CXA3246Q 8-bit 120MSPS Flash A/D Converter Description The CXA3246Q is an 8-bit high-speed flash A/D converter capable of digitizing analog signals at the maximum rate of 120MSPS. ECL, PECL or TTL can be selected as the digital input level in accordance with the application. The TTL digital output level allows 1: 2 demultiplexed output. 48 pin QFP (Plastic) Features • Differential linearity error: ±0.5LSB or less • Integral linearity error: ±0.5LSB or less • High-speed operation with a maximum conversion rate of 120MSPS • Low input capacitance: 10pF • Wide analog input bandwidth: 250MHz • Low power consumption: 500mW • 1: 2 demultiplexed output • 1/2 frequency-divided clock output (with reset function) • Compatible with ECL, PECL and TTL digital input levels • TTL output "H" levels: 2.8V (Typ.) • +3.3V line CMOS IC direct connecting available • Single +5V power supply operation available • Surface mounting package (48-pin QFP) LEAD TREATMENT: PALLADIUM PLATING Structure Bipolar silicon monolithic IC Applications • Magnetic recording (PRML) • Communications (QPSK, QAM) • LCDs • Digital oscilloscopes DVEE3 6 VRB 7 AGND VIN 8 AVCC VRM2 9 VRM1 VRM3 AVCC 12 11 10 VRT AGND DGND3 Pin Configuration (Top View) 5 4 3 2 1 CLK/E 13 48 RESETN/E 47 RESET/E CLKN/E 14 CLK/T 15 46 RESETN/T N.C. 16 45 SELECT N.C. 17 44 INV N.C. 18 43 CLKOUT DVCC2 19 42 DVCC2 DGND2 20 41 DGND2 PAD0 21 40 PBD7 PAD1 22 39 PBD6 PAD2 23 38 PBD5 PAD3 24 37 PBD4 PBD3 PBD2 PBD1 PBD0 DVCC2 DGND2 DVCC1 PAD7 DGND1 PAD6 PAD5 PAD4 25 26 27 28 29 30 31 32 33 34 35 36 Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E97902A8X-PS CXA3246Q Absolute Maximum Ratings (Ta = 25°C) Unit AVCC, DVCC1, DVCC2 –0.5 to +7.0 V DGND3 –0.5 to +7.0 V DVEE3 –7.0 to +0.5 V DGND3 – DVEE3 –0.5 to +7.0 V VRT – 2.7 to AVCC V • Analog input voltage VIN • Reference input voltage VRT 2.7 to AVCC V VIN – 2.7 to AVCC V VRB |VRT – VRB| 2.5 V • Digital input voltage ECL/PECL input pin DVEE3 – 0.5 to DGND3 + 0.5 V V TTL input pin DGND1 – 0.5 to DVCC1 + 0.5 VID∗1 (|∗∗∗/E – ∗∗∗N/E|) 2.7 V • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1.6 W (when mounted on a two-layer glass fabric base epoxy board with dimentions of 50mm × 50mm, 1.6mm thick) • Supply voltage Recommended Operating Conditions • • • • • • With a single power supply With dual power supply Unit Min. Typ. Max. Min. Typ. Max. Supply voltage DVCC1, DVCC2, AVCC +4.75 +5.0 +5.25 +4.75 +5.0 +5.25 V DGND1, DGND2, AGND –0.05 0 +0.05 –0.05 0 +0.05 V DGND3 +4.75 +5.0 +5.25 –0.05 0 +0.05 V DVEE3 –0.05 0 +0.05 –5.5 –5.0 –4.75 V Analog input voltage VIN VRB VRT VRB VRT V Reference input voltage VRT +2.9 +4.1 +2.9 +4.1 V VRB +1.4 +2.6 +1.4 +2.6 V |VRT – VRB| 1.5 2.1 1.5 2.1 V Digital input voltage ECL/PECL input pin : VIH DVEE3 + 1.5 DGND3 DVEE3 + 1.5 DGND3 V : VIL DVEE3 + 1.1 VIH – 0.4 DVEE3 + 1.1 VIH – 0.4 V TTL input pin : VIH 2.0 2.0 V : VIL 0.8 0.8 V VID∗1 (|∗∗∗/E – ∗∗∗N/E|) 0.4 0.8 0.4 0.8 V Maximum conversion rate Fc (Straight mode) 100 100 MSPS (DMUX mode) 120 120 MSPS Ambient temperature Ta –20 +75 –20 +75 °C ∗1 VID: Input Voltage Differential ECL and PECL switching level DGND3 VIH (max.) VIL VTH (DGND3 – 1.2V) VID VIH VIL (min.) –2– CXA3246Q Pin Description [Symbol] DVEE3 VRB AGND VRM1 AVCC VIN VRM2 AVCC VRM3 AGND VRT DGND3 CLK/E CLKN/E CLK/T N.C. DVCC2 DGND2 PAD0 to PAD7 DGND1 DVCC1 DVCC2 DGND2 PBD0 to PBD7 DGND2 DVCC2 CLKOUT INV SELECT RESETN/T RESET/E RESETN/E [Pin No.] