ended
4
Notes:
1.
2.
3.
4.
2- 10
PDC6 is the static power (where applicable) measured on VCCI.
PAC9 is the total dynamic power measured on VCCI.
Applicable for IGLOO V2 devices only.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard I/O Banks
VCCI (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3
–
17.24
3.3
–
17.24
2.5 V LVCMOS
2.5
–
5.64
1.8 V LVCMOS
1.8
–
2.63
1.5 V LVCMOS (JESD8-11)
1.5
–
1.97
1.2 V LVCMOS
1.2
–
0.57
1.2 V LVCMOS Wide Range4
1.2
–
0.57
Single-Ended
3.3 V LVTTL / 3.3 V LVCMOS
3.3V LVCMOS Wide Range
3
4
Notes:
1.
2.
3.
4.
PDC6 is the static power (where applicable) measured on VCCI.
PAC9 is the total dynamic power measured on VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Applicable for IGLOO V2 devices only.
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Advanced I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
5
3.3
–
136.95
3.3V LVCMOS Wide Range4
5
3.3
–
136.95
2.5 V LVCMOS
5
2.5
–
76.84
1.8 V LVCMOS
5
1.8
–
49.31
1.5 V LVCMOS (JESD8-11)
5
1.5
–
33.36
1.2 V LVCMOS5
5
1.2
–
16.24
1.2 V LVCMOS Wide Range
5
1.2
–
16.24
3.3 V PCI
10
3.3
–
194.05
3.3 V PCI-X
10
3.3
–
194.05
LVDS
–
2.5
7.74
156.22
LVPECL
–
3.3
19.54
339.35
Single-Ended
5
Differential
Notes:
1.
2.
3.
4.
5.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC7 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Applicable for IGLOO V2 devices only.
R ev i si o n 2 3
2- 11
IGLOO DC and Switching Characteristics
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Standard Plus I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
5
3.3
–
122.16
4
Single-Ended
5
3.3
–
122.16
2.5 V LVCMOS
5
2.5
–
68.37
1.8 V LVCMOS
5
1.8
–
34.53
1.5 V LVCMOS (JESD8-11)
5
1.5
–
23.66
1.2 V LVCMOS
5
1.2
–
14.90
1.2 V LVCMOS Wide Range5
5
1.2
–
14.90
3.3 V PCI
10
3.3
–
181.06
3.3 V PCI-X
10
3.3
–
181.06
3.3V LVCMOS Wide Range
5
Notes:
1.
2.
3.
4.
5.
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC7 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Applicable for IGLOO V2 devices only.
Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
Applicable to Standard I/O Banks
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL / 3.3 V LVCMOS
5
3.3
–
104.38
4
5
3.3
–
104.38
2.5 V LVCMOS
5
2.5
–
59.86
1.8 V LVCMOS
5
1.8
–
31.26
1.5 V LVCMOS (JESD8-11)
5
1.5
–
21.96
5
1.2
–
13.49
5
1.2
–
13.49
Single-Ended
3.3V LVCMOS Wide Range
5
1.2 V LVCMOS
5
1.2 V LVCMOS Wide Range
Notes:
1.
2.
3.
4.
5.
2- 12
Dynamic power consumption is given for standard load and software default drive strength and output slew.
PDC7 is the static power (where applicable) measured on VCCI.
PAC10 is the total dynamic power measured on VCCI.
All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Applicable for IGLOO V2 devices only.
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Power Consumption of Various Internal Resources
Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Device Specific Dynamic Power
(µW/MHz)
Parameter
Definition
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015
PAC1
Clock contribution of a
Global Rib
7.778
6.221
6.082
4.460
4.446
2.736
0.000
0.000
PAC2
Clock contribution of a
Global Spine
4.334
3.512
2.759
2.718
1.753
1.971
3.483
3.483
PAC3
Clock contribution of a
VersaTile row
1.379
1.445
1.377
1.483
1.467
1.503
1.472
1.472
PAC4
Clock contribution of a
VersaTile used as a
sequential module
0.151
0.149
0.151
0.149
0.149
0.151
0.146
0.146
PAC5
First contribution of a
VersaTile used as a
sequential module
0.057
PAC6
Second contribution of a
VersaTile used as a
sequential module
0.207
PAC7
Contribution of a
VersaTile used as a
combinatorial module
0.276
0.262
0.279
0.277
0.280
0.300
0.281
0.273
PAC8
Average contribution of a
routing net
1.161
1.147
1.193
1.273
1.076
1.088
1.134
1.153
PAC9
Contribution of an I/O
input pin (standarddependent)
See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.
PAC10
Contribution of an I/O
output pin (standarddependent)
See Table 2-16 on page 2-11 through Table 2-18 on page 2-12.
PAC11
Average contribution of a
RAM block during a read
operation
25.00
PAC12
Average contribution of a
RAM block during a write
operation
30.00
PAC13
Dynamic PLL
contribution
2.70
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
R ev i si o n 2 3
2- 13
IGLOO DC and Switching Characteristics
Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Device-Specific Static Power (mW)
Parameter
Definition
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015
PDC1
Array static power in Active
mode
See Table 2-12 on page 2-9.
PDC2
Array static power in Static
(Idle) mode
See Table 2-11 on page 2-8.
PDC3
Array static power in
Flash*Freeze mode
See Table 2-9 on page 2-7.
PDC4
Static PLL contribution
1.84
PDC5
Bank quiescent power
(VCCI-dependent)
See Table 2-12 on page 2-9.
PDC6
I/O input pin static power
(standard-dependent)
See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.
PDC7
I/O output pin static power
(standard-dependent)
See Table 2-16 on page 2-11 through Table 2-18 on page 2-12.
Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
2- 14
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage
Device Specific Dynamic Power
(µW/MHz)
Parameter
Definition
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015
PAC1
Clock contribution of a
Global Rib
4.978
3.982
3.892
2.854
2.845
1.751
0.000
0.000
PAC2
Clock contribution of a
Global Spine
2.773
2.248
1.765
1.740
1.122
1.261
2.229
2.229
PAC3
Clock contribution of a
VersaTile row
0.883
0.924
0.881
0.949
0.939
0.962
0.942
0.942
PAC4
Clock contribution of a
VersaTile used as a
sequential module
0.096
0.095
0.096
0.095
0.095
0.096
0.094
0.094
PAC5
First contribution of a
VersaTile used as a
sequential module
0.045
PAC6
Second contribution of a
VersaTile used as a
sequential module
0.186
PAC7
Contribution of a
VersaTile used as a
combinatorial module
0.158
0.149
0.158
0.157
0.160
0.170
0.160
0.155
PAC8
Average contribution of a
routing net
0.756
0.729
0.753
0.817
0.678
0.692
0.738
0.721
PAC9
Contribution of an I/O
input pin (standarddependent)
See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.
PAC10
Contribution of an I/O
output pin (standarddependent)
See Table 2-16 on page 2-11 through Table 2-18 on page 2-12.
PAC11
Average contribution of a
RAM block during a read
operation
25.00
PAC12
Average contribution of a
RAM block during a write
operation
30.00
PAC13
Dynamic PLL contribution
2.10
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
R ev i si o n 2 3
2- 15
IGLOO DC and Switching Characteristics
Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage
Device Specific Static Power (mW)
Parameter
Definition
AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015
PDC1
Array static power in
Active mode
See Table 2-12 on page 2-9.
PDC2
Array static power in Static
(Idle) mode
See Table 2-11 on page 2-8.
PDC3
Array static power in
Flash*Freeze mode
See Table 2-9 on page 2-7.
PDC4
Static PLL contribution
0.90
PDC5
Bank quiescent power
(VCCI-Dependent)
See Table 2-12 on page 2-9.
PDC6
I/O input pin static power
(standard-dependent)
See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.
PDC7
I/O output pin static
power (standarddependent)
See Table 2-16 on page 2-11 through Table 2-18 on page 2-12.
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power
spreadsheet calculator or SmartPower tool in Libero SoC.
2- 16
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on
page 2-19.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on
page 2-19.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-24 on page 2-19. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS * PDC6 + NOUTPUTS * PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE* PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in
the "Spine Architecture" section of the IGLOO FPGA Fabric User’s Guide.
NROW is the number of VersaTile rows used in the design—guidelines are provided in the
"Spine Architecture" section of the IGLOO FPGA Fabric User’s Guide.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on
page 2-19.
FCLK is the global clock signal frequency.
R ev i si o n 2 3
2- 17
IGLOO DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on
page 2-19.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on
page 2-19.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.
1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-19.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on
page 2-19.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 *FCLKOUT
FCLKOUT is the output clock frequency.†
† If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding
contribution (PAC13* FCLKOUT product) to the total PLL contribution.
2- 18
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
•
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the
clock frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation
Component
1
2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation
Component
1
2
3
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
R ev i si o n 2 3
2- 19
IGLOO DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
LVPECL (Applicable to
Advanced I/O Banks Only)L
Y
tPD = 1.22 ns
tPD = 1.20 ns
tDP = 1.72 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
LVTTL Output drive strength = 12 mA
High slew rate
tDP = 3.05 ns (Advanced I/O Banks)
tPD = 1.80 ns
I/O Module
(Non-Registered)
Combinational Cell
I/O Module
(Registered)
Y
LVTTL Output drive strength = 8 mA
High slew rate
tDP = 4.12 ns (Advanced I/O Banks)
tPY = 1.20 ns
LVPECL
(Applicable
to Advanced
I/O Banks only)
D
tPD = 1.49 ns
Q
I/O Module
(Non-Registered)
Combinational Cell
Y
tICLKQ = 0.43 ns
tISUD = 0.47 ns
LVCMOS 1.5 V Output drive strength = 4 mA
High slew rate
tDP = 4.42 ns (Advanced I/O Banks)
tPD = 0.86 ns
Input LVTTL
Clock
Register Cell
tPY = 0.87 ns (Advanced I/O Banks)
D
Combinational Cell
Y
Q
I/O Module
(Non-Registered)
LVDS,
BLVDS,
M-LVDS
(Applicable for
Advanced I/O
Banks only)
Figure 2-3 •
2- 20
D
Q
D
tPD = 0.92 ns
Q
LVTTL 3.3 V Output drive
strength = 12 mA High slew rate
tDP = 3.05 ns
(Advanced I/O Banks)
tCLKQ = 0.90 ns
tSUD = 0.82 ns
tPY = 1.35 ns
I/O Module
(Registered)
Register Cell
tCLKQ = 0.90 ns
tSUD = 0.82 ns
tOCLKQ = 1.02 ns
tOSUD = 0.52 ns
Input LVTTL
Clock
Input LVTTL
Clock
tPY = 0.87 ns
(Advanced I/O Banks)
tPY = 0.87 ns
(Advanced I/O Banks)
Timing Model
Operating Conditions: Std. Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case
VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
To Array
I/O Interface
VIH
PAD
Vtrip
Vtrip
VIL
VCC
50%
50%
Y
GND
tPY
(F)
tPY
(R)
VCC
50%
DIN
GND
50%
tDIN
tDIN
(R)
Figure 2-4 •
(F)
Input Buffer Timing Model and Delays (example)
R ev i si o n 2 3
2- 21
IGLOO DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
(R)
D
50%
tDOUT
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-5 •
2- 22
Output Buffer Model and Delays (example)
R ev i sio n 2 3
tDP
(F)
IGLOO Low Power Flash FPGAs
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
tEOUT (F)
50%
E
tEOUT (R)
VCC
50%
EOUT
tZL
PAD
50%
50%
tHZ
Vtrip
tZH
50%
tLZ
VCCI
90% VCCI
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
tEOUT (R)
50%
tEOUT (F)
VCC
EOUT
PAD
50%
tZLS
VOH
Vtrip
Figure 2-6 •
50%
50%
tZHS
Vtrip
VOL
Tristate Output Buffer Timing Model and Delays (example)
R ev i si o n 2 3
2- 23
IGLOO DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Advanced I/O Banks
VIL
Equivalent
Software
Default
Drive
Max.
I/O
Drive
Strength Slew
V
Standard Strength Option2 Rate Min.V
VIH
VOL
VOH
IOL1 IOH1
Min.
V
Max.
V
Max.
V
Min.
V
mA
mA
3.3 V
LVTTL /
3.3 V
LVCMOS
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
12
12
3.3 V
LVCMOS
Wide
Range3
100 µA
12 mA
High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
0.1
0.1
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45 12
12
1.5 V
LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
12
12
1.2 V
LVCMOS4
2 mA
2 mA
High
2
2
1.2 V
LVCMOS
Wide
Range4,5
100 µA
2 mA
High –0.3 0.3 * VCCI 0.7 * VCCI 1.575
0.1
0.1
3.3 V PCI
3.3 V
PCI-X
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI
0.1
VCCI – 0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Currents are measured at 85°C junction temperature.
2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. Applicable to V2 Devices operating at VCCI VCC.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
2- 24
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks
Equivalent
Software
Default
Drive
I/O
Drive
Strength Slew Min.
Standard Strength Option2 Rate V
VIL
VIH
VOL
VOH
IOL
IOH
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
mA
mA
3.3 V
LVTTL /
3.3 V
LVCMOS
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
12
12
3.3 V
LVCMOS
Wide
Range3
100 µA
12 mA
High –0.3
0.8
2
3.6
0.2
VDD-0.2
0.1
0.1
2.5 V
LVCMOS
12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V
LVCMOS
8 mA
8 mA
High –0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
1.5 V
LVCMOS
4 mA
4 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
4
4
1.2 V
LVCMOS4
2 mA
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI
2
2
1.2 V
LVCMOS
Wide
Range4
100 µA
2 mA
High –0.3 0.3 * VCCI 0.7 * VCCI 1.575
0.1
0.1
3.3 V PCI
3.3 V
PCI-X
0.1
VCCI – 0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Currents are measured at 85°C junction temperature.
2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. Applicable to V2 Devices operating at VCCI  VCC.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
R ev i si o n 2 3
2- 25
IGLOO DC and Switching Characteristics
Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions—Software Default Settings
Applicable to Standard I/O Banks
I/O
Standard
Equivalent
Software
Default
Drive
Drive
Strength Slew
Strength Option2 Rate
VIL
VIH
VOL
VOH
IOL1 IOH1
mA mA
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
3.3 V
LVTTL /
3.3 V
LVCMOS
8 mA
8 mA
High
–0.3
0.8
2
3.6
0.4
2.4
8
8
3.3 V
LVCMOS
Wide
Range3
100 µA
8 mA
High
–0.3
0.8
2
3.6
0.2
VDD-0.2
0.1
0.1
2.5 V
LVCMOS
8 mA
8 mA
High
–0.3
0.7
1.7
3.6
0.7
1.7
8
8
1.8 V
LVCMOS
4 mA
4 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
1.5 V
LVCMOS
2 mA
2 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
3.6 0.25 * VCCI 0.75 * VCCI
2
2
1.2 V
LVCMOS4
1 mA
1 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
3.6 0.25 * VCCI 0.75 * VCCI
1
1
1.2 V
LVCMOS
Wide
Range4,5
100 µA
1 mA
High
–0.3
0.3 * VCCI 0.7 * VCCI
3.6
0.1
0.1
0.1
VCCI – 0.1
Notes:
1. Currents are measured at 85°C junction temperature.
2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. Applicable to V2 Devices operating at VCCI  VCC.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
2- 26
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-28 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
Commercial1
Industrial2
IIL4
IIH5
IIL4
IIH5
DC I/O Standards
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
3.3 V LVCMOS Wide Range
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
1.5 V LVCMOS
10
10
15
15
10
10
15
15
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
1.2 V
LVCMOS3
1.2 V LVCMOS Wide Range
3
Notes:
1.
2.
3.
4.
5.
Commercial range (0°C < TA < 70°C)
Industrial range (–40°C < TA < 85°C)
Applicable to V2 Devices operating at VCCI VCC.
IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
R ev i si o n 2 3
2- 27
IGLOO DC and Switching Characteristics
Summary of I/O Timing Characteristics – Default I/O Software Settings
Table 2-29 • Summary of AC Measuring Points
Standard
Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS
1.4 V
3.3 V VCMOS Wide Range
1.4 V
2.5 V LVCMOS
1.2 V
1.8 V LVCMOS
0.90 V
1.5 V LVCMOS
0.75 V
1.2 V LVCMOS
0.60 V
1.2 V LVCMOS Wide Range
0.60 V
3.3 V PCI
0.285 * VCCI (RR)
0.615 * VCCI (FF)
3.3 V PCI-X
0.285 * VCCI (RR)
0.615 * VCCI (FF)
Table 2-30 • I/O AC Parameter Definitions
Parameter
Parameter Definition
tDP
Data to Pad delay through the Output Buffer
tPY
Pad to Data delay through the Input Buffer
tDOUT
Data to Output Buffer delay through the I/O interface
tEOUT
Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer to Data delay through the I/O interface
tHZ
Enable to Pad delay through the Output Buffer—High to Z
tZH
Enable to Pad delay through the Output Buffer—Z to High
tLZ
Enable to Pad delay through the Output Buffer—Low to Z
tZL
Enable to Pad delay through the Output Buffer—Z to Low
tZHS
Enable to Pad delay through the Output Buffer with delayed enable—Z to High
tZLS
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
2- 28
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
–
0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns
2.5 V
LVCMOS
12 mA
12
High
5
–
0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns
1.8 V
LVCMOS
12 mA
12
High
5
–
0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns
1.5 V
LVCMOS
12 mA
12
High
5
–
0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns
3.3 V PCI
Per PCI
spec
–
High
10
25 2 0.97 2.32 0.18 0.74 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns
3.3 V
PCI-X
Per
PCI-X
spec
–
High
10
25 2 0.97 2.32 0.19 0.70 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns
LVDS
24 mA
–
High
–
–
0.97 1.74 0.19 1.35
–
–
–
–
–
–
–
ns
LVPECL
24 mA
–
High
–
–
0.97 1.68 0.19 1.16
–
–
–
–
–
–
–
ns
Units
5
tZHS (ns)
High
tZLS (ns)
12
tHZ (ns)
100 µA
tLZ (ns)
3.3 V
LVCMOS
Wide
Range2
tZH (ns)
0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns
tZL (ns)
–
tE O U T (ns)
5
tPY (ns)
External Resistor ()
High
tDIN (ns)
Capacitive Load (pF)
12
tDP (ns)
Slew Rate
12 mA
tDOUT (ns)
Equivalent Software Default
Drive Strength Option1 (mA)
3.3 V
LVTTL /
3.3 V
LVCMOS
I/O Standard
Drive Strength
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per
standard)
Applicable to Advanced I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-78 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 29
IGLOO DC and Switching Characteristics
–
0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns
2.5 V
LVCMOS
12 mA
12
High
5
–
0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns
1.8 V
LVCMOS
8 mA
8
High
5
–
0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns
1.5 V
LVCMOS
4 mA
4
High
5
–
0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns
3.3 V PCI
Per PCI
spec
–
High
10
25 2 0.97 1.97 0.18 0.73 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns
3.3 V
PCI-X
Per PCIX spec
–
High
10
25 2 0.97 1.97 0.19 0.70 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns
Units
5
tZHS (ns)
High
tZLS (ns)
12
tHZ (ns)
100 µA
tLZ (ns)
3.3 V
LVCMOS
Wide
Range2
tZH (ns)
0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns
tZL (ns)
–
tE O U T (ns)
5
tPY (ns)
External Resistor ()
High
tDIN (ns)
Capacitive Load (pF)
12
tDP (ns)
Slew Rate
12 mA
tDOUT (ns)
Equivalent Software Default
Drive Strength Option1 (mA)
3.3 V
LVTTL /
3.3 V
LVCMOS
I/O Standard
Drive Strength
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per
standard)
Applicable to Standard Plus I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-78 for
connectivity. This resistor is not required during normal operation.
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 30
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Equivalent Software Default
Drive Strength Option1 (mA)
Slew Rate
Capacitive Load (pF)
External Resistor ()
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tE O U T (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
Units
3.3 V
LVTTL /
3.3 V
LVCMOS
8 mA
8
High
5
–
0.97
1.85
0.18
0.83
0.66
1.89
1.46
1.96
2.26
ns
3.3 V
LVCMOS
Wide
Range2
100 µA
8
High
5
–
0.97
2.62
0.18
1.17
0.66
2.63
2.02
2.79
3.17
ns
2.5 V
LVCMOS
8 mA
8
High
5
–
0.97
1.88
0.18
1.04
0.66
1.92
1.63
1.95
2.15
ns
1.8 V
LVCMOS
4 mA
4
High
5
–
0.97
2.18
0.18
0.98
0.66
2.22
1.93
1.97
2.06
ns
1.5 V
LVCMOS
2 mA
2
High
5
–
0.97
2.51
0.18
1.14
0.66
2.56
2.21
1.99
2.03
ns
I/O Standard
Drive Strength)
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per
standard)
Applicable to Standard I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive
strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 31
IGLOO DC and Switching Characteristics
1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns
1.8 V
LVCMOS
12 mA
12 mA High
5
–
1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns
1.5 V
LVCMOS
12 mA
12 mA High
5
–
1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns
1.2 V
LVCMOS
2 mA
2 mA
High
5
–
1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns
1.2 V
LVCMOS
Wide
Range3
100 µA
2 mA
High
5
–
1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns
3.3 V PCI Per PCI
spec
–
High
10
252 1.55 2.91 0.26 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns
3.3 V
PCI-X
Per
PCI-X
spec
–
High
10
252 1.55 2.91 0.25 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns
LVDS
24 mA
–
High
–
–
1.55 2.27 0.25 1.57
–
–
–
–
–
–
–
ns
LVPECL
24 mA
–
High
–
–
1.55 2.24 0.25 1.38
–
–
–
–
–
–
–
ns
Units
–
tZHS (ns)
5
tZLS (ns)
12 mA 12 mA High
tHZ (ns)
2.5 V
LVCMOS
tLZ (ns)
1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns
tZH (ns)
–
tZL (ns)
5
tE O U T (ns)
100 µA 12 mA High
tPY (ns)
3.3 V
LVCMOS
Wide
Range2
tDIN (ns)
1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns
tDP (ns)
–
tDOUT (ns)
External Resistor ()
5
Slew Rate
12 mA 12 mA High
Drive Strength
3.3 V
LVTTL /
3.3 V
LVCMOS
I/O Standard
Capacitive Load (pF)
Equivalent Software Default
Drive Strength Option1
Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per
standard)
Applicable to Advanced I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the
IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-78 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 32
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
–
1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns
2.5 V
LVCMOS
12 mA
12
High
5
–
1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns
1.8 V
LVCMOS
8 mA
8
High
5
–
1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns
1.5 V
LVCMOS
4 mA
4
High
5
–
1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns
1.2 V
LVCMOS
2 mA
2
High
5
–
1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns
1.2 V
LVCMOS
Wide
Range3
100 µA
2
High
5
–
1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns
3.3 V PCI
Per
PCI
spec
–
High
10
252
1.55 2.53 0.26 0.84 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns
3.3 V
PCI-X
Per
PCI-X
spec
–
High
10
252
1.55 2.53 0.25 0.85 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns
Units
5
tZHS (ns)
High
tZLS (ns)
12
tHZ (ns)
100 µA
tLZ (ns)
3.3 V
LVCMOS
Wide
Range2
tZH (ns)
1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns
tZL (ns)
–
tEOUT (ns)
5
tPY (ns)
External Resistor ()
High
tDIN (ns)
Capacitive Load (pF)
12
tDP (ns)
Slew Rate
12 mA
tDOUT (ns)
Equivalent Software Default
Drive Strength Option1 (mA)
3.3 V
LVTTL /
3.3 V
LVCMOS
I/O Standard
Drive Strength
Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per
standard)
Applicable to Standard Plus I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to
the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-78
for connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 33
IGLOO DC and Switching Characteristics
Slew Rate
Capacitive Load (pF)
External Resistor ()
tDOUT (ns)
tDP (ns)
tDIN (ns)
tPY (ns)
tEOUT (ns)
tZL (ns)
tZH (ns)
tLZ (ns)
tHZ (ns)
8 mA
8
High
5
–
1.55
2.38
0.26
0.94
1.10
2.41
1.92
2.40
2.96 ns
3.3 V
LVCMOS
Wide
Range3
100 µA
8
High
5
–
1.55
3.33
0.26
1.29
1.10
3.33
2.62
3.34
4.07 ns
2.5 V
LVCMOS
8 mA
8
High
5
–
1.55
2.39
0.26
1.15
1.10
2.42
2.05
2.38
2.80 ns
1.8 V
LVCMOS
4 mA
4
High
5
–
1.55
2.60
0.26
1.08
1.10
2.64
2.33
2.38
2.62 ns
1.5 V
LVCMOS
2 mA
2
High
5
–
1.55
2.92
0.26
1.22
1.10
2.96
2.60
2.40
2.56 ns
1.2 V
LVCMOS
1 mA
1
High
5
–
1.55
3.59
0.26
1.53
1.10
3.47
3.06
2.51
2.49 ns
1.2 V
LVCMOS
Wide
Range3
100 µA
1
High
5
–
1.55
3.59
0.26
1.53
1.10
3.47
3.06
2.51
2.49 ns
Units
Equivalent Software Default
Drive Strength Option1 (mA)
3.3 V
LVTTL /
3.3 V
LVCMOS
I/O Standard
Drive Strength
Table 2-36 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade,
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per
standard)
Applicable to Standard I/O Banks
Notes:
1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is
±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to
the IBIS models.
2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification
4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 34
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Detailed I/O DC Characteristics
Table 2-37 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
Table 2-38 • I/O Output Buffer Maximum Resistances1
Applicable to Advanced I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
Drive Strength
RPULL-DOWN
()2
RPULL-UP
()3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
11
33
24 mA
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS4
1.2 V LVCMOS Wide Range4
3.3 V PCI/PCI-X
100 A
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
16 mA
20
40
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
2 mA
158
164
100 A
Per PCI/PCI-X
specification
Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
25
75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec
4. Applicable to IGLOO V2 Devices operating at VCCI  VCC
R ev i si o n 2 3
2- 35
IGLOO DC and Switching Characteristics
Table 2-39 • I/O Output Buffer Maximum Resistances1
Applicable to Standard Plus I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
4
1.2 V LVCMOS
1.2 V LVCMOS Wide Range4
3.3 V PCI/PCI-X
Drive Strength
RPULL-DOWN
()2
RPULL-UP
()3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
25
75
100 A
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
2 mA
200
224
4 mA
100
112
2 mA
158
164
100 A
Per PCI/PCI-X
specification
Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS
25
75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec
4. Applicable to IGLOO V2 Devices operating at VCCI VCC
2- 36
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-40 • I/O Output Buffer Maximum Resistances1
Applicable to Standard I/O Banks
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
4
Drive Strength
RPULL-DOWN
()2
RPULL-UP
()3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
100 A
Same as regular 3.3 V LVCMOS
Same as regular 3.3 V LVCMOS
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
2 mA
200
225
4 mA
100
112
2 mA
200
224
1 mA
158
164
100 A
Same as regular 1.2 V LVCMOS
Same as regular 1.2 V LVCMOS
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec
Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R(WEAK PULL-UP)1
()
R(WEAK PULL-DOWN)2
()
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 K
45 K
10 K
45 K
3.3 V Wide Range I/Os
10 K
45 K
10 K
45 K
2.5 V
11 K
55 K
12 K
74 K
1.8 V
18 K
70 K
17 K
110 K
1.5 V
19 K
90 K
19 K
140 K
1.2 V
25 K
110 K
25 K
150 K
1.2 V Wide Range I/Os
19 K
110 K
19 K
150 K
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULLDOWN-MAX) = (VOLspec) / I(WEAK PULLDOWN-MIN)
R ev i si o n 2 3
2- 37
IGLOO DC and Switching Characteristics
Table 2-42 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Banks
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 A
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
2 mA
20
26
100 A
20
26
Per PCI/PCI-X
specification
103
109
Note: *TJ = 100°C
2- 38
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-43 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
12 mA
103
109
16 mA
103
109
100 A
Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
12 mA
65
74
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
35
44
2 mA
13
16
4 mA
25
33
2 mA
20
26
100 A
20
26
Per PCI/PCI-X
specification
103
109
Note: *TJ = 100°C
R ev i si o n 2 3
2- 39
IGLOO DC and Switching Characteristics
Table 2-44 • I/O Short Currents IOSH/IOSL
Applicable to Standard I/O Banks
3.3 V LVTTL / 3.3 V LVCMOS
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
100 A
Same as regular 3.3 V LVCMOS
Same as regular 3.3 V LVCMOS
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
2 mA
9
11
4 mA
17
22
1.5 V LVCMOS
2 mA
13
16
1.2 V LVCMOS
1 mA
20
26
100 A
20
26
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.2 V LVCMOS Wide Range
Note: *TJ = 100°C
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.
Table 2-45 • Duration of Short Circuit Event before Failure
Temperature
Time before Failure
–40°C
> 20 years
–20°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1
Input Rise/Fall Time
(min.)
Input Rise/Fall Time
(max.)
Reliability
LVTTL/LVCMOS
No requirement
10 ns *
20 years (100°C)
LVDS/B-LVDS/M-LVDS/
LVPECL
No requirement
10 ns *
10 years (100°C)
Input Buffer
Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the
noise is low, then the rise time and fall time of input buffers can be increased beyond the
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the
board noise. Microsemi recommends signal integrity evaluation/characterization of the system to
ensure that there is no excessive noise coupling into input signals.
2- 40
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V
software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.
Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
25
27
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
132
127
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
268
181
10
10
2
2
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-48 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12
12
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16
16
103
109
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R ev i si o n 2 3
2- 41
IGLOO DC and Switching Characteristics
Table 2-49 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
10
10
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-7 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
1.4
5
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
2- 42
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
4 mA
Std.
0.97
4.47 0.18 0.85
6 mA
Std.
0.97
8 mA
Std.
12 mA
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
4.56 3.89 2.24 2.19
8.15
7.48
ns
3.74 0.18 0.85
0.66
3.82 3.37 2.49 2.63
7.42
6.96
ns
0.97
3.74 0.18 0.85
0.66
3.82 3.37 2.49 2.63
7.42
6.96
ns
Std.
0.97
3.23 0.18 0.85
0.66
3.30 2.98 2.66 2.91
6.89
6.57
ns
16 mA
Std.
0.97
3.08 0.18 0.85
0.66
3.14 2.89 2.70 2.99
6.74
6.48
ns
24 mA
Std.
0.97
3.00 0.18 0.85
0.66
3.06 2.91 2.74 3.27
6.66
6.50
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
2.73 0.18 0.85
0.66
2.79 2.22 2.25 2.32 6.38 5.82
ns
6 mA
Std.
0.97
2.32 0.18 0.85
0.66
2.37 1.85 2.50 2.76 5.96 5.45
ns
8 mA
Std.
0.97
2.32 0.18 0.85
0.66
2.37 1.85 2.50 2.76 5.96 5.45
ns
12 mA
Std.
0.97
2.09 0.18 0.85
0.66
2.14 1.68 2.67 3.05 5.73 5.27
ns
16 mA
Std.
0.97
2.05 0.18 0.85
0.66
2.10 1.64 2.70 3.12 5.69 5.24
ns
24 mA
Std.
0.97
2.07 0.18 0.85
0.66
2.12 1.60 2.75 3.41 5.71 5.20
ns
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS tZHS
Units
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
3.94 0.18 0.85
6 mA
Std.
0.97
8 mA
Std.
12 mA
16 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
4.02 3.46 1.98 2.03
7.62
7.05
ns
3.24 0.18 0.85
0.66
3.31 2.99 2.21 2.42
6.90
6.59
ns
0.97
3.24 0.18 0.85
0.66
3.31 2.99 2.21 2.42
6.90
6.59
ns
Std.
0.97
2.76 0.18 0.85
0.66
2.82 2.63 2.36 2.68
6.42
6.22
ns
Std.
0.97
2.76 0.18 0.85
0.66
2.82 2.63 2.36 2.68
6.42
6.22
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 43
IGLOO DC and Switching Characteristics
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
2.32 0.18 0.85
0.66
2.37 1.90 1.98 2.13 5.96 5.49
ns
6 mA
Std.
0.97
1.94 0.18 0.85
0.66
1.99 1.57 2.20 2.53 5.58 5.16
ns
8 mA
Std.
0.97
1.94 0.18 0.85
0.66
1.99 1.57 2.20 2.53 5.58 5.16
ns
12 mA
Std.
0.97
1.75 0.18 0.85
0.66
1.79 1.40 2.36 2.79 5.38 4.99
ns
16 mA
Std.
0.97
1.75 0.18 0.85
0.66
1.79 1.40 2.36 2.79 5.38 4.99
ns
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS tZHS
Units
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.97
3.80
0.18
0.83
0.66
3.88
3.41
1.74
1.78
ns
4 mA
Std.
0.97
3.80
0.18
0.83
0.66
3.88
3.41
1.74
1.78
ns
6 mA
Std.
0.97
3.15
0.18
0.83
0.66
3.21
2.94
1.96
2.17
ns
8 mA
Std.
0.97
3.15
0.18
0.83
0.66
3.21
2.94
1.96
2.17
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.97
2.19
0.18
0.83
0.66
2.24
1.79
1.74
1.87
ns
4 mA
Std.
0.97
2.19
0.18
0.83
0.66
2.24
1.79
1.74
1.87
ns
6 mA
Std.
0.97
1.85
0.18
0.83
0.66
1.89
1.46
1.96
2.26
ns
8 mA
Std.
0.97
1.85
0.18
0.83
0.66
1.89
1.46
1.96
2.26
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 44
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Applies to 1.2 V DC Core Voltage
Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
5.12 0.26 0.98
1.10
5.20 4.46 2.81 3.02 10.99 10.25
ns
6 mA
Std.
1.55
4.38 0.26 0.98
1.10
4.45 3.93 3.07 3.48 10.23
9.72
ns
8 mA
Std.
1.55
4.38 0.26 0.98
1.10
4.45 3.93 3.07 3.48 10.23
9.72
ns
12 mA
Std.
1.55
3.85 0.26 0.98
1.10
3.91 3.53 3.24 3.77
9.69
9.32
ns
16 mA
Std.
1.55
3.69 0.26 0.98
1.10
3.75 3.44 3.28 3.84
9.54
9.23
ns
24 mA
Std.
1.55
3.61 0.26 0.98
1.10
3.67 3.46 3.33 4.13
9.45
9.24
ns
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
3.33 0.26 0.98
6 mA
Std.
1.55
8 mA
Std.
12 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.38 2.75 2.82 3.18
9.17
8.54
ns
2.91 0.26 0.98
1.10
2.95 2.37 3.07 3.64
8.73
8.15
ns
1.55
2.91 0.26 0.98
1.10
2.95 2.37 3.07 3.64
8.73
8.15
ns
Std.
1.55
2.67 0.26 0.98
1.10
2.71 2.18 3.25 3.93
8.50
7.97
ns
16 mA
Std.
1.55
2.63 0.26 0.98
1.10
2.67 2.14 3.28 4.01
8.45
7.93
ns
24 mA
Std.
1.55
2.65 0.26 0.98
1.10
2.69 2.10 3.33 4.31
8.47
7.89
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
4 mA
Std.
1.55
4.56 0.26 0.97
1.10
6 mA
Std.
1.55
3.84 0.26 0.97
8 mA
Std.
1.55
12 mA
Std.
16 mA
Std.
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4.63 3.98 2.54 2.83 10.42
9.76
ns
1.10
3.90 3.50 2.77 3.24
9.69
9.29
ns
3.84 0.26 0.97
1.10
3.90 3.50 2.77 3.24
9.69
9.29
ns
1.55
3.35 0.26 0.97
1.10
3.40 3.13 2.93 3.51
9.19
8.91
ns
1.55
3.35 0.26 0.97
1.10
3.40 3.13 2.93 3.51
9.19
8.91
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 45
IGLOO DC and Switching Characteristics
Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
2.89 0.26 0.97
6 mA
Std.
1.55
8 mA
Std.
12 mA
16 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
2.93 2.38 2.53 2.96
8.72
8.17
ns
2.50 0.26 0.97
1.10
2.54 2.04 2.77 3.37
8.33
7.82
ns
1.55
2.50 0.26 0.97
1.10
2.54 2.04 2.77 3.37
8.33
7.82
ns
Std.
