Freescale Semiconductor Technical Data Document Number: MRF6V3090N Rev. 1, 12/2011 RF Power LDMOS Transistors MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 Enhancement--Mode Lateral MOSFETs Designed for commercial and industrial broadband applications with frequencies from 470 to 860 MHz. Devices are suitable for use in broadcast applications. • Typical Performance (Narrowband Test Circuit): VDD = 50 Volts, IDQ = 350 mA, 64 QAM, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Signal Type Pout (W) f (MHz) Gps (dB) ηD (%) ACPR (dBc) DVB--T (8k OFDM) 18 Avg. 860 22.0 28.5 --62.0 • Typical Performance (Broadband Reference Circuit): VDD = 50 Volts, IDQ = 450 mA, 64 QAM, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Signal Type Pout (W) f (MHz) Gps (dB) ηD (%) Output Signal PAR (dB) IMD Shoulder (dBc) DVB--T (8k OFDM) 18 Avg. 470 21.6 26.8 8.6 --31.8 650 22.9 28.0 8.7 --34.4 860 21.9 28.3 7.9 --29.2 470--860 MHz, 90 W, 50 V BROADBAND RF POWER LDMOS TRANSISTORS CASE 1486--03, STYLE 1 TO--270 WB--4 PLASTIC MRF6V3090NR1(NR5) Features • Capable of Handling 10:1 VSWR, All Phase Angles, @ 50 Vdc, 860 MHz, 90 Watts CW Output Power • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Input Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Excellent Thermal Stability • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • 225°C Capable Plastic Package • In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13 inch Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel. CASE 1484--04, STYLE 1 TO--272 WB--4 PLASTIC MRF6V3090NBR1(NBR5) PARTS ARE SINGLE--ENDED Gate Drain Gate Drain Table 1. Maximum Ratings Rating Symbol Value Unit VDSS --0.5, +110 Vdc Drain--Source Voltage Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections Table 2. Thermal Characteristics Characteristic Symbol Thermal Resistance, Junction to Case Case Temperature 76°C, 18 W CW, 50 Vdc, IDQ = 350 mA, 860 MHz Case Temperature 80°C, 90 W CW, 50 Vdc, IDQ = 350 mA, 860 MHz RθJC Value (2,3) 0.79 0.82 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2010--2011. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 (2001--4000 V) Machine Model (per EIA/JESD22--A115) B (201--400 V) Charge Device Model (per JESD22--C101) IV (>1000 V) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit IGSS — — 0.5 μAdc V(BR)DSS 115 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 20 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 200 μAdc) VGS(th) 0.9 1.6 2.4 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 350 mAdc, Measured in Functional Test) VGS(Q) 2.0 2.7 3.5 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 0.5 Adc) VDS(on) — 0.2 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 41 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 65.4 — pF Input Capacitance (1) (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 591 — pF Characteristic Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (ID = 50 mA, VGS = 0 Vdc) On Characteristics Dynamic Characteristics Functional Tests (In Freescale DVB--T Narrowband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 350 mA, Pout = 18 W Avg., f = 860 MHz, DVB--T (8k OFDM) Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset @ 4 kHz Bandwidth. Power Gain Gps 21.0 22.0 24.0 dB Drain Efficiency ηD 27.5 28.5 — % ACPR — --62.0 --60.0 dBc IRL — --14 --9 dB Adjacent Channel Power Ratio Input Return Loss 1. Part internally input matched. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 2 RF Device Data Freescale Semiconductor, Inc. VBIAS C8 + C1 R1 C2 Z2 Z3 Z4 Z5 Z6 Z9 Z12 Z13 Z14 Z15 Z16 Z17 Z7 C5 Z18 RF OUTPUT C14 C15 C6 C10 Z10 C4 R2 Z1 C9 C3 Z8 RF INPUT VSUPPLY + C11 C12 C13 DUT C7 Z11 + C16 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.266″ × 0.067″ Microstrip 0.331″ × 0.067″ Microstrip 0.598″ × 0.067″ Microstrip 0.315″ × 0.276″ Microstrip 0.054″ × 0.669″ Microstrip 0.419″ × 0.669″ Microstrip 0.256″ × 0.669″ Microstrip 0.986″ × 0.071″ Microstrip 0.201″ × 0.571″ Microstrip Z10, Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 C17 C18 1.292″ × 0.079″ Microstrip 0.680″ × 0.571″ Microstrip 0.132″ × 0.117″ Microstrip 0.705″ × 0.117″ Microstrip 0.159″ × 0.117″ Microstrip 0.140″ × 0.067″ Microstrip 0.077″ × 0.067″ Microstrip 0.163″ × 0.067″ Microstrip Figure 2. MRF6V3090NR1(NBR1) 860 MHz Narrowband Test Circuit Schematic Table 6. MRF6V3090NR1(NBR1) 860 MHz Narrowband Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kermet C2, C9, C17 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C3, C5, C8, C14, C16 43 pF Chip Capacitors ATC100B430JT500XT ATC C4 6.2 pF Chip Capacitor ATC100B6R2BT500XT ATC C6 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C7 9.1 pF Chip Capacitor ATC100B9R1CT500XT ATC C10, C18 220 μF, 100 V Electrolytic Capacitors EEVFK2A221M Panasonic--ECG C11, C15 7.5 pF Chip Capacitors ATC100B7R5CT500XT ATC C12 3.0 pF Chip Capacitor ATC100B3R0CT500XT ATC C13 0.7 pF Chip Capacitor ATC100B0R7BT500XT ATC R1 10 kΩ, 1/4 W Chip Resistor CRCW120610KOJNEA Vishay R2 10 Ω, 1/4 W Chip Resistor CRCW120610ROJNEA Vishay PCB 0.030″, εr = 3.5 RF--35 Taconic MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 3 -C1 C10 C8 C2 C3 C4 C5 C6 C7 MRF6V3090N Rev. 0 C11 R2 C15 CUT OUT AREA R1 C9 C16 C14 C12 C13 C17 C18 -- Figure 3. MRF6V3090NR1(NBR1) 860 MHz Narrowband Test Circuit Component Layout MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 24 Ciss 70 VDD = 50 Vdc, IDQ = 350 mA, f = 860 MHz 100 Coss Crss 0 10 20 22 50 21 40 20 30 19 20 ηD 10 17 40 30 60 Gps 18 Measured with ±30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc 10 50 10 1 100 0 200 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Pout, OUTPUT POWER (WATTS) Figure 4. Capacitance versus Drain--Source Voltage Figure 5. CW Power Gain and Drain Efficiency versus Output Power (Narrowband Test Circuit) 56 P3dB = 51.28 dBm (134.3 W) 55 54 52 24 P2dB = 51.06 dBm (127.6 W) 23 P1dB = 50.7 dBm (117.5 W) Actual 51 50 49 48 --6 --5 --4 --3 --2 --1 1 0 2 3 22 21 20 19 50 V 18 45 V 17 VDD = 50 Vdc, IDQ = 350 mA, f = 860 MHz 47 IDQ = 350 mA, f = 860 MHz VDD = 40 V 16 4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) Figure 6. CW Output Power versus Input Power (Narrowband Test Circuit) Figure 7. CW Power Gain versus Output Power (Narrowband Test Circuit) 25 VDD = 50 Vdc, IDQ = 350 mA, f = 860 MHz TC = --30_C Gps, POWER GAIN (dB) 24 60 Gps 23 TC = --30_C 85_C 50 25_C 22 