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 to 18 19 20 21 to 28 29 30 31 32 33 to 40 41 42 43 44 45 46 47 48 Typical voltage level with a single power supply [Description] Digital power supply Bottom reference voltage Analog ground Reference voltage mid point Analog power supply Analog signal input Reference voltage mid point Analog power supply Reference voltage mid point Analog ground Reference voltage (typ.) Digital power supply ECL/PECL clock input ECL/PECL clock input TTL clock input No connected pin Digital power supply Digital ground PA side data output Digital ground Digital power supply Digital power supply Digital ground PB side data output Digital ground Digital power supply Clock output Data output polarity inversion Output mode selection TTL reset input ECL/PECL reset input ECL/PECL reset input –3– 0V 1.4 to 2.6V 0V — +5V VRB to VRT — +5V — 0V 2.9 to 4.1V +5V PECL PECL TTL — +5V 0V TTL 0V +5V +5V 0V TTL 0V +5V TTL TTL TTL TTL PECL PECL Typical voltage level with dual power supply –5.0V 1.4 to 2.6V 0V — +5V VRB to VRT — +5V — 0V 2.9 to 4.1V 0V ECL ECL TTL — +5V 0V TTL 0V +5V +5V 0V TTL 0V +5V TTL TTL TTL TTL ECL ECL CXA3246Q Block Diagram AVCC 5 8 INV DVCC1 44 30 DVCC2 DGND3 19 31 42 12 VRT 11 r1 r/2 (MSB) r 40 PBD7 1 r 39 PBD6 2 6bit 38 PBD5 63 VRM3 9 8bit r 64 TTLOUT • • • LATCH B r 37 PBD4 36 PBD3 r 35 PBD2 65 6bit • • • 126 127 r VIN 6 128 r ENCODER r VRM2 7 129 r • • • 34 PBD1 6bit LATCH + ENCODER r 33 PBD0 (LSB) (MSB) 28 PAD7 6bit 27 PAD6 191 VRM1 4 26 PAD5 r • • • TTLOUT 8bit 193 LATCH B 192 r LATCH A r 25 PAD4 24 PAD3 6bit 23 PAD2 254 r 22 PAD1 255 r2 VRB 2 21 PAD0 (LSB) r/2 CLK/T 15 16 N.C. CLK/E 13 17 N.C. 18 N.C. CLKN/E 14 D Q Select 43 CLKOUT Q RESETN/T 46 RESETN/E 48 RESET/E 47 3 10 AGND 45 29 SELECT DGND1 –4– 20 32 41 DGND2 1 DVEE3 CXA3246Q Pin Description and I/O Pin Equivalent Circuit Pin No. Symbol I/O Standard voltage level Equivalent circuit Description 3, 10 AGND GND Analog ground. Separated from the digital ground. 5, 8 AVCC +5V (typ.) Analog power supply. Separated from the digital power supply. 20, 29 DGND1 32, 41 DGND2 GND Digital ground. 19, 30 DVCC1 31, 42 DVCC2 +5V (typ.) Digital power supply. 12 DGND3 +5V (typ.) (With a single power supply) Digital power supply. Ground for ECL input. +5V for PECL and TTL inputs. GND (With dual power supply) 1 DVEE3 GND (With a single power supply) Digital power supply. –5V for ECL input. Ground for PECL and TTL inputs. –5V (typ.) (With dual power supply) 16, 17 18 No connected pin. Not connected with the internal circuits. N.C. –5– CXA3246Q Pin No. 13 14 Symbol CLK/E CLKN/E I/O Standard voltage level Equivalent circuit Description I Clock input. I CLK/E complementary input. When left open, this pin goes to the threshold voltage. Only CLK/E can be used for operation, but complementary inputs are recommended to attain fast and stable operation. DGND3 ECL/ PECL 48 RESETN/E I 13 48 Reset signal input. When set to low level, the built-in CLK frequency divider circuit can be reset. 14 47 47 RESET/E I RESETN/E complementary input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation. 