1.55
2.31 0.26 0.97
1.10
2.34 1.86 2.93 3.64
8.12
7.65
ns
Std.
1.55
2.31 0.26 0.97
1.10
2.34 1.86 2.93 3.64
8.12
7.65
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
1.55
4.39
0.26
0.94
1.10
4.46
3.91
2.17
2.44
ns
4 mA
Std.
1.55
4.39
0.26
0.94
1.10
4.46
3.91
2.17
2.44
ns
6 mA
Std.
1.55
3.72
0.26
0.94
1.10
3.78
3.43
2.40
2.85
ns
8 mA
Std.
1.55
3.72
0.26
0.94
1.10
3.78
3.43
2.40
2.85
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-62 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
1.55
2.74
0.26
0.94
1.10
2.78
2.26
2.17
2.55
ns
4 mA
Std.
1.55
2.74
0.26
0.94
1.10
2.78
2.26
2.17
2.55
ns
6 mA
Std.
1.55
2.38
0.26
0.94
1.10
2.41
1.92
2.40
2.96
ns
8 mA
Std.
1.55
2.38
0.26
0.94
1.10
2.41
1.92
2.40
2.96
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 46
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
3.3 V LVCMOS Wide Range
Table 2-63 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Advanced I/O Banks
VOL
VOH
IOL
IOH
IOSL
IOSH
IIL2 IIH3
Equivalent
Software
Default Drive
Min. Max. Min. Max. Max.
Strength
V
V
V
V
V
Option1
Min.
V
µA
µA
Max.
mA4
Max.
mA4
µA5 µA5
3.3 V LVCMOS Wide Range
Drive
Strength
VIL
VIH
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
25
27
10
10
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
25
27
10
10
100 µA
6 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
51
54
10
10
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
51
54
10
10
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
103
109
10
10
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
132
127
10
10
100 µA
24 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2
100
100
268
181
10
10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
R ev i si o n 2 3
2- 47
IGLOO DC and Switching Characteristics
Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Standard Plus I/O Banks
3.3 V LVCMOS Wide Range
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Max.
V
Max.
V
Min.
V
µA
Max.
mA4
Max.
mA4
µA5 µA5
VIH
Equivalent
Software
Default Drive
Strength
Option1
Min.
V
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10
10
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10
10
100 µA
6 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10
10
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10
10
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
103
109
10
10
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
103
109
10
10
Drive
Strength
Max. Min.
V
V
µA
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
2- 48
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range
Applicable to Standard I/O Banks
3.3 V LVCMOS Wide Range
Drive
Strength
VIL
Equivalent
Software
Default Drive
Min.
Strength
V
Option1
VIH
Max. Min. Max.
V
V
V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Max.
V
Min.
V
µA
Max.
mA4
Max.
mA4
µA5 µA5
µA
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10
10
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
25
27
10
10
100 µA
6 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10
10
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VDD – 0.2 100 100
51
54
10
10
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
1.4
5
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
R ev i si o n 2 3
2- 49
IGLOO DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-67 •
Drive
Strength
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
0.97
6.61 0.18 1.19
0.66
6.63 5.63 3.15 2.98 10.22 9.23
ns
100 µA
6 mA
Std.
0.97
5.49 0.18 1.19
0.66
5.51 4.84 3.54 3.66
9.10
8.44
ns
100 µA
8 mA
Std.
0.97
5.49 0.18 1.19
0.66
5.51 4.84 3.54 3.66
9.10
8.44
ns
100 µA
12 mA
Std.
0.97
4.69 0.18 1.19
0.66
4.71 4.25 3.80 4.10
8.31
7.85
ns
100 µA
16 mA
Std.
0.97
4.46 0.18 1.19
0.66
4.48 4.11 3.86 4.21
8.07
7.71
ns
100 µA
24 mA
Std.
0.97
4.34 0.18 1.19
0.66
4.36 4.14 3.93 4.64
7.95
7.74
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-68 •
Drive
Strength
3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS tZHS Units
100 µA
4 mA
Std.
0.97
3.92 0.18 1.19
0.66
3.94 3.10 3.16 3.17 7.54 6.70
ns
100 µA
6 mA
Std.
0.97
3.28 0.18 1.19
0.66
3.30 2.54 3.54 3.86 6.90 6.14
ns
100 µA
8 mA
Std.
0.97
3.28 0.18 1.19
0.66
3.30 2.54 3.54 3.86 6.90 6.14
ns
100 µA
12 mA
Std.
0.97
2.93 0.18 1.19
0.66
2.95 2.27 3.81 4.30 6.54 5.87
ns
100 µA
16 mA
Std.
0.97
2.87 0.18 1.19
0.66
2.89 2.22 3.86 4.41 6.49 5.82
ns
100 µA
24 mA
Std.
0.97
2.90 0.18 1.19
0.66
2.92 2.16 3.94 4.86 6.51 5.75
ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2. Software default selection highlighted in gray.
3. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2- 50
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-69 •
Drive
Strength
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
0.97
5.84
0.18 1.20
0.66
5.86
5.04
2.74
2.71
9.46
8.64
ns
100 µA
6 mA
Std.
0.97
4.76
0.18 1.20
0.66
4.78
4.33
3.09
3.33
8.37
7.93
ns
100 µA
8 mA
Std.
0.97
4.76
0.18 1.20
0.66
4.78
4.33
3.09
3.33
8.37
7.93
ns
100 µA
12 mA
Std.
0.97
4.02
0.18 1.20
0.66
4.04
3.78
3.33
3.73
7.64
7.37
ns
100 µA
16 mA
Std.
0.97
4.02
0.18 1.20
0.66
4.04
3.78
3.33
3.73
7.64
7.37
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-70 •
Drive
Strength
3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
100 µA
4 mA
Std.
0.97
3.33
0.18 1.20
0.66
3.35 2.68 2.73
2.88
6.94
6.27
ns
100 µA
6 mA
Std.
0.97
2.75
0.18 1.20
0.66
2.77 2.17 3.08
3.50
6.36
5.77
ns
100 µA
8 mA
Std.
0.97
2.75
0.18 1.20
0.66
2.77 2.17 3.08
3.50
6.36
5.77
ns
100 µA
12 mA
Std.
0.97
2.45
0.18 1.20
0.66
2.47 1.92 3.33
3.90
6.06
5.51
ns
100 µA
16 mA
Std.
0.97
2.45
0.18 1.20
0.66
2.47 1.92 3.33
3.90
6.06
5.51
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
3. Software default selection highlighted in gray.
R ev i si o n 2 3
2- 51
IGLOO DC and Switching Characteristics
Table 2-71 •
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
100 µA
2 mA
Std.
0.97
5.64
0.18
1.17
0.66
5.65
4.98
2.45
2.42
ns
100 µA
4 mA
Std.
0.97
5.64
0.18
1.17
0.66
5.65
4.98
2.45
2.42
ns
100 µA
6 mA
Std.
0.97
4.63
0.18
1.17
0.66
4.64
4.26
2.80
3.02
ns
100 µA
8 mA
Std.
0.97
4.63
0.18
1.17
0.66
4.64
4.26
2.80
3.02
ns
Drive
Strength
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-72 •
3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
100 µA
2 mA
0.97
3.16
0.18
1.17
0.66
3.17
2.53
2.45
2.56
0.97
ns
100 µA
4 mA
0.97
3.16
0.18
1.17
0.66
3.17
2.53
2.45
2.56
0.97
ns
100 µA
6 mA
0.97
2.62
0.18
1.17
0.66
2.63
2.02
2.79
3.17
0.97
ns
100 µA
8 mA
0.97
2.62
0.18
1.17
0.66
2.63
2.02
2.79
3.17
0.97
ns
Drive
Strength
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
3. Software default selection highlighted in gray.
2- 52
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Applies to 1.2 V DC Core Voltage
Table 2-73 •
Drive
Strength
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
100 µA
4 mA
Std.
1.55
7.52 0.26 1.32
1.10
7.52 6.38 3.84 4.02 13.31 12.16
ns
100 µA
6 mA
Std.
1.55
6.37 0.26 1.32
1.10
6.37 5.57 4.23 4.73 12.16 11.35
ns
100 µA
8 mA
Std.
1.55
6.37 0.26 1.32
1.10
6.37 5.57 4.23 4.73 12.16 11.35
ns
100 µA
12 mA
Std.
1.55
5.55 0.26 1.32
1.10
5.55 4.96 4.50 5.18 11.34 10.75
ns
100 µA
16 mA
Std.
1.55
5.32 0.26 1.32
1.10
5.32 4.82 4.56 5.29 11.10 10.61
ns
100 µA
24 mA
Std.
1.55
5.19 0.26 1.32
1.10
5.19 4.85 4.63 5.74 10.98 10.63
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-74 •
Drive
Strength
3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Advanced Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
1.55
4.75 0.26
1.32
1.10
4.75 3.77 3.84 4.27 10.54 9.56
ns
100 µA
6 mA
Std.
1.55
4.10 0.26
1.32
1.10
4.10 3.19 4.24 4.98
9.88
8.98
ns
100 µA
8 mA
Std.
1.55
4.10 0.26
1.32
1.10
4.10 3.19 4.24 4.98
9.88
8.98
ns
100 µA
12 mA
Std.
1.55
3.73 0.26
1.32
1.10
3.73 2.91 4.51 5.43
9.52
8.69
ns
100 µA
16 mA
Std.
1.55
3.67 0.26
1.32
1.10
3.67 2.85 4.57 5.55
9.46
8.64
ns
100 µA
24 mA
Std.
1.55
3.70 0.26
1.32
1.10
3.70 2.79 4.65 6.01
9.49
8.58
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
3. Software default selection highlighted in gray.
R ev i si o n 2 3
2- 53
IGLOO DC and Switching Characteristics
Table 2-75 •
Drive
Strength
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
100 µA
4 mA
Std.
1.55
6.69 0.26 1.32
1.10
6.69
5.73 3.41 3.72 12.48 11.52
ns
100 µA
6 mA
Std.
1.55
5.58 0.26 1.32
1.10
5.58
5.01 3.77 4.35 11.36 10.79
ns
100 µA
8 mA
Std.
1.55
5.58 0.26 1.32
1.10
5.58
5.01 3.77 4.35 11.36 10.79
ns
100 µA
12 mA
Std.
1.55
4.82 0.26 1.32
1.10
4.82
4.44 4.02 4.76 10.61 10.23
ns
100 µA
16 mA
Std.
1.55
4.82 0.26 1.32
1.10
4.82
4.44 4.02 4.76 10.61 10.23
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-76 •
3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks
Drive
Strength
Equivalent
Software
Default
Drive
Strength
Option1
100 µA
4 mA
Std.
100 µA
6 mA
100 µA
Speed
Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
1.55
4.10 0.26
1.32
1.10
4.10
3.30
3.40
3.92
9.89
9.09
ns
Std.
1.55
3.51 0.26
1.32
1.10
3.51
2.79
3.76
4.56
9.30
8.57
ns
8 mA
Std.
1.55
3.51 0.26
1.32
1.10
3.51
2.79
3.76
4.56
9.30
8.57
ns
100 µA
12 mA
Std.
1.55
3.20 0.26
1.32
1.10
3.20
2.52
4.01
4.97
8.99
8.31
ns
100 µA
16 mA
Std.
1.55
3.20 0.26
1.32
1.10
3.20
2.52
4.01
4.97
8.99
8.31
ns
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
3. Software default selection highlighted in gray.
2- 54
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-77 •
3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
100 µA
2 mA
Std.
1.55
6.44
0.26
1.29
1.10
6.44
5.64
2.99
3.28
ns
100 µA
4 mA
Std.
1.55
6.44
0.26
1.29
1.10
6.44
5.64
2.99
3.28
ns
100 µA
6 mA
Std.
1.55
5.41
0.26
1.29
1.10
5.41
4.91
3.35
3.89
ns
100 µA
8 mA
Std.
1.55
5.41
0.26
1.29
1.10
5.41
4.91
3.35
3.89
ns
Drive
Strength
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-78 •
3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks
Equivalent
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
100 µA
2 mA
Std.
1.55
3.89
0.26
1.29
1.10
3.89
3.13
2.99
3.45
ns
100 µA
4 mA
Std.
1.55
3.89
0.26
1.29
1.10
3.89
3.13
2.99
3.45
ns
100 µA
6 mA
Std.
1.55
3.33
0.26
1.29
1.10
3.33
2.62
3.34
4.07
ns
100 µA
8 mA
Std.
1.55
3.33
0.26
1.29
1.10
3.33
2.62
3.34
4.07
ns
Drive
Strength
Notes:
1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive
strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
3. Software default selection highlighted in gray.
R ev i si o n 2 3
2- 55
IGLOO DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications.
Table 2-79 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
10
10
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
65
74
10
10
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16
16
83
87
10
10
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24
24
169
124
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-80 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
10
10
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
10
10
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
65
74
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
2- 56
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-81 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
3.6
0.7
1.7
2
2
16
18
10
10
4 mA
–0.3
0.7
1.7
3.6
0.7
1.7
4
4
16
18
10
10
6 mA
–0.3
0.7
1.7
3.6
0.7
1.7
6
6
32
37
10
10
8 mA
–0.3
0.7
1.7
3.6
0.7
1.7
8
8
32
37
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-8 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
2.5
1.2
5
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
R ev i si o n 2 3
2- 57
IGLOO DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-83 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
4 mA
Std.
0.97
4.96 0.18 1.08
6 mA
Std.
0.97
8 mA
Std.
12 mA
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
5.06 4.59 2.26 2.00
8.66
8.19
ns
4.15 0.18 1.08
0.66
4.24 3.94 2.54 2.51
7.83
7.53
ns
0.97
4.15 0.18 1.08
0.66
4.24 3.94 2.54 2.51
7.83
7.53
ns
Std.
0.97
3.57 0.18 1.08
0.66
3.65 3.47 2.73 2.84
7.24
7.06
ns
16 mA
Std.
0.97
3.39 0.18 1.08
0.66
3.46 3.36 2.78 2.92
7.06
6.95
ns
24 mA
Std.
0.97
3.38 0.18 1.08
0.66
3.38 3.38 2.83 3.25
6.98
6.98
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-84 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
2.77 0.18 1.08
6 mA
Std.
0.97
8 mA
Std.
12 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
2.83 2.60 2.26 2.08
6.42
6.19
ns
2.34 0.18 1.08
0.66
2.39 2.08 2.54 2.60
5.99
5.68
ns
0.97
2.34 0.18 1.08
0.66
2.39 2.08 2.54 2.60
5.99
5.68
ns
Std.
0.97
2.09 0.18 1.08
0.66
2.14 1.83 2.73 2.93
5.73
5.43
ns
16 mA
Std.
0.97
2.05 0.18 1.08
0.66
2.09 1.78 2.78 3.02
5.69
5.38
ns
24 mA
Std.
0.97
2.06 0.18 1.08
0.66
2.10 1.72 2.83 3.35
5.70
5.32
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-85 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
4.42 0.18 1.08
6 mA
Std.
0.97
8 mA
Std.
12 mA
Std.
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
4.51 4.10 1.96 1.85
8.10
7.69
ns
3.62 0.18 1.08
0.66
3.70 3.52 2.21 2.32
7.29
7.11
ns
0.97
3.62 0.18 1.08
0.66
3.70 3.52 2.21 2.32
7.29
7.11
ns
0.97
3.09 0.18 1.08
0.66
3.15 3.09 2.39 2.61
6.74
6.68
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 58
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-86 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
0.97
2.36 0.18 1.08
6 mA
Std.
0.97
8 mA
Std.
12 mA
Std.
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
2.41 2.21 1.96 1.92 6.01
5.81
ns
1.97 0.18 1.08
0.66
2.01 1.75 2.21 2.40 5.61
5.34
ns
0.97
1.97 0.18 1.08
0.66
2.01 1.75 2.21 2.40 5.61
5.34
ns
0.97
1.75 0.18 1.08
0.66
1.79 1.52 2.38 2.70 5.39
5.11
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.97
4.27
0.18
1.04
0.66
4.36
4.06
1.71
1.62
ns
4 mA
Std.
0.97
4.27
0.18
1.04
0.66
4.36
4.06
1.71
1.62
ns
6 mA
Std.
0.97
3.54
0.18
1.04
0.66
3.61
3.48
1.95
2.08
ns
8 mA
Std.
0.97
3.54
0.18
1.04
0.66
3.61
3.48
1.95
2.08
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.97
2.24
0.18
1.04
0.66
2.29
2.09
1.71
1.68
ns
4 mA
Std.
0.97
2.24
0.18
1.04
0.66
2.29
2.09
1.71
1.68
ns
6 mA
Std.
0.97
1.88
0.18
1.04
0.66
1.92
1.63
1.95
2.15
ns
8 mA
Std.
0.97
1.88
0.18
1.04
0.66
1.92
1.63
1.95
2.15
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 59
IGLOO DC and Switching Characteristics
Applies to 1.2 V Core Voltage
Table 2-89 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
5.59 0.26 1.20
1.10
5.68 5.14 2.82 2.80 11.47 10.93
ns
6 mA
Std.
1.55
4.76 0.26 1.20
1.10
4.84 4.47 3.10 3.33 10.62 10.26
ns
8 mA
Std.
1.55
4.76 0.26 1.20
1.10
4.84 4.47 3.10 3.33 10.62 10.26
ns
12 mA
Std.
1.55
4.17 0.26 1.20
1.10
4.23 3.99 3.30 3.67 10.02
9.77
ns
16 mA
Std.
1.55
3.98 0.26 1.20
1.10
4.04 3.88 3.34 3.76
9.83
9.66
ns
24 mA
Std.
1.55
3.90 0.26 1.20
1.10
3.96 3.90 3.40 4.09
9.75
9.68
ns
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-90 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
3.33 0.26 1.20
6 mA
Std.
1.55
8 mA
Std.
12 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.38 3.09 2.82 2.91
9.17
8.88
ns
2.89 0.26 1.20
1.10
2.93 2.56 3.10 3.45
8.72
8.34
ns
1.55
2.89 0.26 1.20
1.10
2.93 2.56 3.10 3.45
8.72
8.34
ns
Std.
1.55
2.64 0.26 1.20
1.10
2.67 2.29 3.30 3.79
8.46
8.08
ns
16 mA
Std.
1.55
2.59 0.26 1.20
1.10
2.63 2.24 3.34 3.88
8.41
8.03
ns
24 mA
Std.
1.55
2.60 0.26 1.20
1.10
2.64 2.18 3.40 4.22
8.42
7.97
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-91 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
4 mA
Std.
1.55
5.02 0.26 1.19
1.10
5.11 4.60 2.50 2.62 10.89 10.38
ns
6 mA
Std.
1.55
4.21 0.26 1.19
1.10
4.27 4.00 2.76 3.10 10.06
9.79
ns
8 mA
Std.
1.55
4.21 0.26 1.19
1.10
4.27 4.00 2.76 3.10 10.06
9.79
ns
12 mA
Std.
1.55
3.66 0.26 1.19
1.10
3.71 3.55 2.94 3.41
9.34
ns
9.50
tZHS
Units
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 60
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-92 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
4 mA
Std.
1.55
2.91 0.26 1.19
6 mA
Std.
1.55
8 mA
Std.
12 mA
Std.
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
2.95 2.66 2.50 2.72
8.74
8.45
ns
2.51 0.26 1.19
1.10
2.54 2.18 2.75 3.21
8.33
7.97
ns
1.55
2.51 0.26 1.19
1.10
2.54 2.18 2.75 3.21
8.33
7.97
ns
1.55
2.29 0.26 1.19
1.10
2.32 1.94 2.94 3.52
8.10
7.73
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-93 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
1.55
4.85
0.26
1.15
1.10
4.93
4.55
2.13
2.24
ns
4 mA
Std.
1.55
4.85
0.26
1.15
1.10
4.93
4.55
2.13
2.24
ns
6 mA
Std.
1.55
4.09
0.26
1.15
1.10
4.16
3.95
2.38
2.71
ns
8 mA
Std.
1.55
4.09
0.26
1.15
1.10
4.16
3.95
2.38
2.71
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-94 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
1.55
2.76
0.26
1.15
1.10
2.80
2.52
2.13
2.32
ns
4 mA
Std.
1.55
2.76
0.26
1.15
1.10
2.80
2.52
2.13
2.32
ns
6 mA
Std.
1.55
2.39
0.26
1.15
1.10
2.42
2.05
2.38
2.80
ns
8 mA
Std.
1.55
2.39
0.26
1.15
1.10
2.42
2.05
2.38
2.80
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 61
IGLOO DC and Switching Characteristics
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-95 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS
VIL
Max.
V
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Drive
Strength
Min.
V
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10
10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10
10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
45
51
10
10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45 12
12
91
74
10
10
16 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45 16
16
91
74
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-96 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.8 V
LVCMOS
VIL
Max.
V
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Drive
Strength
Min.
V
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10
10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10
10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
35
44
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
2- 62
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-97 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
1.8 V
LVCMOS
VIL
VOL
VOH
IOL IOH
IOSH
IOSL
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
2
2
9
11
10
10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45
4
4
17
22
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
Figure 2-9 •
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.8
0.9
5
0
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
2 mA
Std.
0.97
6.38
0.18 1.01
0.66
6.51
5.93
4 mA
Std.
0.97
5.35
0.18 1.01
0.66
5.46
6 mA
Std.
0.97
4.62
0.18 1.01
0.66
8 mA
Std.
0.97
4.37
0.18 1.01
12 mA
Std.
0.97
4.32
16 mA
Std.
0.97
4.32
tLZ
tHZ
tZLS
tZHS
Units
2.33 1.56 10.10
9.53
ns
5.04
2.67 2.38
9.05
8.64
ns
4.71
4.44
2.90 2.79
8.31
8.04
ns
0.66
4.46
4.31
2.95 2.89
8.05
7.90
ns
0.18 1.01
0.66
4.37
4.32
3.03 3.30
7.97
7.92
ns
0.18 1.01
0.66
4.37
4.32
3.03 3.30
7.97
7.92
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 63
IGLOO DC and Switching Characteristics
Table 2-100 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
0.97
3.25 0.18 1.01
4 mA
Std.
0.97
6 mA
Std.
8 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
3.21 3.25 2.33 1.61
6.80
6.85
ns
2.62 0.18 1.01
0.66
2.68 2.51 2.66 2.46
6.27
6.11
ns
0.97
2.31 0.18 1.01
0.66
2.36 2.15 2.90 2.87
5.95
5.75
ns
Std.
0.97
2.25 0.18 1.01
0.66
2.30 2.08 2.95 2.98
5.89
5.68
ns
12 mA
Std.
0.97
2.24 0.18 1.01
0.66
2.29 2.00 3.02 3.40
5.88
5.60
ns
16 mA
Std.
0.97
2.24 0.18 1.01
0.66
2.29 2.00 3.02 3.40
5.88
5.60
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-101 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
Std.
0.97
5.78
4 mA
Std.
0.97
6 mA
Std.
8 mA
Std.
tPY
tEOUT
tZL
tZH
0.18 1.01
0.66
5.90
4.75
0.18 1.01
0.66
0.97
4.07
0.18 1.01
0.97
4.07
0.18 1.01
tLZ
tHZ
tZLS
tZHS
Units
5.32
1.95 1.47
9.49
8.91
ns
4.85
4.54
2.25 2.21
8.44
8.13
ns
0.66
4.15
3.98
2.46 2.58
7.75
7.57
ns
0.66
4.15
3.98
2.46 2.58
7.75
7.57
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-102 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
0.97
2.76 0.18 1.01
4 mA
Std.
0.97
6 mA
Std.
8 mA
Std.
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
2.79 2.76 1.94 1.51
6.39
6.35
ns
2.25 0.18 1.01
0.66
2.30 2.09 2.24 2.29
5.89
5.69
ns
0.97
1.97 0.18 1.01
0.66
2.02 1.76 2.46 2.66
5.61
5.36
ns
0.97
1.97 0.18 1.01
0.66
2.02 1.76 2.46 2.66
5.61
5.36
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-103 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
0.97
5.63
0.18
0.98
0.66
5.74
5.30
1.68
1.24
ns
4 mA
Std.
0.97
4.69
0.18
0.98
0.66
4.79
4.52
1.97
1.98
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 64
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
2.62
0.18
0.98
0.66
2.67
2.59
1.67
1.29
2.62
ns
4 mA
Std.
2.18
0.18
0.98
0.66
2.22
1.93
1.97
2.06
2.18
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 65
IGLOO DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
Std.
1.55
6.97
4 mA
Std.
1.55
6 mA
Std.
8 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.26 1.11
1.10
7.08
6.48
2.87 2.29 12.87 12.27
ns
5.91
0.26 1.11
1.10
6.01
5.57
3.21 3.14 11.79 11.36
ns
1.55
5.16
0.26 1.11
1.10
5.24
4.95
3.45 3.55 11.03 10.74
ns
Std.
1.55
4.90
0.26 1.11
1.10
4.98
4.81
3.50 3.66 10.77 10.60
ns
12 mA
Std.
1.55
4.83
0.26 1.11
1.10
4.90
4.83
3.58 4.08 10.68 10.61
ns
16 mA
Std.
1.55
4.83
0.26 1.11
1.10
4.90
4.83
3.58 4.08 10.68 10.61
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
1.55
3.73 0.26 1.11
4 mA
Std.
1.55
6 mA
Std.
8 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.71 3.73 2.86 2.34
9.49
9.51
ns
3.12 0.26 1.11
1.10
3.16 2.97 3.21 3.22
8.95
8.75
ns
1.55
2.79 0.26 1.11
1.10
2.83 2.59 3.45 3.65
8.62
8.38
ns
Std.
1.55
2.73 0.26 1.11
1.10
2.77 2.52 3.50 3.75
8.56
8.30
ns
12 mA
Std.
1.55
2.72 0.26 1.11
1.10
2.76 2.43 3.58 4.19
8.55
8.22
ns
16 mA
Std.
1.55
2.72 0.26 1.11
1.10
2.76 2.43 3.58 4.19
8.55
8.22
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
Std.
1.55
6.32
4 mA
Std.
1.55
6 mA
Std.
8 mA
Std.
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.26 1.11
1.10
6.43
5.81
2.47 2.16 12.22 11.60
ns
5.27
0.26 1.11
1.10
5.35
5.01
2.78 2.92 11.14 10.79
ns
1.55
4.56
0.26 1.11
1.10
4.64
4.44
3.00 3.30 10.42 10.22
ns
1.55
4.56
0.26 1.11
1.10
4.64
4.44
3.00 3.30 10.42 10.22
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 66
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
1.55
3.22 0.26 1.11
4 mA
Std.
1.55
6 mA
Std.
8 mA
Std.
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.26 3.18 2.47 2.20
9.05
8.97
ns
2.72 0.26 1.11
1.10
2.75 2.50 2.78 3.01
8.54
8.29
ns
1.55
2.43 0.26 1.11
1.10
2.47 2.16 2.99 3.39
8.25
7.94
ns
1.55
2.43 0.26 1.11
1.10
2.47 2.16 2.99 3.39
8.25
7.94
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
1.55
6.13
0.26
1.08
1.10
6.24
5.79
2.08
1.78
ns
4 mA
Std.
1.55
5.17
0.26
1.08
1.10
5.26
4.98
2.38
2.54
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
2 mA
Std.
3.06
0.26
1.08
1.10
3.10
3.01
2.08
1.83
3.06
ns
4 mA
Std.
2.60
0.26
1.08
1.10
2.64
2.33
2.38
2.62
2.60
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 67
IGLOO DC and Switching Characteristics
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-111 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.5 V
LVCMOS
VIL
Max.
V
VIH
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
Drive
Strength
Min.
V
2 mA
–0.3 0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI
0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3 0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI
0.75 * VCCI
4
4
25
33
10 10
6 mA
–0.3 0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI
0.75 * VCCI
6
6
32
39
10 10
8 mA
–0.3 0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI
0.75 * VCCI
8
8
66
55
10 10
12 mA
–0.3 0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI
0.75 * VCCI 12
12
66
55
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-112 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS
VIL
Max.
V
VIH
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
Drive
Strength
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI
4
4
25
33
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
2- 68
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-113 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
1.5 V
LVCMOS
VIL
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
3.6
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-10 • AC Loading
Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.5
0.75
5
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
R ev i si o n 2 3
2- 69
IGLOO DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-115 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
Std.
0.97
6.62
4 mA
Std.
0.97
6 mA
Std.
8 mA
12 mA
tPY
tEOUT
tZL
tZH
0.18 1.17
0.66
6.75
6.06
5.75
0.18 1.17
0.66
5.86
0.97
5.43
0.18 1.17
0.66
Std.
0.97
5.35
0.18 1.17
Std.
0.97
5.35
0.18 1.17
tLZ
tHZ
tZLS
tZHS
Units
2.79 2.31 10.35
9.66
ns
5.34
3.06 2.78
9.46
8.93
ns
5.54
5.19
3.12 2.90
9.13
8.78
ns
0.66
5.46
5.20
2.63 3.36
9.06
8.79
ns
0.66
5.46
5.20
2.63 3.36
9.06
8.79
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-116 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
2 mA
Std.
0.97
2.97 0.18 1.17
4 mA
Std.
0.97
6 mA
Std.
8 mA
12 mA
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
3.04 2.90 2.78 2.40 6.63
6.50
ns
2.60 0.18 1.17
0.66
2.65 2.45 3.05 2.88 6.25
6.05
ns
0.97
2.53 0.18 1.17
0.66
2.58 2.37 3.11 3.00 6.18
5.96
ns
Std.
0.97
2.50 0.18 1.17
0.66
2.56 2.27 3.21 3.48 6.15
5.86
ns
Std.
0.97
2.50 0.18 1.17
0.66
2.56 2.27 3.21 3.48 6.15
5.86
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-117 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
0.97
5.93 0.18 1.18
4 mA
Std.
0.97
5.11 0.18 1.18
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.66
6.04 5.46 2.30 2.15
9.64
9.06
ns
0.66
5.21 4.80 2.54 2.58
8.80
8.39
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-118 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
0.97
2.58 0.18 1.18
0.66
2.64 2.41 2.29 2.24 6.23 6.01
ns
4 mA
Std.
0.97
2.25 0.18 1.18
0.66
2.30 2.00 2.53 2.68 5.89 5.59
ns
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS tZHS
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 70
R ev i sio n 2 3
Units
IGLOO Low Power Flash FPGAs
Table 2-119 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Banks
Drive Strength
2 mA
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.97
5.88
0.18
1.14
0.66
6.00
5.45
2.00
1.94
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-120 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Banks
Drive Strength
2 mA
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
0.97
2.51
0.18
1.14
0.66
2.56
2.21
1.99
2.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 71
IGLOO DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-121 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
Std.
1.55
7.17
4 mA
Std.
1.55
6 mA
Std.
8 mA
12 mA
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.26 1.27
1.10
7.29
6.60
3.33 3.03 13.07 12.39
ns
6.27
0.26 1.27
1.10
6.37
5.86
3.61 3.51 12.16 11.64
ns
1.55
5.94
0.26 1.27
1.10
6.04
5.70
3.67 3.64 11.82 11.48
ns
Std.
1.55
5.86
0.26 1.27
1.10
5.96
5.71
2.83 4.11 11.74 11.50
ns
Std.
1.55
5.86
0.26 1.27
1.10
5.96
5.71
2.83 4.11 11.74 11.50
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-122 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive Strength
Speed Grade
tDOUT
2 mA
Std.
1.55
3.44 0.26 1.27
4 mA
Std.
1.55
6 mA
Std.
8 mA
12 mA
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.49 3.35 3.32 3.12
9.28
9.14
ns
3.06 0.26 1.27
1.10
3.10 2.89 3.60 3.61
8.89
8.67
ns
1.55
2.98 0.26 1.27
1.10
3.02 2.80 3.66 3.74
8.81
8.58
ns
Std.
1.55
2.96 0.26 1.27
1.10
3.00 2.70 3.75 4.23
8.78
8.48
ns
Std.
1.55
2.96 0.26 1.27
1.10
3.00 2.70 3.75 4.23
8.78
8.48
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
1.55
6.43 0.26 1.27
1.10
6.54 5.95 2.82 2.83 12.32 11.74
ns
4 mA
Std.
1.55
5.59 0.26 1.27
1.10
5.68 5.27 3.07 3.27 11.47 11.05
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
2 mA
Std.
1.55
3.02 0.26 1.27
4 mA
Std.
1.55
2.68 0.26 1.27
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.07 2.81 2.82 2.92
8.85
8.59
ns
1.10
2.72 2.39 3.07 3.37
8.50
8.18
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 72
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Banks
Drive Strength
2 mA
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
1.55
6.35
0.26
1.22
1.10
6.46
5.93
2.40
2.46
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Banks
Drive Strength
2 mA
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
1.55
2.92
0.26
1.22
1.10
2.96
2.60
2.40
2.56
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 73
IGLOO DC and Switching Characteristics
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V
applications. It uses a 1.2 V input buffer and a push-pull output buffer. Furthermore, all LVCMOS 1.2 V
software macros comply with LVCMOS 1.2 V wide range as specified in the JESD8-12A
specification.
Table 2-127 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.2 V
LVCMOS
Drive
Strength
2 mA
VIL
Min.
V
–0.3
Max.
V
VIH
Min.
V
Max.
V
0.35 * VCCI 0.65 * VCCI
1.26
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
0.25 * VCCI 0.75 * VCCI
2
2
20
26
10
10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-128 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength
Min.
V
2 mA
–0.3
Max.
V
VIH
Min.
V
Max.
V
0.35 * VCCI 0.65 * VCCI
1.26
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
0.25 * VCCI 0.75 * VCCI
2
2
20
26
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-129 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength
Min.
V
1 mA
–0.3
Max.
V
VIH
Min.
V
0.35 * VCCI 0.65 * VCCI
Max.
V
3.6
VOL
VOH
IOL IOH IOSH
IOSL IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
0.25 * VCCI 0.75 * VCCI
1
1
20
26
10 10
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 85°C junction temperature.
5. Software default selection highlighted in gray.
2- 74
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
R=1k
Test Point
Enable Path
Test Point
Datapath
5 pF
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-11 • AC Loading
Table 2-130 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.2
0.6
5
0
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
Timing Characteristics
1.2 V DC Core Voltage
Table 2-131 • 1.2 V LVCMOS Low Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
8.37
0.26 1.60
Std.
1.55
tPY
tEOUT
tZL
tZH
1.10
8.04
7.17
tLZ
tHZ
tZLS
tZHS
3.94 3.52 13.82 12.95
Units
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-132 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Advanced I/O Banks
Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ
2 mA
Std.
1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65
tZLS
tZHS
Units
9.26
9.14
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-133 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength Speed Grade tDOUT
tDP
tDIN
2 mA
7.59
0.26 1.59
Std.
1.55
tPY
tEOUT
tZL
tZH
1.10
7.29
6.54
tLZ
tHZ
tZLS
tZHS
3.30 3.35 13.08 12.33
Units
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-134 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Plus I/O Banks
Drive Strength
2 mA
Speed Grade
tDOUT
Std.
1.55
tDP
tDIN
tPY
3.22 0.26 1.59
tEOUT
1.10
tZLS
tZHS
Units
3.11 2.78 3.29 3.48 8.90
tZL
tZH
tLZ
tHZ
8.57
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 75
IGLOO DC and Switching Characteristics
Table 2-135 • 1.2 V LVCMOS High Slew
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
1.55
8.57
0.26
1.53
1.10
8.23
7.38
2.51
2.39
ns
1 mA
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-136 • 1.2 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Banks
Drive Strength
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
Units
Std.
1.55
3.59
0.26
1.53
1.10
3.47
3.06
2.51
2.49
ns
1 mA
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
1.2 V LVCMOS Wide Range
Table 2-137 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range
Applicable to Advanced I/O Banks
1.2 V LVCMOS
Wide Range
VIL
Equivalent
Software
Default
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
2 mA
Max.
V
VIH
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSL IOSH IIL2 IIH3
Max.
V
Min.
V
Max. Max.
mA mA mA4 mA4 µA5 µA5
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10
10
Notes:
1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 µA.