40 21 85_C 30 25_C ηD 20 20 10 19 18 70 1 10 100 ηD, DRAIN EFFICIENCY (%) 53 25 Ideal Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) Gps, POWER GAIN (dB) C, CAPACITANCE (pF) 23 ηD, DRAIN EFFICIENCY (%) 1000 0 200 Pout, OUTPUT POWER (WATTS) Figure 8. CW Power Gain and Drain Efficiency versus Output Power (Narrowband Test Circuit) MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS — TWO--TONE (NARROWBAND TEST CIRCUIT) --20 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --10 VDD = 50 Vdc, IDQ = 350 mA, f1 = 854 MHz f2 = 860 MHz, Two--Tone Measurements --20 --30 3rd Order --40 5th Order --50 --60 7th Order --70 10 1 100 --30 3rd Order --35 --40 5th Order --45 --50 --55 7th Order --60 --65 200 1 90 10 Pout, OUTPUT POWER (WATTS) PEP TWO--TONE SPACING (MHz) Figure 9. Intermodulation Distortion Products versus Output Power Figure 10. Intermodulation Distortion Products versus Two--Tone Spacing 23.5 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) --10 23 Gps, POWER GAIN (dB) VDD = 50 Vdc, Pout = 90 W (PEP), IDQ = 350 mA f = 860 MHz, Two--Tone Measurements --25 IDQ = 450 mA 22.5 22 350 mA 21.5 300 mA 21 250 mA VDD = 50 Vdc, f1 = 854 MHz, f2 = 860 MHz Two--Tone Measurements, 6 MHz Tone Spacing 20.5 VDD = 50 Vdc, f1 = 854 MHz, f2 = 860 MHz Two--Tone Measurements, 6 MHz Tone Spacing --20 --30 IDQ = 250 mA --40 300 mA --50 1 10 100 200 450 mA 350 mA --60 20 1 Pout, OUTPUT POWER (WATTS) PEP Figure 11. Two--Tone Power Gain versus Output Power 10 100 200 Pout, OUTPUT POWER (WATTS) PEP Figure 12. Third Order Intermodulation Distortion versus Output Power MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — DVB--T (8k OFDM) 100 --20 7.61 MHz --30 10 --50 DVB--T (8k OFDM) 64 QAM Data Carrier Modulation 5 Symbols 0.01 --90 --110 2 0 4 6 8 10 12 --3 --2 --1 0 1 2 3 4 Figure 13. Single--Carrier DVB--T (8k OFDM) Figure 14. DVB--T (8k OFDM) Spectrum 350 mA 300 mA VDD = 50 Vdc, f = 860 MHz DVB--T (8k OFDM), 64 QAM Data Carrier Modulation, 5 Symbols 20.5 10 1 40 --54 VDD = 50 Vdc, f = 860 MHz --56 DVB--T (8k OFDM), 64 QAM Data Carrier Modulation, 5 Symbols --58 --60 IDQ = 250 mA --62 300 mA --64 350 mA --66 450 mA --68 Gps, POWER GAIN (dB) Figure 16. Single--Carrier DVB--T (8k OFDM) ACPR versus Output Power (Narrowband Test Circuit) 50 --30_C VDD = 50 Vdc, IDQ = 350 mA f = 860 MHz, DVB--T (8k OFDM) 64 QAM Data Carrier Modulation 5 Symbols 85_C --45 --50 ηD 25_C 30 20 --55 85_C Gps --60 TC = --30_C 25_C ACPR --65 10 0 --70 1 40 Pout, OUTPUT POWER (WATTS) AVG. Figure 15. Single--Carrier DVB--T (8k OFDM) Power Gain versus Output Power (Narrowband Test Circuit) ηD, DRAIN EFFICIENCY (%) 10 1 Pout, OUTPUT POWER (WATTS) AVG. 40 5 10 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) 250 mA ACPR, ADJACENT CHANNEL POWER RATIO (dBc) Gps, POWER GAIN (dB) --4 f, FREQUENCY (MHz) 22.5 21 --5 PEAK--TO--AVERAGE (dB) IDQ = 450 mA 21.5 DVB--T (8k OFDM) 64 QAM Data Carrier Modulation, 5 Symbols --100 23 22 4 kHz BW ACPR Measured at 4 MHz Offset from Center Frequency --70 --80 0.001 0.0001 4 kHz BW --60 0.1 (dB) PROBABILITY (%) --40 1 40 Pout, OUTPUT POWER (WATTS) AVG. Figure 17. Single--Carrier DVB--T (8k OFDM) Drain Efficiency, Power Gain and ACPR versus