15 CLK/T I Clock input. DVEE3 46 44 RESETN/T INV TTL DVCC1 TTL 15 46 or 44 , 45 Reset signal input. When left open, this pin goes to high level. When set to low level, the built-in CLK frequency divider circuit can be reset. I I 1.5V DGND1 DVEE3 45 SELECT Vcc or GND Data output polarity inversion input. When left open, this input goes to high level. (See Table 1. I/O Correspondence Table.) Data output mode selection. (See Table 2. Operation Mode Table.) –6– CXA3246Q Pin No. 11 Symbol VRT I/O Standard voltage level I 4.0V (typ.) Equivalent circuit Description Top reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. r1 11 r/2 r 9 VRB + VRM3 3 (VRT – VRB) 4 r 4 Comparator 63 r 9 7 Comparator 64 VRB + VRM2 VRM1 Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Comparator 1 2 (VRT – VRB) 4 7 VRB + 4 Comparator 127 r Comparator 128 Comparator 191 r Comparator 192 1 (VRT – VRB) 4 r Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Reference voltage mid point. By-pass to AGND with a 0.1µF chip capacitor. Comparator 255 2 VRB I 2.0V (typ.) r/2 2 AVCC Bottom reference voltage. By-pass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. r2 Comparator AVCC 6 VIN I VRT to VRB Analog input. DVEE3 21 to 28 PAD0 to PAD7 O 33 to 40 PBD0 to PBD7 O Vref 6 AGND DVCC1 DVCC2 21 to 28 TTL 100k 33 to 40 DGND1 43 CLKOUT O –7– 43 DGND2 DVEE3 Port A side data output. TTL output; the high level is clamped to approximately 2.8V. Port B side data output. TTL output; the high level is clamped to approximately 2.8V. Clock output. (See Table 2. Operation Mode Table.) TTL output; the high level is clamped to approximately 2.8V. CXA3246Q Electrical Characteristics (AVCC, DVCC1, 2, DGND3 = +5V, AGND, DGND1, 2, DVEE3 = 0V, VRT = 4V, VRB = 2V, Ta = 25°C) Item Symbol Conditions Min. DC characteristics Integral linearity error Differential linearity error EIL EDL Analog input Analog input capacitance Analog input resistance Analog input current CIN RIN IIN Reference input Reference resistance Reference current Offset voltage VRT side VRB side Rref∗2 Iref∗3 EOT EOB Digital input (ECL, PECL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance VIH VIL VTH IIH IIL Digital input (TTL) Digital input voltage: High : Low Threshold voltage Digital input current : High : Low Digital input capacitance VIH VIL VTH IIH IIL VIH = 3.5V VIL = 0.2V –10 –20 VOH VOL IOH = –2mA IOL = 1mA 2.4 Fc Taj Tds Tpw1 Tpw0 T_rs T_rh Td_clk Tdo1 Tdo2 Tr Tf DMUX mode 120 Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Clock high pulse width Clock low pulse width Reset signal setup time Reset signal hold time Clock output delay Data output delay Output rise time Output fall time Max. 8 Resolution Digital output (TTL) Digital output voltage : High : Low Typ. VIN = 2Vp-p, Fc = 5MSPS bits ±0.5 ±0.5 LSB LSB 7 0 10 20 100 40 285 pF kΩ µA 400 2.7 6 0 600 3.3 8 1.5 740 5.0 10 3 Ω mA mV mV DGND3 VIH – 0.4 V V V µA µA pF VIN = +3.0V + 0.07Vrms DVEE3 + 1.5 DVEE3 + 1.1 DGND3 – 1.2 VIH = DGND3 – 0.8V VIL = DGND3 – 1.6V –50 –50 20 20 5 2.0 5 0 5 V V V µA µA pF 0.5 V V 0.8 1.5 CLK CLK RESETN – CLK RESETN – CLK DMUX mode 0.8 to 2.0V 0.8 to 2.0V (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) (CL = 5pF) ∗ These characteristics are for PECL input unless otherwise specified. –8– Unit 1.2 3.0 4.5 1.0 –0.5 3.0 3.5 10 1.4 4.5 T∗4 + 0.5 5.0 1 1 1.6 7.0 7.5 MSPS ps ns ns ns ns ns ns ns ns ns ns CXA3246Q Item Symbol Dynamic characteristics Input bandwidth S/N ratio VIN = 2Vp-p, –3dB Fc = 120MSPS, fin = 1kHz Fs DMUX mode Fc = 120MSPS, fin = 29.999MHz Fs DMUX mode Fc = 120MSPS, fin = 1kHz Fs DMUX mode Error > 16LSB Fc = 120MSPS, fin = 29.999MHz Fs DMUX mode Error > 16LSB Fc = 100MSPS, fin = 24.999MHz Fs