The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS
models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
2- 76
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-138 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range
Applicable to Standard Plus I/O Banks
1.2 V LVCMOS
Wide Range
VIL
Equivalent
Software
Default
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
2mA
VIH
Max.
V
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSL IOSH IIL2 IIH3
Max.
V
Min.
V
Max. Max.
mA mA mA4 mA4 µA5 µA5
–0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10 10
Notes:
1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 µA.
The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS
models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
Table 2-139 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range
Applicable to Standard I/O Banks
1.2 V LVCMOS
Wide Range
VIL
Equivalent
Software
Default
Drive
Drive
Strength Min.
Strength Option1
V
100 µA
1 mA
VIH
Max.
V
Min.
V
Max.
V
VOL
VOH
IOL IOH IOSL IOSH IIL2 IIH3
Max.
V
Min.
V
Max. Max.
mA mA mA4 mA4 µA5 µA5
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 100 100
20
26
10
10
Notes:
1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 µA.
The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS
models.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 85°C junction temperature.
6. Software default selection highlighted in gray.
Table 2-140 • 1.2 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
CLOAD (pF)
1.2
0.6
5
0
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
Timing Characteristics
Refer to LVCMOS 1.2 V (normal range) "Timing Characteristics" on page 2-75 for worst-case timing.
R ev i si o n 2 3
2- 77
IGLOO DC and Switching Characteristics
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus
applications.
Table 2-141 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced and Standard Plus I/Os
3.3 V PCI/PCI-X
Drive Strength
VIL
Min.
V
VIH
Max.
V
Min.
V
Max.
V
Per PCI
specification
VOL
VOH
IOL IOH
IOSH
IOSL
IIL
Max.
V
Min.
V
mA mA
Max.
mA1
Max.
mA1
µA2 µA2
Per PCI curves
10
IIH
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-12.
R = 25
Test Point
Datapath
R to VCCI for tDP (F)
R to GND for tDP (R)
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
10 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-12 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is
described in Table 2-142.
Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
Input High (V)
Measuring Point* (V)
CLOAD (pF)
3.3
0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
10
0
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-143 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.97
2.32
0.19
0.70
0.66
2.37
1.78
2.67
3.05
5.96
5.38
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-144 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.97
1.97
0.19
0.70
0.66
2.01
1.50
2.36
2.79
5.61
5.10
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 78
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-145 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.55
2.91
0.25
0.86
1.10
2.95
2.29
3.25
3.93
8.74
8.08
ns
Std.
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Table 2-146 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.55
2.53
0.25
0.85
1.10
2.57
1.98
2.93
3.64
8.35
7.76
ns
Std.
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when
the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 
Z0 = 50 
140 
N
165 
P
+
–
100 
Z0 = 50 
FPGA
INBUF_LVDS
N
Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation
R ev i si o n 2 3
2- 79
IGLOO DC and Switching Characteristics
Table 2-147 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
VCCI
Supply Voltage
VOL
Output Low Voltage
0.9
1.075
1.25
V
VOH
Output High Voltage
1.25
1.425
1.6
V
IOL
Output Lower Current
0.65
0.91
1.16
mA
IOH1
Output High Current
0.65
0.91
1.16
mA
VI
Input Voltage
2.925
V
1
0
2
IIH
Input High Leakage Current
10
µA
IIL2
Input Low Leakage Current
10
µA
VODIFF
Differential Output Voltage
VOCM
VICM
4
VIDIFF
250
350
450
mV
Output Common-Mode Voltage
1.125
1.25
1.375
V
Input Common-Mode Voltage
0.05
1.25
2.35
V
Input Differential Voltage
100
350
mV
Notes:
1. IOL/IOH is defined by VODIFF/(resistor network)
2. Currents are measured at 85°C junction temperature.
Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.075
Input High (V)
Measuring Point* (V)
1.325
Cross point
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-149 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
0.97
1.67
0.19
1.31
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on
page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-150 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
1.55
2.19
0.25
1.52
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on
page 2-7 for derating values.
2- 80
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in
the LVDS section in Table 2-149 on page 2-80 and Table 2-150 on page 2-80.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").
Receiver
Transceiver
EN
R
RS
Zstub
+
RS
Zstub
Z0
RT Z
0
D
EN
T
-
+
Driver
RS
Zstub
-
RS
Zstub
Zstub
EN
Transceiver
EN
R
-
+
RS
Receiver
+
RS
Zstub
EN
T
-
RS
Zstub
+
RS
Zstub
RS
BIBUF_LVDS
-
RS
...
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
RT
Figure 2-14 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVDS implementation because the output standard
specifications are different.
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 
Z0 = 50 
187 W
N
100 
P
+
–
100 
Z0 = 50 
FPGA
INBUF_LVPECL
N
Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation
R ev i si o n 2 3
2- 81
IGLOO DC and Switching Characteristics
Table 2-151 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
3.0
Max.
Min.
3.3
Max.
Units
VCCI
Supply Voltage
3.6
VOL
Output Low Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output High Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input Low, Input High Voltages
0
3.6
0
3.6
0
3.6
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
300
V
300
mV
Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.64
Input High (V)
Measuring Point* (V)
1.94
Cross point
Note: *Measuring point = Vtrip. See Table 2-28 on page 2-102 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
0.97
1.67
0.19
1.16
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-154 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
1.55
2.24
0.25
1.37
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 82
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
INBUF
Preset
L
DOUT
Data_out
E
Y
F
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
Pad Out
D
E
E
EOUT
B
H
I
A
J
K
INBUF
INBUF
D_Enable
CLK
CLKBUF
Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
R ev i si o n 2 3
2- 83
IGLOO DC and Switching Characteristics
Table 2-155 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
Note: *See Figure 2-16 on page 2-83 for more information.
2- 84
R ev i sio n 2 3
H, DOUT
L, DOUT
H, EOUT
I, EOUT
IGLOO Low Power Flash FPGAs
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
D
CC
Q
DFN1E1C1
EE
Data_out FF
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Core
Array
Pad Out
DOUT
Y
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
D
Q
DFN1E1C1
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-17 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
R ev i si o n 2 3
2- 85
IGLOO DC and Switching Characteristics
Table 2-156 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
Note: *See Figure 2-17 on page 2-85 for more information.
2- 86
R ev i sio n 2 3
HH, DOUT
LL, DOUT
HH, EOUT
IGLOO Low Power Flash FPGAs
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIWPRE
50%
tIRECPRE
tIREMPRE
50%
50%
tIHE
Preset
tISUE
50%
tIWCLR
50%
Clear
tIRECCLR
tIREMCLR
50%
50%
tIPRE2Q
50%
Out_1
50%
tICLR2Q
50%
tICLKQ
Figure 2-18 • Input Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-157 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tICLKQ
Clock-to-Q of the Input Data Register
0.42
ns
tISUD
Data Setup Time for the Input Data Register
0.47
ns
tIHD
Data Hold Time for the Input Data Register
0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.67
ns
tIHE
Enable Hold Time for the Input Data Register
0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.79
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.79
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.24
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.24
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19
ns
tICKMPWH
Clock Minimum Pulse Width High for the Input Data Register
0.31
ns
tICKMPWL
Clock Minimum Pulse Width Low for the Input Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 87
IGLOO DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-158 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Std.
Units
tICLKQ
Clock-to-Q of the Input Data Register
Description
0.68
ns
tISUD
Data Setup Time for the Input Data Register
0.97
ns
tIHD
Data Hold Time for the Input Data Register
0.00
ns
tISUE
Enable Setup Time for the Input Data Register
1.02
ns
tIHE
Enable Hold Time for the Input Data Register
0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
1.19
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
1.19
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.24
ns
0.00
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.24
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19
ns
tICKMPWH
Clock Minimum Pulse Width High for the Input Data Register
0.31
ns
tICKMPWL
Clock Minimum Pulse Width Low for the Input Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
50%
tOPRE2Q
DOUT
50%
50%
tOCLR2Q
tOCLKQ
Figure 2-19 • Output Register Timing Diagram
2- 88
R ev i sio n 2 3
tORECCLR
50%
tOREMCLR
50%
IGLOO Low Power Flash FPGAs
Timing Characteristics
1.5 V DC Core Voltage
Table 2-159 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tOCLKQ
Clock-to-Q of the Output Data Register
1.00
ns
tOSUD
Data Setup Time for the Output Data Register
0.51
ns
tOHD
Data Hold Time for the Output Data Register
0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.70
ns
tOHE
Enable Hold Time for the Output Data Register
0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.34
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.34
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.24
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.24
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19
ns
tOCKMPWH
Clock Minimum Pulse Width High for the Output Data Register
0.31
ns
tOCKMPWL
Clock Minimum Pulse Width Low for the Output Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-160 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Std.
Units
tOCLKQ
Clock-to-Q of the Output Data Register
Description
1.52
ns
tOSUD
Data Setup Time for the Output Data Register
1.15
ns
tOHD
Data Hold Time for the Output Data Register
0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
1.11
ns
tOHE
Enable Hold Time for the Output Data Register
0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.96
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.96
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.24
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.24
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19
ns
tOCKMPWH
Clock Minimum Pulse Width High for the Output Data Register
0.31
ns
tOCKMPWL
Clock Minimum Pulse Width Low for the Output Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 89
IGLOO DC and Switching Characteristics
Output Enable Register
tOECKMPWH tOECKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOEWPRE
50%
tOESUEtOEHE
tOEREMPRE
tOERECPRE
50%
50%
tOEWCLR
50%
Clear
tOEPRE2Q
EOUT
50%
tOERECCLR
tOEREMCLR
50%
50%
tOECLR2Q
50%
50%
tOECLKQ
Figure 2-20 • Output Enable Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-161 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
0.75
ns
Data Setup Time for the Output Enable Register
0.51
ns
Data Hold Time for the Output Enable Register
0.00
ns
Enable Setup Time for the Output Enable Register
0.73
ns
Enable Hold Time for the Output Enable Register
0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
1.13
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
1.13
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.24
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.24
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19
ns
tOECKMPWH
Clock Minimum Pulse Width High for the Output Enable Register
0.31
ns
tOECKMPWL
Clock Minimum Pulse Width Low for the Output Enable Register
0.28
ns
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
tOEHD
tOESUE
tOEHE
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 90
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-162 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
1.10
ns
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
1.15
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
1.22
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
1.65
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
1.65
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.24
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.24
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19
ns
tOECKMPWH
Clock Minimum Pulse Width High for the Output Enable Register
0.31
ns
tOECKMPWL
Clock Minimum Pulse Width Low for the Output Enable Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 91
IGLOO DC and Switching Characteristics
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-21 • Input DDR Timing Model
Table 2-163 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR input
A, B
tDDRIHD
Data Hold Time of DDR input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
2- 92
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CLK
tDDRISUD
Data
1
2
3
4
5
6
tDDRIHD
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
5
7
Figure 2-22 • Input DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-164 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.48
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.65
ns
tDDRISUD1
Data Setup for Input DDR (negedge)
0.50
ns
tDDRISUD2
Data Setup for Input DDR (posedge)
0.40
ns
tDDRIHD1
Data Hold for Input DDR (negedge)
0.00
ns
tDDRIHD2
Data Hold for Input DDR (posedge)
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.82
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.98
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.23
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
ns
tDDRICKMPWH
Clock Minimum Pulse Width High for Input DDR
0.31
ns
tDDRICKMPWL
Clock Minimum Pulse Width Low for Input DDR
0.28
ns
FDDRIMAX
Maximum Frequency for Input DDR
250.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 93
IGLOO DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-165 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.76
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.94
ns
tDDRISUD1
Data Setup for Input DDR (negedge)
0.93
ns
tDDRISUD2
Data Setup for Input DDR (posedge)
0.84
ns
tDDRIHD1
Data Hold for Input DDR (negedge)
0.00
ns
tDDRIHD2
Data Hold for Input DDR (posedge)
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
1.23
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
1.42
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.24
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
ns
tDDRICKMPWH
Clock Minimum Pulse Width High for Input DDR
0.31
ns
tDDRICKMPWL
Clock Minimum Pulse Width Low for Input DDR
0.28
ns
FDDRIMAX
Maximum Frequency for Input DDR
160.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 94
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
Output DDR Module
Output DDR
A
Data_F
(from core)
X
FF1
B
CLK
CLKBUF
E
X
C
X
D
Data_R
(from core)
Out
0
X
1
X
OUTBUF
FF2
B
X
CLR
INBUF
C
X
DDR_OUT
Figure 2-23 • Output DDR Timing Model
Table 2-166 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
R ev i si o n 2 3
2- 95
IGLOO DC and Switching Characteristics
CLK
tDDROSUD2 tDDROHD2
1
Data_F
2
5
tDDROHD1
tDDROREMCLR
Data_R 6
4
3
7
8
9
10
11
tDDRORECCLR
tDDROREMCLR
CLR
tDDROCLR2Q
tDDROCLKQ
Out
7
2
8
3
9
4
10
Figure 2-24 • Output DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-167 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
1.07
ns
tDDROSUD1
Data_F Data Setup for Output DDR
0.67
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.67
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.38
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.23
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
ns
tDDROCKMPWH
Clock Minimum Pulse Width High for the Output DDR
0.31
ns
tDDROCKMPWL
Clock Minimum Pulse Width Low for the Output DDR
0.28
ns
FDDOMAX
Maximum Frequency for the Output DDR
250.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 96
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-168 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
1.60
ns
tDDROSUD1
Data_F Data Setup for Output DDR
1.09
ns
tDDROSUD2
Data_R Data Setup for Output DDR
1.16
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.99
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.24
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
ns
tDDROCKMPWH
Clock Minimum Pulse Width High for the Output DDR
0.31
ns
tDDROCKMPWL
Clock Minimum Pulse Width Low for the Output DDR
0.28
ns
FDDOMAX
Maximum Frequency for the Output DDR
160.00
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 97
IGLOO DC and Switching Characteristics
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library. For more details, refer to the IGLOO, Fusion,
and ProASIC3 Macro Library Guide.
A
A
B
A
OR2
Y
AND2
A
Y
B
B
B
XOR2
A
B
C
Y
A
A
B
C
NAND3
A
MAJ3
B
Y
C
Figure 2-25 • Sample of Combinatorial Cells
R ev i sio n 2 3
NAND2
XOR3
Y
Y
Y
0
MUX2
B
S
2- 98
NOR2
B
A
A
Y
INV
1
Y
IGLOO Low Power Flash FPGAs
tPD
Fanout = 4
A
Net
NAND2 or Any
Combinatorial
Logic
Length = 1 VersaTile
B
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
Y
tPD = MAX(tPD(RR), tPD(RF),
tPD(FF), tPD(FR)) where edges are
applicable for a particular
combinatorial cell
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
tPD
OUT
(FR)
50%
tPD
(RF)
50%
GND
Figure 2-26 • Timing Model and Waveforms
R ev i si o n 2 3
2- 99
IGLOO DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-169 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
Std.
Units
Y =!A
tPD
0.80
ns
Y=A·B
tPD
0.84
ns
NAND2
Y =!(A · B)
tPD
0.90
ns
OR2
Y=A+B
tPD
1.19
ns
NOR2
Y = !(A + B)
tPD
1.10
ns
XOR2
Y = A B
tPD
1.37
ns
MAJ3
Y = MAJ(A, B, C)
tPD
1.33
ns
XOR3
Y = A  B C
tPD
1.79
ns
MUX2
Y = A !S + B S
tPD
1.48
ns
AND3
Y=A·B·C
tPD
1.21
ns
INV
AND2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
1.2 V DC Core Voltage
Table 2-170 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Combinatorial Cell
Equation
Parameter
Std.
Units
Y = !A
tPD
1.34
ns
Y=A·B
tPD
1.43
ns
Y = !(A · B)
tPD
1.59
ns
Y=A+B
tPD
2.30
ns
NOR2
Y = !(A + B)
tPD
2.07
ns
XOR2
Y = A B
tPD
2.46
ns
MAJ3
Y = MAJ(A, B, C)
tPD
2.46
ns
XOR3
Y = A  B C
tPD
3.12
ns
MUX2
Y = A !S + B S
tPD
2.83
ns
AND3
Y=A·B·C
tPD
2.28
ns
INV
AND2
NAND2
OR2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
2- 10 0
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
VersaTile Specifications as a Sequential Module
The IGLOO library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3
Macro Library Guide.
Data
D
Q
Out
Data
En
DFN1
CLK
D
Out
Q
DFN1E1
CLK
PRE
Data
D
Q
Out
Data
En
DFN1C1
D
Q
Out
DFI1E1P1
CLK
CLK
CLR
Figure 2-27 • Sample of Sequential Cells
R ev i si o n 2 3
2- 101
IGLOO DC and Switching Characteristics
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
EN
PRE
50%
tRECPRE
tREMPRE
50%
50%
50%
CLR
tPRE2Q
50%
tREMCLR
tRECCLR
tWCLR
Out
50%
50%
0
tWPRE
tSUE
50%
50%
tHD
50%
tHE
50%
50%
50%
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-28 • Timing Model and Waveforms
Timing Characteristics
1.5 V DC Core Voltage
Table 2-171 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.89
ns
tSUD
Data Setup Time for the Core Register
0.81
ns
tHD
Data Hold Time for the Core Register
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.73
ns
tHE
Enable Hold Time for the Core Register
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.60
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.62
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.24
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.23
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
ns
tCKMPWH
Clock Minimum Pulse Width High for the Core Register
0.56
ns
tCKMPWL
Clock Minimum Pulse Width Low for the Core Register
0.56
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 10 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-172 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
1.61
ns
tSUD
Data Setup Time for the Core Register
1.17
ns
tHD
Data Hold Time for the Core Register
0.00
ns
tSUE
Enable Setup Time for the Core Register
1.29
ns
tHE
Enable Hold Time for the Core Register
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.87
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.89
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.24
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.24
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.46
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.46
ns
tCKMPWH
Clock Minimum Pulse Width High for the Core Register
0.95
ns
tCKMPWL
Clock Minimum Pulse Width Low for the Core Register
0.95
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 103
IGLOO DC and Switching Characteristics
Global Resource Characteristics
AGL250 Clock Tree Topology
Clock delays are device-specific. Figure 2-29 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-29 is driven by a CCC located on the west side of the AGL250 device. It
is used to drive all D-flip-flops in the device.
Central
Global Rib
VersaTile
Rows
CCC
Global Spine
Figure 2-29 • Example of Global Tree Use in an AGL250 Device for Clock Routing
2- 10 4
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-113. Table 2-173 to Table 2-188 on page 2-112
present minimum and maximum global clock delays within each device. Minimum and maximum delays
are measured with minimum and maximum loading.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-173 • AGL015 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.21
1.42
ns
tRCKH
Input High Delay for Global Clock
1.23
1.49
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.27
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-174 • AGL030 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.21
1.42
ns
tRCKH
Input High Delay for Global Clock
1.23
1.49
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.27
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 105
IGLOO DC and Switching Characteristics
Table 2-175 • AGL060 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.33
1.55
ns
tRCKH
Input High Delay for Global Clock
1.35
1.62
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.27
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-176 • AGL125 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.36
1.71
ns
tRCKH
Input High Delay for Global Clock
1.39
1.82
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.43
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 10 6
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-177 • AGL250 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.39
1.73
ns
tRCKH
Input High Delay for Global Clock
1.41
1.84
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.43
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-178 • AGL400 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min. 1
Max. 2
Units
tRCKL
Input Low Delay for Global Clock
1.45
1.79
ns
tRCKH
Input High Delay for Global Clock
1.48
1.91
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.43
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 107
IGLOO DC and Switching Characteristics
Table 2-179 • AGL600 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.48
1.82
ns
tRCKH
Input High Delay for Global Clock
1.52
1.94
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.42
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-180 • AGL1000 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.55
1.89
ns
tRCKH
Input High Delay for Global Clock
1.60
2.02
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.18
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.15
ns
tRCKSW
Maximum Skew for Global Clock
0.42
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 10 8
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-181 • AGL015 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.79
2.09
ns
tRCKH
Input High Delay for Global Clock
1.87
2.26
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.39
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-182 • AGL030 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
1.80
2.09
ns
tRCKH
Input High Delay for Global Clock
1.88
2.27
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.39
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 109
IGLOO DC and Switching Characteristics
Table 2-183 • AGL060 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.04
2.33
ns
tRCKH
Input High Delay for Global Clock
2.10
2.51
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.40
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-184 • AGL125 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.08
2.54
ns
tRCKH
Input High Delay for Global Clock
2.15
2.77
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.62
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 0
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-185 • AGL250 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.11
2.57
ns
tRCKH
Input High Delay for Global Clock
2.19
2.81
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.62
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-186 • AGL400 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.18
2.64
ns
tRCKH
Input High Delay for Global Clock
2.27
2.89
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.62
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 111
IGLOO DC and Switching Characteristics
Table 2-187 • AGL600 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.
1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.22
2.67
ns
tRCKH
Input High Delay for Global Clock
2.32
2.93
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.61
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-188 • AGL1000 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input Low Delay for Global Clock
2.31
2.76
ns
tRCKH
Input High Delay for Global Clock
2.42
3.03
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
1.40
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
1.65
ns
tRCKSW
Maximum Skew for Global Clock
0.61
ns
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element,
located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully
loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 11 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-189 • IGLOO CCC/PLL Specification
For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Parameter
Min.
Clock Conditioning Circuitry Input Frequency fIN_CCC
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Max.
Units
1.5
250
MHz
0.75
250
MHz
Delay Increments in Programmable Delay Blocks 1, 2
Typ.
3603
Number of Programmable Values in Each Programmable Delay Block
ps
32
4, 5
Serial Clock (SCLK) for Dynamic PLL
100
ns
1
ns
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
2.5
ns
LockControl = 1
1.5
ns
48.5
51.5
%
1.25
15.65
ns
0.469
15.65
ns
Input Cycle-to-Cycle Jitter (peak magnitude)
Acquisition Time
Tracking Jitter
6
Output Duty Cycle
Delay Range in Block: Programmable Delay 1
1, 2
Delay Range in Block: Programmable Delay 2 1, 2
Delay Range in Block: Fixed Delay
1, 2
3.5
ns
Maximum Peak-to-Peak Jitter Data7
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
SSO  48 SSO  88 SSO  168
0.75 MHz to 50 MHz
0.60%
0.80%
1.20%
50 MHz to 160 MHz
4.00%
6.00%
12.00%
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
4. The AGL030 device does not support a PLL.
5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of
packages, 20 pF load.
8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out
times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously
Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User’s Guide.
R ev i si o n 2 3
2- 113
IGLOO DC and Switching Characteristics
Table 2-190 • IGLOO CCC/PLL Specification
For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage
Parameter
Min.
Clock Conditioning Circuitry Input Frequency fIN_CCC
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Typ.
Max.
Units
1.5
160
MHz
0.75
160
MHz
Delay Increments in Programmable Delay Blocks 1, 2
5803
Number of Programmable Values in Each Programmable Delay Block
ps
32
4,5
60
ns
0.25
ns
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
4
ns
LockControl = 1
3
ns
Serial Clock (SCLK) for Dynamic PLL
Input Cycle-to-Cycle Jitter (peak magnitude)
Acquisition Time
Tracking Jitter6
Output Duty Cycle
48.5
51.5
%
1,2
2.3
20.86
ns
1,2
0.863
20.86
ns
Delay Range in Block: Programmable Delay 1
Delay Range in Block: Programmable Delay 2
Delay Range in Block: Fixed Delay
1, 2, 5
5.7
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
Maximum Peak-to-Peak Jitter
Data7,8
SSO  49 SSO  89 SSO  169
0.75 MHz to 50 MHz
1.20%
2.00%
3.00%
50 MHz to 160 MHz
5.00%
7.00%
15.00%
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.
2. TJ = 25°C, VCC = 1.2 V
3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
5. The AGL030 device does not support a PLL.
6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO
period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if
the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
8. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of
packages, 20 pF load.
9. SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each
other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed
Circuit Board Layout" section in the IGLOO FPGA Fabric User’s Guide.
10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and
ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User’s Guide.
2- 11 4
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-30 • Peak-to-Peak Jitter Definition
R ev i si o n 2 3
2- 115
IGLOO DC and Switching Characteristics
Embedded SRAM and FIFO Characteristics
SRAM
RAM512X18
RAM4K9
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
PIPE
REN
RCLK
ADDRB11
ADDRB10
DOUTB8
DOUTB7
ADDRB0
DOUTB0
DINB8
DINB7
WADDR8
WADDR7
WADDR0
WD17
WD16
WD0
DINB0
WW1
WW0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
WEN
WCLK
RESET
RESET
Figure 2-31 • RAM Models
2- 11 6
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADDR
A1
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tCKQ1
DOUT|RD
Dn
D0
D1
D2
tDOH1
Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A1
A0
[R|W]ADDR
A2
tBKS
tBKH
BLK
tENH
tENS
WEN
tCKQ2
DOUT|RD
Dn
D0
D1
tDOH2
Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.
R ev i si o n 2 3
2- 117
IGLOO DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADDR
A1
A2
tBKS
tBKH
BLK
tENS
tENH
WEN
tDS
DI0
DIN|WD
tDH
DI1
D2
Dn
DOUT|RD
Figure 2-34 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
[R|W]ADDR
A1
A2
tBKS
tBKH
BLK
tENS
WEN
tDS
DI0
DIN
DOUT
(pass-through)
DOUT
(pipelined)
tDH
DI1
Dn
DI2
DI0
DI1
DI0
Dn
Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.
2- 11 8
R ev isio n 2 3
DI1
IGLOO Low Power Flash FPGAs
tCYC
tCKH
tCKL
CLK
RESET
tRSTBQ
DOUT|RD
Dm
Dn
Figure 2-36 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
R ev i si o n 2 3
2- 119
IGLOO DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-191 • RAM4K9
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std. Units
tAS
Address setup time
0.83
ns
tAH
Address hold time
0.16
ns
tENS
REN, WEN setup time
0.81
ns
tENH
REN, WEN hold time
0.16
ns
tBKS
BLK setup time
1.65
ns
tBKH
BLK hold time
0.16
ns
tDS
Input data (DIN) setup time
0.71
ns
tDH
Input data (DIN) hold time
0.36
ns
tCKQ1
Clock High to new data valid on DOUT (output retained, WMODE = 0)
3.53
ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1)
3.06
ns
tCKQ2
Clock High to new data valid on DOUT (pipelined)
1.81
ns
tC2CWWL1
Address collision clk-to-clk delay for reliable write after write on same address – Applicable 0.23
to Closing Edge
ns
tC2CRWL1
Address collision clk-to-clk delay for reliable read access after write on same address – 0.35
Applicable to Opening Edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same address – 0.41
Applicable to Opening Edge
ns
tRSTBQ
RESET Low to data out Low on DOUT (flow-through)
ns
2.06
RESET Low to data out Low on DOUT (pipelined)
2.06
ns
tREMRSTB
RESET removal
0.61
ns
tRECRSTB
RESET recovery
3.21
ns
tMPWRSTB
RESET minimum pulse width
0.68
ns
tCYC
Clock cycle time
6.24
ns
FMAX
Maximum frequency
160
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 12 0
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-192 • RAM512X18
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std. Units
tAS
Address setup time
0.83
ns
tAH
Address hold time
0.16
ns
tENS
REN, WEN setup time
0.73
ns
tENH
REN, WEN hold time
0.08
ns
tDS
Input data (WD) setup time
0.71
ns
tDH
Input data (WD) hold time
0.36
ns
tCKQ1
Clock High to new data valid on RD (output retained)
4.21
ns
tCKQ2
Clock High to new data valid on RD (pipelined)
1.71
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same address - 0.35
Applicable to Opening Edge
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same address - 0.42
Applicable to Opening Edge
ns
tRSTBQ
RESET Low to data out Low on RD (flow-through)
2.06
ns
RESET Low to data out Low on RD (pipelined)
2.06
ns
tREMRSTB
RESET removal
0.61
ns
tRECRSTB
RESET recovery
3.21
ns
tMPWRSTB
RESET minimum pulse width
0.68
ns
tCYC
Clock cycle time
6.24
ns
FMAX
Maximum frequency
160
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 121
IGLOO DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-193 • RAM4K9
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tAS
Address setup time
1.53
ns
tAH
Address hold time
0.29
ns
tENS
REN WEN setup time
1.50
ns
tENH
REN, WEN hold time
0.29
ns
tBKS
BLK setup time
3.05
ns
tBKH
BLK hold time
0.29
ns
tDS
Input data (DIN) setup time
1.33
ns
tDH
Input data (DIN) hold time
0.66
ns
tCKQ1
Clock High to new data valid on DOUT (output retained, WMODE = 0)
6.61
ns
Clock High to new data valid on DOUT (flow-through, WMODE = 1)
5.72
ns
tCKQ2
Clock High to new data valid on DOUT (pipelined)
3.38
ns
tC2CWWL1
Address collision clk-to-clk delay for reliable write after write on same address – 0.30
Applicable to Closing Edge
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same address –
Applicable to Opening Edge
0.89
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same address –
Applicable to Opening Edge
1.01
ns
tRSTBQ
RESET Low to data out Low on DOUT (flow-through)
3.86
ns
RESET Low to data out Low on DOUT (pipelined)
3.86
ns
tREMRSTB
RESET removal
1.12
ns
tRECRSTB
RESET recovery
5.93
ns
tMPWRSTB
RESET minimum pulse width
1.18
ns
tCYC
Clock cycle time
10.90
ns
FMAX
Maximum frequency
92
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 12 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Table 2-194 • RAM512X18
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Std.
Units
tAS
Address setup time
Description
1.53
ns
tAH
Address hold time
0.29
ns
tENS
REN, WEN setup time
1.36
ns
tENH
REN, WEN hold time
0.15
ns
tDS
Input data (WD) setup time
1.33
ns
tDH
Input data (WD) hold time
0.66
ns
tCKQ1
Clock High to new data valid on RD (output retained)
7.88
ns
tCKQ2
Clock High to new data valid on RD (pipelined)
3.20
ns
tC2CRWH1
Address collision clk-to-clk delay for reliable read access after write on same address –
Applicable to Opening Edge
0.87
ns
tC2CWRH1
Address collision clk-to-clk delay for reliable write access after read on same address –
Applicable to Opening Edge
1.04
ns
tRSTBQ
RESET Low to data out Low on RD (flow through)
3.86
ns
RESET Low to data out Low on RD (pipelined)
3.86
ns
tREMRSTB
RESET removal
1.12
ns
tRECRSTB
RESET recovery
5.93
ns
tMPWRSTB
RESET minimum pulse width
1.18
ns
tCYC
Clock cycle time
10.90
ns
FMAX
Maximum frequency
92
MHz
Notes:
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 123
IGLOO DC and Switching Characteristics
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-37 • FIFO Model
2- 12 4
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Timing Waveforms
tCYC
RCLK
tENH
tENS
REN
tBKH
tBKS
RBLK
tCKQ1
RD
(flow-through)
Dn
D0
D1
D2
D0
D1
tCKQ2
RD
(pipelined)
Dn
Figure 2-38 • FIFO Read
tCYC
WCLK
tENS
tENH
WEN
WBLK
tBKS
tBKH
tDS
WD
DI0
tDH
DI1
Figure 2-39 • FIFO Write
R ev i si o n 2 3
2- 125
IGLOO DC and Switching Characteristics
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-40 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter) NO MATCH
NO MATCH
Figure 2-41 • FIFO EMPTY Flag and AEMPTY Flag Assertion
2- 12 6
R ev isio n 2 3
Dist = AEF_TH
MATCH (EMPTY)
IGLOO Low Power Flash FPGAs
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-42 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA MATCH
(Address Counter) (EMPTY)
RCLK
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-43 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA
(Address Counter)
WCLK
MATCH (FULL)
NO MATCH
1st Rising
Edge
After 1st
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-44 • FIFO FULL Flag and AFULL Flag Deassertion
R ev i si o n 2 3
2- 127
IGLOO DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-195 • FIFO
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
Std.
Units
tENS
REN, WEN Setup Time
1.99
ns
tENH
REN, WEN Hold Time
0.16
ns
tBKS
BLK Setup Time
0.30
ns
tBKH
BLK Hold Time
0.00
ns
tDS
Input Data (WD) Setup Time
0.76
ns
tDH
Input Data (WD) Hold Time
0.25
ns
tCKQ1
Clock High to New Data Valid on RD (flow-through)
3.33
ns
tCKQ2
Clock High to New Data Valid on RD (pipelined)
1.80
ns
tRCKEF
RCLK High to Empty Flag Valid
3.53
ns
tWCKFF
WCLK High to Full Flag Valid
3.35
ns
tCKAF
Clock High to Almost Empty/Full Flag Valid
12.85
ns
tRSTFG
RESET Low to Empty/Full Flag Valid
3.48
ns
tRSTAF
RESET Low to Almost Empty/Full Flag Valid
12.72
ns
tRSTBQ
RESET Low to Data Out Low on RD (flow-through)
2.02
ns
RESET Low to Data Out Low on RD (pipelined)
2.02
ns
tREMRSTB
RESET Removal
0.61
ns
tRECRSTB
RESET Recovery
3.21
ns
tMPWRSTB
RESET Minimum Pulse Width
0.68
ns
tCYC
Clock Cycle Time
6.24
ns
FMAX
Maximum Frequency for FIFO
160
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
2- 12 8
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
1.2 V DC Core Voltage
Table 2-196 • FIFO
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Description
Std.
Units
tENS
REN, WEN Setup Time
4.13
ns
tENH
REN, WEN Hold Time
0.31
ns
tBKS
BLK Setup Time
0.47
ns
tBKH
BLK Hold Time
0.00
ns
tDS
Input Data (WD) Setup Time
1.56
ns
tDH
Input Data (WD) Hold Time
0.49
ns
tCKQ1
Clock High to New Data Valid on RD (flow-through)
6.80
ns
tCKQ2
Clock High to New Data Valid on RD (pipelined)
3.62
ns
tRCKEF
RCLK High to Empty Flag Valid
7.23
ns
tWCKFF
WCLK High to Full Flag Valid
6.85
ns
tCKAF
Clock High to Almost Empty/Full Flag Valid
26.61
ns
tRSTFG
RESET Low to Empty/Full Flag Valid
7.12
ns
tRSTAF
RESET Low to Almost Empty/Full Flag Valid
26.33
ns
tRSTBQ
RESET Low to Data Out Low on RD (flow-through)
4.09
ns
RESET Low to Data Out Low on RD (pipelined)
4.09
ns
tREMRSTB
RESET Removal
1.23
ns
tRECRSTB
RESET Recovery
6.58
ns
tMPWRSTB
RESET Minimum Pulse Width
1.18
ns
tCYC
Clock Cycle Time
10.90
ns
FMAX
Maximum Frequency for FIFO
92
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.
R ev i si o n 2 3
2- 129
Embedded FlashROM Characteristics
tSU
CLK
tSU
tHOLD
Address
tSU
tHOLD
A0
tHOLD
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-45 • Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-197 • Embedded FlashROM Access Time
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
Std.
Units
tSU
Address Setup Time
0.57
ns
tHOLD
Address Hold Time
0.00
ns
tCK2Q
Clock to Out
34.14
ns
FMAX
Maximum Clock Frequency
15
MHz
Std.
Units
1.2 V DC Core Voltage
Table 2-198 • Embedded FlashROM Access Time
Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Description
tSU
Address Setup Time
0.59
ns
tHOLD
Address Hold Time
0.00
ns
tCK2Q
Clock to Out
52.90
ns
FMAX
Maximum Clock Frequency
10
MHz
IGLOO Low Power Flash FPGAs
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-20 for more details.
Timing Characteristics
Table 2-199 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tDISU
Test Data Input Setup Time
1.00
ns
tDIHD
Test Data Input Hold Time
2.00
ns
tTMSSU
Test Mode Select Setup Time
1.00
ns
tTMDHD
Test Mode Select Hold Time
2.00
ns
tTCK2Q
Clock to Q (data out)
8.00
ns
tRSTB2Q
Reset to Q (data out)
25.00
ns
FTCKMAX
TCK Maximum Frequency
15
MHz
tTRSTREM
ResetB Removal Time
0.58
ns
tTRSTREC
ResetB Recovery Time
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
Table 2-200 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tDISU
Test Data Input Setup Time
1.50
ns
tDIHD
Test Data Input Hold Time
3.00
ns
tTMSSU
Test Mode Select Setup Time
1.50
ns
tTMDHD
Test Mode Select Hold Time
3.00
ns
tTCK2Q
Clock to Q (data out)
11.00
ns
tRSTB2Q
Reset to Q (data out)
30.00
ns
FTCKMAX
TCK Maximum Frequency
9.00
MHz
tTRSTREM
ResetB Removal Time
1.18
ns
tTRSTREC
ResetB Recovery Time
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.