Output Power (Narrowband Test Circuit) MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 7 TYPICAL CHARACTERISTICS 109 VDD = 50 Vdc Pout = 18 W Avg. ηD = 28.5% MTTF (HOURS) 108 107 106 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 18. MTTF versus Junction Temperature -- CW VDD = 50 Vdc, IDQ = 350 mA, Pout = 18 W Average f MHz Zsource Ω Zload Ω 860 1.58 -- j0.89 3.51 -- j3.98 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 19. Series Equivalent Source and Load Impedance (Narrowband Test Circuit) MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 8 RF Device Data Freescale Semiconductor, Inc. 470--860 MHz BROADBAND REFERENCE CIRCUIT VDD = 50 Volts, IDQ = 450 mA, Channel Bandwidth = 8 MHz, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Signal Type Pout (W) f (MHz) Gps (dB) ηD (%) Output PAR (dB) IMD Shoulder (dBc) DVB--T (8k OFDM) 4.5 Avg. 470 21.5 11.6 9.9 --37.5 650 22.8 11.8 9.9 --41.7 860 21.8 11.9 9.8 --40.3 470 21.6 18.2 9.5 --37.4 650 22.8 18.6 9.7 --40.2 860 21.8 18.9 9.5 --39.0 470 21.6 26.8 8.6 --31.8 650 22.9 28.0 8.7 --34.4 860 21.9 28.3 7.9 --29.2 9 Avg. 18 Avg. R1 VDD VGG C14 C15 C16 C17 C13 C20 C5 C4 C7 C1 C12 C9 C2 C8 C6 C18 C19 C3 C11 C10 Q1 MRF6V3090N Rev. 2 Figure 20. MRF6V3090NR1(NBR1) 470--860 MHz Broadband 2″ × 3″ Compact Reference Circuit Component Layout MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 9 470--860 MHz BROADBAND REFERENCE CIRCUIT Table 7. MRF6V3090NR1(NBR1) 470--860 MHz Broadband 2″ × 3″ Reference Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C12 100 pF Chip Capacitors ATC100B101JT500XT ATC C2 1.8 pF Chip Capacitor ATC100B1R8BT500XT ATC C3 6.2 pF Chip Capacitor ATC100B6R2BT500XT ATC C4, C5, C6 13 pF Chip Capacitors ATC100B130JT500XT ATC C7, C8, C11 2.2 pF Chip Capacitors ATC100B2R2JT500XT ATC C9 15 pF Chip Capacitor ATC100B150JT500XT ATC C10 3.9 pF Chip Capacitor ATC100B3R9CT500XT ATC C13 47 μF, 16 V Tantalum Capacitor T491D476K016AS Kemet C14, C17, C19 2.2 μF, 100 V Chip Capacitors C3225X7R2A225KT TDK C15, C16, C18 220 pF Chip Capacitors ATC100B221JT200XT ATC C20 470 μF, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp Q1 RF High Power Transistor MRF6V3090NBR1 Freescale R1 10 Ω, 1/4 W Chip Resistor CRCW120610RJ Vishay PCB 0.030″, εr = 3.5 RO4350B Rogers MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 10 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 470--860 MHz BROADBAND REFERENCE CIRCUIT 23 Gps, POWER GAIN (dB) 60 VDD = 50 Vdc, IDQ = 450 mA, DVB--T (8k OFDM) 64 QAM Data Carrier Modulation, 5 Symbols 50 Gps 22 Pout = 4.5 W 9W 18 W 21 40 30 18 W ηD 20 ηD, DRAIN EFFICIENCY (%) 24 20 9W 19 4.5 W 18 450 500 550 600 650 700 750 800 10 0 900 850 f, FREQUENCY (MHz) Figure 21. Single--Carrier DVB--T (8k OFDM) Power Gain and Drain Efficiency versus Frequency (Broadband Reference Circuit) 12 0 Pout = 4.5 W OUTPUT PAR (dB) 10 9W 9 PAR 8 18 W 7 6 18 W IMD(1) 5 9W 4 3 450 4.5 W 495 540 585 630 675 720 765 810 855 --5 --10 --15 --20 --25 --30 --35 IMD, INTERMODULATION DISTORTION SHOULDER (dBc) VDD = 50 Vdc, IDQ = 450 mA, DVB--T (8k OFDM) 11 64 QAM Data Carrier Modulation, 5 Symbols --40 --45 900 f, FREQUENCY (MHz) (1) Intermodulation distortion shoulder measurement