Straight mode Error > 16LSB Min. Typ. 70 45 20 5 0.5 400 ∗2 Rref: Resistance value between VRT and VRB ∗3 Iref = VRT – VRB Rref ∗4 T = 1 Fc ∗5 TPS: Times Per Sample 2 ∗6 Pd = (ICC + IEE) · VCC + (VRT – VRB) Rref –9– Unit 46 MHz dB 42 dB { { { ICC + IEE AICC DICC1 DICC2 IEE Pd∗6 Max. 250 { { Error rate Power supply Supply current AVcc Pin supply current DVcc1 pin supply current DVcc2 pin supply current DGND3 pin supply current Power consumption Conditions 98 500 10–12 TPS∗5 10–9 TPS 10–9 TPS 140 87 36 15 1.5 700 mA mA mA mA mA mW CXA3246Q INV VIN 1 Step D7 VRT VRM2 VRB 255 254 .. . 128 127 .. . 1 0 1 1 1 1 1 1 1 1 1 1 .. . 1 0 0 0 0 0 1 1 1 1 .. . 0 0 0 0 0 0 0 0 0 0 0 D0 D7 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 D0 0 0 0 0 0 0 0 0 0 0 .. . 0 1 1 1 1 1 0 0 0 0 .. . 1 1 1 1 1 1 1 1 1 1 Table 1. I/O Correspondence Table – 10 – 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 CXA3246Q Electrical Characteristics Measurement Circuit Sampling Delay Measurement Circuit Aperture Jitter Measurement Circuit Current Consumption Measurement Circuit 5V Icc Amp OSC1 φ: Variable IEE AVCC DVCC1 DVCC2 VRT 4V 100MHz 5V DGND3 VIN fr 8 Logic Analizer CXA3246Q CLK 1.95V CLK/E VIN 5MHz PECL 1024 samples OSC2 ECL Buffer DGND2 DGND1 AGND VRB 2V 100MHz DVEE3 Aperture Jitter Measurement Method Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit +V VRT VIN VRM2 S2 VRB S1: ON when A < B S2: ON when A > B S1 CLK VIN A<B A>B Comparator VIN CXA3246Q 8 A8 to A1 B8 to B1 A0 B0 “0” 8 Buffer CLK 000···00 to 111···10 Controller VIN Fc – 1kHz 4 2Vp-p Sine Wave 8 CLK ∆υ ∆t = σ/ ( 256 × 2πf ) 2 A Latch CXA3246Q B CLK + 16LSB Signal Source Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter Taj is: Taj = σ/ Error Rate Measurement Circuit σ (LSB) Sampling timing fluctuation (= aperture jitter) “1” DVM Signal Source 129 128 127 126 125 ∆υ ∆t –V 1/8 Fc – 11 – Latch Comparator A>B Pulse Counter CXA3246Q Description of Operation Modes The CXA3246Q has two types of operation modes which are selected with Pin 45 (SELECT). Operation mode SELECT pin Maximum conversion rate Data output Clock output DMUX mode VCC 120MSPS Demultiplexed output 60Mbps The input clock is 1/2 frequency divided and output. 60MHz Straight mode GND 100MSPS Straight output 100Mbps The input clock is inverted and output. 100MHz Table 2. Operation Mode Table 1. DMUX mode (See Application Circuit 1-(1), (2) and (3).) Set the SELECT pin to Vcc for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this 1/2 frequency-divided clock. The 1/2 frequency-divided clock, which has adequate setup time and hold time for the output data, is output from the clock output pin. When using the multiple CXA3246Q in DMUX mode, the start timing of the 1/2 frequency-divided clocks becomes out of phase, producing operation such as that shown in the example on the next page. As a countermeasure, the CXA3246Q has a function that resets the 1/2 frequency-divided clocks. When resetting this 1/2 frequency-divided clock, the low level of the reset signal should be input to the RESETN pin (Pin 46 or 48). The reset signal requires the setup time (T_rs ≥ 1.0ns) and hold time (T_rh ≥ –0.5ns) to the clock rising edge because it is synchronized with and taken in the clock. The reset period can be extended by making the low level period of the reset signal longer because the clock output pin is fixed to low (reset) during the low level period