R ev i si o n 2 3
2- 131
IGLOO DC and Switching Characteristics
2- 13 2
R ev isio n 2 3
3 – Pin Descriptions
Supply Pins
GND
Ground
Ground supply voltage to the core, I/O outputs, and I/O logic.
GNDQ
Ground (quiet)
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always
be connected to GND on the board.
VCC
Core Supply Voltage
Supply voltage to the FPGA core, nominally 1.5 V for IGLOO V5 devices, and 1.2 V or 1.5 V for IGLOO
V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a
device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain
powered to allow JTAG signals to pass through the device.
For IGLOO V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows
in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is
at 1.2 V.
VCCIBx
I/O Supply Voltage
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to
eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI
connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V,
or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.
VMVx
I/O Supply Voltage (quiet)
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the
VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within
the package and improves input signal integrity. Each bank must have at least one VMV connection, and
no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to
provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V,
2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND.
VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be
connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1,
etc.).
VCCPLA/B/C/D/E/F
PLL Supply Voltage
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.
•
1.5 V for IGLOO V5 devices
•
1.2 V or 1.5 V for IGLOO V2 devices
When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the
unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to
ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple
VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning
Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the IGLOO FPGA Fabric
User’s Guide for a complete board solution for the PLL analog power supply and ground.
•
There is one VCCPLF pin on IGLOO devices.
VCOMPLA/B/C/D/E/F
PLL Ground
Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie
unused VCCPLx and VCOMPLx pins to ground.
There is one VCOMPLF pin on IGLOO devices.
R ev i si o n 2 3
3 -1
Pin Descriptions
VJTAG
JTAG Supply Voltage
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run
at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals
will not be able to transition the device, even in bypass mode.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
VPUMP
Programming Supply Voltage
IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming,
VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be
tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply
voltage (VPUMP) range is listed in the datasheet.
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
User Pins
I/O
User Input/Output
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected.
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os are instantly configured to the desired user configuration.
Unused I/Os are configured as follows:
GL
•
Output buffer is disabled (with tristate value of high impedance)
•
Input buffer is disabled (with tristate value of high impedance)
•
Weak pull-up is programmed
Globals
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power
Flash Devices and Mixed Signal FPGAs" chapter of the IGLOO FPGA Fabric User’s Guide. All inputs
labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input,
GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are
direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to
the global network are multiplexed, and only one input can be used as a global input.
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User’s
Guide for an explanation of the naming of global pins.
FF
Flash*Freeze Mode Activation Pin
Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and
exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O,
and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the
FF pin is available as a regular I/O.
3- 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be
considered.
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both
Flash*Freeze mode and normal operation mode. No user intervention is required.
Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The
Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO
devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology
and Low Power Modes" chapter of the IGLOO FPGA Fabric User’s Guide for more information on I/O
states during Flash*Freeze mode.
Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)
IGLOO Packages
Flash*Freeze Pin
CS81/UC81
H2
CS121
J5
CS196
P3
CS281
W2
QN48
14
QN68
18
QN132
B12
VQ100
27
FG144
L3
FG256
T3
FG484
W6
R ev i si o n 2 3
3 -3
Pin Descriptions
JTAG Pins
IGLOO devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate,
even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must
be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate
I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the
JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be
tied to GND.
TCK
Test Clock
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements. Refer to Table 3-2
for more information.
Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins
Tie-Off Resistance 1,2
VJTAG
VJTAG at 3.3 V
200  to 1 k
VJTAG at 2.5 V
200  to 1 k
VJTAG at 1.8 V
500  to 1 k
VJTAG at 1.5 V
500  to 1 k
Notes:
1. The TCK pin can be pulled-up or pulled-down.
2. The TRST pin is pulled-down.
3. Equivalent parallel resistance if more than one device is on the JTAG chain
Table 3-3 • TRST and TCK Pull-Down Recommendations
VJTAG
Tie-Off Resistance*
VJTAG at 3.3 V
200  to 1 k
VJTAG at 2.5 V
200  to 1 k
VJTAG at 1.8 V
500  to 1 k
VJTAG at 1.5 V
500  to 1 k
Note: Equivalent parallel resistance if more than one device is on the JTAG chain
TDI
Test Data Input
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.
TDO
Test Data Output
Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin.
TRST
Boundary Scan Reset Pin
The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor
values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The
values in Table 3-2 correspond to the resistor recommended when a single device is used, and the
equivalent parallel resistor when multiple devices are connected via a JTAG chain.
3- 4
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA
pin.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.
Special Function Pins
NC
No Connect
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
DC
Do Not Connect
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
Packaging
Semiconductor technology is constantly shrinking in size while growing in capability and functional
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved
to provide improved performance and flexibility.
Microsemi consistently delivers packages that provide the necessary mechanical and environmental
protection to ensure consistent reliability and performance. Microsemi IC packaging technology
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,
Microsemi offers a variety of packages designed to meet your most demanding application and economic
requirements for today's embedded and mobile systems.
Related Documents
User’s Guides
IGLOO FPGA Fabric User’s Guide
http://www.microsemi.com/soc/documents/IGLOO_UG.pdf
Packaging Documents
The following documents provide packaging information and device selection for low power flash
devices.
Product Catalog
http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf
Lists devices currently recommended for new designs and the packages available for each member of
the family. Use this document or the datasheet tables to determine the best package for your design, and
which package drawing to use.
Package Mechanical Drawings
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf
This document contains the package mechanical drawings for all packages currently or previously
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.
Additional packaging materials are available on the Microsemi SoC Products Group website at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
3 -5
4 – Package Pin Assignments
UC81
A1 Ball Pad Corner
9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4 -1
Package Pin Assignments
UC81
UC81
UC81
Pin Number
AGL030 Function
Pin Number
AGL030 Function
Pin Number
AGL030 Function
A1
IO00RSB0
E1
GEB0/IO71RSB1
J1
IO63RSB1
A2
IO02RSB0
E2
GEA0/IO72RSB1
J2
IO61RSB1
A3
IO06RSB0
E3
GEC0/IO73RSB1
J3
IO59RSB1
A4
IO11RSB0
E4
VCCIB1
J4
IO56RSB1
A5
IO16RSB0
E5
VCC
J5
IO52RSB1
A6
IO19RSB0
E6
VCCIB0
J6
IO44RSB1
A7
IO22RSB0
E7
GDC0/IO32RSB0
J7
TCK
A8
IO24RSB0
E8
GDA0/IO33RSB0
J8
TMS
A9
IO26RSB0
E9
GDB0/IO34RSB0
J9
VPUMP
B1
IO81RSB1
F1
IO68RSB1
B2
IO04RSB0
F2
IO67RSB1
B3
IO10RSB0
F3
IO64RSB1
B4
IO13RSB0
F4
GND
B5
IO15RSB0
F5
VCCIB1
B6
IO20RSB0
F6
IO47RSB1
B7
IO21RSB0
F7
IO36RSB0
B8
IO28RSB0
F8
IO38RSB0
B9
IO25RSB0
F9
IO40RSB0
C1
IO79RSB1
G1
IO65RSB1
C2
IO80RSB1
G2
IO66RSB1
C3
IO08RSB0
G3
IO57RSB1
C4
IO12RSB0
G4
IO53RSB1
C5
IO17RSB0
G5
IO49RSB1
C6
IO14RSB0
G6
IO45RSB1
C7
IO18RSB0
G7
IO46RSB1
C8
IO29RSB0
G8
VJTAG
C9
IO27RSB0
G9
TRST
D1
IO74RSB1
H1
IO62RSB1
D2
IO76RSB1
H2
FF/IO60RSB1
D3
IO77RSB1
H3
IO58RSB1
D4
VCC
H4
IO54RSB1
D5
VCCIB0
H5
IO48RSB1
D6
GND
H6
IO43RSB1
D7
IO23RSB0
H7
IO42RSB1
D8
IO31RSB0
H8
TDI
D9
IO30RSB0
H9
TDO
4- 2
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
CS81
A1 Ball Pad Corner
9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4 -3
Package Pin Assignments
CS81
CS81
CS81
Pin Number
AGL030 Function
Pin Number
AGL030 Function
Pin Number
AGL030 Function
A1
IO00RSB0
E1
GEB0/IO71RSB1
J1
IO63RSB1
A2
IO02RSB0
E2
GEA0/IO72RSB1
J2
IO61RSB1
A3
IO06RSB0
E3
GEC0/IO73RSB1
J3
IO59RSB1
A4
IO11RSB0
E4
VCCIB1
J4
IO56RSB1
A5
IO16RSB0
E5
VCC
J5
IO52RSB1
A6
IO19RSB0
E6
VCCIB0
J6
IO45RSB1
A7
IO22RSB0
E7
GDC0/IO32RSB0
J7
TCK
A8
IO24RSB0
E8
GDA0/IO33RSB0
J8
TMS
A9
IO26RSB0
E9
GDB0/IO34RSB0
J9
VPUMP
B1
IO81RSB1
F1
IO68RSB1
B2
IO04RSB0
F2
IO67RSB1
B3
IO10RSB0
F3
IO64RSB1
B4
IO13RSB0
F4
GND
B5
IO15RSB0
F5
VCCIB1
B6
IO20RSB0
F6
IO47RSB1
B7
IO21RSB0
F7
IO36RSB0
B8
IO28RSB0
F8
IO38RSB0
B9
IO25RSB0
F9
IO40RSB0
C1
IO79RSB1
G1
IO65RSB1
C2
IO80RSB1
G2
IO66RSB1
C3
IO08RSB0
G3
IO57RSB1
C4
IO12RSB0
G4
IO53RSB1
C5
IO17RSB0
G5
IO49RSB1
C6
IO14RSB0
G6
IO44RSB1
C7
IO18RSB0
G7
IO46RSB1
C8
IO29RSB0
G8
VJTAG
C9
IO27RSB0
G9
TRST
D1
IO74RSB1
H1
IO62RSB1
D2
IO76RSB1
H2
FF/IO60RSB1
D3
IO77RSB1
H3
IO58RSB1
D4
VCC
H4
IO54RSB1
D5
VCCIB0
H5
IO48RSB1
D6
GND
H6
IO43RSB1
D7
IO23RSB0
H7
IO42RSB1
D8
IO31RSB0
H8
TDI
D9
IO30RSB0
H9
TDO
4- 4
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
CS81
CS81
CS81
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
A1
GAA0/IO00RSB0
E1
GFB0/IO109NDB3
J1
GEA2/IO97RSB2
A2
GAA1/IO01RSB0
E2
GFB1/IO109PDB3
J2
GEC2/IO95RSB2
A3
GAC0/IO04RSB0
E3
GFA1/IO108PSB3
J3
IO92RSB2
A4
IO13RSB0
E4
VCCIB3
J4
IO88RSB2
A5
IO21RSB0
E5
VCC
J5
IO84RSB2
A6
IO27RSB0
E6
VCCIB1
J6
IO74RSB2
A7
GBB0/IO37RSB0
E7
GCA0/IO50NDB1
J7
TCK
A8
GBA1/IO40RSB0
E8
GCA1/IO50PDB1
J8
TMS
A9
GBA2/IO41PPB1
E9
GCB2/IO52PPB1
J9
VPUMP
B1
GAA2/IO118UPB3
F1
VCCPLF
B2
GAB0/IO02RSB0
F2
VCOMPLF
B3
GAC1/IO05RSB0
F3
GND
B4
IO11RSB0
F4
GND
B5
IO23RSB0
F5
VCCIB2
B6
GBC0/IO35RSB0
F6
GND
B7
GBB1/IO38RSB0
F7
GDA1/IO60USB1
B8
IO41NPB1
F8
GDC1/IO58UDB1
B9
GBB2/IO42PSB1
F9
GDC0/IO58VDB1
C1
GAB2/IO117UPB3
G1
GEA0/IO98NDB3
C2
IO118VPB3
G2
GEC1/IO100PDB3
C3
GND
G3
GEC0/IO100NDB3
C4
IO15RSB0
G4
IO91RSB2
C5
IO25RSB0
G5
IO86RSB2
C6
GND
G6
IO71RSB2
C7
GBA0/IO39RSB0
G7
GDB2/IO62RSB2
C8
GBC2/IO43PDB1
G8
VJTAG
C9
IO43NDB1
G9
TRST
D1
GAC2/IO116USB3
H1
GEA1/IO98PDB3
D2
IO117VPB3
H2
FF/GEB2/IO96RSB2
D3
GFA2/IO107PSB3
H3
IO93RSB2
D4
VCC
H4
IO90RSB2
D5
VCCIB0
H5
IO85RSB2
D6
GND
H6
IO77RSB2
D7
IO52NPB1
H7
GDA2/IO61RSB2
D8
GCC1/IO48PDB1
H8
TDI
D9
GCC0/IO48NDB1
H9
TDO
R ev i si o n 2 3
4 -5
Package Pin Assignments
CS121
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 6
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
CS121
CS121
CS121
Pin Number
AGL060 Function
Pin Number
AGL060 Function
Pin Number
AGL060 Function
A1
GNDQ
D4
IO10RSB0
G7
VCC
A2
IO01RSB0
D5
IO11RSB0
G8
GDC0/IO46RSB0
A3
GAA1/IO03RSB0
D6
IO18RSB0
G9
GDA1/IO49RSB0
A4
GAC1/IO07RSB0
D7
IO32RSB0
G10
GDB0/IO48RSB0
A5
IO15RSB0
D8
IO31RSB0
G11
GCA0/IO40RSB0
A6
IO13RSB0
D9
GCA2/IO41RSB0
H1
IO75RSB1
A7
IO17RSB0
D10
IO30RSB0
H2
IO76RSB1
A8
GBB1/IO22RSB0
D11
IO33RSB0
H3
GFC2/IO78RSB1
A9
GBA1/IO24RSB0
E1
IO87RSB1
H4
GFA2/IO80RSB1
A10
GNDQ
E2
GFC0/IO85RSB1
H5
IO77RSB1
A11
VMV0
E3
IO92RSB1
H6
GEC2/IO66RSB1
B1
GAA2/IO95RSB1
E4
IO94RSB1
H7
IO54RSB1
B2
IO00RSB0
E5
VCC
H8
GDC2/IO53RSB1
B3
GAA0/IO02RSB0
E6
VCCIB0
H9
VJTAG
B4
GAC0/IO06RSB0
E7
GND
H10
TRST
B5
IO08RSB0
E8
GCC0/IO36RSB0
H11
IO44RSB0
B6
IO12RSB0
E9
IO34RSB0
J1
GEC1/IO74RSB1
B7
IO16RSB0
E10
GCB1/IO37RSB0
J2
GEC0/IO73RSB1
B8
GBC1/IO20RSB0
E11
GCC1/IO35RSB0
J3
GEB1/IO72RSB1
B9
GBB0/IO21RSB0
F1*
VCOMPLF
J4
GEA0/IO69RSB1
B10
GBB2/IO27RSB0
F2
GFB0/IO83RSB1
J5
FF/GEB2/IO67RSB1
B11
GBA2/IO25RSB0
F3
GFA0/IO82RSB1
J6
IO62RSB1
C1
IO89RSB1
F4
GFC1/IO86RSB1
J7
GDA2/IO51RSB1
C2
GAC2/IO91RSB1
F5
VCCIB1
J8
GDB2/IO52RSB1
C3
GAB1/IO05RSB0
F6
VCC
J9
TDI
C4
GAB0/IO04RSB0
F7
VCCIB0
J10
TDO
C5
IO09RSB0
F8
GCB2/IO42RSB0
J11
GDC1/IO45RSB0
C6
IO14RSB0
F9
GCC2/IO43RSB0
K1
GEB0/IO71RSB1
C7
GBA0/IO23RSB0
F10
GCB0/IO38RSB0
K2
GEA1/IO70RSB1
C8
GBC0/IO19RSB0
F11
GCA1/IO39RSB0
K3
GEA2/IO68RSB1
C9
IO26RSB0
G1*
VCCPLF
K4
IO64RSB1
C10
IO28RSB0
G2
GFB2/IO79RSB1
K5
IO60RSB1
C11
GBC2/IO29RSB0
G3
GFA1/IO81RSB1
K6
IO59RSB1
D1
IO88RSB1
G4
GFB1/IO84RSB1
K7
IO56RSB1
D2
IO90RSB1
G5
GND
K8
TCK
D3
GAB2/IO93RSB1
G6
VCCIB1
K9
TMS
Note: *Pin numbers F1 and G1 must be connected to ground because a PLL is not supported for AGL060-CS/G121.
R ev i si o n 2 3
4 -7
Package Pin Assignments
CS121
Pin Number
AGL060 Function
K10
VPUMP
K11
GDB1/IO47RSB0
L1
VMV1
L2
GNDQ
L3
IO65RSB1
L4
IO63RSB1
L5
IO61RSB1
L6
IO58RSB1
L7
IO57RSB1
L8
IO55RSB1
L9
GNDQ
L10
GDA0/IO50RSB0
L11
VMV1
4- 8
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
CS196
A1 Ball Pad Corner
14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4 -9
Package Pin Assignments
CS196
CS196
CS196
Pin Number
AGL125 Function
Pin Number
AGL125 Function
Pin Number
AGL125 Function
A1
GND
C9
IO23RSB0
F3
IO113RSB1
A2
GAA0/IO00RSB0
C10
IO29RSB0
F4
IO112RSB1
A3
GAC0/IO04RSB0
C11
VCCIB0
F5
IO111RSB1
A4
GAC1/IO05RSB0
C12
IO42RSB0
F6
NC
A5
IO09RSB0
C13
GNDQ
F7
VCC
A6
IO15RSB0
C14
IO44RSB0
F8
VCC
A7
IO18RSB0
D1
IO127RSB1
F9
NC
A8
IO22RSB0
D2
IO129RSB1
F10
IO07RSB0
A9
IO27RSB0
D3
GAA2/IO132RSB1
F11
IO25RSB0
A10
GBC0/IO35RSB0
D4
IO126RSB1
F12
IO10RSB0
A11
GBB0/IO37RSB0
D5
IO06RSB0
F13
IO33RSB0
A12
GBB1/IO38RSB0
D6
IO13RSB0
F14
IO47RSB0
A13
GBA1/IO40RSB0
D7
IO19RSB0
G1
GFB1/IO121RSB1
A14
GND
D8
IO21RSB0
G2
GFA0/IO119RSB1
B1
VCCIB1
D9
IO26RSB0
G3
GFA2/IO117RSB1
B2
VMV0
D10
IO31RSB0
G4
VCOMPLF
B3
GAA1/IO01RSB0
D11
IO30RSB0
G5
GFC0/IO122RSB1
B4
GAB1/IO03RSB0
D12
VMV0
G6
VCC
B5
GND
D13
IO46RSB0
G7
GND
B6
IO16RSB0
D14
GBC2/IO45RSB0
G8
GND
B7
IO20RSB0
E1
IO125RSB1
G9
VCC
B8
IO24RSB0
E2
GND
G10
GCC0/IO52RSB0
B9
IO28RSB0
E3
IO131RSB1
G11
GCB1/IO53RSB0
B10
GND
E4
VCCIB1
G12
GCA0/IO56RSB0
B11
GBC1/IO36RSB0
E5
NC
G13
IO48RSB0
B12
GBA0/IO39RSB0
E6
IO08RSB0
G14
GCC2/IO59RSB0
B13
GBA2/IO41RSB0
E7
IO17RSB0
H1
GFB0/IO120RSB1
B14
GBB2/IO43RSB0
E8
IO12RSB0
H2
GFA1/IO118RSB1
C1
GAC2/IO128RSB1
E9
IO11RSB0
H3
VCCPLF
C2
GAB2/IO130RSB1
E10
NC
H4
GFB2/IO116RSB1
C3
GNDQ
E11
VCCIB0
H5
GFC1/IO123RSB1
C4
VCCIB0
E12
IO32RSB0
H6
VCC
C5
GAB0/IO02RSB0
E13
GND
H7
GND
C6
IO14RSB0
E14
IO34RSB0
H8
GND
C7
VCCIB0
F1
IO124RSB1
H9
VCC
C8
NC
F2
IO114RSB1
H10
GCC1/IO51RSB0
4- 10
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS196
CS196
CS196
Pin Number
AGL125 Function
Pin Number
AGL125 Function
Pin Number
AGL125 Function
H11
GCB0/IO54RSB0
L5
IO91RSB1
N13
GNDQ
H12
GCA1/IO55RSB0
L6
IO90RSB1
N14
TDO
H13
IO49RSB0
L7
IO83RSB1
P1
GND
H14
GCA2/IO57RSB0
L8
IO81RSB1
P2
GEA2/IO103RSB1
J1
GFC2/IO115RSB1
L9
IO71RSB1
P3
FF/GEB2/IO102RSB1
J2
IO110RSB1
L10
IO70RSB1
P4
IO98RSB1
J3
IO94RSB1
L11
VPUMP
P5
IO97RSB1
J4
IO93RSB1
L12
VJTAG
P6
IO85RSB1
J5
IO89RSB1
L13
GDA0/IO66RSB0
P7
IO84RSB1
J6
NC
L14
GDB0/IO64RSB0
P8
IO79RSB1
J7
VCC
M1
GEB0/IO106RSB1
P9
IO77RSB1
J8
VCC
M2
GEA1/IO105RSB1
P10
IO75RSB1
J9
NC
M3
GNDQ
P11
GDC2/IO69RSB1
J10
IO60RSB0
M4
VCCIB1
P12
GDA2/IO67RSB1
J11
GCB2/IO58RSB0
M5
IO92RSB1
P13
TMS
J12
IO50RSB0
M6
IO88RSB1
P14
GND
J13
GDC1/IO61RSB0
M7
NC
J14
GDC0/IO62RSB0
M8
VCCIB1
K1
IO99RSB1
M9
IO76RSB1
K2
GND
M10
GDB2/IO68RSB1
K3
IO95RSB1
M11
VCCIB1
K4
VCCIB1
M12
VMV1
K5
NC
M13
TRST
K6
IO86RSB1
M14
VCCIB0
K7
IO80RSB1
N1
GEA0/IO104RSB1
K8
IO74RSB1
N2
VMV1
K9
IO72RSB1
N3
GEC2/IO101RSB1
K10
NC
N4
IO100RSB1
K11
VCCIB0
N5
GND
K12
GDA1/IO65RSB0
N6
IO87RSB1
K13
GND
N7
IO82RSB1
K14
GDB1/IO63RSB0
N8
IO78RSB1
L1
GEB1/IO107RSB1
N9
IO73RSB1
L2
GEC1/IO109RSB1
N10
GND
L3
GEC0/IO108RSB1
N11
TCK
L4
IO96RSB1
N12
TDI
R ev i si o n 2 3
4- 11
Package Pin Assignments
CS196
CS196
CS196
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
A1
GND
C9
IO30RSB0
F3
IO111PDB3
A2
GAA0/IO00RSB0
C10
IO33RSB0
F4
IO111NDB3
A3
GAC0/IO04RSB0
C11
VCCIB0
F5
IO113NPB3
A4
GAC1/IO05RSB0
C12
IO41NPB1
F6
IO06RSB0
A5
IO10RSB0
C13
GNDQ
F7
VCC
A6
IO13RSB0
C14
IO42NDB1
F8
VCC
A7
IO17RSB0
D1
IO116VDB3
F9
IO28RSB0
A8
IO19RSB0
D2
IO117VDB3
F10
IO54PDB1
A9
IO23RSB0
D3
GAA2/IO118UDB3
F11
IO54NDB1
A10
GBC0/IO35RSB0
D4
IO113PPB3
F12
IO47NDB1
A11
GBB0/IO37RSB0
D5
IO08RSB0
F13
IO47PDB1
A12
GBB1/IO38RSB0
D6
IO14RSB0
F14
IO45NDB1
A13
GBA1/IO40RSB0
D7
IO15RSB0
G1
GFB1/IO109PDB3
A14
GND
D8
IO18RSB0
G2
GFA0/IO108NDB3
B1
VCCIB3
D9
IO25RSB0
G3
GFA2/IO107PPB3
B2
VMV0
D10
IO32RSB0
G4
VCOMPLF
B3
GAA1/IO01RSB0
D11
IO44PPB1
G5
GFC0/IO110NDB3
B4
GAB1/IO03RSB0
D12
VMV1
G6
VCC
B5
GND
D13
IO43NDB1
G7
GND
B6
IO12RSB0
D14
GBC2/IO43PDB1
G8
GND
B7
IO16RSB0
E1
IO112PDB3
G9
VCC
B8
IO22RSB0
E2
GND
G10
GCC0/IO48NDB1
B9
IO24RSB0
E3
IO118VDB3
G11
GCB1/IO49PDB1
B10
GND
E4
VCCIB3
G12
GCA0/IO50NDB1
B11
GBC1/IO36RSB0
E5
IO114USB3
G13
IO53NDB1
B12
GBA0/IO39RSB0
E6
IO07RSB0
G14
GCC2/IO53PDB1
B13
GBA2/IO41PPB1
E7
IO09RSB0
H1
GFB0/IO109NDB3
B14
GBB2/IO42PDB1
E8
IO21RSB0
H2
GFA1/IO108PDB3
C1
GAC2/IO116UDB3
E9
IO31RSB0
H3
VCCPLF
C2
GAB2/IO117UDB3
E10
IO34RSB0
H4
GFB2/IO106PPB3
C3
GNDQ
E11
VCCIB1
H5
GFC1/IO110PDB3
C4
VCCIB0
E12
IO44NPB1
H6
VCC
C5
GAB0/IO02RSB0
E13
GND
H7
GND
C6
IO11RSB0
E14
IO45PDB1
H8
GND
C7
VCCIB0
F1
IO112NDB3
H9
VCC
C8
IO20RSB0
F2
IO107NPB3
H10
GCC1/IO48PDB1
4- 12
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS196
CS196
CS196
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
H11
GCB0/IO49NDB1
L5
IO89RSB2
N13
GNDQ
H12
GCA1/IO50PDB1
L6
IO92RSB2
N14
TDO
H13
IO51NDB1
L7
IO75RSB2
P1
GND
H14
GCA2/IO51PDB1
L8
IO66RSB2
P2
GEA2/IO97RSB2
J1
GFC2/IO105PDB3
L9
IO65RSB2
P3
FF/GEB2/IO96RSB2
J2
IO104PPB3
L10
IO71RSB2
P4
IO90RSB2
J3
IO106NPB3
L11
VPUMP
P5
IO85RSB2
J4
IO103PDB3
L12
VJTAG
P6
IO83RSB2
J5
IO103NDB3
L13
GDA0/IO60VPB1
P7
IO79RSB2
J6
IO80RSB2
L14
GDB0/IO59VDB1
P8
IO76RSB2
J7
VCC
M1
GEB0/IO99NDB3
P9
IO72RSB2
J8
VCC
M2
GEA1/IO98PPB3
P10
IO68RSB2
J9
IO64RSB2
M3
GNDQ
P11
GDC2/IO63RSB2
J10
IO56PDB1
M4
VCCIB2
P12
GDA2/IO61RSB2
J11
GCB2/IO52PDB1
M5
IO88RSB2
P13
TMS
J12
IO52NDB1
M6
IO87RSB2
P14
GND
J13
GDC1/IO58UDB1
M7
IO82RSB2
J14
GDC0/IO58VDB1
M8
VCCIB2
K1
IO105NDB3
M9
IO67RSB2
K2
GND
M10
GDB2/IO62RSB2
K3
IO104NPB3
M11
VCCIB2
K4
VCCIB3
M12
VMV2
K5
IO101PPB3
M13
TRST
K6
IO91RSB2
M14
VCCIB1
K7
IO81RSB2
N1
GEA0/IO98NPB3
K8
IO73RSB2
N2
VMV3
K9
IO77RSB2
N3
GEC2/IO95RSB2
K10
IO56NDB1
N4
IO94RSB2
K11
VCCIB1
N5
GND
K12
GDA1/IO60UPB1
N6
IO86RSB2
K13
GND
N7
IO78RSB2
K14
GDB1/IO59UDB1
N8
IO74RSB2
L1
GEB1/IO99PDB3
N9
IO69RSB2
L2
GEC1/IO100PDB3
N10
GND
L3
GEC0/IO100NDB3
N11
TCK
L4
IO101NPB3
N12
TDI
R ev i si o n 2 3
4- 13
Package Pin Assignments
CS196
CS196
CS196
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
A1
GND
C8
IO31RSB0
F2
IO144NPB3
A2
GAA0/IO00RSB0
C9
IO44RSB0
F3
IO148PDB3
A3
GAC0/IO04RSB0
C10
IO49RSB0
F4
IO148NDB3
A4
GAC1/IO05RSB0
C11
VCCIB0
F5
IO150NPB3
A5
IO14RSB0
C12
IO60NPB1
F6
IO07RSB0
A6
IO18RSB0
C13
GNDQ
F7
VCC
A7
IO26RSB0
C14
IO61NDB1
F8
VCC
A8
IO29RSB0
D1
IO153VDB3
F9
IO43RSB0
A9
IO36RSB0
D2
IO154VDB3
F10
IO73PDB1
A10
GBC0/IO54RSB0
D3
GAA2/IO155UDB3
F11
IO73NDB1
A11
GBB0/IO56RSB0
D4
IO150PPB3
F12
IO66NDB1
A12
GBB1/IO57RSB0
D5
IO11RSB0
F13
IO66PDB1
A13
GBA1/IO59RSB0
D6
IO20RSB0
F14
IO64NDB1
A14
GND
D7
IO23RSB0
G1
GFB1/IO146PDB3
B1
VCCIB3
D8
IO28RSB0
G2
GFA0/IO145NDB3
B2
VMV0
D9
IO41RSB0
G3
GFA2/IO144PPB3
B2
VMV0
D10
IO47RSB0
G4
VCOMPLF
B3
GAA1/IO01RSB0
D11
IO63PPB1
G5
GFC0/IO147NDB3
B4
GAB1/IO03RSB0
D12
VMV1
G6
VCC
B5
GND
D13
IO62NDB1
G7
GND
B6
IO17RSB0
D14
GBC2/IO62PDB1
G8
GND
B7
IO25RSB0
E1
IO149PDB3
G9
VCC
B8
IO34RSB0
E2
GND
G10
GCC0/IO67NDB1
B9
IO39RSB0
E3
IO155VDB3
G11
GCB1/IO68PDB1
B10
GND
E4
VCCIB3
G12
GCA0/IO69NDB1
B11
GBC1/IO55RSB0
E5
IO151USB3
G13
IO72NDB1
B12
GBA0/IO58RSB0
E6
IO09RSB0
G14
GCC2/IO72PDB1
B13
GBA2/IO60PPB1
E7
IO12RSB0
H1
GFB0/IO146NDB3
B14
GBB2/IO61PDB1
E8
IO32RSB0
H2
GFA1/IO145PDB3
C1
GAC2/IO153UDB3
E9
IO46RSB0
H3
VCCPLF
C2
GAB2/IO154UDB3
E10
IO51RSB0
H4
GFB2/IO143PPB3
C3
GNDQ
E11
VCCIB1
H5
GFC1/IO147PDB3
C4
VCCIB0
E12
IO63NPB1
H6
VCC
C5
GAB0/IO02RSB0
E13
GND
H7
GND
C6
IO15RSB0
E14
IO64PDB1
H8
GND
C7
VCCIB0
F1
IO149NDB3
H9
VCC
4- 14
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS196
CS196
CS196
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
H10
GCC1/IO67PDB1
L4
IO138NPB3
N11
TCK
H11
GCB0/IO68NDB1
L5
IO122RSB2
N12
TDI
H12
GCA1/IO69PDB1
L6
IO128RSB2
N13
GNDQ
H13
IO70NDB1
L7
IO101RSB2
N14
TDO
H14
GCA2/IO70PDB1
L8
IO88RSB2
P1
GND
J1
GFC2/IO142PDB3
L9
IO86RSB2
P2
GEA2/IO134RSB2
J2
IO141PPB3
L10
IO94RSB2
P3
J3
IO143NPB3
L11
VPUMP
FF/GEB2/IO133RSB
2
J4
IO140PDB3
L12
VJTAG
P4
IO123RSB2
J5
IO140NDB3
L13
GDA0/IO79VPB1
P5
IO116RSB2
J6
IO109RSB2
L14
GDB0/IO78VDB1
P6
IO114RSB2
J7
VCC
M1
GEB0/IO136NDB3
P7
IO107RSB2
J8
VCC
M2
GEA1/IO135PPB3
P8
IO103RSB2
J9
IO84RSB2
M3
GNDQ
P9
IO95RSB2
J10
IO75PDB1
M4
VCCIB2
P10
IO91RSB2
J11
GCB2/IO71PDB1
M5
IO120RSB2
P11
GDC2/IO82RSB2
J12
IO71NDB1
M6
IO119RSB2
P12
GDA2/IO80RSB2
J13
GDC1/IO77UDB1
M7
IO112RSB2
P13
TMS
J14
GDC0/IO77VDB1
M8
VCCIB2
P14
GND
K1
IO142NDB3
M9
IO89RSB2
K2
GND
M10
GDB2/IO81RSB2
K3
IO141NPB3
M11
VCCIB2
K4
VCCIB3
M12
VMV2
K5
IO138PPB3
M12
VMV2
K6
IO125RSB2
M13
TRST
K7
IO110RSB2
M14
VCCIB1
K8
IO98RSB2
N1
GEA0/IO135NPB3
K9
IO104RSB2
N2
VMV3
K10
IO75NDB1
N3
GEC2/IO132RSB2
K11
VCCIB1
N4
IO130RSB2
K12
GDA1/IO79UPB1
N5
GND
K13
GND
N6
IO117RSB2
K14
GDB1/IO78UDB1
N7
IO106RSB2
L1
GEB1/IO136PDB3
N8
IO100RSB2
L2
GEC1/IO137PDB3
N9
IO92RSB2
L3
GEC0/IO137NDB3
N10
GND
R ev i si o n 2 3
4- 15
Package Pin Assignments
CS281
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 16
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS281
CS281
CS281
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
A1
GND
B18
VCCIB1
E13
IO46RSB0
A2
GAB0/IO02RSB0
B19
IO61NDB1
E14
GBB1/IO57RSB0
A3
GAC1/IO05RSB0
C1
GAB2/IO173PPB3
E15
IO62NPB1
A4
IO07RSB0
C2
IO174NPB3
E16
IO63PPB1
A5
IO10RSB0
C6
IO12RSB0
E18
IO64PPB1
A6
IO14RSB0
C14
IO50RSB0
E19
IO65NPB1
A7
IO18RSB0
C18
IO60NPB1
F1
IO168NPB3
A8
IO21RSB0
C19
GBB2/IO61PDB1
F2
GND
A9
IO22RSB0
D1
IO170PPB3
F3
IO169PPB3
A10
VCCIB0
D2
IO172NPB3
F4
IO170NPB3
A11
IO33RSB0
D4
GAA0/IO00RSB0
F5
IO173NPB3
A12
IO40RSB0
D5
GAA1/IO01RSB0
F15
IO63NPB1
A13
IO37RSB0
D6
IO09RSB0