made using delta marker at 4.2 MHz offset from center frequency. Figure 22. Single--Carrier DVB--T (8k OFDM) Output PAR and IMD Shoulder versus Frequency (Broadband Reference Circuit) 70 VDD = 50 Vdc, IDQ = 450 mA Pulse Width = 100 μsec, 10% Duty Cycle 25 620 MHz Gps, POWER GAIN (dB) 860 MHz 24 Gps 620 MHz 23 740 MHz 22 860 MHz 30 20 ηD 1 40 30 20 19 50 470 MHz 470 MHz 21 60 740 MHz 10 10 100 ηD, DRAIN EFFICIENCY (%) 26 0 200 Pout, OUTPUT POWER (WATTS) PULSED Figure 23. Pulsed Power Gain and Drain Efficiency versus Output Power (Broadband Reference Circuit) MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 11 PACKAGE DIMENSIONS MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 12 RF Device Data Freescale Semiconductor, Inc. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 13 MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 14 RF Device Data Freescale Semiconductor, Inc. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 15 MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 16 RF Device Data Freescale Semiconductor, Inc. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 RF Device Data Freescale Semiconductor, Inc. 17 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Apr. 2010 • Initial Release of Data Sheet 1 Dec. 2011 • Changed “DVB--T OFDM” to “DVB--T (8k OFDM)” throughout • Fig. 6, CW Output Power versus Input Power: corrected typographical error in dBm to watts conversion values, p. 5 • Fig. 7, CW Power Gain versus Output Power (Narrowband Test Circuit): adjusted x--axis scale from 0 to 140 watts to 10 to 150 watts, p. 5 • Updated Fig. 9, Intermodulation Distortion Products versus Output Power, to correct X--axis PEP power values, p. 6 • Fig. 10, Intermodulation Distortion Products versus Two--Tone Spacing: added f = 860 MHz to graph callouts, p. 6 • Updated Fig. 11, Two--Tone Power Gain versus Output Power, to correct X--axis PEP power values, p. 6 • Updated Fig. 12, Third Order Intermodulation Distortion versus Output Power, to correct X--axis PEP power values, p. 6 • Fig. 18, MTTF versus Junction Temperature -- CW: MTTF end temperature on graph changed to match maximum operating junction temperature, p. 8 • Fig. 19, Series Equivalent Source and Load Impedance: removed plot, p. 9 • Added 470--860 MHz Broadband Reference Circuit frequency table, p. 9 • Added Fig. 20, 470--860 MHz Broadband 2″ × 3″ Compact Reference Circuit Component Layout, p. 9 • Added Table 7, 470--860 MHz Broadband 2″ × 3″ Reference Circuit Component Designations and Values, p. 10 • Added Fig. 21, Single--Carrier DVB--T (8k OFDM) Power Gain and Drain Efficiency versus Frequency (Broadband Reference Circuit), p. 11 • Added Fig. 22, Single--Carrier DVB--T (8k OFDM) Output PAR and IMD Shoulder versus Frequency (Broadband Reference Circuit), p. 11 • Added Fig. 23, Pulsed Power Gain and Drain Efficiency versus Output Power (Broadband Reference Circuit), p. 11 MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 18 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010--2011. All rights reserved. MRF6V3090NR1 MRF6V3090NR5 MRF6V3090NBR1 MRF6V3090NBR5 Document Number: RF Device Data MRF6V3090N Rev. 1, 12/2011 Freescale Semiconductor, Inc. 19