at the clock rising edge. If the reset start timing is regarded as not important, the timing where the reset signal is set from high to low is not so consequence. However, when the reset is released the timing where the reset signal is set from low to high must become significant because the timing is used to commence the 1/2 frequency-divided clock. In this case, the setup time (T_rs) is also necessary. See the timing chart for detail. (This chart shows the example of reset for 2T.) The A/D converter can operate at Fc (min.) = 120MSPS in this mode. – 12 – CXA3246Q When the reset signal is not used AAA AAA AAA AAA AAA CLK CXA3246Q CLK CLK A A CLKOUT 8bit DATA RESETN CXA3246Q CLK B B RESETN CLKOUT 8bit DATA When the reset signal is used AAA AAA AAA AAA AAA CLK Reset signal CXA3246Q CLK CLK A CLKOUT DATA RESETN CXA3246Q CLK Reset signal B RESETN (Reset period) 8bit CLKOUT (Reset period) 8bit DATA 2. Straight mode (See Application Circuits 1-(4), (5) and (6).) Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at Fc (min.) = 100MSPS in this mode. Digital input level and supply voltage settings The logic input level for the CXA3246Q supports ECL, PECL and TTL levels. The power supplies (DVEE3, DGND3) for the logic input block must be set to match the logic input (CLK and reset signals) level. Digital input level DVEE3 DGND3 ECL PECL TTL –5V 0V 0V 0V +5V +5V Supply voltage Application circuits ±5V +5V +5V Table 3. Logic Input Level and Power Supply Settings – 13 – (1) (4) (2) (5) (3) (6) CXA3246Q Application Circuit 1 (1) DMUX ECL input +5V(D) DG ECL RESET signal 34 33 4V DG AG AG 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 8 bit Digital Data Latch DG 3 4 PBD0 to PBD7 8 bit Digital Data +5V(D) 35 DG 36 2 +5V(A) 2V +5V(A) –5V(D) AG AG AG 48 47 46 45 44 43 42 41 40 39 38 37 1 8 bit Digital Data PAD0 to PAD7 8 bit Digital Data Latch 13 14 15 16 17 18 19 20 21 22 23 24 ECL-CLK DG +5V(D) (2) DMUX PECL input +5V(D) DG 4V +5V(D) AG AG 35 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 PBD0 to PBD7 8 bit Digital Data 8 bit Digital Data Latch DG 36 2 +5V(D) 1 DG 2V 48 47 46 45 44 43 42 41 40 39 38 37 +5V(A) +5V(A) AG AG DG AG PECL RESET signal 8 bit Digital Data PAD0 to PAD7 8 bit Digital Data Latch PBD0 to PBD7 8 bit Digital Data Latch 13 14 15 16 17 18 19 20 21 22 23 24 PECL-CLK DG +5V(D) (3) DMUX TTL input +5V(D) DG 4V 35 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 13 14 15 16 17 18 19 20 21 22 23 24 TTL-CLK DG +5V(D) – 14 – 8 bit Digital Data DG 36 2 +5V(D) +5V(D) +5V(A) AG AG 1 DG 2V 48 47 46 45 44 43 42 41 40 39 38 37 +5V(A) AG AG AG DG TTL RESET signal 8 bit Digital Data PAD0 to PAD7 8 bit Digital Data Latch CXA3246Q (4) Straight ECL input 3 34 4 33 4V 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 PBD0 to PBD7 8-bit Digital Data 8-bit Digital Data Latch DG 35 +5V(D) 36 2 DG 2V 1 +5V(A) DG AG AG +5V(D) DG 48 47 46 45 44 43 42 41 40 39 38 37 +5V(A) AG –5V(D) AG AG DG 13 14 15 16 17 18 19 20 21 22 23 24 ECL-CLK ECL → TTL DG +5V(D) (5) Straight PECL input DG +5V(D) DG 4V +5V(D) AG AG 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 PBD0 to PBD7 8-bit Digital Data 8-bit Digital Data Latch DG 35 +5V(D) 36 2 DG +5V(A) 2V +5V(A) AG AG DG AG 48 47 46 45 44 43 42 41 40 39 38 37 1 13 14 15 16 17 18 19 20 21 22 23 24 PECL-CLK PECL → TTL DG +5V(D) (6) Straight TTL input 35 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 13 14 15 