F16
IO65PPB1
A14
IO48RSB0
D7
IO16RSB0
F17
IO64NPB1
A15
IO51RSB0
D8
IO19RSB0
F18
GND
A16
IO53RSB0
D9
IO26RSB0
F19
IO68PPB1
A17
GBC1/IO55RSB0
D10
GND
G1
IO167NPB3
A18
GBA0/IO58RSB0
D11
IO34RSB0
G2
IO165NDB3
A19
GND
D12
IO45RSB0
G4
IO168PPB3
B1
GAA2/IO174PPB3
D13
IO49RSB0
G5
IO167PPB3
B2
VCCIB0
D14
IO47RSB0
G7
GAC2/IO172PPB3
B3
GAB1/IO03RSB0
D15
GBB0/IO56RSB0
G8
VCCIB0
B4
GAC0/IO04RSB0
D16
GBA2/IO60PPB1
G9
IO28RSB0
B5
IO06RSB0
D18
GBC2/IO62PPB1
G10
IO32RSB0
B6
GND
D19
IO66NPB1
G11
IO43RSB0
B7
IO15RSB0
E1
IO169NPB3
G12
VCCIB0
B8
IO20RSB0
E2
IO171PPB3
G13
IO66PPB1
B9
IO23RSB0
E4
IO171NPB3
G15
IO67NDB1
B10
IO24RSB0
E5
IO08RSB0
G16
IO67PDB1
B11
IO36RSB0
E6
IO11RSB0
G18
GCC0/IO69NPB1
B12
IO35RSB0
E7
IO13RSB0
G19
GCB1/IO70PPB1
B13
IO44RSB0
E8
IO17RSB0
H1
GFB0/IO163NPB3
B14
GND
E9
IO25RSB0
H2
IO165PDB3
B15
IO52RSB0
E10
IO30RSB0
H4
GFC1/IO164PPB3
B16
GBC0/IO54RSB0
E11
IO41RSB0
H5
GFB1/IO163PPB3
B17
GBA1/IO59RSB0
E12
IO42RSB0
H7
VCCIB3
R ev i si o n 2 3
4- 17
Package Pin Assignments
CS281
CS281
CS281
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
H8
VCC
K15
IO73NPB1
N4
IO150PPB3
H9
VCCIB0
K16
GND
N5
IO148NPB3
H10
VCC
K18
IO74NPB1
N7
GEA2/IO143RSB2
H11
VCCIB0
K19
VCCIB1
N8
VCCIB2
H12
VCC
L1
GFB2/IO160PDB3
N9
IO117RSB2
H13
VCCIB1
L2
IO160NDB3
N10
IO115RSB2
H15
IO68NPB1
L4
GFC2/IO159PPB3
N11
IO114RSB2
H16
GCB0/IO70NPB1
L5
IO153PPB3
N12
VCCIB2
H18
GCA1/IO71PPB1
L7
IO153NPB3
N13
VPUMP
H19
GCA2/IO72PPB1
L8
VCCIB3
N15
IO82PPB1
J1
VCOMPLF
L9
GND
N16
IO85PPB1
J2
GFA0/IO162NDB3
L10
GND
N18
IO82NPB1
J4
VCCPLF
L11
GND
N19
IO81PPB1
J5
GFC0/IO164NPB3
L12
VCCIB1
P1
IO151PDB3
J7
GFA2/IO161PDB3
L13
IO76PPB1
P2
GND
J8
VCCIB3
L15
IO76NPB1
P3
IO151NDB3
J9
GND
L16
IO77PPB1
P4
IO149PPB3
J10
GND
L18
IO78NPB1
P5
GEA0/IO144NPB3
J11
GND
L19
IO77NPB1
P15
IO83NDB1
J12
VCCIB1
M1
IO158PDB3
P16
IO83PDB1
J13
GCC1/IO69PPB1
M2
IO158NDB3
P17
GDC1/IO86PPB1
J15
GCA0/IO71NPB1
M4
IO154NPB3
P18
GND
J16
GCB2/IO73PPB1
M5
IO152PPB3
P19
IO85NPB1
J18
IO72NPB1
M7
VCCIB3
R1
IO150NPB3
J19
IO75PSB1
M8
VCC
R2
IO149NPB3
K1
VCCIB3
M9
VCCIB2
R4
GEC1/IO146PPB3
K2
GFA1/IO162PDB3
M10
VCC
R5
GEB1/IO145PPB3
K4
GND
M11
VCCIB2
R6
IO138RSB2
K5
IO159NPB3
M12
VCC
R7
IO127RSB2
K7
IO161NDB3
M13
VCCIB1
R8
IO123RSB2
K8
VCC
M15
IO79NPB1
R9
IO118RSB2
K9
GND
M16
IO81NPB1
R10
IO111RSB2
K10
GND
M18
IO79PPB1
R11
IO106RSB2
K11
GND
M19
IO78PPB1
R12
IO103RSB2
K12
VCC
N1
IO154PPB3
R13
IO97RSB2
K13
GCC2/IO74PPB1
N2
IO152NPB3
R14
IO95RSB2
4- 18
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS281
CS281
Pin Number
AGL600 Function
Pin Number
AGL600 Function
R15
IO94RSB2
V10
IO112RSB2
R16
GDA1/IO88PPB1
V11
IO110RSB2
R18
GDB0/IO87NPB1
V12
IO108RSB2
R19
GDC0/IO86NPB1
V13
IO102RSB2
T1
IO148PPB3
V14
GND
T2
GEC0/IO146NPB3
V15
IO93RSB2
T4
GEB0/IO145NPB3
V16
GDA2/IO89RSB2
T5
IO132RSB2
V17
TDI
T6
IO136RSB2
V18
VCCIB2
T7
IO130RSB2
V19
TDO
T8
IO126RSB2
W1
GND
T9
IO120RSB2
W2
FF/GEB2/IO142RSB2
T10
GND
W3
IO139RSB2
T11
IO113RSB2
W4
IO137RSB2
T12
IO104RSB2
W5
IO134RSB2
T13
IO101RSB2
W6
IO133RSB2
T14
IO98RSB2
W7
IO128RSB2
T15
GDC2/IO91RSB2
W8
IO124RSB2
T16
TMS
W9
IO119RSB2
T18
VJTAG
W10
VCCIB2
T19
GDB1/IO87PPB1
W11
IO109RSB2
U1
IO147PDB3
W12
IO107RSB2
U2
GEA1/IO144PPB3
W13
IO105RSB2
U6
IO131RSB2
W14
IO100RSB2
U14
IO99RSB2
W15
IO96RSB2
U18
TRST
W16
IO92RSB2
U19
GDA0/IO88NPB1
W17
GDB2/IO90RSB2
V1
IO147NDB3
W18
TCK
V2
VCCIB3
W19
GND
V3
GEC2/IO141RSB2
V4
IO140RSB2
V5
IO135RSB2
V6
GND
V7
IO125RSB2
V8
IO122RSB2
V9
IO116RSB2
R ev i si o n 2 3
4- 19
Package Pin Assignments
CS281
CS281
CS281
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
A1
GND
B18
VCCIB1
E13
IO53RSB0
A2
GAB0/IO02RSB0
B19
IO79NDB1
E14
GBB1/IO75RSB0
A3
GAC1/IO05RSB0
C1
GAB2/IO224PPB3
E15
IO80NPB1
A4
IO13RSB0
C2
IO225NPB3
E16
IO85PPB1
A5
IO11RSB0
C6
IO18RSB0
E18
IO83PPB1
A6
IO16RSB0
C14
IO63RSB0
E19
IO84NPB1
A7
IO20RSB0
C18
IO78NPB1
F1
IO214NPB3
A8
IO24RSB0
C19
GBB2/IO79PDB1
F2
GND
A9
IO29RSB0
D1
IO219PPB3
F3
IO217PPB3
A10
VCCIB0
D2
IO223NPB3
F4
IO219NPB3
A11
IO39RSB0
D4
GAA0/IO00RSB0
F5
IO224NPB3
A12
IO45RSB0
D5
GAA1/IO01RSB0
F15
IO85NPB1
A13
IO48RSB0
D6
IO15RSB0
F16
IO84PPB1
A14
IO58RSB0
D7
IO19RSB0
F17
IO83NPB1
A15
IO61RSB0
D8
IO27RSB0
F18
GND
A16
IO62RSB0
D9
IO32RSB0
F19
IO90PPB1
A17
GBC1/IO73RSB0
D10
GND
G1
IO212NPB3
A18
GBA0/IO76RSB0
D11
IO38RSB0
G2
IO211NDB3
A19
GND
D12
IO44RSB0
G4
IO214PPB3
B1
GAA2/IO225PPB3
D13
IO47RSB0
G5
IO212PPB3
B2
VCCIB0
D14
IO60RSB0
G7
GAC2/IO223PPB3
B3
GAB1/IO03RSB0
D15
GBB0/IO74RSB0
G8
VCCIB0
B4
GAC0/IO04RSB0
D16
GBA2/IO78PPB1
G9
IO30RSB0
B5
IO12RSB0
D18
GBC2/IO80PPB1
G10
IO37RSB0
B6
GND
D19
IO88NPB1
G11
IO43RSB0
B7
IO21RSB0
E1
IO217NPB3
G12
VCCIB0
B8
IO26RSB0
E2
IO221PPB3
G13
IO88PPB1
B9
IO34RSB0
E4
IO221NPB3
G15
IO89NDB1
B10
IO35RSB0
E5
IO10RSB0
G16
IO89PDB1
B11
IO36RSB0
E6
IO14RSB0
G18
GCC0/IO91NPB1
B12
IO46RSB0
E7
IO25RSB0
G19
GCB1/IO92PPB1
B13
IO52RSB0
E8
IO28RSB0
H1
GFB0/IO208NPB3
B14
GND
E9
IO31RSB0
H2
IO211PDB3
B15
IO59RSB0
E10
IO33RSB0
H4
GFC1/IO209PPB3
B16
GBC0/IO72RSB0
E11
IO42RSB0
H5
GFB1/IO208PPB3
B17
GBA1/IO77RSB0
E12
IO49RSB0
H7
VCCIB3
4- 20
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
CS281
CS281
CS281
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
H8
VCC
K15
IO95NPB1
N4
IO196PPB3
H9
VCCIB0
K16
GND
N5
IO197NPB3
H10
VCC
K18
IO96NPB1
N7
GEA2/IO187RSB2
H11
VCCIB0
K19
VCCIB1
N8
VCCIB2
H12
VCC
L1
GFB2/IO205PDB3
N9
IO155RSB2
H13
VCCIB1
L2
IO205NDB3
N10
IO154RSB2
H15
IO90NPB1
L4
GFC2/IO204PPB3
N11
IO150RSB2
H16
GCB0/IO92NPB1
L5
IO203PPB3
N12
VCCIB2
H18
GCA1/IO93PPB1
L7
IO203NPB3
N13
VPUMP
H19
GCA2/IO94PPB1
L8
VCCIB3
N15
IO107PPB1
J1
VCOMPLF
L9
GND
N16
IO105PPB1
J2
GFA0/IO207NDB3
L10
GND
N18
IO107NPB1
J4
VCCPLF
L11
GND
N19
IO100PPB1
J5
GFC0/IO209NPB3
L12
VCCIB1
P1
IO195PDB3
J7
GFA2/IO206PDB3
L13
IO103PPB1
P2
GND
J8
VCCIB3
L15
IO103NPB1
P3
IO195NDB3
J9
GND
L16
IO97PPB1
P4
IO194PPB3
J10
GND
L18
IO98NPB1
P5
GEA0/IO188NPB3
J11
GND
L19
IO97NPB1
P15
IO108NDB1
J12
VCCIB1
M1
IO202PDB3
P16
IO108PDB1
J13
GCC1/IO91PPB1
M2
IO202NDB3
P17
GDC1/IO111PPB1
J15
GCA0/IO93NPB1
M4
IO201NPB3
P18
GND
J16
GCB2/IO95PPB1
M5
IO198PPB3
P19
IO105NPB1
J18
IO94NPB1
M7
VCCIB3
R1
IO196NPB3
J19
IO102PSB1
M8
VCC
R2
IO194NPB3
K1
VCCIB3
M9
VCCIB2
R4
GEC1/IO190PPB3
K2
GFA1/IO207PDB3
M10
VCC
R5
GEB1/IO189PPB3
K4
GND
M11
VCCIB2
R6
IO184RSB2
K5
IO204NPB3
M12
VCC
R7
IO173RSB2
K7
IO206NDB3
M13
VCCIB1
R8
IO168RSB2
K8
VCC
M15
IO104NPB1
R9
IO160RSB2
K9
GND
M16
IO100NPB1
R10
IO151RSB2
K10
GND
M18
IO104PPB1
R11
IO141RSB2
K11
GND
M19
IO98PPB1
R12
IO136RSB2
K12
VCC
N1
IO201PPB3
R13
IO127RSB2
K13
GCC2/IO96PPB1
N2
IO198NPB3
R14
IO124RSB2
R ev i si o n 2 3
4- 21
Package Pin Assignments
CS281
CS281
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
R15
IO122RSB2
V10
IO145RSB2
R16
GDA1/IO113PPB1
V11
IO144RSB2
R18
GDB0/IO112NPB1
V12
IO134RSB2
R19
GDC0/IO111NPB1
V13
IO133RSB2
T1
IO197PPB3
V14
GND
T2
GEC0/IO190NPB3
V15
IO119RSB2
T4
GEB0/IO189NPB3
V16
GDA2/IO114RSB2
T5
IO181RSB2
V17
TDI
T6
IO172RSB2
V18
VCCIB2
T7
IO171RSB2
V19
TDO
T8
IO156RSB2
W1
GND
T9
IO159RSB2
W2
FF/GEB2/IO186RSB2
T10
GND
W3
IO183RSB2
T11
IO139RSB2
W4
IO176RSB2
T12
IO138RSB2
W5
IO170RSB2
T13
IO129RSB2
W6
IO162RSB2
T14
IO123RSB2
W7
IO157RSB2
T15
GDC2/IO116RSB2
W8
IO152RSB2
T16
TMS
W9
IO149RSB2
T18
VJTAG
W10
VCCIB2
T19
GDB1/IO112PPB1
W11
IO140RSB2
U1
IO193PDB3
W12
IO135RSB2
U2
GEA1/IO188PPB3
W13
IO130RSB2
U6
IO167RSB2
W14
IO125RSB2
U14
IO128RSB2
W15
IO120RSB2
U18
TRST
W16
IO118RSB2
U19
GDA0/IO113NPB1
W17
GDB2/IO115RSB2
V1
IO193NDB3
W18
TCK
V2
VCCIB3
W19
GND
V3
GEC2/IO185RSB2
V4
IO182RSB2
V5
IO175RSB2
V6
GND
V7
IO161RSB2
V8
IO143RSB2
V9
IO146RSB2
4- 22
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN48
Pin 1
48
1
Notes:
1. This is the bottom view of the package.
2. The die attach paddle center of the package is tied to ground (GND).
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4- 23
Package Pin Assignments
QN48
QN48
Pin Number AGL030 Function
Pin Number AGL030 Function
4- 24
1
IO82RSB1
37
IO24RSB0
2
GEC0/IO73RSB1
38
IO22RSB0
3
GEA0/IO72RSB1
39
IO20RSB0
4
GEB0/IO71RSB1
40
IO18RSB0
5
GND
41
IO16RSB0
6
VCCIB1
42
IO14RSB0
7
IO68RSB1
43
IO10RSB0
8
IO67RSB1
44
IO08RSB0
9
IO66RSB1
45
IO06RSB0
10
IO65RSB1
46
IO04RSB0
11
IO64RSB1
47
IO02RSB0
12
IO62RSB1
48
IO00RSB0
13
IO61RSB1
14
FF/IO60RSB1
15
IO57RSB1
16
IO55RSB1
17
IO53RSB1
18
VCC
19
VCCIB1
20
IO46RSB1
21
IO42RSB1
22
TCK
23
TDI
24
TMS
25
VPUMP
26
TDO
27
TRST
28
VJTAG
29
IO38RSB0
30
GDB0/IO34RSB0
31
GDA0/IO33RSB0
32
GDC0/IO32RSB0
33
VCCIB0
34
GND
35
VCC
36
IO25RSB0
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN68
Pin A1 Mark
68
1
Notes:
1. This is the bottom view of the package.
2. The die attach paddle center of the package is tied to ground (GND).
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4- 25
Package Pin Assignments
QN68
QN68
Pin Number
AGL015 Function
Pin Number
AGL015 Function
1
IO82RSB1
37
TRST
2
IO80RSB1
38
VJTAG
3
IO78RSB1
39
IO40RSB0
4
IO76RSB1
40
IO37RSB0
5
GEC0/IO73RSB1
41
GDB0/IO34RSB0
6
GEA0/IO72RSB1
42
GDA0/IO33RSB0
7
GEB0/IO71RSB1
43
GDC0/IO32RSB0
8
VCC
44
VCCIB0
9
GND
45
GND
10
VCCIB1
46
VCC
11
IO68RSB1
47
IO31RSB0
12
IO67RSB1
48
IO29RSB0
13
IO66RSB1
49
IO28RSB0
14
IO65RSB1
50
IO27RSB0
15
IO64RSB1
51
IO25RSB0
16
IO63RSB1
52
IO24RSB0
17
IO62RSB1
53
IO22RSB0
18
FF/IO60RSB1
54
IO21RSB0
19
IO58RSB1
55
IO19RSB0
20
IO56RSB1
56
IO17RSB0
21
IO54RSB1
57
IO15RSB0
22
IO52RSB1
58
IO14RSB0
23
IO51RSB1
59
VCCIB0
24
VCC
60
GND
25
GND
61
VCC
26
VCCIB1
62
IO12RSB0
27
IO50RSB1
63
IO10RSB0
28
IO48RSB1
64
IO08RSB0
29
IO46RSB1
65
IO06RSB0
30
IO44RSB1
66
IO04RSB0
31
IO42RSB1
67
IO02RSB0
32
TCK
68
IO00RSB0
33
TDI
34
TMS
35
VPUMP
36
TDO
4- 26
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN68
QN68
Pin Number
AGL030 Function
Pin Number
AGL030 Function
1
IO82RSB1
37
TRST
2
IO80RSB1
38
VJTAG
3
IO78RSB1
39
IO40RSB0
4
IO76RSB1
40
IO37RSB0
5
GEC0/IO73RSB1
41
GDB0/IO34RSB0
6
GEA0/IO72RSB1
42
GDA0/IO33RSB0
7
GEB0/IO71RSB1
43
GDC0/IO32RSB0
8
VCC
44
VCCIB0
9
GND
45
GND
10
VCCIB1
46
VCC
11
IO68RSB1
47
IO31RSB0
12
IO67RSB1
48
IO29RSB0
13
IO66RSB1
49
IO28RSB0
14
IO65RSB1
50
IO27RSB0
15
IO64RSB1
51
IO25RSB0
16
IO63RSB1
52
IO24RSB0
17
IO62RSB1
53
IO22RSB0
18
FF/IO60RSB1
54
IO21RSB0
19
IO58RSB1
55
IO19RSB0
20
IO56RSB1
56
IO17RSB0
21
IO54RSB1
57
IO15RSB0
22
IO52RSB1
58
IO14RSB0
23
IO51RSB1
59
VCCIB0
24
VCC
60
GND
25
GND
61
VCC
26
VCCIB1
62
IO12RSB0
27
IO50RSB1
63
IO10RSB0
28
IO48RSB1
64
IO08RSB0
29
IO46RSB1
65
IO06RSB0
30
IO44RSB1
66
IO04RSB0
31
IO42RSB1
67
IO02RSB0
32
TCK
68
IO00RSB0
33
TDI
34
TMS
35
VPUMP
36
TDO
R ev i si o n 2 3
4- 27
Package Pin Assignments
QN132
A37
B34
C31
A48
B44
C40
Pin A1Mark
D4
D1
A36
B33
C30
C1
C21
B23
A25
C10
B11
A12
D3
B1
D2
C20
B22
A24
C11
B12
A13
Optional
Corner Pad (4x)
Notes:
1. This is the bottom view of the package.
2. The die attach paddle center of the package is tied to ground (GND).
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 28
A1
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN132
QN132
QN132
Pin Number
AGL030 Function
Pin Number
AGL030 Function
Pin Number
AGL030 Function
A1
IO80RSB1
A37
IO22RSB0
B25
GND
A2
IO77RSB1
A38
IO19RSB0
B26
NC
A3
NC
A39
NC
B27
IO37RSB0
A4
IO76RSB1
A40
IO18RSB0
B28
GND
A5
GEC0/IO73RSB1
A41
IO16RSB0
B29
GDA0/IO33RSB0
A6
NC
A42
IO14RSB0
B30
NC
A7
GEB0/IO71RSB1
A43
VCC
B31
GND
A8
IO69RSB1
A44
IO11RSB0
B32
IO29RSB0
A9
NC
A45
IO08RSB0
B33
IO26RSB0
A10
VCC
A46
IO06RSB0
B34
IO23RSB0
A11
IO67RSB1
A47
IO05RSB0
B35
IO20RSB0
A12
IO64RSB1
A48
IO02RSB0
B36
GND
A13
IO59RSB1
B1
IO81RSB1
B37
IO17RSB0
A14
IO56RSB1
B2
IO78RSB1
B38
IO15RSB0
A15
NC
B3
GND
B39
GND
A16
IO55RSB1
B4
IO75RSB1
B40
IO12RSB0
A17
IO53RSB1
B5
NC
B41
IO09RSB0
A18
VCC
B6
GND
B42
GND
A19
IO50RSB1
B7
IO70RSB1
B43
IO04RSB0
A20
IO48RSB1
B8
NC
B44
IO01RSB0
A21
IO45RSB1
B9
GND
C1
IO82RSB1
A22
IO44RSB1
B10
IO66RSB1
C2
IO79RSB1
A23
IO43RSB1
B11
IO63RSB1
C3
NC
A24
TDI
B12
FF/IO60RSB1
C4
IO74RSB1
A25
TRST
B13
IO57RSB1
C5
GEA0/IO72RSB1
A26
IO40RSB0
B14
GND
C6
NC
A27
NC
B15
IO54RSB1
C7
NC
A28
IO39RSB0
B16
IO52RSB1
C8
VCCIB1
A29
IO38RSB0
B17
GND
C9
IO65RSB1
A30
IO36RSB0
B18
IO49RSB1
C10
IO62RSB1
A31
IO35RSB0
B19
IO46RSB1
C11
IO61RSB1
A32
GDC0/IO32RSB0
B20
GND
C12
IO58RSB1
A33
NC
B21
IO42RSB1
C13
NC
A34
VCC
B22
TMS
C14
NC
A35
IO30RSB0
B23
TDO
C15
IO51RSB1
A36
IO27RSB0
B24
IO41RSB0
C16
VCCIB1
R ev i si o n 2 3
4- 29
Package Pin Assignments
QN132
Pin Number
AGL030 Function
C17
IO47RSB1
C18
NC
C19
TCK
C20
NC
C21
VPUMP
C22
VJTAG
C23
NC
C24
NC
C25
NC
C26
GDB0/IO34RSB0
C27
NC
C28
VCCIB0
C29
IO28RSB0
C30
IO25RSB0
C31
IO24RSB0
C32
IO21RSB0
C33
NC
C34
NC
C35
VCCIB0
C36
IO13RSB0
C37
IO10RSB0
C38
IO07RSB0
C39
IO03RSB0
C40
IO00RSB0
D1
GND
D2
GND
D3
GND
D4
GND
4- 30
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN132
QN132
QN132
Pin Number
AGL060 Function
Pin Number
AGL060 Function
Pin Number
AGL060 Function
A1
GAB2/IO00RSB1
A37
GBB1/IO25RSB0
B24
GDC0/IO49RSB0
A2
IO93RSB1
A38
GBC0/IO22RSB0
B25
GND
A3
VCCIB1
A39
VCCIB0
B26
NC
A4
GFC1/IO89RSB1
A40
IO21RSB0
B27
GCB2/IO45RSB0
A5
GFB0/IO86RSB1
A41
IO18RSB0
B28
GND
A6
VCCPLF
A42
IO15RSB0
B29
GCB0/IO41RSB0
A7
GFA1/IO84RSB1
A43
IO14RSB0
B30
GCC1/IO38RSB0
A8
GFC2/IO81RSB1
A44
IO11RSB0
B31
GND
A9
IO78RSB1
A45
GAB1/IO08RSB0
B32
GBB2/IO30RSB0
A10
VCC
A46
NC
B33
VMV0
A11
GEB1/IO75RSB1
A47
GAB0/IO07RSB0
B34
GBA0/IO26RSB0
A12
GEA0/IO72RSB1
A48
IO04RSB0
B35
GBC1/IO23RSB0
A13
GEC2/IO69RSB1
B1
IO01RSB1
B36
GND
A14
IO65RSB1
B2
GAC2/IO94RSB1
B37
IO20RSB0
A15
VCC
B3
GND
B38
IO17RSB0
A16
IO64RSB1
B4
GFC0/IO88RSB1
B39
GND
A17
IO63RSB1
B5
VCOMPLF
B40
IO12RSB0
A18
IO62RSB1
B6
GND
B41
GAC0/IO09RSB0
A19
IO61RSB1
B7
GFB2/IO82RSB1
B42
GND
A20
IO58RSB1
B8
IO79RSB1
B43
GAA1/IO06RSB0
A21
GDB2/IO55RSB1
B9
GND
B44
GNDQ
A22
NC
B10
GEB0/IO74RSB1
C1
GAA2/IO02RSB1
A23
GDA2/IO54RSB1
B11
VMV1
C2
IO95RSB1
A24
TDI
B12
C3
VCC
A25
TRST
FF/GEB2/IO70RSB
1
C4
GFB1/IO87RSB1
B13
IO67RSB1
C5
GFA0/IO85RSB1
B14
GND
C6
GFA2/IO83RSB1
B15
NC
C7
IO80RSB1
B16
NC
C8
VCCIB1
B17
GND
C9
GEA1/IO73RSB1
B18
IO59RSB1
C10
GNDQ
B19
GDC2/IO56RSB1
C11
GEA2/IO71RSB1
B20
GND
C12
IO68RSB1
B21
GNDQ
C13
VCCIB1
B22
TMS
C14
NC
B23
TDO
C15
NC
A26
A27
A28
A29
A30
A31
A32
A33
A34
A35
A36
GDC1/IO48RSB0
VCC
IO47RSB0
GCC2/IO46RSB0
GCA2/IO44RSB0
GCA0/IO43RSB0
GCB1/IO40RSB0
IO36RSB0
VCC
IO31RSB0
GBA2/IO28RSB0
R ev i si o n 2 3
4- 31
Package Pin Assignments
QN132
Pin Number
AGL060 Function
C16
IO60RSB1
C17
IO57RSB1
C18
NC
C19
TCK
C20
VMV1
C21
VPUMP
C22
VJTAG
C23
VCCIB0
C24
NC
C25
NC
C26
GCA1/IO42RSB0
C27
GCC0/IO39RSB0
C28
VCCIB0
C29
IO29RSB0
C30
GNDQ
C31
GBA1/IO27RSB0
C32
GBB0/IO24RSB0
C33
VCC
C34
IO19RSB0
C35
IO16RSB0
C36
IO13RSB0
C37
GAC1/IO10RSB0
C38
NC
C39
GAA0/IO05RSB0
C40
VMV0
D1
GND
D2
GND
D3
GND
D4
GND
4- 32
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN132
QN132
QN132
Pin Number
AGL125 Function
Pin Number
AGL125 Function
Pin Number
AGL125 Function
A1
GAB2/IO69RSB1
A37
GBB1/IO38RSB0
B25
GND
A2
IO130RSB1
A38
GBC0/IO35RSB0
B26
NC
A3
VCCIB1
A39
VCCIB0
B27
GCB2/IO58RSB0
A4
GFC1/IO126RSB1
A40
IO28RSB0
B28
GND
A5
GFB0/IO123RSB1
A41
IO22RSB0
B29
GCB0/IO54RSB0
A6
VCCPLF
A42
IO18RSB0
B30
GCC1/IO51RSB0
A7
GFA1/IO121RSB1
A43
IO14RSB0
B31
GND
A8
GFC2/IO118RSB1
A44
IO11RSB0
B32
GBB2/IO43RSB0
A9
IO115RSB1
A45
IO07RSB0
B33
VMV0
A10
VCC
A46
VCC
B34
GBA0/IO39RSB0
A11
GEB1/IO110RSB1
A47
GAC1/IO05RSB0
B35
GBC1/IO36RSB0
A12
GEA0/IO107RSB1
A48
GAB0/IO02RSB0
B36
GND
A13
GEC2/IO104RSB1
B1
IO68RSB1
B37
IO26RSB0
A14
IO100RSB1
B2
GAC2/IO131RSB1
B38
IO21RSB0
A15
VCC
B3
GND
B39
GND
A16
IO99RSB1
B4
GFC0/IO125RSB1
B40
IO13RSB0
A17
IO96RSB1
B5
VCOMPLF
B41
IO08RSB0
A18
IO94RSB1
B6
GND
B42
GND
A19
IO91RSB1
B7
GFB2/IO119RSB1
B43
GAC0/IO04RSB0
A20
IO85RSB1
B8
IO116RSB1
B44
GNDQ
A21
IO79RSB1
B9
GND
C1
GAA2/IO67RSB1
A22
VCC
B10
GEB0/IO109RSB1
C2
IO132RSB1
A23
GDB2/IO71RSB1
B11
VMV1
C3
VCC
A24
TDI
B12
FF/GEB2/IO105RSB1
C4
GFB1/IO124RSB1
A25
TRST
B13
IO101RSB1
C5
GFA0/IO122RSB1
A26
GDC1/IO61RSB0
B14
GND
C6
GFA2/IO120RSB1
A27
VCC
B15
IO98RSB1
C7
IO117RSB1
A28
IO60RSB0
B16
IO95RSB1
C8
VCCIB1
A29
GCC2/IO59RSB0
B17
GND
C9
GEA1/IO108RSB1
A30
GCA2/IO57RSB0
B18
IO87RSB1
C10
GNDQ
A31
GCA0/IO56RSB0
B19
IO81RSB1
C11
GEA2/IO106RSB1
A32
GCB1/IO53RSB0
B20
GND
C12
IO103RSB1
A33
IO49RSB0
B21
GNDQ
C13
VCCIB1
A34
VCC
B22
TMS
C14
IO97RSB1
A35
IO44RSB0
B23
TDO
C15
IO93RSB1
A36
GBA2/IO41RSB0
B24
GDC0/IO62RSB0
C16
IO89RSB1
R ev i si o n 2 3
4- 33
Package Pin Assignments
QN132
Pin Number
AGL125 Function
C17
IO83RSB1
C18
VCCIB1
C19
TCK
C20
VMV1
C21
VPUMP
C22
VJTAG
C23
VCCIB0
C24
NC
C25
NC
C26
GCA1/IO55RSB0
C27
GCC0/IO52RSB0
C28
VCCIB0
C29
IO42RSB0
C30
GNDQ
C31
GBA1/IO40RSB0
C32
GBB0/IO37RSB0
C33
VCC
C34
IO24RSB0
C35
IO19RSB0
C36
IO16RSB0
C37
IO10RSB0
C38
VCCIB0
C39
GAB1/IO03RSB0
C40
VMV0
D1
GND
D2
GND
D3
GND
D4
GND
4- 34
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
QN132
QN132
QN132
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
A1
GAB2/IO117UPB3
A37
GBB1/IO38RSB0
B25
GND
A2
IO117VPB3
A38
GBC0/IO35RSB0
B26
IO54PDB1
A3
VCCIB3
A39
VCCIB0
B27
GCB2/IO52PDB1
A4
GFC1/IO110PDB3
A40
IO28RSB0
B28
GND
A5
GFB0/IO109NPB3
A41
IO22RSB0
B29
GCB0/IO49NDB1
A6
VCCPLF
A42
IO18RSB0
B30
GCC1/IO48PDB1
A7
GFA1/IO108PPB3
A43
IO14RSB0
B31
GND
A8
GFC2/IO105PPB3
A44
IO11RSB0
B32
GBB2/IO42PDB1
A9
IO103NDB3
A45
IO07RSB0
B33
VMV1
A10
VCC
A46
VCC
B34
GBA0/IO39RSB0
A11
GEA1/IO98PPB3
A47
GAC1/IO05RSB0
B35
GBC1/IO36RSB0
A12
GEA0/IO98NPB3
A48
GAB0/IO02RSB0
B36
GND
A13
GEC2/IO95RSB2
B1
IO118VDB3
B37
IO26RSB0
A14
IO91RSB2
B2
GAC2/IO116UDB3
B38
IO21RSB0
A15
VCC
B3
GND
B39
GND
A16
IO90RSB2
B4
GFC0/IO110NDB3
B40
IO13RSB0
A17
IO87RSB2
B5
VCOMPLF
B41
IO08RSB0
A18
IO85RSB2
B6
GND
B42
GND
A19
IO82RSB2
B7
GFB2/IO106PSB3
B43
GAC0/IO04RSB0
A20
IO76RSB2
B8
IO103PDB3
B44
GNDQ
A21
IO70RSB2
B9
GND
C1
GAA2/IO118UDB3
A22
VCC
B10
GEB0/IO99NDB3
C2
IO116VDB3
A23
GDB2/IO62RSB2
B11
VMV3
C3
VCC
A24
TDI
B12
FF/GEB2/IO96RSB2
C4
GFB1/IO109PPB3
A25
TRST
B13
IO92RSB2
C5
GFA0/IO108NPB3
A26
GDC1/IO58UDB1
B14
GND
C6
GFA2/IO107PSB3
A27
VCC
B15
IO89RSB2
C7
IO105NPB3
A28
IO54NDB1
B16
IO86RSB2
C8
VCCIB3
A29
IO52NDB1
B17
GND
C9
GEB1/IO99PDB3
A30
GCA2/IO51PPB1
B18
IO78RSB2
C10
GNDQ
A31
GCA0/IO50NPB1
B19
IO72RSB2
C11
GEA2/IO97RSB2
A32
GCB1/IO49PDB1
B20
GND
C12
IO94RSB2
A33
IO47NSB1
B21
GNDQ
C13
VCCIB2
A34
VCC
B22
TMS
C14
IO88RSB2
A35
IO41NPB1
B23
TDO
C15
IO84RSB2
A36
GBA2/IO41PPB1
B24
GDC0/IO58VDB1
C16
IO80RSB2
R ev i si o n 2 3
4- 35
Package Pin Assignments
QN132
Pin Number
AGL250 Function
C17
IO74RSB2
C18
VCCIB2
C19
TCK
C20
VMV2
C21
VPUMP
C22
VJTAG
C23
VCCIB1
C24
IO53NSB1
C25
IO51NPB1
C26
GCA1/IO50PPB1
C27
GCC0/IO48NDB1
C28
VCCIB1
C29
IO42NDB1
C30
GNDQ
C31
GBA1/IO40RSB0
C32
GBB0/IO37RSB0
C33
VCC
C34
IO24RSB0
C35
IO19RSB0
C36
IO16RSB0
C37
IO10RSB0
C38
VCCIB0
C39
GAB1/IO03RSB0
C40
VMV0
D1
GND
D2
GND
D3
GND
D4
GND
4- 36
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
VQ100
100
1
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4- 37
Package Pin Assignments
VQ100
VQ100
VQ100
Pin Number
AGL030 Function
Pin Number
AGL030 Function
Pin Number
AGL030 Function
1
GND
37
VCC
73
IO27RSB0
2
IO82RSB1
38
GND
74
IO26RSB0
3
IO81RSB1
39
VCCIB1
75
IO25RSB0
4
IO80RSB1
40
IO49RSB1
76
IO24RSB0
5
IO79RSB1
41
IO47RSB1
77
IO23RSB0
6
IO78RSB1
42
IO46RSB1
78
IO22RSB0
7
IO77RSB1
43
IO45RSB1
79
IO21RSB0
8
IO76RSB1
44
IO44RSB1
80
IO20RSB0
9
GND
45
IO43RSB1
81
IO19RSB0
10
IO75RSB1
46
IO42RSB1
82
IO18RSB0
11
IO74RSB1
47
TCK
83
IO17RSB0
12
GEC0/IO73RSB1
48
TDI
84
IO16RSB0
13
GEA0/IO72RSB1
49
TMS
85
IO15RSB0
14
GEB0/IO71RSB1
50
NC
86
IO14RSB0
15
IO70RSB1
51
GND
87
VCCIB0
16
IO69RSB1
52
VPUMP
88
GND
17
VCC
53
NC
89
VCC
18
VCCIB1
54
TDO
90
IO12RSB0
19
IO68RSB1
55
TRST
91
IO10RSB0
20
IO67RSB1
56
VJTAG
92
IO08RSB0
21
IO66RSB1
57
IO41RSB0
93
IO07RSB0
22
IO65RSB1
58
IO40RSB0
94
IO06RSB0
23
IO64RSB1
59
IO39RSB0
95
IO05RSB0
24
IO63RSB1
60
IO38RSB0
96
IO04RSB0
25
IO62RSB1
61
IO37RSB0
97
IO03RSB0
26
IO61RSB1
62
IO36RSB0
98
IO02RSB0
27
FF/IO60RSB1
63
GDB0/IO34RSB0
99
IO01RSB0
28
IO59RSB1
64
GDA0/IO33RSB0
100
IO00RSB0
29
IO58RSB1
65
GDC0/IO32RSB0
30
IO57RSB1
66
VCCIB0
31
IO56RSB1
67
GND
32
IO55RSB1
68
VCC
33
IO54RSB1
69
IO31RSB0
34
IO53RSB1
70
IO30RSB0
35
IO52RSB1
71
IO29RSB0
36
IO51RSB1
72
IO28RSB0
4- 38
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
VQ100
VQ100
VQ100
Pin Number
AGL060 Function
Pin Number
AGL060 Function
Pin Number
AGL060 Function
1
GND
37
VCC
73
GBA2/IO25RSB0
2
GAA2/IO51RSB1
38
GND
74
VMV0
3
IO52RSB1
39
VCCIB1
75
GNDQ
4
GAB2/IO53RSB1
40
IO60RSB1
76
GBA1/IO24RSB0
5
IO95RSB1
41
IO59RSB1
77
GBA0/IO23RSB0
6
GAC2/IO94RSB1
42
IO58RSB1
78
GBB1/IO22RSB0
7
IO93RSB1
43
IO57RSB1
79
GBB0/IO21RSB0
8
IO92RSB1
44
GDC2/IO56RSB1
80
GBC1/IO20RSB0
9
GND
45
GDB2/IO55RSB1
81
GBC0/IO19RSB0
10
GFB1/IO87RSB1
46
GDA2/IO54RSB1
82
IO18RSB0
11
GFB0/IO86RSB1
47
TCK
83
IO17RSB0
12
VCOMPLF
48
TDI
84
IO15RSB0
13
GFA0/IO85RSB1
49
TMS
85
IO13RSB0
14
VCCPLF
50
VMV1
86
IO11RSB0
15
GFA1/IO84RSB1
51
GND
87
VCCIB0
16
GFA2/IO83RSB1
52
VPUMP
88
GND
17
VCC
53
NC
89
VCC
18
VCCIB1
54
TDO
90
IO10RSB0
19
GEC1/IO77RSB1
55
TRST
91
IO09RSB0
20
GEB1/IO75RSB1
56
VJTAG
92
IO08RSB0
21
GEB0/IO74RSB1
57
GDA1/IO49RSB0
93
GAC1/IO07RSB0
22
GEA1/IO73RSB1
58
GDC0/IO46RSB0
94
GAC0/IO06RSB0
23
GEA0/IO72RSB1
59
GDC1/IO45RSB0
95
GAB1/IO05RSB0
24
VMV1
60
GCC2/IO43RSB0
96
GAB0/IO04RSB0
25
GNDQ
61
GCB2/IO42RSB0
97
GAA1/IO03RSB0
26
GEA2/IO71RSB1
62
GCA0/IO40RSB0
98
GAA0/IO02RSB0
27
FF/GEB2/IO70RSB1
63
GCA1/IO39RSB0
99
IO01RSB0
28
GEC2/IO69RSB1
64
GCC0/IO36RSB0
100
IO00RSB0
29
IO68RSB1
65
GCC1/IO35RSB0
30
IO67RSB1
66
VCCIB0
31
IO66RSB1
67
GND
32
IO65RSB1
68
VCC
33
IO64RSB1
69
IO31RSB0
34
IO63RSB1
70
GBC2/IO29RSB0
35
IO62RSB1
71
GBB2/IO27RSB0
36
IO61RSB1
72
IO26RSB0
R ev i si o n 2 3
4- 39
Package Pin Assignments
VQ100
VQ100
VQ100
Pin Number
AGL125 Function
Pin Number
AGL125 Function
Pin Number
AGL125 Function
1
GND
36
IO93RSB1
72
IO42RSB0
2
GAA2/IO67RSB1
37
VCC
73
GBA2/IO41RSB0
3
IO68RSB1
38
GND
74
VMV0
4
GAB2/IO69RSB1
39
VCCIB1
75
GNDQ
5
IO132RSB1
40
IO87RSB1
76
GBA1/IO40RSB0
6
GAC2/IO131RSB1
41
IO84RSB1
77
GBA0/IO39RSB0
7
IO130RSB1
42
IO81RSB1
78
GBB1/IO38RSB0
8
IO129RSB1
43
IO75RSB1
79
GBB0/IO37RSB0
9
GND
44
GDC2/IO72RSB1
80
GBC1/IO36RSB0
10
GFB1/IO124RSB1
45
GDB2/IO71RSB1
81
GBC0/IO35RSB0
11
GFB0/IO123RSB1
46
GDA2/IO70RSB1
82
IO32RSB0
12
VCOMPLF
47
TCK
83
IO28RSB0
13
GFA0/IO122RSB1
48
TDI
84
IO25RSB0
14
VCCPLF
49
TMS
85
IO22RSB0
15
GFA1/IO121RSB1
50
VMV1
86
IO19RSB0
16
GFA2/IO120RSB1
51
GND
87
VCCIB0
17
VCC
52
VPUMP
88
GND
18
VCCIB1
53
NC
89
VCC
19
GEC0/IO111RSB1
54
TDO
90
IO15RSB0
20
GEB1/IO110RSB1
55
TRST
91
IO13RSB0
21
GEB0/IO109RSB1
56
VJTAG
92
IO11RSB0
22
GEA1/IO108RSB1
57
GDA1/IO65RSB0
93
IO09RSB0
23
GEA0/IO107RSB1
58
GDC0/IO62RSB0
94
IO07RSB0
24
VMV1
59
GDC1/IO61RSB0
95
GAC1/IO05RSB0
25
GNDQ
60
GCC2/IO59RSB0
96
GAC0/IO04RSB0
26
GEA2/IO106RSB1
61
GCB2/IO58RSB0
97
GAB1/IO03RSB0
27
FF/GEB2/IO105RSB
1
62
GCA0/IO56RSB0
98
GAB0/IO02RSB0
63
GCA1/IO55RSB0
99
GAA1/IO01RSB0
28
GEC2/IO104RSB1
64
GCC0/IO52RSB0
100
GAA0/IO00RSB0
29
IO102RSB1
65
GCC1/IO51RSB0
30
IO100RSB1
66
VCCIB0
31
IO99RSB1
67
GND
32
IO97RSB1
68
VCC
33
IO96RSB1
69
IO47RSB0
34
IO95RSB1
70
GBC2/IO45RSB0
35
IO94RSB1
71
GBB2/IO43RSB0
4- 40
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
VQ100
VQ100
VQ100
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
1
GND
37
VCC
73
GBA2/IO41PDB1
2
GAA2/IO118UDB3
38
GND
74
VMV1
3
IO118VDB3
39
VCCIB2
75
GNDQ
4
GAB2/IO117UDB3
40
IO77RSB2
76
GBA1/IO40RSB0
5
IO117VDB3
41
IO74RSB2
77
GBA0/IO39RSB0
6
GAC2/IO116UDB3
42
IO71RSB2
78
GBB1/IO38RSB0
7
IO116VDB3
43
GDC2/IO63RSB2
79
GBB0/IO37RSB0
8
IO112PSB3
44
GDB2/IO62RSB2
80
GBC1/IO36RSB0
9
GND
45
GDA2/IO61RSB2
81
GBC0/IO35RSB0
10
GFB1/IO109PDB3
46
GNDQ
82
IO29RSB0
11
GFB0/IO109NDB3
47
TCK
83
IO27RSB0
12
VCOMPLF
48
TDI
84
IO25RSB0
13
GFA0/IO108NPB3
49
TMS
85
IO23RSB0
14
VCCPLF
50
VMV2
86
IO21RSB0
15
GFA1/IO108PPB3
51
GND
87
VCCIB0
16
GFA2/IO107PSB3
52
VPUMP
88
GND
17
VCC
53
NC
89
VCC
18
VCCIB3
54
TDO
90
IO15RSB0
19
GFC2/IO105PSB3
55
TRST
91
IO13RSB0
20
GEC1/IO100PDB3
56
VJTAG
92
IO11RSB0
21
GEC0/IO100NDB3
57
GDA1/IO60USB1
93
GAC1/IO05RSB0
22
GEA1/IO98PDB3
58
GDC0/IO58VDB1
94
GAC0/IO04RSB0
23
GEA0/IO98NDB3
59
GDC1/IO58UDB1
95
GAB1/IO03RSB0
24
VMV3
60
IO52NDB1
96
GAB0/IO02RSB0
25
GNDQ
61
GCB2/IO52PDB1
97
GAA1/IO01RSB0
26
GEA2/IO97RSB2
62
GCA1/IO50PDB1
98
GAA0/IO00RSB0
27
FF/GEB2/IO96RSB2
63
GCA0/IO50NDB1
99
GNDQ
28
GEC2/IO95RSB2
64
GCC0/IO48NDB1
100
VMV0
29
IO93RSB2
65
GCC1/IO48PDB1
30
IO92RSB2
66
VCCIB1
31
IO91RSB2
67
GND
32
IO90RSB2
68
VCC
33
IO88RSB2
69
IO43NDB1
34
IO86RSB2
70
GBC2/IO43PDB1
35
IO85RSB2
71
GBB2/IO42PSB1
36
IO84RSB2
72
IO41NDB1
R ev i si o n 2 3
4- 41
Package Pin Assignments
FG144
A1 Ball Pad Corner
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
4- 42
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL060 Function
Pin Number
AGL060 Function
Pin Number
AGL060 Function
A1
GNDQ
D1
IO91RSB1
G1
GFA1/IO84RSB1
A2
VMV0
D2
IO92RSB1
G2
GND
A3
GAB0/IO04RSB0
D3
IO93RSB1
G3
VCCPLF
A4
GAB1/IO05RSB0
D4
GAA2/IO51RSB1
G4
GFA0/IO85RSB1
A5
IO08RSB0
D5
GAC0/IO06RSB0
G5
GND
A6
GND
D6
GAC1/IO07RSB0
G6
GND
A7
IO11RSB0
D7
GBC0/IO19RSB0
G7
GND
A8
VCC
D8
GBC1/IO20RSB0
G8
GDC1/IO45RSB0
A9
IO16RSB0
D9
GBB2/IO27RSB0
G9
IO32RSB0
A10
GBA0/IO23RSB0
D10
IO18RSB0
G10
GCC2/IO43RSB0
A11
GBA1/IO24RSB0
D11
IO28RSB0
G11
IO31RSB0
A12
GNDQ
D12
GCB1/IO37RSB0
G12
GCB2/IO42RSB0
B1
GAB2/IO53RSB1
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO88RSB1
H2
GFB2/IO82RSB1
B3
GAA0/IO02RSB0
E3
GFC1/IO89RSB1
H3
GFC2/IO81RSB1
B4
GAA1/IO03RSB0
E4
VCCIB1
H4
GEC1/IO77RSB1
B5
IO00RSB0
E5
IO52RSB1
H5
VCC
B6
IO10RSB0
E6
VCCIB0
H6
IO34RSB0
B7
IO12RSB0
E7
VCCIB0
H7
IO44RSB0
B8
IO14RSB0
E8
GCC1/IO35RSB0
H8
GDB2/IO55RSB1
B9
GBB0/IO21RSB0
E9
VCCIB0
H9
GDC0/IO46RSB0
B10
GBB1/IO22RSB0
E10
VCC
H10
VCCIB0
B11
GND
E11
GCA0/IO40RSB0
H11
IO33RSB0
B12
VMV0
E12
IO30RSB0
H12
VCC
C1
IO95RSB1
F1
GFB0/IO86RSB1
J1
GEB1/IO75RSB1
C2
GFA2/IO83RSB1
F2
VCOMPLF
J2
IO78RSB1
C3
GAC2/IO94RSB1
F3
GFB1/IO87RSB1
J3
VCCIB1
C4
VCC
F4
IO90RSB1
J4
GEC0/IO76RSB1
C5
IO01RSB0
F5
GND
J5
IO79RSB1
C6
IO09RSB0
F6
GND
J6
IO80RSB1
C7
IO13RSB0
F7
GND
J7
VCC
C8
IO15RSB0
F8
GCC0/IO36RSB0
J8
TCK
C9
IO17RSB0
F9
GCB0/IO38RSB0
J9
GDA2/IO54RSB1
C10
GBA2/IO25RSB0
F10
GND
J10
TDO
C11
IO26RSB0
F11
GCA1/IO39RSB0
J11
GDA1/IO49RSB0
C12
GBC2/IO29RSB0
F12
GCA2/IO41RSB0
J12
GDB1/IO47RSB0
R ev i si o n 2 3
4- 43
Package Pin Assignments
FG144
Pin Number
AGL060 Function
K1
GEB0/IO74RSB1
K2
GEA1/IO73RSB1
K3
GEA0/IO72RSB1
K4
GEA2/IO71RSB1
K5
IO65RSB1
K6
IO64RSB1
K7
GND
K8
IO57RSB1
K9
GDC2/IO56RSB1
K10
GND
K11
GDA0/IO50RSB0
K12
GDB0/IO48RSB0
L1
GND
L2
VMV1
L3
FF/GEB2/IO70RSB1
L4
IO67RSB1
L5
VCCIB1
L6
IO62RSB1
L7
IO59RSB1
L8
IO58RSB1
L9
TMS
L10
VJTAG
L11
VMV1
L12
TRST
M1
GNDQ
M2
GEC2/IO69RSB1
M3
IO68RSB1
M4
IO66RSB1
M5
IO63RSB1
M6
IO61RSB1
M7
IO60RSB1
M8
NC
M9
TDI
M10
VCCIB1
M11
VPUMP
M12
GNDQ
4- 44
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL125 Function
Pin Number
AGL125 Function
Pin Number
AGL125 Function
A1
GNDQ
D1
IO128RSB1
G1
GFA1/IO121RSB1
A2
VMV0
D2
IO129RSB1
G2
GND
A3
GAB0/IO02RSB0
D3
IO130RSB1
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO67RSB1
G4
GFA0/IO122RSB1
A5
IO11RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO18RSB0
D7
GBC0/IO35RSB0
G7
GND
A8
VCC
D8
GBC1/IO36RSB0
G8
GDC1/IO61RSB0
A9
IO25RSB0
D9
GBB2/IO43RSB0
G9
IO48RSB0
A10
GBA0/IO39RSB0
D10
IO28RSB0
G10
GCC2/IO59RSB0
A11
GBA1/IO40RSB0
D11
IO44RSB0
G11
IO47RSB0
A12
GNDQ
D12
GCB1/IO53RSB0
G12
GCB2/IO58RSB0
B1
GAB2/IO69RSB1
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO125RSB1
H2
GFB2/IO119RSB1
B3
GAA0/IO00RSB0
E3
GFC1/IO126RSB1
H3
GFC2/IO118RSB1
B4
GAA1/IO01RSB0
E4
VCCIB1
H4
GEC1/IO112RSB1
B5
IO08RSB0
E5
IO68RSB1
H5
VCC
B6
IO14RSB0
E6
VCCIB0
H6
IO50RSB0
B7
IO19RSB0
E7
VCCIB0
H7
IO60RSB0
B8
IO22RSB0
E8
GCC1/IO51RSB0
H8
GDB2/IO71RSB1
B9
GBB0/IO37RSB0
E9
VCCIB0
H9
GDC0/IO62RSB0
B10
GBB1/IO38RSB0
E10
VCC
H10
VCCIB0
B11
GND
E11
GCA0/IO56RSB0
H11
IO49RSB0
B12
VMV0
E12
IO46RSB0
H12
VCC
C1
IO132RSB1
F1
GFB0/IO123RSB1
J1
GEB1/IO110RSB1
C2
GFA2/IO120RSB1
F2
VCOMPLF
J2
IO115RSB1
C3
GAC2/IO131RSB1
F3
GFB1/IO124RSB1
J3
VCCIB1
C4
VCC
F4
IO127RSB1
J4
GEC0/IO111RSB1
C5
IO10RSB0
F5
GND
J5
IO116RSB1
C6
IO12RSB0
F6
GND
J6
IO117RSB1
C7
IO21RSB0
F7
GND
J7
VCC
C8
IO24RSB0
F8
GCC0/IO52RSB0
J8
TCK
C9
IO27RSB0
F9
GCB0/IO54RSB0
J9
GDA2/IO70RSB1
C10
GBA2/IO41RSB0
F10
GND
J10
TDO
C11
IO42RSB0
F11
GCA1/IO55RSB0
J11
GDA1/IO65RSB0
C12
GBC2/IO45RSB0
F12
GCA2/IO57RSB0
J12
GDB1/IO63RSB0
R ev i si o n 2 3
4- 45
Package Pin Assignments
FG144
Pin Number
AGL125 Function
K1
GEB0/IO109RSB1
K2
GEA1/IO108RSB1
K3
GEA0/IO107RSB1
K4
GEA2/IO106RSB1
K5
IO100RSB1
K6
IO98RSB1
K7
GND
K8
IO73RSB1
K9
GDC2/IO72RSB1
K10
GND
K11
GDA0/IO66RSB0
K12
GDB0/IO64RSB0
L1
GND
L2
VMV1
L3
FF/GEB2/IO105RSB1
L4
IO102RSB1
L5
VCCIB1
L6
IO95RSB1
L7
IO85RSB1
L8
IO74RSB1
L9
TMS
L10
VJTAG
L11
VMV1
L12
TRST
M1
GNDQ
M2
GEC2/IO104RSB1
M3
IO103RSB1
M4
IO101RSB1
M5
IO97RSB1
M6
IO94RSB1
M7
IO86RSB1
M8
IO75RSB1
M9
TDI
M10
VCCIB1
M11
VPUMP
M12
GNDQ
4- 46
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL250 Function
Pin Number
AGL250 Function
Pin Number
AGL250 Function
A1
GNDQ
D1
IO112NDB3
G1
GFA1/IO108PPB3
A2
VMV0
D2
IO112PDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO116VDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO118UPB3
G4
GFA0/IO108NPB3
A5
IO16RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO29RSB0
D7
GBC0/IO35RSB0
G7
GND
A8
VCC
D8
GBC1/IO36RSB0
G8
GDC1/IO58UPB1
A9
IO33RSB0
D9
GBB2/IO42PDB1
G9
IO53NDB1
A10
GBA0/IO39RSB0
D10
IO42NDB1
G10
GCC2/IO53PDB1
A11
GBA1/IO40RSB0
D11
IO43NPB1
G11
IO52NDB1
A12
GNDQ
D12
GCB1/IO49PPB1
G12
GCB2/IO52PDB1
B1
GAB2/IO117UDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO110NDB3
H2
GFB2/IO106PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO110PDB3
H3
GFC2/IO105PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO100PDB3
B5
IO14RSB0
E5
IO118VPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO79RSB2
B7
IO22RSB0
E7
VCCIB0
H7
IO65RSB2
B8
IO30RSB0
E8
GCC1/IO48PDB1
H8
GDB2/IO62RSB2
B9
GBB0/IO37RSB0
E9
VCCIB1
H9
GDC0/IO58VPB1
B10
GBB1/IO38RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO50NDB1
H11
IO54PSB1
B12
VMV1
E12
IO51NDB1
H12
VCC
C1
IO117VDB3
F1
GFB0/IO109NPB3
J1
GEB1/IO99PDB3
C2
GFA2/IO107PPB3
F2
VCOMPLF
J2
IO106NDB3
C3
GAC2/IO116UDB3
F3
GFB1/IO109PPB3
J3
VCCIB3
C4
VCC
F4
IO107NPB3
J4
GEC0/IO100NDB3
C5
IO12RSB0
F5
GND
J5
IO88RSB2
C6
IO17RSB0
F6
GND
J6
IO81RSB2
C7
IO24RSB0
F7
GND
J7
VCC
C8
IO31RSB0
F8
GCC0/IO48NDB1
J8
TCK
C9
IO34RSB0
F9
GCB0/IO49NPB1
J9
GDA2/IO61RSB2
C10
GBA2/IO41PDB1
F10
GND
J10
TDO
C11
IO41NDB1
F11
GCA1/IO50PDB1
J11
GDA1/IO60UDB1
C12
GBC2/IO43PPB1
F12
GCA2/IO51PDB1
J12
GDB1/IO59UDB1
R ev i si o n 2 3
4- 47
Package Pin Assignments
FG144
Pin Number
AGL250 Function
K1
GEB0/IO99NDB3
K2
GEA1/IO98PDB3
K3
GEA0/IO98NDB3
K4
GEA2/IO97RSB2
K5
IO90RSB2
K6
IO84RSB2
K7
GND
K8
IO66RSB2
K9
GDC2/IO63RSB2
K10
GND
K11
GDA0/IO60VDB1
K12
GDB0/IO59VDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO96RSB2
L4
IO91RSB2
L5
VCCIB2
L6
IO82RSB2
L7
IO80RSB2
L8
IO72RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO95RSB2
M3
IO92RSB2
M4
IO89RSB2
M5
IO87RSB2
M6
IO85RSB2
M7
IO78RSB2
M8
IO76RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 48
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
A1
GNDQ
D1
IO149NDB3
G1
GFA1/IO145PPB3
A2
VMV0
D2
IO149PDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO153VDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO155UPB3
G4
GFA0/IO145NPB3
A5
IO16RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO30RSB0
D7
GBC0/IO54RSB0
G7
GND
A8
VCC
D8
GBC1/IO55RSB0
G8
GDC1/IO77UPB1
A9
IO34RSB0
D9
GBB2/IO61PDB1
G9
IO72NDB1
A10
GBA0/IO58RSB0
D10
IO61NDB1
G10
GCC2/IO72PDB1
A11
GBA1/IO59RSB0
D11
IO62NPB1
G11
IO71NDB1
A12
GNDQ
D12
GCB1/IO68PPB1
G12
GCB2/IO71PDB1
B1
GAB2/IO154UDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO147NDB3
H2
GFB2/IO143PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO147PDB3
H3
GFC2/IO142PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO137PDB3
B5
IO14RSB0
E5
IO155VPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO75PDB1
B7
IO23RSB0
E7
VCCIB0
H7
IO75NDB1
B8
IO31RSB0
E8
GCC1/IO67PDB1
H8
GDB2/IO81RSB2
B9
GBB0/IO56RSB0
E9
VCCIB1
H9
GDC0/IO77VPB1
B10
GBB1/IO57RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO69NDB1
H11
IO73PSB1
B12
VMV1
E12
IO70NDB1
H12
VCC
C1
IO154VDB3
F1
GFB0/IO146NPB3
J1
GEB1/IO136PDB3
C2
GFA2/IO144PPB3
F2
VCOMPLF
J2
IO143NDB3
C3
GAC2/IO153UDB3
F3
GFB1/IO146PPB3
J3
VCCIB3
C4
VCC
F4
IO144NPB3
J4
GEC0/IO137NDB3
C5
IO12RSB0
F5
GND
J5
IO125RSB2
C6
IO17RSB0
F6
GND
J6
IO116RSB2
C7
IO25RSB0
F7
GND
J7
VCC
C8
IO32RSB0
F8
GCC0/IO67NDB1
J8
TCK
C9
IO53RSB0
F9
GCB0/IO68NPB1
J9
GDA2/IO80RSB2
C10
GBA2/IO60PDB1
F10
GND
J10
TDO
C11
IO60NDB1
F11
GCA1/IO69PDB1
J11
GDA1/IO79UDB1
C12
GBC2/IO62PPB1
F12
GCA2/IO70PDB1
J12
GDB1/IO78UDB1
R ev i si o n 2 3
4- 49
Package Pin Assignments
FG144
Pin Number
AGL400 Function
K1
GEB0/IO136NDB3
K2
GEA1/IO135PDB3
K3
GEA0/IO135NDB3
K4
GEA2/IO134RSB2
K5
IO127RSB2
K6
IO121RSB2
K7
GND
K8
IO104RSB2
K9
GDC2/IO82RSB2
K10
GND
K11
GDA0/IO79VDB1
K12
GDB0/IO78VDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO133RSB2
L4
IO128RSB2
L5
VCCIB2
L6
IO119RSB2
L7
IO114RSB2
L8
IO110RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO132RSB2
M3
IO129RSB2
M4
IO126RSB2
M5
IO124RSB2
M6
IO122RSB2
M7
IO117RSB2
M8
IO115RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 50
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
A1
GNDQ
D1
IO169PDB3
G1
GFA1/IO162PPB3
A2
VMV0
D2
IO169NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO172NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO174PPB3
G4
GFA0/IO162NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO34RSB0
D7
GBC0/IO54RSB0
G7
GND
A8
VCC
D8
GBC1/IO55RSB0
G8
GDC1/IO86PPB1
A9
IO50RSB0
D9
GBB2/IO61PDB1
G9
IO74NDB1
A10
GBA0/IO58RSB0
D10
IO61NDB1
G10
GCC2/IO74PDB1
A11
GBA1/IO59RSB0
D11
IO62NPB1
G11
IO73NDB1
A12
GNDQ
D12
GCB1/IO70PPB1
G12
GCB2/IO73PDB1
B1
GAB2/IO173PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO164NDB3
H2
GFB2/IO160PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO164PDB3
H3
GFC2/IO159PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO146PDB3
B5
IO13RSB0
E5
IO174NPB3
H5
VCC
B6
IO19RSB0
E6
VCCIB0
H6
IO80PDB1
B7
IO31RSB0
E7
VCCIB0
H7
IO80NDB1
B8
IO39RSB0
E8
GCC1/IO69PDB1
H8
GDB2/IO90RSB2
B9
GBB0/IO56RSB0
E9
VCCIB1
H9
GDC0/IO86NPB1
B10
GBB1/IO57RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO71NDB1
H11
IO84PSB1
B12
VMV1
E12
IO72NDB1
H12
VCC
C1
IO173NDB3
F1
GFB0/IO163NPB3
J1
GEB1/IO145PDB3
C2
GFA2/IO161PPB3
F2
VCOMPLF
J2
IO160NDB3
C3
GAC2/IO172PDB3
F3
GFB1/IO163PPB3
J3
VCCIB3
C4
VCC
F4
IO161NPB3
J4
GEC0/IO146NDB3
C5
IO16RSB0
F5
GND
J5
IO129RSB2
C6
IO25RSB0
F6
GND
J6
IO131RSB2
C7
IO28RSB0
F7
GND
J7
VCC
C8
IO42RSB0
F8
GCC0/IO69NDB1
J8
TCK
C9
IO45RSB0
F9
GCB0/IO70NPB1
J9
GDA2/IO89RSB2
C10
GBA2/IO60PDB1
F10
GND
J10
TDO
C11
IO60NDB1
F11
GCA1/IO71PDB1
J11
GDA1/IO88PDB1
C12
GBC2/IO62PPB1
F12
GCA2/IO72PDB1
J12
GDB1/IO87PDB1
R ev i si o n 2 3
4- 51
Package Pin Assignments
FG144
Pin Number
AGL600 Function
K1
GEB0/IO145NDB3
K2
GEA1/IO144PDB3
K3
GEA0/IO144NDB3
K4
GEA2/IO143RSB2
K5
IO119RSB2
K6
IO111RSB2
K7
GND
K8
IO94RSB2
K9
GDC2/IO91RSB2
K10
GND
K11
GDA0/IO88NDB1
K12
GDB0/IO87NDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO142RSB2
L4
IO136RSB2
L5
VCCIB2
L6
IO115RSB2
L7
IO103RSB2
L8
IO97RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO141RSB2
M3
IO138RSB2
M4
IO123RSB2
M5
IO126RSB2
M6
IO134RSB2
M7
IO108RSB2
M8
IO99RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 52
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
A1
GNDQ
D1
IO213PDB3
G1
GFA1/IO207PPB3
A2
VMV0
D2
IO213NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO223NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO225PPB3
G4
GFA0/IO207NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO44RSB0
D7
GBC0/IO72RSB0
G7
GND
A8
VCC
D8
GBC1/IO73RSB0
G8
GDC1/IO111PPB1
A9
IO69RSB0
D9
GBB2/IO79PDB1
G9
IO96NDB1
A10
GBA0/IO76RSB0
D10
IO79NDB1
G10
GCC2/IO96PDB1
A11
GBA1/IO77RSB0
D11
IO80NPB1
G11
IO95NDB1
A12
GNDQ
D12
GCB1/IO92PPB1
G12
GCB2/IO95PDB1
B1
GAB2/IO224PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO209NDB3
H2
GFB2/IO205PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO209PDB3
H3
GFC2/IO204PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO190PDB3
B5
IO13RSB0
E5
IO225NPB3
H5
VCC
B6
IO26RSB0
E6
VCCIB0
H6
IO105PDB1
B7
IO35RSB0
E7
VCCIB0
H7
IO105NDB1
B8
IO60RSB0
E8
GCC1/IO91PDB1
H8
GDB2/IO115RSB2
B9
GBB0/IO74RSB0
E9
VCCIB1
H9
GDC0/IO111NPB1
B10
GBB1/IO75RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO93NDB1
H11
IO101PSB1
B12
VMV1
E12
IO94NDB1
H12
VCC
C1
IO224NDB3
F1
GFB0/IO208NPB3
J1
GEB1/IO189PDB3
C2
GFA2/IO206PPB3
F2
VCOMPLF
J2
IO205NDB3
C3
GAC2/IO223PDB3
F3
GFB1/IO208PPB3
J3
VCCIB3
C4
VCC
F4
IO206NPB3
J4
GEC0/IO190NDB3
C5
IO16RSB0
F5
GND
J5
IO160RSB2
C6
IO29RSB0
F6
GND
J6
IO157RSB2
C7
IO32RSB0
F7
GND
J7
VCC
C8
IO63RSB0
F8
GCC0/IO91NDB1
J8
TCK
C9
IO66RSB0
F9
GCB0/IO92NPB1
J9
GDA2/IO114RSB2
C10
GBA2/IO78PDB1
F10
GND
J10
TDO
C11
IO78NDB1
F11
GCA1/IO93PDB1
J11
GDA1/IO113PDB1
C12
GBC2/IO80PPB1
F12
GCA2/IO94PDB1
J12
GDB1/IO112PDB1
R ev i si o n 2 3
4- 53
Package Pin Assignments
FG144
Pin Number
AGL1000 Function
K1
GEB0/IO189NDB3
K2
GEA1/IO188PDB3
K3
GEA0/IO188NDB3
K4
GEA2/IO187RSB2
K5
IO169RSB2
K6
IO152RSB2
K7
GND
K8
IO117RSB2
K9
GDC2/IO116RSB2
K10
GND
K11
GDA0/IO113NDB1
K12
GDB0/IO112NDB1
L1
GND
L2
VMV3
L3
FF/GEB2/IO186RSB2
L4
IO172RSB2
L5
VCCIB2
L6
IO153RSB2
L7
IO144RSB2
L8
IO140RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO185RSB2
M3
IO173RSB2
M4
IO168RSB2
M5
IO161RSB2
M6
IO156RSB2
M7
IO145RSB2
M8
IO141RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4- 54
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG256
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4- 55
Package Pin Assignments
FG256
FG256
FG256
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
A1
GND
C7
IO20RSB0
E13
GBC2/IO62PDB1
A2
GAA0/IO00RSB0
C8
IO24RSB0
E14
IO65RSB1
A3
GAA1/IO01RSB0
C9
IO33RSB0
E15
IO52RSB0
A4
GAB0/IO02RSB0
C10
IO39RSB0
E16
IO66PDB1
A5
IO16RSB0
C11
IO45RSB0
F1
IO150NDB3
A6
IO17RSB0
C12
GBC0/IO54RSB0
F2
IO149NPB3
A7
IO22RSB0
C13
IO48RSB0
F3
IO09RSB0
A8
IO28RSB0
C14
VMV0
F4
IO152UDB3
A9
IO34RSB0
C15
IO61NPB1
F5
VCCIB3
A10
IO37RSB0
C16
IO63PDB1
F6
GND
A11
IO41RSB0
D1
IO151VDB3
F7
VCC
A12
IO43RSB0
D2
IO151UDB3
F8
VCC
A13
GBB1/IO57RSB0
D3
GAC2/IO153UDB3
F9
VCC
A14
GBA0/IO58RSB0
D4
IO06RSB0
F10
VCC
A15
GBA1/IO59RSB0
D5
GNDQ
F11
GND
A16
GND
D6
IO10RSB0
F12
VCCIB1
B1
GAB2/IO154UDB3
D7
IO19RSB0
F13
IO62NDB1
B2
GAA2/IO155UDB3
D8
IO26RSB0
F14
IO49RSB0
B3
IO12RSB0
D9
IO30RSB0
F15
IO64PPB1
B4
GAB1/IO03RSB0
D10
IO40RSB0
F16
IO66NDB1
B5
IO13RSB0
D11
IO46RSB0
G1
IO148NDB3
B6
IO14RSB0
D12
GNDQ
G2
IO148PDB3
B7
IO21RSB0
D13
IO47RSB0
G3
IO149PPB3
B8
IO27RSB0
D14
GBB2/IO61PPB1
G4
GFC1/IO147PPB3
B9
IO32RSB0
D15
IO53RSB0
G5
VCCIB3
B10
IO38RSB0
D16
IO63NDB1
G6
VCC
B11
IO42RSB0
E1
IO150PDB3
G7
GND
B12
GBC1/IO55RSB0
E2
IO08RSB0
G8
GND
B13
GBB0/IO56RSB0
E3
IO153VDB3
G9
GND
B14
IO44RSB0
E4
IO152VDB3
G10
GND
B15
GBA2/IO60PDB1
E5
VMV0
G11
VCC
B16
IO60NDB1
E6
VCCIB0
G12
VCCIB1
C1
IO154VDB3
E7
VCCIB0
G13
GCC1/IO67PPB1
C2
IO155VDB3
E8
IO25RSB0
G14
IO64NPB1
C3
IO11RSB0
E9
IO31RSB0
G15
IO73PDB1
C4
IO07RSB0
E10
VCCIB0
G16
IO73NDB1
C5
GAC0/IO04RSB0
E11
VCCIB0
H1
GFB0/IO146NPB3
C6
GAC1/IO05RSB0
E12
VMV1
H2
GFA0/IO145NDB3
4- 56
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
H3
GFB1/IO146PPB3
K9
GND
M15
GDC1/IO77UDB1
H4
VCOMPLF
K10
GND
M16
IO75NDB1
H5
GFC0/IO147NPB3
K11
VCC
N1
IO140NDB3
H6
VCC
K12
VCCIB1
N2
IO138PPB3
H7
GND
K13
IO71NPB1
N3
GEC1/IO137PPB3
H8
GND
K14
IO74RSB1
N4
IO131RSB2
H9
GND
K15
IO72NPB1
N5
GNDQ
H10
GND
K16
IO70NDB1
N6
GEA2/IO134RSB2
H11
VCC
L1
IO142NDB3
N7
IO117RSB2
H12
GCC0/IO67NPB1
L2
IO141NPB3
N8
IO111RSB2
H13
GCB1/IO68PPB1
L3
IO125RSB2
N9
IO99RSB2
H14
GCA0/IO69NPB1
L4
IO139RSB3
N10
IO94RSB2
H15
NC
L5
VCCIB3
N11
IO87RSB2
H16
GCB0/IO68NPB1
L6
GND
N12
GNDQ
J1
GFA2/IO144PPB3
L7
VCC
N13
IO93RSB2
J2
GFA1/IO145PDB3
L8
VCC
N14
VJTAG
J3
VCCPLF
L9
VCC
N15
GDC0/IO77VDB1
J4
IO143NDB3
L10
VCC
N16
GDA1/IO79UDB1
J5
GFB2/IO143PDB3
L11
GND
P1
GEB1/IO136PDB3
J6
VCC
L12
VCCIB1
P2
GEB0/IO136NDB3
J7
GND
L13
GDB0/IO78VPB1
P3
VMV2
J8
GND
L14
IO76VDB1
P4
IO129RSB2
J9
GND
L15
IO76UDB1
P5
IO128RSB2
J10
GND
L16
IO75PDB1
P6
IO122RSB2
J11
VCC
M1
IO140PDB3
P7
IO115RSB2
J12
GCB2/IO71PPB1
M2
IO130RSB2
P8
IO110RSB2
J13
GCA1/IO69PPB1
M3
IO138NPB3
P9
IO98RSB2
J14
GCC2/IO72PPB1
M4
GEC0/IO137NPB3
P10
IO95RSB2
J15
NC
M5
VMV3
P11
IO88RSB2
J16
GCA2/IO70PDB1
M6
VCCIB2
P12
IO84RSB2
K1
GFC2/IO142PDB3
M7
VCCIB2
P13
TCK
K2
IO144NPB3
M8
IO108RSB2
P14
VPUMP
K3
IO141PPB3
M9
IO101RSB2
P15
TRST
K4
IO120RSB2
M10
VCCIB2
P16
GDA0/IO79VDB1
K5
VCCIB3
M11
VCCIB2
R1
GEA1/IO135PDB3
K6
VCC
M12
VMV2
R2
GEA0/IO135NDB3
K7
GND
M13
IO83RSB2
R3
IO127RSB2
K8
GND
M14
GDB1/IO78UPB1
R4
GEC2/IO132RSB2
R ev i si o n 2 3
4- 57
Package Pin Assignments
FG256
Pin Number
AGL400 Function
R5
IO123RSB2
R6
IO118RSB2
R7
IO112RSB2
R8
IO106RSB2
R9
IO100RSB2
R10
IO96RSB2
R11
IO89RSB2
R12
IO85RSB2
R13
GDB2/IO81RSB2
R14
TDI
R15
NC
R16
TDO
T1
GND
T2
IO126RSB2
T3
FF/GEB2/IO133RSB2
T4
IO124RSB2
T5
IO116RSB2
T6
IO113RSB2
T7
IO107RSB2
T8
IO105RSB2
T9
IO102RSB2
T10
IO97RSB2
T11
IO92RSB2
T12
GDC2/IO82RSB2
T13
IO86RSB2
T14
GDA2/IO80RSB2
T15
TMS
T16
GND
4- 58
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
A1
GND
C7
IO20RSB0
E13
GBC2/IO62PDB1
A2
GAA0/IO00RSB0
C8
IO24RSB0
E14
IO67PPB1
A3
GAA1/IO01RSB0
C9
IO33RSB0
E15
IO64PPB1
A4
GAB0/IO02RSB0
C10
IO39RSB0
E16
IO66PDB1
A5
IO11RSB0
C11
IO44RSB0
F1
IO166NDB3
A6
IO16RSB0
C12
GBC0/IO54RSB0
F2
IO168NPB3
A7
IO18RSB0
C13
IO51RSB0
F3
IO167PPB3
A8
IO28RSB0
C14
VMV0
F4
IO169PDB3
A9
IO34RSB0
C15
IO61NPB1
F5
VCCIB3
A10
IO37RSB0
C16
IO63PDB1
F6
GND
A11
IO41RSB0
D1
IO171NDB3
F7
VCC
A12
IO43RSB0
D2
IO171PDB3
F8
VCC
A13
GBB1/IO57RSB0
D3
GAC2/IO172PDB3
F9
VCC
A14
GBA0/IO58RSB0
D4
IO06RSB0
F10
VCC
A15
GBA1/IO59RSB0
D5
GNDQ
F11
GND
A16
GND
D6
IO10RSB0
F12
VCCIB1
B1
GAB2/IO173PDB3
D7
IO19RSB0
F13
IO62NDB1
B2
GAA2/IO174PDB3
D8
IO26RSB0
F14
IO64NPB1
B3
GNDQ
D9
IO30RSB0
F15
IO65PPB1
B4
GAB1/IO03RSB0
D10
IO40RSB0
F16
IO66NDB1
B5
IO13RSB0
D11
IO45RSB0
G1
IO165NDB3
B6
IO14RSB0
D12
GNDQ
G2
IO165PDB3
B7
IO21RSB0
D13
IO50RSB0
G3
IO168PPB3
B8
IO27RSB0
D14
GBB2/IO61PPB1
G4
GFC1/IO164PPB3
B9
IO32RSB0
D15
IO53RSB0
G5
VCCIB3
B10
IO38RSB0
D16
IO63NDB1
G6
VCC
B11
IO42RSB0
E1
IO166PDB3
G7
GND
B12
GBC1/IO55RSB0
E2
IO167NPB3
G8
GND
B13
GBB0/IO56RSB0
E3
IO172NDB3
G9
GND
B14
IO52RSB0
E4
IO169NDB3
G10
GND
B15
GBA2/IO60PDB1
E5
VMV0
G11
VCC
B16
IO60NDB1
E6
VCCIB0
G12
VCCIB1
C1
IO173NDB3
E7
VCCIB0
G13
GCC1/IO69PPB1
C2
IO174NDB3
E8
IO25RSB0
G14
IO65NPB1
C3
VMV3
E9
IO31RSB0
G15
IO75PDB1
C4
IO07RSB0
E10
VCCIB0
G16
IO75NDB1
C5
GAC0/IO04RSB0
E11
VCCIB0
H1
GFB0/IO163NPB3
C6
GAC1/IO05RSB0
E12
VMV1
H2
GFA0/IO162NDB3
R ev i si o n 2 3
4- 59
Package Pin Assignments
FG256
FG256
FG256
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
H3
GFB1/IO163PPB3
K9
GND
M15
GDC1/IO86PDB1
H4
VCOMPLF
K10
GND
M16
IO84NDB1
H5
GFC0/IO164NPB3
K11
VCC
N1
IO150NDB3
H6
VCC
K12
VCCIB1
N2
IO147PPB3
H7
GND
K13
IO73NPB1
N3
GEC1/IO146PPB3
H8
GND
K14
IO80NPB1
N4
IO140RSB2
H9
GND
K15
IO74NPB1
N5
GNDQ
H10
GND
K16
IO72NDB1
N6
GEA2/IO143RSB2
H11
VCC
L1
IO159NDB3
N7
IO126RSB2
H12
GCC0/IO69NPB1
L2
IO156NPB3
N8
IO120RSB2
H13
GCB1/IO70PPB1
L3
IO151PPB3
N9
IO108RSB2
H14
GCA0/IO71NPB1
L4
IO158PSB3
N10
IO103RSB2
H15
IO67NPB1
L5
VCCIB3
N11
IO99RSB2
H16
GCB0/IO70NPB1
L6
GND
N12
GNDQ
J1
GFA2/IO161PPB3
L7
VCC
N13
IO92RSB2
J2
GFA1/IO162PDB3
L8
VCC
N14
VJTAG
J3
VCCPLF
L9
VCC
N15
GDC0/IO86NDB1
J4
IO160NDB3
L10
VCC
N16
GDA1/IO88PDB1
J5
GFB2/IO160PDB3
L11
GND
P1
GEB1/IO145PDB3
J6
VCC
L12
VCCIB1
P2
GEB0/IO145NDB3
J7
GND
L13
GDB0/IO87NPB1
P3
VMV2
J8
GND
L14
IO85NDB1
P4
IO138RSB2
J9
GND
L15
IO85PDB1
P5
IO136RSB2
J10
GND
L16
IO84PDB1
P6
IO131RSB2
J11
VCC
M1
IO150PDB3
P7
IO124RSB2
J12
GCB2/IO73PPB1
M2
IO151NPB3
P8
IO119RSB2
J13
GCA1/IO71PPB1
M3
IO147NPB3
P9
IO107RSB2
J14
GCC2/IO74PPB1
M4
GEC0/IO146NPB3
P10
IO104RSB2
J15
IO80PPB1
M5
VMV3
P11
IO97RSB2
J16
GCA2/IO72PDB1
M6
VCCIB2
P12
VMV1
K1
GFC2/IO159PDB3
M7
VCCIB2
P13
TCK
K2
IO161NPB3
M8
IO117RSB2
P14
VPUMP
K3
IO156PPB3
M9
IO110RSB2
P15
TRST
K4
IO129RSB2
M10
VCCIB2
P16
GDA0/IO88NDB1
K5
VCCIB3
M11
VCCIB2
R1
GEA1/IO144PDB3
K6
VCC
M12
VMV2
R2
GEA0/IO144NDB3
K7
GND
M13
IO94RSB2
R3
IO139RSB2
K8
GND
M14
GDB1/IO87PPB1
R4
GEC2/IO141RSB2
4- 60
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG256
Pin Number
AGL600 Function
R5
IO132RSB2
R6
IO127RSB2
R7
IO121RSB2
R8
IO114RSB2
R9
IO109RSB2
R10
IO105RSB2
R11
IO98RSB2
R12
IO96RSB2
R13
GDB2/IO90RSB2
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO137RSB2
T3
FF/GEB2/IO142RSB2
T4
IO134RSB2
T5
IO125RSB2
T6
IO123RSB2
T7
IO118RSB2
T8
IO115RSB2
T9
IO111RSB2
T10
IO106RSB2
T11
IO102RSB2
T12
GDC2/IO91RSB2
T13
IO93RSB2
T14
GDA2/IO89RSB2
T15
TMS
T16
GND
R ev i si o n 2 3
4- 61
Package Pin Assignments
FG256
FG256
FG256
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
A1
GND
C7
IO25RSB0
E13
GBC2/IO80PDB1
A2
GAA0/IO00RSB0
C8
IO36RSB0
E14
IO83PPB1
A3
GAA1/IO01RSB0
C9
IO42RSB0
E15
IO86PPB1
A4
GAB0/IO02RSB0
C10
IO49RSB0
E16
IO87PDB1
A5
IO16RSB0
C11
IO56RSB0
F1
IO217NDB3
A6
IO22RSB0
C12
GBC0/IO72RSB0
F2
IO218NDB3
A7
IO28RSB0
C13
IO62RSB0
F3
IO216PDB3
A8
IO35RSB0
C14
VMV0
F4
IO216NDB3
A9
IO45RSB0
C15
IO78NDB1
F5
VCCIB3
A10
IO50RSB0
C16
IO81NDB1
F6
GND
A11
IO55RSB0
D1
IO222NDB3
F7
VCC
A12
IO61RSB0
D2
IO222PDB3
F8
VCC
A13
GBB1/IO75RSB0
D3
GAC2/IO223PDB3
F9
VCC
A14
GBA0/IO76RSB0
D4
IO223NDB3
F10
VCC
A15
GBA1/IO77RSB0
D5
GNDQ
F11
GND
A16
GND
D6
IO23RSB0
F12
VCCIB1
B1
GAB2/IO224PDB3
D7
IO29RSB0
F13
IO83NPB1
B2
GAA2/IO225PDB3
D8
IO33RSB0
F14
IO86NPB1
B3
GNDQ
D9
IO46RSB0
F15
IO90PPB1
B4
GAB1/IO03RSB0
D10
IO52RSB0
F16
IO87NDB1
B5
IO17RSB0
D11
IO60RSB0
G1
IO210PSB3
B6
IO21RSB0
D12
GNDQ
G2
IO213NDB3
B7
IO27RSB0
D13
IO80NDB1
G3
IO213PDB3
B8
IO34RSB0
D14
GBB2/IO79PDB1
G4
GFC1/IO209PPB3
B9
IO44RSB0
D15
IO79NDB1
G5
VCCIB3
B10
IO51RSB0
D16
IO82NSB1
G6
VCC
B11
IO57RSB0
E1
IO217PDB3
G7
GND
B12
GBC1/IO73RSB0
E2
IO218PDB3
G8
GND
B13
GBB0/IO74RSB0
E3
IO221NDB3
G9
GND
B14
IO71RSB0
E4
IO221PDB3
G10
GND
B15
GBA2/IO78PDB1
E5
VMV0
G11
VCC
B16
IO81PDB1
E6
VCCIB0
G12
VCCIB1
C1
IO224NDB3
E7
VCCIB0
G13
GCC1/IO91PPB1
C2
IO225NDB3
E8
IO38RSB0
G14
IO90NPB1
C3
VMV3
E9
IO47RSB0
G15
IO88PDB1
C4
IO11RSB0
E10
VCCIB0
G16
IO88NDB1
C5
GAC0/IO04RSB0
E11
VCCIB0
H1
GFB0/IO208NPB3
C6
GAC1/IO05RSB0
E12
VMV1
H2
GFA0/IO207NDB3
4- 62
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG256
FG256
FG256
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
H3
GFB1/IO208PPB3
K9
GND
M15
GDC1/IO111PDB1
H4
VCOMPLF
K10
GND
M16
IO107NDB1
H5
GFC0/IO209NPB3
K11
VCC
N1
IO194PSB3
H6
VCC
K12
VCCIB1
N2
IO192PPB3
H7
GND
K13
IO95NPB1
N3
GEC1/IO190PPB3
H8
GND
K14
IO100NPB1
N4
IO192NPB3
H9
GND
K15
IO102NDB1
N5
GNDQ
H10
GND
K16
IO102PDB1
N6
GEA2/IO187RSB2
H11
VCC
L1
IO202NDB3
N7
IO161RSB2
H12
GCC0/IO91NPB1
L2
IO202PDB3
N8
IO155RSB2
H13
GCB1/IO92PPB1
L3
IO196PPB3
N9
IO141RSB2
H14
GCA0/IO93NPB1
L4
IO193PPB3
N10
IO129RSB2
H15
IO96NPB1
L5
VCCIB3
N11
IO124RSB2
H16
GCB0/IO92NPB1
L6
GND
N12
GNDQ
J1
GFA2/IO206PSB3
L7
VCC
N13
IO110PDB1