16 17 18 19 20 21 22 23 24 TTL-CLK DG +5V(D) – 15 – PBD0 to PBD7 8-bit Digital Data DG 36 2 +5V(D) 1 DG 2V 4V +5V(D) AG AG +5V(D) DG 48 47 46 45 44 43 42 41 40 39 38 37 +5V(A) +5V(A) AG AG DG AG DG 8-bit Digital Data Latch CXA3246Q Application Circuit 2 A A DMUX Mode TTL I/O (When a single power supply is used) AG Analog input AG 4V +5V (A) AG 1µF 2V 1µF AG AG short 10µF 10µF 12 11 10 9 8 7 6 5 4 3 2 DGND3 VRT AGND VRM3 AVCC VRM2 VIN AVCC VRM1 AGND VRB short 13 CLK/E 1 DVEE3 +5V (D) DG RESETN/E 48 14 CLKN/E RESET/E 47 15 CLK/T RESETN/T 46 TTL CLK SELECT 45 17 N.C. INV 44 18 N.C. CLKOUT 43 19 DVCC2 DVCC2 42 20 DGND2 DGND2 41 PBD0 PBD1 PBD2 PBD3 PBD4 37 DGND2 24 PAD3 DVCC2 PBD5 38 DVCC1 23 PAD2 DGND1 PBD6 39 PAD7 22 PAD1 PAD6 PBD7 40 PAD5 21 PAD0 PAD4 C∗ 16 N.C. 25 26 27 28 29 30 31 32 33 34 35 36 C∗ PBD2 PBD3 PBD6 (MSB) PBD7 PBD1 PBD4 PBD5 (LSB) PBD0 (MSB) PAD7 PAD6 PAD5 PAD4 PAD2 PAD3 (LSB) PAD0 PAD1 C∗ Short the analog system and digital system at one point immediately under the A/D converter. See the Notes on Operation. is the chip capacitor of 0.1µF. Also, C∗ is important to suppress the noise generated during the TTL output circuit is operating. Place C∗ at the fixed position between the pins with the shortest distance. Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 16 – CXA3246Q DMUX Mode Timing Chart (Select = VCC) Tds N–2 1.4ns (typ.) N+5 VIN (Pin 6) N+6 N+4 N+2 N–1 T N N+3 N+1 CLK (Pin 13) Tpw1 Tpw0 Tdo2; 5.0ns (typ.) 3.5ns (min) 7.5ns (max) PAD0 to D7 (Pins 21 to 28) N PBD0 to D7 (Pins 33 to 40) N+1 2.0V 2.0V N+3 0.8V Tdo1 Td_clk; 4.5ns (typ.) T + 0.5ns (typ.) 7.0ns (max) AA AA AA AA AAAA 3.0ns (min) CLK OUT (Pin 43) T_rh N+2 0.8V (Reset period) T_rs T_rh T_rs 2.0V 2.0V 2.0V 0.8V 0.8V 0.8V RESETN (Pin 48) – 17 – ≈T ≈T CXA3246Q Straight Mode Timing Chart (Select = GND) N+3 N–1 VIN (Pin 6) N+2 Tds N+1 N 1.4ns (typ.) T CLK (Pin 13) Tpw1 Tpw0 Tdo2; 5.0ns (typ.) 3.5ns (min) 7.5ns (max) PAD0 to D7 (Pins 21 to 28) N–4 PBD0 to D7 (Pins 33 to 40) N–3 2.0V N–3 N–2 N–1 N N–2 N–1 N N+1 0.8V 2.0V 0.8V Td_clk; 4.5ns (typ.) 3.0ns (min) 7.0ns (max) CLK OUT (CLK is inverted and output.) (Pin 43) 2.0V 0.8V – 18 – CXA3246Q Notes on Operation • The CXA3246Q has the PECL and TTL input pins for the clock and reset input pins. When the clock is input in PECL level, inputting the reset signal in PECL level is recommended. Also, when the clock is input in TTL level, inputting the reset signal in TTL is recommended. • The impedance of the input signal should be properly matched to ensure the CXA3246Q's stable operation at the high speed. • The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during high-speed operation. General points for caution are as follows. — The ground pattern should be as large as possible. It is recommended to make the power supply and ground patterns wider at an inner layer using a multi-layer board. — To prevent interference between AGND and DGND and between AVcc and DVcc, make sure the respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVcc and DVcc lines at one point each via a ferrite-bead filter, etc. Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance. — Be sure to turn the analog and digital power supplies on simultaneously. If not simultaneously, the IC does not operate correctly. — Ground the power supply pins (AVcc, DVcc1, DVcc2, DVEE3) as close to each pin as possible with a 0.1µF or larger ceramic chip capacitor. (Connect the AVcc pin to the AGND pattern and the DVcc1, DVcc2 and DVEE3 pins to the DGND pattern.) — It is recommended to place the ceramic chip capacitor of 0.1µF or more, in particular, between DVcc2 and DGND2 with the shortest distance. This has the effect to suppress the noise generated when the CXA3246Q TTL output circuit operates. — The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast. • The analog input pin VIN has an input capacitance of approximately 10pF. To drive the A/D converter with the proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit, keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc. • The VRT and VRB pins must have adequate by-pass to protect them from high-frequency noise. By-pass them to AGND with approximately 1µF tantal capacitor and 0.1µF chip capacitor as short as possible. • If the CLKN/E pin is not used, by-pass this pin to DGND with an approximately 0.1µF capacitor. At this time, approximately DGND3 – 1.2V voltage is generated. However, this is not recommended for use as the threshold voltage VBB because it is too weak. • When the digital input level is ECL or PECL level, ∗∗∗/E pins should be used and ∗∗∗/T pins left open. When the digital input level is TTL, ∗∗∗/T pins should be used and ∗∗∗/E pins left open. • The CXA3246Q TTL output high level is clamped to approximately 2.8V in the IC. This makes it possible to directly interface with the 3.5V system CMOS IC. • The CXA3026Q has the output pins P1∗∗ and P2∗∗. However, in the CXA3246Q, these symbols are changed as PA∗∗and PB∗∗. At this time, the P1 side of the CXA3026Q is changed to the PB side for the CXA3246Q; the P2 side of the CXA3026Q to the PA side for the CXA3246Q. • The pipeline delay of the CXA3246Q is smaller by one clock, compared to that of CXA3026Q. – 19 – CXA3246Q Example of Representative Characteristics Current consumption vs. Ambient temperature characteristics Current consumption vs. Conversion rate characteristics 110 Current consumption [mA] Current consumption [mA] 110 105 100 95 105 fin = 100 fCLK – 1kHz 4 DMUX mode CL = 5pF 95 90 90 –25 25 75 60 0 Ta – Ambient temperature [°C] Fc – Conversion rate [MSPS] Analog input current vs. Analog input voltage characteristics Reference current vs. Ambient temperature characteristics 120 4 Reference current [mA] Analog input current [µA] 100 VRT = 4V VRB = 2V 50 3 2 0 2 3 4 –25 Analog input voltage [V] 25 Ta – Ambient temperature [°C] – 20 – 75 CXA3246Q SNR vs. Input frequency response Error rate vs. Conversion rate characteristics 50 10–6 10–7 Error Rate [TPS] SNR [dB] 40 30 Fc = 120MSPS fin = fCLK – 1kHz 4 Error > 16LSB 10–8 10–9 10–10 20 1 3 10 5 30 50 Input frequency [MHz] Fc – Maximum conversion rate [MSPS] 170 fCLK – 1kHz 4 Error > 16LSB Error rate: 10–9 TPS fin = 150 140 130 –25 25 140 Fc – Conversion rate [MSPS] Maximum conversion rate vs. Ambient temperature characteristics 160 120 75 Ta – Ambient temperature [°C] – 21 – 160 CXA3246Q Package Outline Unit: mm 48PIN QFP (PLASTIC) 15.3 ± 0.4 + 0.1 0.15 – 0.05 + 0.4 12.0 – 0.1 0.15 36 25 24 13.5 37 48 + 0.2 0.1 – 0.1 13 12 0.8 + 0.15 0.3 – 0.1 0.24 M 0.9 ± 0.2 1 + 0.35 2.2 – 0.15 PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE QFP-48P-L04 LEAD TREATMENT SOLDER / PALLADIUM PLATING EIAJ CODE QFP048-P-1212 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.7g JEDEC CODE NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 22 –