J2
GFA1/IO207PDB3
L8
VCC
N14
VJTAG
J3
VCCPLF
L9
VCC
N15
GDC0/IO111NDB1
J4
IO205NDB3
L10
VCC
N16
GDA1/IO113PDB1
J5
GFB2/IO205PDB3
L11
GND
P1
GEB1/IO189PDB3
J6
VCC
L12
VCCIB1
P2
GEB0/IO189NDB3
J7
GND
L13
GDB0/IO112NPB1
P3
VMV2
J8
GND
L14
IO106NDB1
P4
IO179RSB2
J9
GND
L15
IO106PDB1
P5
IO171RSB2
J10
GND
L16
IO107PDB1
P6
IO165RSB2
J11
VCC
M1
IO197NSB3
P7
IO159RSB2
J12
GCB2/IO95PPB1
M2
IO196NPB3
P8
IO151RSB2
J13
GCA1/IO93PPB1
M3
IO193NPB3
P9
IO137RSB2
J14
GCC2/IO96PPB1
M4
GEC0/IO190NPB3
P10
IO134RSB2
J15
IO100PPB1
M5
VMV3
P11
IO128RSB2
J16
GCA2/IO94PSB1
M6
VCCIB2
P12
VMV1
K1
GFC2/IO204PDB3
M7
VCCIB2
P13
TCK
K2
IO204NDB3
M8
IO147RSB2
P14
VPUMP
K3
IO203NDB3
M9
IO136RSB2
P15
TRST
K4
IO203PDB3
M10
VCCIB2
P16
GDA0/IO113NDB1
K5
VCCIB3
M11
VCCIB2
R1
GEA1/IO188PDB3
K6
VCC
M12
VMV2
R2
GEA0/IO188NDB3
K7
GND
M13
IO110NDB1
R3
IO184RSB2
K8
GND
M14
GDB1/IO112PPB1
R4
GEC2/IO185RSB2
R ev i si o n 2 3
4- 63
Package Pin Assignments
FG256
Pin Number
AGL1000 Function
R5
IO168RSB2
R6
IO163RSB2
R7
IO157RSB2
R8
IO149RSB2
R9
IO143RSB2
R10
IO138RSB2
R11
IO131RSB2
R12
IO125RSB2
R13
GDB2/IO115RSB2
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO183RSB2
T3
FF/GEB2/IO186RSB2
T4
IO172RSB2
T5
IO170RSB2
T6
IO164RSB2
T7
IO158RSB2
T8
IO153RSB2
T9
IO142RSB2
T10
IO135RSB2
T11
IO130RSB2
T12
GDC2/IO116RSB2
T13
IO120RSB2
T14
GDA2/IO114RSB2
T15
TMS
T16
GND
4- 64
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
R ev i si o n 2 3
4- 65
Package Pin Assignments
FG484
FG484
FG484
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
A1
GND
AA15
NC
B7
NC
A2
GND
AA16
NC
B8
NC
A3
VCCIB0
AA17
NC
B9
NC
A4
NC
AA18
NC
B10
NC
A5
NC
AA19
NC
B11
NC
A6
IO15RSB0
AA20
NC
B12
NC
A7
IO18RSB0
AA21
VCCIB1
B13
NC
A8
NC
AA22
GND
B14
NC
A9
NC
AB1
GND
B15
NC
A10
IO23RSB0
AB2
GND
B16
NC
A11
IO29RSB0
AB3
VCCIB2
B17
NC
A12
IO35RSB0
AB4
NC
B18
NC
A13
IO36RSB0
AB5
NC
B19
NC
A14
NC
AB6
IO121RSB2
B20
NC
A15
NC
AB7
IO119RSB2
B21
VCCIB1
A16
IO50RSB0
AB8
IO114RSB2
B22
GND
A17
IO51RSB0
AB9
IO109RSB2
C1
VCCIB3
A18
NC
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB0
AB12
IO104RSB2
C4
NC
A21
GND
AB13
IO103RSB2
C5
GND
A22
GND
AB14
NC
C6
NC
AA1
GND
AB15
NC
C7
NC
AA2
VCCIB3
AB16
IO91RSB2
C8
VCC
AA3
NC
AB17
IO90RSB2
C9
VCC
AA4
NC
AB18
NC
C10
NC
AA5
NC
AB19
NC
C11
NC
AA6
NC
AB20
VCCIB2
C12
NC
AA7
NC
AB21
GND
C13
NC
AA8
NC
AB22
GND
C14
VCC
AA9
NC
B1
GND
C15
VCC
AA10
NC
B2
VCCIB3
C16
NC
AA11
NC
B3
NC
C17
NC
AA12
NC
B4
NC
C18
GND
AA13
NC
B5
NC
C19
NC
AA14
NC
B6
NC
C20
NC
4- 66
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
C21
NC
E13
IO38RSB0
G5
IO151UDB3
C22
VCCIB1
E14
IO42RSB0
G6
GAC2/IO153UDB3
D1
NC
E15
GBC1/IO55RSB0
G7
IO06RSB0
D2
NC
E16
GBB0/IO56RSB0
G8
GNDQ
D3
NC
E17
IO44RSB0
G9
IO10RSB0
D4
GND
E18
GBA2/IO60PDB1
G10
IO19RSB0
D5
GAA0/IO00RSB0
E19
IO60NDB1
G11
IO26RSB0
D6
GAA1/IO01RSB0
E20
GND
G12
IO30RSB0
D7
GAB0/IO02RSB0
E21
NC
G13
IO40RSB0
D8
IO16RSB0
E22
NC
G14
IO46RSB0
D9
IO17RSB0
F1
NC
G15
GNDQ
D10
IO22RSB0
F2
NC
G16
IO47RSB0
D11
IO28RSB0
F3
NC
G17
GBB2/IO61PPB1
D12
IO34RSB0
F4
IO154VDB3
G18
IO53RSB0
D13
IO37RSB0
F5
IO155VDB3
G19
IO63NDB1
D14
IO41RSB0
F6
IO11RSB0
G20
NC
D15
IO43RSB0
F7
IO07RSB0
G21
NC
D16
GBB1/IO57RSB0
F8
GAC0/IO04RSB0
G22
NC
D17
GBA0/IO58RSB0
F9
GAC1/IO05RSB0
H1
NC
D18
GBA1/IO59RSB0
F10
IO20RSB0
H2
NC
D19
GND
F11
IO24RSB0
H3
VCC
D20
NC
F12
IO33RSB0
H4
IO150PDB3
D21
NC
F13
IO39RSB0
H5
IO08RSB0
D22
NC
F14
IO45RSB0
H6
IO153VDB3
E1
NC
F15
GBC0/IO54RSB0
H7
IO152VDB3
E2
NC
F16
IO48RSB0
H8
VMV0
E3
GND
F17
VMV0
H9
VCCIB0
E4
GAB2/IO154UDB3
F18
IO61NPB1
H10
VCCIB0
E5
GAA2/IO155UDB3
F19
IO63PDB1
H11
IO25RSB0
E6
IO12RSB0
F20
NC
H12
IO31RSB0
E7
GAB1/IO03RSB0
F21
NC
H13
VCCIB0
E8
IO13RSB0
F22
NC
H14
VCCIB0
E9
IO14RSB0
G1
NC
H15
VMV1
E10
IO21RSB0
G2
NC
H16
GBC2/IO62PDB1
E11
IO27RSB0
G3
NC
H17
IO65RSB1
E12
IO32RSB0
G4
IO151VDB3
H18
IO52RSB0
R ev i si o n 2 3
4- 67
Package Pin Assignments
FG484
FG484
FG484
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
H19
IO66PDB1
K11
GND
M3
NC
H20
VCC
K12
GND
M4
GFA2/IO144PPB3
H21
NC
K13
GND
M5
GFA1/IO145PDB3
H22
NC
K14
VCC
M6
VCCPLF
J1
NC
K15
VCCIB1
M7
IO143NDB3
J2
NC
K16
GCC1/IO67PPB1
M8
GFB2/IO143PDB3
J3
NC
K17
IO64NPB1
M9
VCC
J4
IO150NDB3
K18
IO73PDB1
M10
GND
J5
IO149NPB3
K19
IO73NDB1
M11
GND
J6
IO09RSB0
K20
NC
M12
GND
J7
IO152UDB3
K21
NC
M13
GND
J8
VCCIB3
K22
NC
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO71PPB1
J10
VCC
L2
NC
M16
GCA1/IO69PPB1
J11
VCC
L3
NC
M17
GCC2/IO72PPB1
J12
VCC
L4
GFB0/IO146NPB3
M18
NC
J13
VCC
L5
GFA0/IO145NDB3
M19
GCA2/IO70PDB1
J14
GND
L6
GFB1/IO146PPB3
M20
NC
J15
VCCIB1
L7
VCOMPLF
M21
NC
J16
IO62NDB1
L8
GFC0/IO147NPB3
M22
NC
J17
IO49RSB0
L9
VCC
N1
NC
J18
IO64PPB1
L10
GND
N2
NC
J19
IO66NDB1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO142PDB3
J21
NC
L13
GND
N5
IO144NPB3
J22
NC
L14
VCC
N6
IO141PPB3
K1
NC
L15
GCC0/IO67NPB1
N7
IO120RSB2
K2
NC
L16
GCB1/IO68PPB1
N8
VCCIB3
K3
NC
L17
GCA0/IO69NPB1
N9
VCC
K4
IO148NDB3
L18
NC
N10
GND
K5
IO148PDB3
L19
GCB0/IO68NPB1
N11
GND
K6
IO149PPB3
L20
NC
N12
GND
K7
GFC1/IO147PPB3
L21
NC
N13
GND
K8
VCCIB3
L22
NC
N14
VCC
K9
VCC
M1
NC
N15
VCCIB1
K10
GND
M2
NC
N16
IO71NPB1
4- 68
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL400 Function
Pin Number
AGL400 Function
Pin Number
AGL400 Function
N17
IO74RSB1
R9
VCCIB2
U1
NC
N18
IO72NPB1
R10
VCCIB2
U2
NC
N19
IO70NDB1
R11
IO108RSB2
U3
NC
N20
NC
R12
IO101RSB2
U4
GEB1/IO136PDB3
N21
NC
R13
VCCIB2
U5
GEB0/IO136NDB3
N22
NC
R14
VCCIB2
U6
VMV2
P1
NC
R15
VMV2
U7
IO129RSB2
P2
NC
R16
IO83RSB2
U8
IO128RSB2
P3
NC
R17
GDB1/IO78UPB1
U9
IO122RSB2
P4
IO142NDB3
R18
GDC1/IO77UDB1
U10
IO115RSB2
P5
IO141NPB3
R19
IO75NDB1
U11
IO110RSB2
P6
IO125RSB2
R20
VCC
U12
IO98RSB2
P7
IO139RSB3
R21
NC
U13
IO95RSB2
P8
VCCIB3
R22
NC
U14
IO88RSB2
P9
GND
T1
NC
U15
IO84RSB2
P10
VCC
T2
NC
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO140NDB3
U18
TRST
P13
VCC
T5
IO138PPB3
U19
GDA0/IO79VDB1
P14
GND
T6
GEC1/IO137PPB3
U20
NC
P15
VCCIB1
T7
IO131RSB2
U21
NC
P16
GDB0/IO78VPB1
T8
GNDQ
U22
NC
P17
IO76VDB1
T9
GEA2/IO134RSB2
V1
NC
P18
IO76UDB1
T10
IO117RSB2
V2
NC
P19
IO75PDB1
T11
IO111RSB2
V3
GND
P20
NC
T12
IO99RSB2
V4
GEA1/IO135PDB3
P21
NC
T13
IO94RSB2
V5
GEA0/IO135NDB3
P22
NC
T14
IO87RSB2
V6
IO127RSB2
R1
NC
T15
GNDQ
V7
GEC2/IO132RSB2
R2
NC
T16
IO93RSB2
V8
IO123RSB2
R3
VCC
T17
VJTAG
V9
IO118RSB2
R4
IO140PDB3
T18
GDC0/IO77VDB1
V10
IO112RSB2
R5
IO130RSB2
T19
GDA1/IO79UDB1
V11
IO106RSB2
R6
IO138NPB3
T20
NC
V12
IO100RSB2
R7
GEC0/IO137NPB3
T21
NC
V13
IO96RSB2
R8
VMV3
T22
NC
V14
IO89RSB2
R ev i si o n 2 3
4- 69
Package Pin Assignments
FG484
FG484
Pin Number
AGL400 Function
Pin Number
AGL400 Function
V15
IO85RSB2
Y7
NC
V16
GDB2/IO81RSB2
Y8
VCC
V17
TDI
Y9
VCC
V18
NC
Y10
NC
V19
TDO
Y11
NC
V20
GND
Y12
NC
V21
NC
Y13
NC
V22
NC
Y14
VCC
W1
NC
Y15
VCC
W2
NC
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO126RSB2
Y19
NC
W6
FF/GEB2/IO133RSB2
Y20
NC
W7
IO124RSB2
Y21
NC
W8
IO116RSB2
Y22
VCCIB1
W9
IO113RSB2
W10
IO107RSB2
W11
IO105RSB2
W12
IO102RSB2
W13
IO97RSB2
W14
IO92RSB2
W15
GDC2/IO82RSB2
W16
IO86RSB2
W17
GDA2/IO80RSB2
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB3
Y2
NC
Y3
NC
Y4
NC
Y5
GND
Y6
NC
4- 70
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
A1
GND
AA15
NC
B7
IO12RSB0
A2
GND
AA16
IO101RSB2
B8
NC
A3
VCCIB0
AA17
NC
B9
NC
A4
NC
AA18
NC
B10
IO17RSB0
A5
NC
AA19
NC
B11
NC
A6
IO09RSB0
AA20
NC
B12
NC
A7
IO15RSB0
AA21
VCCIB1
B13
IO36RSB0
A8
NC
AA22
GND
B14
NC
A9
NC
AB1
GND
B15
NC
A10
IO22RSB0
AB2
GND
B16
IO47RSB0
A11
IO23RSB0
AB3
VCCIB2
B17
IO49RSB0
A12
IO29RSB0
AB4
NC
B18
NC
A13
IO35RSB0
AB5
NC
B19
NC
A14
NC
AB6
IO130RSB2
B20
NC
A15
NC
AB7
IO128RSB2
B21
VCCIB1
A16
IO46RSB0
AB8
IO122RSB2
B22
GND
A17
IO48RSB0
AB9
IO116RSB2
C1
VCCIB3
A18
NC
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB0
AB12
IO113RSB2
C4
NC
A21
GND
AB13
IO112RSB2
C5
GND
A22
GND
AB14
NC
C6
NC
AA1
GND
AB15
NC
C7
NC
AA2
VCCIB3
AB16
IO100RSB2
C8
VCC
AA3
NC
AB17
IO95RSB2
C9
VCC
AA4
NC
AB18
NC
C10
NC
AA5
NC
AB19
NC
C11
NC
AA6
IO135RSB2
AB20
VCCIB2
C12
NC
AA7
IO133RSB2
AB21
GND
C13
NC
AA8
NC
AB22
GND
C14
VCC
AA9
NC
B1
GND
C15
VCC
AA10
NC
B2
VCCIB3
C16
NC
AA11
NC
B3
NC
C17
NC
AA12
NC
B4
NC
C18
GND
AA13
NC
B5
NC
C19
NC
AA14
NC
B6
IO08RSB0
C20
NC
R ev i si o n 2 3
4- 71
Package Pin Assignments
FG484
FG484
FG484
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
C21
NC
E13
IO38RSB0
G5
IO171PDB3
C22
VCCIB1
E14
IO42RSB0
G6
GAC2/IO172PDB3
D1
NC
E15
GBC1/IO55RSB0
G7
IO06RSB0
D2
NC
E16
GBB0/IO56RSB0
G8
GNDQ
D3
NC
E17
IO52RSB0
G9
IO10RSB0
D4
GND
E18
GBA2/IO60PDB1
G10
IO19RSB0
D5
GAA0/IO00RSB0
E19
IO60NDB1
G11
IO26RSB0
D6
GAA1/IO01RSB0
E20
GND
G12
IO30RSB0
D7
GAB0/IO02RSB0
E21
NC
G13
IO40RSB0
D8
IO11RSB0
E22
NC
G14
IO45RSB0
D9
IO16RSB0
F1
NC
G15
GNDQ
D10
IO18RSB0
F2
NC
G16
IO50RSB0
D11
IO28RSB0
F3
NC
G17
GBB2/IO61PPB1
D12
IO34RSB0
F4
IO173NDB3
G18
IO53RSB0
D13
IO37RSB0
F5
IO174NDB3
G19
IO63NDB1
D14
IO41RSB0
F6
VMV3
G20
NC
D15
IO43RSB0
F7
IO07RSB0
G21
NC
D16
GBB1/IO57RSB0
F8
GAC0/IO04RSB0
G22
NC
D17
GBA0/IO58RSB0
F9
GAC1/IO05RSB0
H1
NC
D18
GBA1/IO59RSB0
F10
IO20RSB0
H2
NC
D19
GND
F11
IO24RSB0
H3
VCC
D20
NC
F12
IO33RSB0
H4
IO166PDB3
D21
NC
F13
IO39RSB0
H5
IO167NPB3
D22
NC
F14
IO44RSB0
H6
IO172NDB3
E1
NC
F15
GBC0/IO54RSB0
H7
IO169NDB3
E2
NC
F16
IO51RSB0
H8
VMV0
E3
GND
F17
VMV0
H9
VCCIB0
E4
GAB2/IO173PDB3
F18
IO61NPB1
H10
VCCIB0
E5
GAA2/IO174PDB3
F19
IO63PDB1
H11
IO25RSB0
E6
GNDQ
F20
NC
H12
IO31RSB0
E7
GAB1/IO03RSB0
F21
NC
H13
VCCIB0
E8
IO13RSB0
F22
NC
H14
VCCIB0
E9
IO14RSB0
G1
IO170NDB3
H15
VMV1
E10
IO21RSB0
G2
IO170PDB3
H16
GBC2/IO62PDB1
E11
IO27RSB0
G3
NC
H17
IO67PPB1
E12
IO32RSB0
G4
IO171NDB3
H18
IO64PPB1
4- 72
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
H19
IO66PDB1
K11
GND
M3
IO158NPB3
H20
VCC
K12
GND
M4
GFA2/IO161PPB3
H21
NC
K13
GND
M5
GFA1/IO162PDB3
H22
NC
K14
VCC
M6
VCCPLF
J1
NC
K15
VCCIB1
M7
IO160NDB3
J2
NC
K16
GCC1/IO69PPB1
M8
GFB2/IO160PDB3
J3
NC
K17
IO65NPB1
M9
VCC
J4
IO166NDB3
K18
IO75PDB1
M10
GND
J5
IO168NPB3
K19
IO75NDB1
M11
GND
J6
IO167PPB3
K20
NC
M12
GND
J7
IO169PDB3
K21
IO76NDB1
M13
GND
J8
VCCIB3
K22
IO76PDB1
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO73PPB1
J10
VCC
L2
IO155PDB3
M16
GCA1/IO71PPB1
J11
VCC
L3
NC
M17
GCC2/IO74PPB1
J12
VCC
L4
GFB0/IO163NPB3
M18
IO80PPB1
J13
VCC
L5
GFA0/IO162NDB3
M19
GCA2/IO72PDB1
J14
GND
L6
GFB1/IO163PPB3
M20
IO79PPB1
J15
VCCIB1
L7
VCOMPLF
M21
IO78PPB1
J16
IO62NDB1
L8
GFC0/IO164NPB3
M22
NC
J17
IO64NPB1
L9
VCC
N1
IO154NDB3
J18
IO65PPB1
L10
GND
N2
IO154PDB3
J19
IO66NDB1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO159PDB3
J21
IO68PDB1
L13
GND
N5
IO161NPB3
J22
IO68NDB1
L14
VCC
N6
IO156PPB3
K1
IO157PDB3
L15
GCC0/IO69NPB1
N7
IO129RSB2
K2
IO157NDB3
L16
GCB1/IO70PPB1
N8
VCCIB3
K3
NC
L17
GCA0/IO71NPB1
N9
VCC
K4
IO165NDB3
L18
IO67NPB1
N10
GND
K5
IO165PDB3
L19
GCB0/IO70NPB1
N11
GND
K6
IO168PPB3
L20
IO77PDB1
N12
GND
K7
GFC1/IO164PPB3
L21
IO77NDB1
N13
GND
K8
VCCIB3
L22
IO78NPB1
N14
VCC
K9
VCC
M1
NC
N15
VCCIB1
K10
GND
M2
IO155NDB3
N16
IO73NPB1
R ev i si o n 2 3
4- 73
Package Pin Assignments
FG484
FG484
FG484
Pin Number
AGL600 Function
Pin Number
AGL600 Function
Pin Number
AGL600 Function
N17
IO80NPB1
R9
VCCIB2
U1
IO149PDB3
N18
IO74NPB1
R10
VCCIB2
U2
IO149NDB3
N19
IO72NDB1
R11
IO117RSB2
U3
NC
N20
NC
R12
IO110RSB2
U4
GEB1/IO145PDB3
N21
IO79NPB1
R13
VCCIB2
U5
GEB0/IO145NDB3
N22
NC
R14
VCCIB2
U6
VMV2
P1
NC
R15
VMV2
U7
IO138RSB2
P2
IO153PDB3
R16
IO94RSB2
U8
IO136RSB2
P3
IO153NDB3
R17
GDB1/IO87PPB1
U9
IO131RSB2
P4
IO159NDB3
R18
GDC1/IO86PDB1
U10
IO124RSB2
P5
IO156NPB3
R19
IO84NDB1
U11
IO119RSB2
P6
IO151PPB3
R20
VCC
U12
IO107RSB2
P7
IO158PPB3
R21
IO81NDB1
U13
IO104RSB2
P8
VCCIB3
R22
IO82PDB1
U14
IO97RSB2
P9
GND
T1
IO152PDB3
U15
VMV1
P10
VCC
T2
IO152NDB3
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO150NDB3
U18
TRST
P13
VCC
T5
IO147PPB3
U19
GDA0/IO88NDB1
P14
GND
T6
GEC1/IO146PPB3
U20
NC
P15
VCCIB1
T7
IO140RSB2
U21
IO83NDB1
P16
GDB0/IO87NPB1
T8
GNDQ
U22
NC
P17
IO85NDB1
T9
GEA2/IO143RSB2
V1
NC
P18
IO85PDB1
T10
IO126RSB2
V2
NC
P19
IO84PDB1
T11
IO120RSB2
V3
GND
P20
NC
T12
IO108RSB2
V4
GEA1/IO144PDB3
P21
IO81PDB1
T13
IO103RSB2
V5
GEA0/IO144NDB3
P22
NC
T14
IO99RSB2
V6
IO139RSB2
R1
NC
T15
GNDQ
V7
GEC2/IO141RSB2
R2
NC
T16
IO92RSB2
V8
IO132RSB2
R3
VCC
T17
VJTAG
V9
IO127RSB2
R4
IO150PDB3
T18
GDC0/IO86NDB1
V10
IO121RSB2
R5
IO151NPB3
T19
GDA1/IO88PDB1
V11
IO114RSB2
R6
IO147NPB3
T20
NC
V12
IO109RSB2
R7
GEC0/IO146NPB3
T21
IO83PDB1
V13
IO105RSB2
R8
VMV3
T22
IO82NDB1
V14
IO98RSB2
4- 74
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
Pin Number
AGL600 Function
Pin Number
AGL600 Function
V15
IO96RSB2
Y7
NC
V16
GDB2/IO90RSB2
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
NC
V19
TDO
Y11
NC
V20
GND
Y12
NC
V21
NC
Y13
NC
V22
NC
Y14
VCC
W1
NC
Y15
VCC
W2
IO148PDB3
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO137RSB2
Y19
NC
W6
FF/GEB2/IO142RSB2
Y20
NC
W7
IO134RSB2
Y21
NC
W8
IO125RSB2
Y22
VCCIB1
W9
IO123RSB2
W10
IO118RSB2
W11
IO115RSB2
W12
IO111RSB2
W13
IO106RSB2
W14
IO102RSB2
W15
GDC2/IO91RSB2
W16
IO93RSB2
W17
GDA2/IO89RSB2
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB3
Y2
IO148NDB3
Y3
NC
Y4
NC
Y5
GND
Y6
NC
R ev i si o n 2 3
4- 75
Package Pin Assignments
FG484
FG484
FG484
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
A1
GND
AA15
NC
B7
IO15RSB0
A2
GND
AA16
IO122RSB2
B8
IO19RSB0
A3
VCCIB0
AA17
IO119RSB2
B9
IO24RSB0
A4
IO07RSB0
AA18
IO117RSB2
B10
IO31RSB0
A5
IO09RSB0
AA19
NC
B11
IO39RSB0
A6
IO13RSB0
AA20
NC
B12
IO48RSB0
A7
IO18RSB0
AA21
VCCIB1
B13
IO54RSB0
A8
IO20RSB0
AA22
GND
B14
IO58RSB0
A9
IO26RSB0
AB1
GND
B15
IO63RSB0
A10
IO32RSB0
AB2
GND
B16
IO66RSB0
A11
IO40RSB0
AB3
VCCIB2
B17
IO68RSB0
A12
IO41RSB0
AB4
IO180RSB2
B18
IO70RSB0
A13
IO53RSB0
AB5
IO176RSB2
B19
NC
A14
IO59RSB0
AB6
IO173RSB2
B20
NC
A15
IO64RSB0
AB7
IO167RSB2
B21
VCCIB1
A16
IO65RSB0
AB8
IO162RSB2
B22
GND
A17
IO67RSB0
AB9
IO156RSB2
C1
VCCIB3
A18
IO69RSB0
AB10
IO150RSB2
C2
IO220PDB3
A19
NC
AB11
IO145RSB2
C3
NC
A20
VCCIB0
AB12
IO144RSB2
C4
NC
A21
GND
AB13
IO132RSB2
C5
GND
A22
GND
AB14
IO127RSB2
C6
IO10RSB0
AA1
GND
AB15
IO126RSB2
C7
IO14RSB0
AA2
VCCIB3
AB16
IO123RSB2
C8
VCC
AA3
NC
AB17
IO121RSB2
C9
VCC
AA4
IO181RSB2
AB18
IO118RSB2
C10
IO30RSB0
AA5
IO178RSB2
AB19
NC
C11
IO37RSB0
AA6
IO175RSB2
AB20
VCCIB2
C12
IO43RSB0
AA7
IO169RSB2
AB21
GND
C13
NC
AA8
IO166RSB2
AB22
GND
C14
VCC
AA9
IO160RSB2
B1
GND
C15
VCC
AA10
IO152RSB2
B2
VCCIB3
C16
NC
AA11
IO146RSB2
B3
NC
C17
NC
AA12
IO139RSB2
B4
IO06RSB0
C18
GND
AA13
IO133RSB2
B5
IO08RSB0
C19
NC
AA14
NC
B6
IO12RSB0
C20
NC
4- 76
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
C21
NC
E13
IO51RSB0
G5
IO222PDB3
C22
VCCIB1
E14
IO57RSB0
G6
GAC2/IO223PDB3
D1
IO219PDB3
E15
GBC1/IO73RSB0
G7
IO223NDB3
D2
IO220NDB3
E16
GBB0/IO74RSB0
G8
GNDQ
D3
NC
E17
IO71RSB0
G9
IO23RSB0
D4
GND
E18
GBA2/IO78PDB1
G10
IO29RSB0
D5
GAA0/IO00RSB0
E19
IO81PDB1
G11
IO33RSB0
D6
GAA1/IO01RSB0
E20
GND
G12
IO46RSB0
D7
GAB0/IO02RSB0
E21
NC
G13
IO52RSB0
D8
IO16RSB0
E22
IO84PDB1
G14
IO60RSB0
D9
IO22RSB0
F1
NC
G15
GNDQ
D10
IO28RSB0
F2
IO215PDB3
G16
IO80NDB1
D11
IO35RSB0
F3
IO215NDB3
G17
GBB2/IO79PDB1
D12
IO45RSB0
F4
IO224NDB3
G18
IO79NDB1
D13
IO50RSB0
F5
IO225NDB3
G19
IO82NPB1
D14
IO55RSB0
F6
VMV3
G20
IO85PDB1
D15
IO61RSB0
F7
IO11RSB0
G21
IO85NDB1
D16
GBB1/IO75RSB0
F8
GAC0/IO04RSB0
G22
NC
D17
GBA0/IO76RSB0
F9
GAC1/IO05RSB0
H1
NC
D18
GBA1/IO77RSB0
F10
IO25RSB0
H2
NC
D19
GND
F11
IO36RSB0
H3
VCC
D20
NC
F12
IO42RSB0
H4
IO217PDB3
D21
NC
F13
IO49RSB0
H5
IO218PDB3
D22
NC
F14
IO56RSB0
H6
IO221NDB3
E1
IO219NDB3
F15
GBC0/IO72RSB0
H7
IO221PDB3
E2
NC
F16
IO62RSB0
H8
VMV0
E3
GND
F17
VMV0
H9
VCCIB0
E4
GAB2/IO224PDB3
F18
IO78NDB1
H10
VCCIB0
E5
GAA2/IO225PDB3
F19
IO81NDB1
H11
IO38RSB0
E6
GNDQ
F20
IO82PPB1
H12
IO47RSB0
E7
GAB1/IO03RSB0
F21
NC
H13
VCCIB0
E8
IO17RSB0
F22
IO84NDB1
H14
VCCIB0
E9
IO21RSB0
G1
IO214NDB3
H15
VMV1
E10
IO27RSB0
G2
IO214PDB3
H16
GBC2/IO80PDB1
E11
IO34RSB0
G3
NC
H17
IO83PPB1
E12
IO44RSB0
G4
IO222NDB3
H18
IO86PPB1
R ev i si o n 2 3
4- 77
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
H19
IO87PDB1
K11
GND
M3
IO206NDB3
H20
VCC
K12
GND
M4
GFA2/IO206PDB3
H21
NC
K13
GND
M5
GFA1/IO207PDB3
H22
NC
K14
VCC
M6
VCCPLF
J1
IO212NDB3
K15
VCCIB1
M7
IO205NDB3
J2
IO212PDB3
K16
GCC1/IO91PPB1
M8
GFB2/IO205PDB3
J3
NC
K17
IO90NPB1
M9
VCC
J4
IO217NDB3
K18
IO88PDB1
M10
GND
J5
IO218NDB3
K19
IO88NDB1
M11
GND
J6
IO216PDB3
K20
IO94NPB1
M12
GND
J7
IO216NDB3
K21
IO98NDB1
M13
GND
J8
VCCIB3
K22
IO98PDB1
M14
VCC
J9
GND
L1
NC
M15
GCB2/IO95PPB1
J10
VCC
L2
IO200PDB3
M16
GCA1/IO93PPB1
J11
VCC
L3
IO210NPB3
M17
GCC2/IO96PPB1
J12
VCC
L4
GFB0/IO208NPB3
M18
IO100PPB1
J13
VCC
L5
GFA0/IO207NDB3
M19
GCA2/IO94PPB1
J14
GND
L6
GFB1/IO208PPB3
M20
IO101PPB1
J15
VCCIB1
L7
VCOMPLF
M21
IO99PPB1
J16
IO83NPB1
L8
GFC0/IO209NPB3
M22
NC
J17
IO86NPB1
L9
VCC
N1
IO201NDB3
J18
IO90PPB1
L10
GND
N2
IO201PDB3
J19
IO87NDB1
L11
GND
N3
NC
J20
NC
L12
GND
N4
GFC2/IO204PDB3
J21
IO89PDB1
L13
GND
N5
IO204NDB3
J22
IO89NDB1
L14
VCC
N6
IO203NDB3
K1
IO211PDB3
L15
GCC0/IO91NPB1
N7
IO203PDB3
K2
IO211NDB3
L16
GCB1/IO92PPB1
N8
VCCIB3
K3
NC
L17
GCA0/IO93NPB1
N9
VCC
K4
IO210PPB3
L18
IO96NPB1
N10
GND
K5
IO213NDB3
L19
GCB0/IO92NPB1
N11
GND
K6
IO213PDB3
L20
IO97PDB1
N12
GND
K7
GFC1/IO209PPB3
L21
IO97NDB1
N13
GND
K8
VCCIB3
L22
IO99NPB1
N14
VCC
K9
VCC
M1
NC
N15
VCCIB1
K10
GND
M2
IO200NDB3
N16
IO95NPB1
R ev i si o n 2 3
4- 78
IGLOO Low Power Flash FPGAs
FG484
FG484
FG484
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
N17
IO100NPB1
R9
VCCIB2
U1
IO195PDB3
N18
IO102NDB1
R10
VCCIB2
U2
IO195NDB3
N19
IO102PDB1
R11
IO147RSB2
U3
IO194NPB3
N20
NC
R12
IO136RSB2
U4
GEB1/IO189PDB3
N21
IO101NPB1
R13
VCCIB2
U5
GEB0/IO189NDB3
N22
IO103PDB1
R14
VCCIB2
U6
VMV2
P1
NC
R15
VMV2
U7
IO179RSB2
P2
IO199PDB3
R16
IO110NDB1
U8
IO171RSB2
P3
IO199NDB3
R17
GDB1/IO112PPB1
U9
IO165RSB2
P4
IO202NDB3
R18
GDC1/IO111PDB1
U10
IO159RSB2
P5
IO202PDB3
R19
IO107NDB1
U11
IO151RSB2
P6
IO196PPB3
R20
VCC
U12
IO137RSB2
P7
IO193PPB3
R21
IO104NDB1
U13
IO134RSB2
P8
VCCIB3
R22
IO105PDB1
U14
IO128RSB2
P9
GND
T1
IO198PDB3
U15
VMV1
P10
VCC
T2
IO198NDB3
U16
TCK
P11
VCC
T3
NC
U17
VPUMP
P12
VCC
T4
IO194PPB3
U18
TRST
P13
VCC
T5
IO192PPB3
U19
GDA0/IO113NDB1
P14
GND
T6
GEC1/IO190PPB3
U20
NC
P15
VCCIB1
T7
IO192NPB3
U21
IO108NDB1
P16
GDB0/IO112NPB1
T8
GNDQ
U22
IO109PDB1
P17
IO106NDB1
T9
GEA2/IO187RSB2
V1
NC
P18
IO106PDB1
T10
IO161RSB2
V2
NC
P19
IO107PDB1
T11
IO155RSB2
V3
GND
P20
NC
T12
IO141RSB2
V4
GEA1/IO188PDB3
P21
IO104PDB1
T13
IO129RSB2
V5
GEA0/IO188NDB3
P22
IO103NDB1
T14
IO124RSB2
V6
IO184RSB2
R1
NC
T15
GNDQ
V7
GEC2/IO185RSB2
R2
IO197PPB3
T16
IO110PDB1
V8
IO168RSB2
R3
VCC
T17
VJTAG
V9
IO163RSB2
R4
IO197NPB3
T18
GDC0/IO111NDB1
V10
IO157RSB2
R5
IO196NPB3
T19
GDA1/IO113PDB1
V11
IO149RSB2
R6
IO193NPB3
T20
NC
V12
IO143RSB2
R7
GEC0/IO190NPB3
T21
IO108PDB1
V13
IO138RSB2
R8
VMV3
T22
IO105NDB1
V14
IO131RSB2
R ev i si o n 2 3
4- 79
Package Pin Assignments
FG484
FG484
Pin Number
AGL1000 Function
Pin Number
AGL1000 Function
V15
IO125RSB2
Y7
IO174RSB2
V16
GDB2/IO115RSB2
Y8
VCC
V17
TDI
Y9
VCC
V18
GNDQ
Y10
IO154RSB2
V19
TDO
Y11
IO148RSB2
V20
GND
Y12
IO140RSB2
V21
NC
Y13
NC
V22
IO109NDB1
Y14
VCC
W1
NC
Y15
VCC
W2
IO191PDB3
Y16
NC
W3
NC
Y17
NC
W4
GND
Y18
GND
W5
IO183RSB2
Y19
NC
W6
FF/GEB2/IO186RSB2
Y20
NC
W7
IO172RSB2
Y21
NC
W8
IO170RSB2
Y22
VCCIB1
W9
IO164RSB2
W10
IO158RSB2
W11
IO153RSB2
W12
IO142RSB2
W13
IO135RSB2
W14
IO130RSB2
W15
GDC2/IO116RSB2
W16
IO120RSB2
W17
GDA2/IO114RSB2
W18
TMS
W19
GND
W20
NC
W21
NC
W22
NC
Y1
VCCIB3
Y2
IO191NDB3
Y3
NC
Y4
IO182RSB2
Y5
GND
Y6
IO177RSB2
4- 80
R ev i sio n 2 3
IGLOO Low Power Flash FPGAs
R ev i si o n 2 3
4- 81
Package Pin Assignments
4- 82
R ev i sio n 2 3
5 – Datasheet Information
List of Changes
The following tables list critical changes that were made in each revision of the IGLOO datasheet.
Revision
Changes
Revision 23
The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank"
(December 2012) mentioning "Device Does Not Include License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).
The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO
CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to
the online help associated with the core (SAR 42564).
Additionally, note regarding SSOs was added.
Live at Power-Up (LAPU) has been replaced with ’Instant On’.
Page
III
2-113,
2-114
NA
The "Security" section was modified to clarify that Microsemi does not support readRevision 22
(September 2012) back of programmed data.
1-2
Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip
(SoC) throughout the document (SAR 40271).
N/A
Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet
in revision 19 and has been removed (SAR 38217).
I to IV
Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same
to ’3.6’ in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR
37685).
2-82
Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).
2-125
The following sentence was removed from the VMVx description in the "Pin
Descriptions" section: "Within the package, the VMV plane is decoupled from the
simultaneous switching noise originating from the output buffer VCCI domain" and
replaced with “Within the package, the VMV plane biases the input stage of the I/Os in
the I/O banks” (SAR 38317). The datasheet mentions that "VMV pins must be
connected to the corresponding VCCI pins" for an ESD enhancement.
3-1
Pin description table for AGL125 CS121 was removed as it was incorrectly added to the
datasheet in revision 19 (SAR 38217).
-
Notes indicating that AGL015 is not recommended for new designs have been added.
The "Devices Not Recommended For New Designs" section is new (SAR 35015).
I to IV
Notes indicating that device/package support is TBD for AGL250-QN132 and
AGL060-FG144 have been reinserted (SAR 33689).
I to IV
Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were
revised in Table 2-19 • Different Components Contributing to Dynamic Power
Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to
Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in
Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on
08/10/2010 (SAR 33768).
2-13,
2-15
The reference to guidelines for global spines and VersaTile rows, given in the "Global
Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture"
section of the Global Resources chapter in the IGLOO FPGA Fabric User’s Guide
(SAR 34730).
2-17
Revision 21
(May 2012)
Revision 20
(March 2012)
R ev i si o n 2 3
5 -1
Datasheet Information
Revision
Revision 20
(continued)
Changes
Page
Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the
DIN waveform; the Rise and Fall time label has been changed to tDIN (SAR 37104).
2-21
Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V 2-35
to
LVCMOS, and 1.2 V LVCMOS Wide range to the following tables:
2-40,
to
• Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 2-47
2-49,
33854 and 36891)
2-74,
• Table 2-63, Table 2-64, and Table 2-65 (SAR 33854)
2-76, and
• Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 2-77
(SAR 36891).
AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to
match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR
34878).
2-42
Added values for minimum pulse width and removed the FRMAX row from Table 2-173 2-105
through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the through
software to determine the FRMAX for the device you are using (SAR 29271).
2-112
Revision 19
CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs"
(September 2011) section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).
I
Notes indicating that device/package support is TBD for AGL250-QN132 and
AGL060-FG144 have been removed (SAR 33689).
I to IV
M1AGL400 was removed from the "I/Os Per Package1" table. This device was
discontinued in April 2009 (SAR 32450).
II
Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package
Sizes Dimensions (SAR 30537).
II
The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering
Information" section. The trademarked Licensed DPA Logo identifies that a product is
covered by a DPA counter-measures license from Cryptography Research (SAR
32151).
III
The "In-System Programming (ISP) and Security" section and "Security" section were
revised to clarify that although no existing security measures can give an absolute
guarantee, Microsemi FPGAs implement the best security available in the industry
(SAR 32865).
I, 1-2
The following sentence was removed from the "Advanced Architecture" section:
1-3
"In addition, extensive on-chip programming circuitry allows for rapid, single-voltage
(3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR
28756).
The "Specifying I/O States During Programming" section is new (SAR 21281).
1-8
Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 •
Recommended Operating Conditions 1 (SAR 22356).
2-2
The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR
25220).
The value for VCCPLL 1.5 V DC core supply voltage was changed from" 1.4 to 1.6 V" to
"1.425 to 1.575 V" (SAR 26551).
The notes in the table were renumbered in order of their appearance in the table (SAR
21869).
The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with
the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting
maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).
5- 2
R ev isio n 2 3
2-6
IGLOO Low Power Flash FPGAs
Revision
Revision 19
(continued)
Changes
Page
Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package
Thermal Resistivities (SARs 26228, 32301).
2-6
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to
TJ = 70°C, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors
for Timing Delays (normalized to TJ = 70°C, VCC = 1.14 V) were updated to remove
the column for –20°C and shift the data over to correct columns (SAR 23041).
2-7
The tables in the "Quiescent Supply Current" section were updated with revised notes
on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.
2-7
The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down
Resistances were corrected (SAR 21348).
2-37
The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event
before Failure. The example in the associated paragraph was changed from 110°C to
100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was
revised to change 110° to 100°C. (SAR 26259).
2-40
The notes regarding drive strength in the "Summary of I/O Timing Characteristics –
Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2
V LVCMOS Wide Range" section tables were revised for clarification. They now state
that the minimum drive strength for the default software configuration when run in wide
range is ±100 µA. The drive strength displayed in software is supported in normal range
only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).
2-28,
2-47,
2-76
The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It
uses a 5 V–tolerant input buffer and push-pull output buffer."
2-56
The values for FDDRIMAX and FDDOMAX were updated in the tables in the "Input DDR
Module" section and "Output DDR Module" section (SAR 23919).
2-92,
2-95
The following notes were removed from Table 2-147 • Minimum and Maximum DC Input
and Output Levels (SAR 29428):
2-80
±5%
Differential input voltage = ±350 mV
Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL
Specification were updated. A note was added to both tables indicating that when the
CCC/PLL core is generated by Mircosemi core generator software, not all delay values
of the specified delay increments are available (SAR 25705).
2-113
The following figures were deleted (SAR 29991). Reference was made to a new
application note, Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs, which covers these cases in detail (SAR 21770).
N/A
Figure 2-36 • Write Access after Write onto Same Address
Figure 2-37 • Read Access after Write onto Same Address
Figure 2-38 • Write Access after Read onto Same Address
The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics"
tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were
revised to ensure consistency with the software names (SARs 29991, 30510).
2-117 to
2-128
The "Pin Descriptions" chapter has been added (SAR 21642).
3-1
Package names used in the "Package Pin Assignments" section were revised to match
standards given in Package Mechanical Drawings (SAR 27395).
4-1
The "CS81" pin table for AGL250 is new (SAR 22737).
4-5
The CS121 pin table for AGL125 is new (SAR 22737).
The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).
R ev i si o n 2 3
4-12
5 -3
Datasheet Information
Revision
Changes
Revision 19
(continued)
The "QN132" pin table for AGL250 was added.
July 2010
The versioning system for datasheets has been changed. Datasheets are assigned a
revision number that increments each time the datasheet is revised. The "IGLOO
Device Status" table indicates the status for each device in the device family.
5- 4
The "FG144" pin table for AGL060 was added (SAR 33689)
R ev isio n 2 3
Page
4-35,
4-43
N/A
IGLOO Low Power Flash FPGAs
Revision / Version
Changes
Page
Revision 18 (Nov 2009) The version changed to v2.0 for IGLOO datasheet chapters, indicating the
datasheet contains information based on final characterization. Please review the
datasheet carefully as most tables were updated with new data.
N/A
Revision 17 (Sep 2009) The "Reprogrammable Flash Technology" section was modified to add "250 MHz
(1.5 V systems) and 160 MHz (1.2 V systems) System Performance."
Product Brief v1.6
I
"IGLOO Ordering Information" was revised to note that halogen-free packages
are available with RoHS-compliant packaging.
III
Table 1-1 • I/O Standards Supported is new.
1-7
The definitions of hot-swap and cold-sparing were added to the "I/Os with
Advanced I/O Standards" section.
1-7
Revision 16 (Apr 2009) M1AGL400 is no longer offered and was removed from the "IGLOO Devices"
product table, "IGLOO Ordering Information", and "Temperature Grade
Product Brief v1.5
Offerings".
I, III, IV
The –F speed grade is no longer offered for IGLOO devices. The speed grade
column and note regarding –F speed grade were removed from "IGLOO Ordering
Information". The "Speed Grade and Temperature Grade Matrix" section was
removed.
III, IV
This datasheet now has fully characterized data and has moved from being
Advance to a Production version. The version number changed from Advance
v0.5 to v2.0.
N/A
Please review the datasheet carefully as most tables were updated with new
data.
DC and Switching
Characteristics
Advance v0.6
3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the
datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V
LVCMOS data.
IIL and IIH input leakage current information was added to all "Minimum and
Maximum DC Input and Output Levels" tables.
N/A
–F was removed from the datasheet. The speed grade is no longer supported.
N/A
The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.
2-2
Table 2-4 • Overshoot and Undershoot Limits 1 was updated.
2-3
Table 2-5 • Package Thermal Resistivities was updated.
2-6
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, VCC = 1.425 V) and Table 2-7 • Temperature and
Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C,
VCC = 1.14 V) were updated.
2-7
In Table 2-191 • RAM4K9 and Table 2-193 • RAM4K9, the following specifications
were removed:
2-120
and
2-122
tWRO
tCCKH
In Table 2-192 • RAM512X18 and Table 2-194 • RAM512X18, the following
specifications were removed:
tWRO
2-121
and
2-123
tCCKH
Revision 15 (Feb 2009) The "QN132" pin table for the AGL060 device is new.
4-31
Packaging v1.9
R ev i si o n 2 3
5 -5
Datasheet Information
Revision / Version
Changes
Revision 14 (Feb 2009) The "Advanced I/O" section was revised to include two bullets regarding wide
range power supply voltage support.
Product Brief v1.4
3.0 V wide range was added to the list of supported voltages in the "I/Os with
Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.
Revision 13 (Jan 2009) The "CS121" pin table was revised to add a note regarding pins F1 and G1.
Page
I
1-8
4-7
Packaging v1.8
Revision 12 (Dec 2008) QN48 and QN68 were added to the AGL030 for the following tables:
Product Brief v1.3
N/A
"IGLOO Devices" Product Family Table
"IGLOO Ordering Information"
"Temperature Grade Offerings"
QN132 is fully supported by AGL125 so footnote 3 was removed.
Packaging v1.7
The "QN48" pin diagram and pin table are new.
4-24
The "QN68" pin table for AGL030 is new.
4-26
Revision 12 (Dec 2008) The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1.
4-71
Revision 11 (Oct 2008)
N/A
Product Brief v1.2
This document was updated to include AGL400 device information. The following
sections were updated:
"IGLOO Devices" Product Family Table
"IGLOO Ordering Information"
"Temperature Grade Offerings"
Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250,
AGL600, AGL400, and AGL1000)
DC and Switching
Characteristics
Advance v0.5
Packaging v1.6
The tables in the "Quiescent Supply Current" section were updated with values
for AGL400. In addition, the title was updated to include:
(VCC = VJTAG = VPP = 0 V).
2-7
The tables in the "Power Consumption of Various Internal Resources" section
were updated with values for AGL400.
2-13
Table 2-178 • AGL400 Global Resource is new.
2-107
The "CS196" table for the AGL400 device is new.
4-14
The "FG144" table for the AGL400 device is new.
4-49
The "FG256" table for the AGL400 device is new.
4-56
The "FG484" table for the AGL400 device is new.
4-66
Revision 10 (Aug 2008) 3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended
Operating Conditions 1.
DC and Switching
Characteristics
Advance v0.4
5- 6
2-2
3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial
and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial
and Industrial Conditions—Software Default Settings.
2-24 to
2-26
3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of
Maximum and Minimum DC Input Levels.
2-27
3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum and
Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.
2-39
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Revision / Version
Changes
Page
DC & Switching, cont’d. Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS
3.3 V Wide Range is new.
2-39
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core
voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to
1.5 V.
N/A
Revision 8 (Jun 2008)
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core
voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to
1.5 V.
N/A
DC and Switching
Characteristics
Advance v0.2
Tables have been updated to reflect default values in the software. The default I/O
capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O
set.
N/A
Revision 9 (Jul 2008)
Product Brief v1.1
DC and Switching
Characteristics
Advance v0.3
DDR Tables have two additional data points added to reflect both edges for Input
DDR setup and hold time.
The power data table has been updated to match SmartPower data rather then
simulation values.
AGL015 global clock delays have been added.
Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and
VMV parameters in one row. The word "output" from the parameter description for
VCCI and VMV, and table note 3 was added.
2-1
Table 2-2 • Recommended Operating Conditions 1 was updated to add
references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter
row, and table note 9 was added.
2-2
In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating
Temperature1, the maximum operating junction temperature was changed from
110° to 100°.
2-2
VMV was removed from Table 2-4 • Overshoot and Undershoot Limits 1. The
table title was modified to remove "as measured on quiet I/Os." Table note 2 was
revised to remove "estimated SSO density over cycles." Table note 3 was revised
to remove "refers only to overshoot/undershoot limits for simultaneous switching
I/Os."
2-3
The "PLL Behavior at Brownout Condition" section is new.
2-4
Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage
Levels is new.
2-5
EQ 2 was updated. The temperature was changed to 100°C, and therefore the
end result changed.
2-6
The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics,
IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD)
Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current
(IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and
include PDC6 and PDC7. VCCI and VJTAG were removed from the statement
about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD)
Characteristics, IGLOO Shutdown Mode.
2-7
Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze
Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6
and PDC7.
2-9
R ev i si o n 2 3
5 -7
Datasheet Information
Revision / Version
Revision 8 (cont’d)
Revision 7 (Jun 2008)
Packaging v1.5
Revision 6 (Jun 2008)
Packaging v1.4
Revision 5 (Mar 2008)
Changes
Page
Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software
2-10
Settings, Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O through
Software Settings, Table 2-15 • Summary of I/O Input Buffer Power (per pin) –
2-11
Default I/O Software Settings, and Table 2-16 • Summary of I/O Output Buffer
Power (per pin) – Default I/O Software Settings1 were updated to change PDC2
to PDC6 and PDC3 to PDC7. The table notes were updated to reflect that power
was measured on VCCI.
In Table 2-19 • Different Components Contributing to Dynamic Power
Consumption in IGLOO Devices, the description for PAC13 was changed from
Static to Dynamic.
2-13
Table 2-20 • Different Components Contributing to the Static Power Consumption
in IGLOO Devices and Table 2-22 • Different Components Contributing to the
Static Power Consumption in IGLOO Device were updated to add PDC6 and
PDC7, and to change the definition for PDC5 to bank quiescent power. Subtitles
were added to indicate type of devices and core supply voltage.
2-14,
2-16
The "Total Static Power Consumption—PSTAT" section was updated to revise the
calculation of PSTAT, including PDC6 and PDC7.
2-17
Footnote † was updated to include information about PAC13. The PLL
Contribution equation was changed from: PPLL = PAC13 + PAC14 * FCLKOUT to
PPLL = PDC4 + PAC13 * FCLKOUT.
2-18
The "QN132" package diagram was updated to include D1 to D4. In addition, note
1 was changed from top view to bottom view, and note 2 is new.
4-28
This document was divided into two sections and given a version number, starting
at v1.0. The first section of the document includes features, benefits, ordering
information, and temperature and speed grade offerings. The second section is a
device family overview.
N/A
Pin numbers were added to the "QN68" package diagram. Note 2 was added
below the diagram.
4-25
The "CS196" package and pin table was added for AGL250.
4-12
Packaging v1.3
Revision 4 (Mar 2008)
Product Brief v1.0
5- 8
The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage"
to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 12 µW)" was removed
from "Low Power Active FPGA Operation."
I
1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and
"I/Os with Advanced I/O Standards" section sections.
I, 1-7
The "Embedded Memory" section was updated to remove the footnote reference
from the section heading and place it instead after "4,608-Bit" and "True Dual-Port
SRAM (except ×18)."
I
R ev isio n 2 3
IGLOO Low Power Flash FPGAs
Revision / Version
Revision 3 (Feb 2008)
Product Brief rev. 2
Changes
Page
This document was updated to include AGL015 device information. QN68 is a
new package offered in the AGL015. The following sections were updated:
N/A
"Features and Benefits"
"IGLOO Ordering Information"
"Temperature Grade Offerings"
"IGLOO Devices" Product Family Table
Table 1 • IGLOO FPGAs Package Sizes Dimensions
"AGL015 and AGL030" note
The "Temperature Grade Offerings" table was updated to include M1AGL600.
IV
In the "IGLOO Ordering Information" table, the QN package measurements were
updated to include both 0.4 mm and 0.5 mm.
III
In the "General Description" section, the number of I/Os was updated from 288 to
300.
1-1
Packaging v1.2
The "QN68" section is new.
4-25
Revision 2 (Jan 2008)
The "CS196" package and pin table was added for AGL125.
4-10
The "Low Power" section was updated to change the description of low power
active FPGA operation to "from 12 µW" from "from 25 µW." The same update was
made in the "General Description" section and the "Flash*Freeze Technology"
section.
I, 1-1
Revision 0 (Jan 2008)
This document was previously in datasheet Advance v0.7. As a result of moving
to the handbook format, Actel has restarted the numbering.
N/A
Advance v0.7
(December 2007)
Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the
Temperature Grade Offerings table were updated to reflect the following: CS196
is now supported for AGL250; device/package support for QN132 is to be
determined for AGL250; the CS281 package was added for AGL600 and
AGL1000.
i, ii, iv
Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes
were removed from the "I/Os Per Package1" table.
ii
The "I/Os Per Package1"table was updated to reflect 77 instead of 79 singleended I/Os for the VG100 package for AGL030.
ii
The "Timing Model" was updated to be consistent with the revised timing
numbers.
2-20
In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions—Software Default Settings,
TJ was changed to TA in notes 1 and 2.
2-26
All AC Loading figures for single-ended I/O standards were changed from
Datapaths at 35 pF to 5 pF.
N/A
The "1.2 V LVCMOS (JESD8-12A)" section is new.
2-74
This document was previously in datasheet Advance v0.7. As a result of moving
to the handbook format, Actel has restarted the version numbers. The new
version number is Advance v0.1.
N/A
Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL
Specification were updated.
2-19,
2-20
Packaging v1.1
Revision 1 (Jan 2008)
Product Brief rev. 1
R ev i si o n 2 3
5 -9
Datasheet Information
Revision / Version
Advance v0.7
(continued)
Changes
Page
The former Table 2-16 • Maximum I/O Frequency for Single-Ended and
Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and high
slew selected) was removed.
N/A
The "During Flash*Freeze Mode" section was updated to include information
about the output of the I/O to the FPGA core.
2-57
Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (deviceindependent) was updated to add UC81 and CS281. Flash*Freeze pins were
assigned for CS81, CS121, and CS196.
2-61
Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to
modify the LSICC Signal.
2-55
Information regarding calculation of the quiescent supply current was added to
the "Quiescent Supply Current" section.
3-6
Table 3-8 • Quiescent Supply
Flash*Freeze Mode† was updated.
IGLOO
3-6
Table 3-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode
(VCC = 0 V)† was updated.
3-6
Table 3-11 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1
was updated.
3-7
Table 3-115 • Minimum and Maximum DC Input and Output Levels was updated.
3-58
Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new.
3-104
Current
(IDD)
Characteristics,
The "121-Pin CSP" and "281-Pin CSP" packages are new.
Advance v0.6
(November 2007)
Advance v0.5
(September 2007)
5- 10
4-5, 4-7
The "81-Pin CSP" table for the AGL030 device was updated to change the G6 pin
function to IO44RSB1 and the JG pin function to IO45RSB1.
4-4
The "121-Pin CSP" table for the AGL060 device is new.
4-6
The "256-Pin FBGA" table for the AGL1000 device is new.
4-34
The "281-Pin CSP" table for the AGL 600 device is new.
4-8
The "100-Pin VQFP" table for the AGL060 device is new.
4-18
The "144-Pin FBGA" table for the AGL250 device is new.
4-24
The "144-Pin FBGA" table for the AGL1000 device is new.
4-28
The "484-Pin FBGA" table for the AGL600 device is new.
4-38
The "484-Pin FBGA" table for the AGL1000 device is new.
4-43
Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO i, ii, iii, iv
Ordering Information", and the Temperature Grade Offerings table were updated
to add the UC81 package.
The "81-Pin µCSP" table for the AGL030 device is new.
4-3
The "81-Pin CSP" table for the AGL030 device is new.
4-1
Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins
section to change CS181 to CS81.
R ev i sio n 2 3
i
IGLOO Low Power Flash FPGAs
Revision / Version
Advance v0.4
(September 2007)
Advance v0.3
(August 2007)
Advance v0.2
Changes
Page
Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the i, ii, iii, iv
"I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature
Grade Offerings.
The number of single-ended I/Os for the CS81 package for AGL030 was updated
to 66 in the "I/Os Per Package1" table.
ii
The "Power Conservation Techniques" section was updated to recommend that
unused I/O signals be left floating.
2-51
In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030.
The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to
the specific packages to which it applies for AGL060: QN132 and FG144.
i
The CS81 and CS121 packages were added to the "I/Os Per Package1" table.
The number of single-ended I/Os was removed for the CS196 package in
AGL060. Table note 6 was moved to the specific packages to which it applies for
AGL060: QN132 and FG144.
ii
The CS81 and CS121 packages were added to the Temperature Grade Offerings
table. The temperature grade offerings were removed for the CS196 package in
AGL060. Table note 3 was moved to the specific packages to which it applies for
AGL060: QN132 and FG144.
iv
The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin
Location in IGLOO Family Packages (device-independent).
2-61
The words "ambient temperature" were added to the temperature range in the
"IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade
and Temperature Grade Matrix" sections.
iii, iv
The TJ parameter in Table 3-2 • Recommended Operating Conditions was
changed to TA, ambient temperature, and table notes 4–6 were added.
3-2
R ev i si o n 2 3
5- 11
Datasheet Information
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "IGLOO Device Status" table, is designated as either "Product Brief," "Advance,"
"Preliminary," or "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The Microsemi products described in this advance status document may not have completed
Microsemi’s qualification process. Microsemi may amend or enhance products during the product
introduction and qualification process, resulting in changes in device functionality or performance. It is
the responsibility of each customer to ensure the fitness of any Microsemi product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and other
high-reliability applications. Consult Microsemi’s Terms and Conditions for specific liability exclusions
relating to life-support applications. A reliability report covering all of the Microsemi SoC Products
Group’s products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi
also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Microsemi sales office for additional reliability information.
5- 12
R ev i sio n 2 3
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
51700095-23/12.12
Similar pages